### **CAPÍTULO II**

ENSAYOS EXPERIMENTALES PARA LA OBTENCION DE LA VELOCIDAD DE CORROSION EN HORMIGONES PUZOLANICOS.

#### 2.1 METODOLOGIA.

El presente estudio está orientado a evaluar el comportamiento del acero ASTM A42 en el hormigón Puzolánico.

Los ensayos de resistencia a la polarización se realizaron periódicamente mediciones durante 150 días (5 meses) en intervalos de 15 días por medición, mediante la técnica de Resistencia a la polarización lineal (RPL), con el Scanning Potentiostat. Las

mediciones de Ecorr fueron tomadas periódicamente para cada una de las barras de todas las probetas contra el electrodo de referencia interno de titanio incluido en cada probeta (ERI). Además se tomó el potencial del ERI contra un electrodo de referencia externo standard de Cobre/Sulfato de cobre saturado (Cu/SCS).

El electrodo de referencia externo (Cu/SCS) utilizado puede verse en la figura 2.

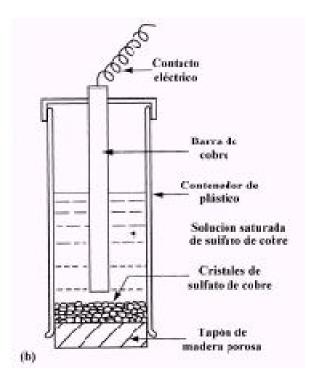



Fig. 2

Se detalla a continuación una tabla resumida indicando las mediciones que realizaron:

| ORDEN DE<br>EJECUCIÓN | ENSAYO                                      | FRECUENCIA | MEDICIÓN EN                                  | EQUIPO                           |
|-----------------------|---------------------------------------------|------------|----------------------------------------------|----------------------------------|
| 1                     | Potencial de<br>corrosión E <sub>corr</sub> | QUINCENAL  | C / electrodo de<br>trabajo<br>(2 x probeta) | Multímetro                       |
| 2                     | Densidad de<br>corriente I <sub>COrr</sub>  | QUINCENAL  | C / electrodo de<br>trabajo<br>(2 x probeta) | Potenciogalvanostato<br>EG&G 362 |
| 3                     | Resistencia                                 | QUINCENAL  | C /probeta                                   | NILSON 400                       |

TABLA 1.- Programación de ensayos

#### PROCEDIMIENTO PARA MEDICIÓN DE POTENCIALES.

#### 1) Potenciales Ecorr.

- a) Colocar el multímetro en el rango de milivolts.
- b) Conectar el negativo del multímetro al electrodo de referencia interno de la probeta, y el positivo al electrodo de trabajo AX.
   Registrar la medición
- c) Repetir el procedimiento para el electrodo de trabajo AY.



Fig. 3.- Medición de potencial con el electrodo de referencia interno ERI

#### 2) Potenciales de ERI vs CSC.

- a) Utilizar una esponja limpia y un recipiente con agua destilada para no introducir contaminantes en las probetas.
- b) Colocar el multímetro en el rango de milivolts.
- c) Conectar el positivo al ERI (Electrodo de Referencia Interno).
- d) Conectar el negativo del multímetro al electrodo de CSC. Apoyar el CSC sobre la esponja humedecida en agua destilada, sobre un costado de la probeta.
- e) Registrar la medición, cuando la lectura se haya estabilizado  $\pm$  0.02 V al menos 5 minutos.
- f) Repetir para las otras caras de la probeta.
- g) Obtener promedio.



Fig. 4.- Medición de potencial contra el electrodo CSC

# PROCEDIMIENTO PARA MEDICIONES DE DENSIDAD DE CORROSION icorr.

#### 1) Conexiones entre el potenciogalvanostato y la probeta

- a) Esta operación debe realizarse sin encender el equipo y con el interruptor CELL en OFF.
- b) El cable VERDE debe conectarse al electrodo de trabajo AX.
   Para la segunda medición sobre la misma probeta, se conectará al AY.
- c) El cable BLANCO debe conectarse al electrodo de referencia.
- d) El cable ROJO debe conectarse a los dos contraelectrodos de acero inoxidable, IX e IY.
- e) El cable NEGRO se conecta a un punto de tierra (en la regleta).

