

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Departamento de Ciencias Químicas y Ambientales Termodinámica Química I Examen I Parcial

COMPROMISO DE HONOR

Yo, compromiso, reconozco que el presente examen está diseñado para ser resuelto ordinaria para cálculos aritméticos, un lápiz o esferográfico; que solo puedo com examen; y, cualquier instrumento de comunicación que hubiere traído, debo apag algún otro material que se encuentre acompañándolo. No debo además, consi entreguen en esta evaluación. Los temas debo desarrollarlos de manera ordenada. Firmo al pie del presente compromiso, como constancia de haber leído y acepta.	de manera individual, que puedo usar una nunicarme con la persona responsable de la r garlo y depositarlo en la parte anterior del au ultar libros, notas, ni apuntes adicionales a	calculadora recepción del la, junto con
(0	MATRICULA #:	PARALELO:

1. Se tiene un banco de motor de combustión interna de automóvil, donde se obtuvieron los siguientes datos:

olgalomoo datoo.		
Velocidad del motor	3000 RPM	
Potencia desarrollada	32kW	
Temperatura del agua de		
enfriamiento a la entrada del	24 °C	
motor		
Temperatura del agua de	53 °C	
enfriamiento a la salida del motor		
Flujo de masa de agua de	8.4 kg/min	
enfriamiento		
Incremento en la entalpía del		
agua al circular por el sistema de	121.2 J/g	
enfriamiento		
Presión barométrica	954 mbar	

- a) Calcular el flujo de calor disipado por el motor al sistema de enfriamiento.
 Suponga que todo el calor disipado por los cilindros se transfiere al agua de enfriamiento.
- b) Calcule el porcentaje de la potencia desarrollada por el motor que se disipa en forma de calor.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Departamento de Ciencias Químicas y Ambientales Termodinámica Química I Examen I Parcial

2. Al finalizar la carrera de escape de un motor de combustión interna, la cámara de combustión de este queda ocupada por una masa m₁ de residuos los cuales tienen una energía interna u₁. Durante la carrera de admisión que le sigue, una mezcla de aire y gasolina se introduce al interior del cilindro mientras el volumen aumenta desde un valor V₁ hasta un valor V₂. Si m₂ es la masa final total al terminar el proceso de admisión, y éste se realiza a una presión constante P, establezca el balance de energía apropiado en función de entalpía, energía cinética y energía potencial. Suponga un proceso adiabático.

- 3. Oxígeno en un sistema cerrado es comprimido adiabaticamente desde 25 °C y 1 bar hasta una temperatura final de 450 °C. Entonces, este se enfria bajo presión constante hasta que la temperatura cae a 5 °C. Asuma al oxígeno como gas ideal. (Cp= 29.4 J/mol-K; R= 8.314 J/mol-K)
 - a) Dibuje el diagrama PV y muestre el proceso.
 - b) Calcule la presión final.
 - c) Calcule el cambio de energía interna, cambio de entalpía, calor y trabajo del todo el proceso.

Se sabe que para un proceso adiabático:

$$P_2 = P_1 \left(\frac{T_1}{T_2}\right)^{\frac{-Cp}{R}}$$

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Departamento de Ciencias Químicas y Ambientales Termodinámica Química I Examen I Parcial

4. Vapor saturado 1 bar es calentado a presión constante a una temperature final de 500 °C en un sistema cerrado. Tratando al sistema como un gas ideal, determine la cantidad de calor, trabajo, y el cambio de energía interna y de entalpía. Compare los resultados con las tablas de vapor, determine si se puede considerar como gas ideal y discuta. La capacidad calorífica del vapor está dada por:

$$\frac{Cp}{R} = 4.395 - 0.004186 T + 0.00001405 T^2 + 1.564 * 10^{-8}T^3 + 6.32$$
$$* 10^{-12}T^4$$

- **5.** Una turbina adiabática expande aire a 1300 kPa y 500 °C a 100 kPa y 127 °C. Aire entra a la turbina a través de una abertura de 0.2 m² con una velocidad media de 40 m/s, y a sale a través de una abertura 1 m². Determine:
 - a) El flujo másico del aire a través de la turbine.
 - b) El poder producido por la turbina.