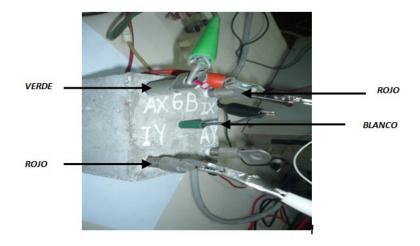



Fig. 5.- Conexiones del potenciogalvanostato



Fig. 6.- Modelo del potenciogalvanostato

#### 2) Otras conexiones

 a) Realizar las conexiones necesarias entre las salidas de datos del potenciogalvanostato y la tarjeta de adquisición.  b) Conectar el multímetro a la salida de voltaje del potenciostato para respaldar las lecturas de la tarjeta. Acompañar las lecturas con un cronómetro para registrar a los 60 s.

#### 3) Ajuste de los controles del equipo

- a) Esta operación debe realizarse sin encender el equipo y con el interruptor CELL en OFF.
- b) Todos los botones de la hilera del extremo izquierdo deben estar "sueltos".
- c) El interruptor MODE debe estar presionado, para funcionar en modo CONTROL I.
- d) El contador INITIAL POTENTIAL se utiliza como un multiplicador sin dimensiones, que trabaja en conjunto con el selector de rango CURRENT RANGE, para indicar el valor de corriente que se aplicará al electrodo de trabajo:
- e) Por ejemplo, si se desea aplicar 20  $\mu A$ , presionar el CURRENT RANGE 10  $\mu A$  y colocar + 2.000 en el contador INITIAL POTENTIAL.
- f) Encender el equipo. La corriente se inyectará al momento de presionar el interruptor CELL a su posición ON.
- g) Luego de realizar las conexiones a la probeta y el ajuste de los controles, encender el equipo. Deberá tomarse la lectura

- requerida, a los 60 segundos de inyectar la corriente. Este tiempo empieza a correr al presionar el interruptor CELL.
- h) Tomar la lectura de voltaje inducido en el electrodo de trabajo,
   a los 60 segundos y apagar la inyección de corriente (CELL OFF).
- i) Se tomará una lectura para AX y luego otra para AY.

Las mediciones empezaron desde el 31 de julio del 2009 hasta el 18 de diciembre del 2009.

#### 2.2 CONTRUCCION DE LAS PROBETAS DE HORMIGÓN ARMADO

Las probetas empleadas en el presente trabajo, están constituidas por cubos de hormigón de 10 cm de lado que contienen 4 barras de acero, dos de ASTM A-42 y dos de INOX 304 de 10 mm de diámetro posicionadas en sus vértices de manera de obtener un espesor de recubrimiento de 10 mm (Figura 7)

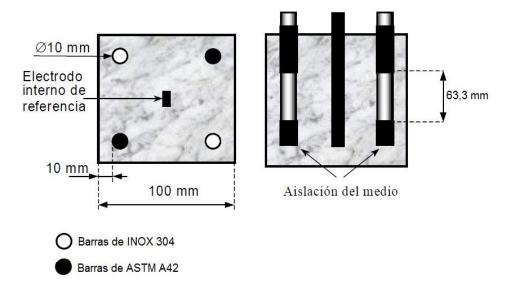



Fig. 7.- Probetas de hormigón con barras de acero

Las probetas contienen un electrodo interno de referencia de titanio colocado en su centro para facilitar la ejecución de ensayos electroquímicos. El área expuesta de las barras en contacto con el cemento es de 20 cm2.

Para confeccionar la armadura de las probetas, se tomaron barras lisas de sección redonda de acero INOX 304 Y ASTM A-42 de 10 mm de diámetro y se cortaron tramos de 100 mm de longitud.

Luego se procedió a pulir las barras usando un papel abrasivo (lija) de grano #280, puliendo en forma manual, para eliminar todo vestigio de posible óxido superficial. Luego de desengrasarlas con alcohol se procedió a dejar en cada barra un área expuesta de exactamente 20 cm2 cubriendo el resto de la barra con cinta

adhesiva plástica y luego soplando aire con una secadora para lograr un perfecto sellado. Uno de los extremos de la barra se dejo libre de cinta ya que sobresaldrá del cemento y se montará sobre él, un terminal eléctrico para facilitar la conexión del instrumento de medición.

Luego se procedió a construir el electrodo de referencia interno (ERI), que irá empotrado en el centro del cubo, equidistante de las cuatro barras que lo rodearán. Como ya se mencionó el material de dicho electrodo es titanio. (Figura 8).

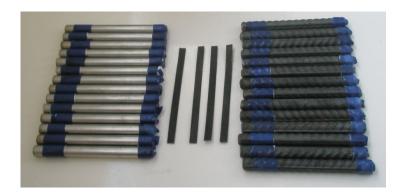



Fig. 8.- Barras de acero INOX 304 (izquierda), ASTM A-42 (derecha) y el ERI (electrodo de referencia interno) listas para ser empotradas en el cemento.

Luego se construyó un soporte de madera para poder mantener las barras y el electrodo de referencia en la posición correcta durante la colada del cemento en el molde. Es de hacer notar que el área expuesta de todas las barras y el electrodo de referencia quedarán a la misma altura dentro de la probeta (Figura 9).



Fig. 9.- Barras de acero y electrodo de referencia montados sobre el soporte de madera

Una vez montadas las barras y el electrodo de referencia en el soporte se introduce el conjunto en el molde, que previamente se ha cubierto con grasa como agente desmoldante, para poder colar el cemento sin que se adhiera a las paredes del molde ni al soporte de madera (figura 10).



Fig. 10.- Molde listo para colada del cemento. Cada molde está preparado para colar dos probetas.

Para la elaboración del mortero se utilizó cemento Puzolánico.

Las características de la mezcla utilizada se resumen en la tabla 2.

Tabla 2. Características de la mezcla utilizada en la construcción de las probetas

|           |         |               | DOS            | IFICACION POR | m3   |                      |                    |
|-----------|---------|---------------|----------------|---------------|------|----------------------|--------------------|
|           | Cemento | Piedra 12,5mm | Arena          | Arena de Rio  | Agua |                      | Inhibidor MCI 2006 |
| TIPO      | (Kg)    | (Kg)          | Triturada (Kg) | (Kg)          | (Kg) | SikamentNR %         | NS (Kg)            |
| PZ-sin    |         |               |                |               |      | 1 % del contenido de |                    |
| inhibidor | 500     | 533           | 291            | 791           | 210  | cemento              |                    |
| PZ-con    |         |               |                |               |      | 1% del contenido de  |                    |
| inhibidor | 500     | 533           | 291            | 791           | 210  | cemento              | 0,6                |

Una vez preparado el mortero, se procedió al llenado de los moldes.

Luego, se llenó completamente el molde con cemento, se quitó el excedente, con una regleta metálica, y se cubrió el molde con un

film de polietileno para evitar la pérdida de humedad. Así las probetas quedaron listas para el proceso de curado. (Figura 11 y 12)



Fig. 11.- Molde en proceso de colado



Fig. 12.- Probetas listas para el procesos de curado

En la figura 13 se puede ver una de la probeta terminada.



Fig. 13.- Probeta de hormigón armado terminada

En la tabla 3 a continuación se presenta la programación de la elaboración de las probetas de hormigón Puzolánico.

Tabla 3. Programación de construcción de probetas

| FECHA            | MODELO      | TIPO          | CANTIDAD | OBSERVACIONES          | Bacht     |
|------------------|-------------|---------------|----------|------------------------|-----------|
|                  |             |               |          |                        |           |
| Martes 12-05-09  | Cúbicas     | sin inhibidor | 8        | 6 cinéticas + 2 extra  | Único     |
| Miércol 13-05-09 | Cilíndricas | sin inhibidor | 13       | 12 difusión + 6 rotura | Único     |
|                  | Cilíndricas | sin inhibidor | 5        | 12 dilusion + 6 fotura |           |
|                  | Cúbicas     | sin inhibidor | 4        | ensayo acelerado       | 1r Bacht  |
| Viernes 15-05-09 | Cilíndricas | con inhibidor | 5        | rotura                 |           |
|                  |             | con           |          | 6 cinéticas + 2        |           |
|                  | Cúbicas     | inhibidor     | 8        | extra                  | 2o. Bacht |

probetas totales

43

Para identificar cada probeta se utilizaron ciertos códigos para las cuatro condiciones de exposición

La tabla 4 resume las probetas asignadas para cada condición acorde a la codificación adoptada.

Tabla 4 Codificación de las probetas acorde a la condición de exposición.

| SIGLA | DETALLE                             | INDICADOR |
|-------|-------------------------------------|-----------|
| Р     | PUZOLÁNICO                          |           |
| 2     | PORTLAND TIPO 2                     | MEZCLA    |
| X/I   | SIN INHIBIDOR / CON INHIBIDOR       |           |
| R     | RESISTENCIA DE POLARIZACIÓN Rp      |           |
| Α     | ENSAYO ACELERADO                    | ENSAYO    |
| D     | ENSAYO DE DIFUSIÓN                  |           |
| С     | CÁMARA DE CARBONATACIÓN             |           |
| S     | INMERSIÓN EN SAL                    | MEDIO     |
| N     | EXPOSICIÓN A LA ATMÓSFERA (NATURAL) |           |
| #     | NUMERO DE PROBETA                   | NUMERO    |

#### 2.3 CONDICIONES DE EXPOSICION

Una vez que las probetas fueron desmoldadas y cumplieron su período de curado, las mismas fueron sometidas a las respectivas condiciones de exposición a saber:

- a) Expuestas al ambiente Natural de Guayaquil.
- b) Probetas parcialmente inmersas en solución conteniendo
   Cloruro de Sodio.
- c) Expuestas a atmósfera en Dióxido de Carbono.

#### 2.3.1 Probetas expuestas al ambiente Natural de Guayaquil

Para la condición de exposición al ambiente natural sólo se dejaron las probetas sobre una superficie horizontal ubicada en el area de las oficinas del area de materiales de la FIMCP expuestas al ambiente.

# 2.3.2 Probetas parcialmente inmersas en solución conteniendo Cloruro de Sodio

Se prepararon soluciones al 3,5% m/m de cloruro de sodio y, usando agua destilada. Esta condición emula un entorno conteniendo agua de mar (con iones cloruro).

Las probetas expuestas en esta condición se las puede observar en la siguiente Figura 14.



Fig. 14.- Probetas parcialmente inmersas en soluciones de cloruro de sodio.

#### 2.3.3 Probetas expuestas a atmosferas en dióxido de carbono

En esta condición se estudia la acción del dióxido de carbono presente en al aire atmosférico (carbonatación del hormigón). Para la carbonatación acelerada de las probetas se diseñó y construyó una cámara, consistente en un recipiente de plumafon (inerte frente al CO2) con su respectiva tapa, en la cual se colocó un sistema de ductos para permitir el llenado de la cámara con CO2 proveniente de un cilindro y para poder evacuar el aire presente por desplazamiento al iniciar el llenado. Se colocó también un manómetro de baja presión para controlar que siempre exista presión positiva dentro de la cámara. Dentro de la cámara se colocaron las respectivas probetas, construidos con el mismo cemento con y inhibidor para monitorear el avance del frente de carbonatación y un vaso de precipitados conteniendo una solución saturada de nitrato de magnesio hexahidratado Mg(NO3)2.6H2O (reactivo de calidad analítica y agua desmineralizada), solución que tiene la capacidad de mantener la humedad dentro del recinto de la cámara en aproximadamente 55-60% (CRC, 1999), que es la condición más favorable para la rápida carbonatación del hormigón.

Posteriormente y una vez asegurada la estanqueidad de la cámara, se llenó con CO2 (pureza 99,995%) a saturación.

Con respecto al tiempo necesario para que el frente de carbonatación llegue hasta la superficie de las barras de acero, se introdujeron en la cámara (como se mencionó anteriormente) los probetas de cemento Puzolánico con y sin inhibidor los cuales fueron extraídos, de a uno por vez a intervalos de 2 semanas. Figura 15



Fig. 15

### 2.4 RESULTADOS EXPERIMENTALES PARA OBTENER LA RESISTENCIA A LA POLARIZACION.

En esta parte del presente trabajo se muestran los resultados obtenidos mediante las técnicas del trazado de curvas de polarización (CP), aplicación de la técnica de resistencia a la

polarización lineal (RPL) y medición de resistencia eléctrica del hormigón, ya descritas en los capítulos anteriores, para la determinación de la velocidad de corrosión de barras de acero empotradas en las probetas sometidas a diversas condiciones de exposición. Se resumen las condiciones de exposición a las que fueron sometidas las probetas: Ambiente Natural, Parcialmente sumergidas en solución de NaCl 3,5% m/m, cámara de CO2 con 60% de humedad relativa.

TABLA 5
HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

|         | PROMEDIO                                      | (FINAL)                       |            | -0,06615  |            | -0,0402625 |            | -0,0465125 |            | -0,040325  |            | -0,0446125 |            | -0,03225  |            | -0,026875 |            | -0,023825 |            | -32,96875  |            | 0,75625  |
|---------|-----------------------------------------------|-------------------------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|----------|
| RESUMEN | PROMEDIO<br>Foots CSC                         | (FINAL)                       |            | -66,15    |            | -40,2625   |            | -46,5125   |            | -40,325    |            | -44,6125   |            | -32,25    |            | -26,875   |            | -23,825   |            | -65,9375   |            | 1,5125   |
| RE      | PROMEDIO<br>Ecorr CSC                         | (POR<br>PROBETA)              | -59,75     | -72,55    | -41,925    | -38,6      | -46,6      | -46,425    | -41,025    | -39,625    | -40,85     | -48,375    | 7'61-      | -44,8     | -25,5      | -28,25    | -20,1      | -27,55    | -70,95     | -60,925    | -1,175     | 4,2      |
| AY      | CORREGID<br>O Ecorr vs                        | CSC (CON<br>ERI vs            | -51,4      | -59,45    | -38,075    | -57,7      | -43,8      | -53,575    | -38,875    | -45,825    | -38,35     | -54,425    | -17,5      | -50,8     | -22,7      | -34,3     | -18,45     | -29,3     | -68,15     | -63,725    | 0,375      | 1,8      |
| AX      | CORREGIDO CORREGID Ecorr vs CSC O Ecorr vs    | (CON ERI VS<br>CSC)           | -68,1      | -85,65    | -45,775    | -19,5      | -49,4      | -39,275    | -43,175    | -33,425    | -43,35     | -42,325    | -21,9      | -38,8     | -28,3      | -22,2     | -21,75     | -25,8     | -73,75     | -58,125    | -2,725     | 6,6      |
|         |                                               | CARA 2 CARA 3 CARA 4 PROMEDIO | 61,1       | 55,55     | 31,725     | 62,7       | 22,2       | 41,325     | 25,825     | 49,375     | 26,65      | 39,275     | 48,2       | 46,5      | 34,1       | 46,8      | 42,35      | 52,3      | 26,65      | 39,275     | 99,875     | 119,3    |
|         | CSC (m)                                       | CARA 4                        | 79,6       | 58,6      | 23,2       | 81,5       | 24,6       | 56,6       | 23,4       | 70         | 26,7       | 61,9       | 52,3       | 50,6      | 36,2       | 51        | 35,6       | 47,3      | 26,7       | 61,9       | 107,4      | 132,1    |
|         | - ERI vs                                      | CARA 3                        | 49,4       | 63,4      | 38,5       | 48,7       | 17,5       | 32,4       | 24,2       | 40         | 19,7       | 29,6       | 60,3       | 32        | 28,4       | 63,1      | 43,4       | 62,5      | 19,7       | 29,6       | 99,4       | 109,3    |
|         | POTENCIAL ERI VS CSC (mV)                     | CARA 2 (                      | 56,1       | 52,4      | 22,7       | 62,5       | 21         | 42,6       | 28,4       | 47,3       | 31,1       | 38,3       | 37,3       | 48        | 33,2       | 21,4      | 40,3       | 50,8      | 31,1       | 38,3       | 91,4       | 122,1    |
|         |                                               | CARA 1                        | 59,3       | 47,8      | 42,5       | 58,1       | 25,7       | 33,7       | 27,3       | 40,2       | 29,1       | 27,3       | 42,9       | 55,4      | 38,6       | 51,7      | 50,1       | 48,6      | 29,1       | 27,3       | 101,3      | 113,7    |
|         | AL DE<br>E <sub>corr</sub> (mV)               | AY (                          | -112,5     | -115      | -69,8      | -120,4     | 99         | -94,9      | -64,7      | -95,2      | -89        | -93,7      | -65,7      | -97,3     | -56,8      | -81,1     | 9'09-      | -81,6     | -94,8      | -103       | -99,5      | -117,5   |
|         | POTENCIAL DE CORROSIÓN E <sub>CORR</sub> (mV) | AX                            | -129,2     | -141,2    | -77,5      | -82,2      | -71,6      | 9'08-      | 69-        | -82,8      | -70        | -81,6      | -70,1      | -85,3     | -62,4      | -69       | -64,1      | -78,1     | -100,4     | -97,4      | -102,6     | -112,7   |
|         | díse                                          | uldə                          | 28         | 2         | CF         | 7          | ម្ន        | 3          | 70         | 2          | 8          | 3          | 8          | 9         | 113        | 711       | 128        | 120       | 140        | 140        | 15.4       | 5        |
|         | cópigo                                        | PROBETA                       | PX-R-C-1   | PX-R-C-2  | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2  | PX-R-C-1   | PX-R-C-2  | PX-R-C-1   | PX-R-C-2  | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2 |
|         | CECHA                                         | LEGIN                         | 14/08/2009 | 2007/00/1 | 28/08/2009 | 20270007   | 11/09/2009 |            | 25/09/2009 | 2007/00/07 | 08/10/2000 | 20270      | 23/10/2000 | 501015000 | 06/11/2009 | 2007      | 20/11/2000 | 500711107 | 0000000000 | 2007/71/10 | 05/04/2040 | 202      |
|         | MEDICIÓ                                       | N No.                         | -          | -         | 0          | 1          | ~          | ,          | 7          |            | v          | ,          | ď          | ,         | 7          | -         | oc         | •         | o          | ,          | Ç          | 2        |

TABLA 6
HORMIGONES PUZOLANICOS CON INHIBIIDOR SOMETIDAS A CAMARA DE CARBONATACION

| POTEN                            | POTEN                            |
|----------------------------------|----------------------------------|
| CORROSIÓN E <sub>CORR</sub> (mV) | CORROSIÓN E <sub>CORR</sub> (mV) |
| AX AY CARA1                      | AY                               |
| -120,6 -138,7                    | -138                             |
| -144,4                           |                                  |
| -83,3                            |                                  |
| -94,8                            | 6-                               |
| -70,1 -67,2                      | -67                              |
| -80,8 -84,6                      |                                  |
| 6,99- 7,59-                      | 99-                              |
| -74,1 -82,7                      |                                  |
| -65,9 -64,6                      |                                  |
| -75,8 -80,7                      | -80                              |
| -75,1 -81,5                      |                                  |
| 1,06- 7,58-                      | _                                |
| -57,1 -58,8                      | 85-                              |
| -62,7 -68,9                      | -68                              |
| -61,8 -60,3                      | -90                              |
| -69,8 -74,5                      |                                  |
| -70,5                            |                                  |
| -94,2 -103                       |                                  |
| -85,2 -84,7                      |                                  |
| -124,3 -277,1                    |                                  |

TABLA 7
HORMIGONES PUZOLANICO SIN INHIBIDOR SOMETIDAS A AGUA SALADA

|                     | PROMEDIO                                          | (FINAL)            |            | -0,227213 |            | -0,459875 |            | -0,56225 |            | -0,525363 |            | -0,5204    |            | -0,494663 |            | -0,498038   |            | -0,532113  |            | -0,532788 |            | -0,570788 |
|---------------------|---------------------------------------------------|--------------------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|------------|------------|-----------|------------|-------------|------------|------------|------------|-----------|------------|-----------|
| OMEDIO PARA GRÁFICA | PROMEDIO                                          |                    |            | -227,2125 |            | -459,875  |            | -562,25  |            | -525,3625 |            | -520,4     |            | -494,6625 |            | -498,0375   |            | -532,1125  |            | -532,7875 |            | -570,7875 |
| OMEDIO PA           | CORREGID CORREGID PROMEDIO O Ecorr vs O Ecorr CSC | (POR<br>PROBETA)   | -230,55    | -223,875  | -464,575   | -455,175  | -558,275   | -566,225 | -517,55    | -533,175  | -541,875   | -498,925   | -483,05    | -506,275  | -484,35    | -511,725    | -532,4     | -531,825   | -480,175   | -585,4    | -576,15    | -565,425  |
| AY                  | CORREGID<br>O Ecorr vs                            | CSC (CON<br>ERI VS | -246,65    | -201,475  | -590,225   | -437,625  | -567,375   | -528,575 | -552,55    | -498,875  | -516,525   | -453,775   | -481,35    | -468,725  | -509,1     | -486,425    | -557,05    | -509,625   | -508,575   | -555,65   | -563,55    | -546,875  |
| AX                  | CORREGID<br>O Ecorr vs                            | CSC (CON<br>Eri Vs | -214,45    | -246,275  | -338,925   | -472,725  | -549,175   | -603,875 | -482,55    | -567,475  | -567,225   | -544,075   | -484,75    | -543,825  | -459,6     | -537,025    | -507,75    | -554,025   | -451,775   | -615,15   | -588,75    | -583,975  |
|                     |                                                   | PROMED<br>10       | -1,15      | -0,575    | -0,225     | -7,025    | -14,575    | 6,025    | -6,15      | -0,375    | -13,125    | -15,275    | -1,05      | -6,025    | 20,2       | 0,875       | -1,05      | -6,025     | 19,325     | -18,35    | -6,15      | -0,375    |
|                     | csc (mV)                                          | CARA 4             | -1,2       | -0,6      | 0          | -17,6     | -7,5       | -1       | -16,2      | -2,4      | -24,9      | -11,8      | -24,4      | -9,8      | 5,9        | 1,6         | -24,4      | 8'6-       | 39,1       | -7,8      | -16,2      | -2,4      |
|                     | POTENCIAL ERI VS CSC (mV)                         | CARA 3             | -1,1       | -0,5      | -0,5       | -0,4      | -18,1      | 12,6     | -3,4       | 9'0       | 9'6-       | -17,1      | 12,2       | -5,9      | 22,3       | 6,5         | 12,2       | 6'5-       | 21,6       | -35,4     | -3,4       | 9'0       |
|                     | POTENCIA                                          | CARA 2             | -1,1       | -0,6      | -0,3       | 1,5       | -5,2       | 14,4     | -4,2       | 10,9      | -1,9       | -1,5       | 5,2        | 4         | 28,3       | 8,9         | 5,2        | 4          | -25,8      | -28,3     | -4,2       | 10,9      |
|                     |                                                   | CARA 1             | -1,2       | -0,6      | -0,4       | -11,6     | -27,5      | -1,9     | -0,8       | -10,6     | -16,1      | -30,7      | 2,8        | -12,4     | 24,3       | -13,5       | 2,8        | -12,4      | 42,4       | -1,9      | -0,8       | -10,6     |
|                     | IAL DE<br>E <sub>corr</sub> (mV)                  | AY                 | -245,5     | -200,9    | -590       | -430,6    | -552,8     | -534,6   | -546,4     | -498,5    | -503,4     | -438,5     | -480,3     | -462,7    | -529,3     | -487,3      | -556       | -503,6     | -527,9     | -537,3    | -557,4     | -546,5    |
|                     | POTENCIAL DE<br>CORROSIÓN E <sub>CORR</sub> (mV)  | AX                 | -213,3     | -245,7    | -338,7     | -465,7    | -534,6     | -609,9   | -476,4     | -567,1    | -554,1     | -528,8     | -483,7     | -537,8    | -479,8     | -537,9      | -506,7     | -548       | -471,1     | -596,8    | -582,6     | -583,6    |
|                     | , <u>r</u>                                        | ollas              | 48         | 2         | n          | 76        | 97         | 2        | 9          | 3         | 74         |            | 87         | ō         | 100        | 701         | 116        | 2          | 130        | 2         | 144        |           |
|                     | cópigo                                            | PROBETA            | PX-R-S-1   | PX-R-S-2  | PX-R-S-1   | PX-R-S-2  | PX-R-S-1   | PX-R-S-2 | PX-R-S-1   | PX-R-S-2  | PX-R-S-1   | PX-R-S-2   | PX-R-S-1   | PX-R-S-2  | PX-R-S-1   | PX-R-S-2    | PX-R-S-1   | PX-R-S-2   | PX-R-S-1   | PX-R-S-2  | PX-R-S-1   | PX-R-S-2  |
|                     | VICUI                                             | rcuna              | 34/07/2000 | 20071010  | 14/08/2000 | 1100/2003 | 28/08/2000 | 50070007 | 11/00/2000 | 6007/60/1 | 25/00/2000 | 2310312003 | 08/10/2000 | 007101700 | 23/10/2000 | 23/ 10/2003 | 08/11/2000 | 6007111000 | 20/41/2000 | 200711107 | 04/12/2000 | 20217     |
|                     | MEDICIÓN                                          | No.                | ٠          | -         | ,          | 7         | ۲          | ,        | 7          | ٠         | ď          | ,          | ď          | •         | 7          | _           | o          | •          | 0          | ,         | ę          | 2         |

TABLA 8
HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AGUA SALADA

| PROMEDIO                                         | (FINAL)             |            | -0,2699375 |            | -0,4846 |            | -0,5437125 |            | -0,5829375 |            | -0,4773    |            | -0,51735 |            | -0,4905913 |            | -0,5691375 |            | -0,525675 |            | -0,522875 |
|--------------------------------------------------|---------------------|------------|------------|------------|---------|------------|------------|------------|------------|------------|------------|------------|----------|------------|------------|------------|------------|------------|-----------|------------|-----------|
| PROMEDIO                                         | (FINAL)             |            | -269,9375  |            | -484,6  |            | -543,7125  |            | -582,9375  |            | -477,3     |            | -517,35  |            | -490,59125 |            | -569,1375  |            | -525,675  |            | -522,875  |
| PROMEDIO<br>Ecorr CSC                            | (POR<br>Probeta)    | -165,7     | -374,175   | -477,75    | -491,45 | -502       | -585,425   | -581,375   | -584,5     | -429,15    | -525,45    | -536,775   | -497,925 | -482,2     | -498,9825  | -599,925   | -538,35    | -544,15    | -507,2    | -532,475   | -513,275  |
| CORREGIDO<br>Ecorr vs CSC                        | (CON ERI VS<br>CSC) | -103,35    | -373,375   | -477,05    | -488,85 | -492,85    | -615,225   | -502,275   | -549,1     | -499,6     | -510,75    | -499,575   | -472,375 | -521,5     | -479,4825  | -639,025   | -494,3     | -627,85    | -519,45   | -545,475   | -514,375  |
| CORREGIDO CORREGIDO ECOLT VS CSC                 | (CON ERI VS<br>CSC) | -228,05    | -374,975   | -478,45    | -494,05 | -511,15    | -555,625   | -660,475   | -619,9     | -358,7     | -540,15    | -573,975   | -523,475 | -442,9     | -518,4825  | -560,825   | -582,4     | -460,45    | -494,95   | -519,475   | -512,175  |
|                                                  | PROMEDIO            | 96'0-      | -0,975     | -21,05     | -34,15  | -70,45     | 42,825     | -28,975    | -82,2      | -8,5       | -13,85     | -16,775    | -8,275   | 12,8       | -8,1825    | 8,275      | -3,1       | -6,55      | -15,55    | -16,775    | -8,275    |
| C(mV)                                            | CARA 4              | 6'0-       | -0,9       | -28        | -43     | -78,4      | -72,4      | -47,6      | -98,6      | -28,3      | -22,4      | -39,5      | -29,7    | 8,7        | -26,3      | 1,3        | 9'6        | -3,3       | -47,1     | -39,5      | -29,7     |
| POTENCIAL ERI VS CSC (mV)                        | CARA 3              | -1,1       | -1,2       | -18,1      | -27,5   | 9/-        | -36,6      | -29,5      | -81,5      | -6,3       | 9'8-       | -19,4      | 0        | 29,7       | -1,03      | 31,7       | -3,5       | 11,7       | -4,7      | -19,4      | 0         |
| POTENCI/                                         | CARA 2              | 6'0-       | 6'0-       | -19,5      | -38,4   | -69,2      | -40,8      | -24,1      | -73,9      | 0,4        | -15,5      | -3,4       | -1,2     | 16,3       | 8,1        | 47,4       | -21,3      | 5          | -1,7      | -3,4       | -1,2      |
|                                                  | CARA 1              | 6'0-       | 6'0-       | -18,6      | -27,7   | -58,2      | -21,5      | -14,7      | -74,8      | 0,2        | 6,8-       | -4,8       | -2,2     | -3,5       | -13,5      | -47,3      | 2,8        | -39,6      | -8,7      | 4,8        | -2,2      |
| IAL DE<br>E <sub>corr</sub> (mV)                 | AY                  | -102,40    | -372,40    | -456       | -454,7  | -422,4     | -572,4     | -473,3     | -466,9     | -491,1     | -496,9     | -482,8     | -464,1   | -534,3     | -471,3     | -647,3     | -491,2     | -621,3     | -503,9    | -528,7     | -506,1    |
| POTENCIAL DE<br>CORROSIÓN E <sub>CORR</sub> (mV) | AX                  | -227,10    | -374,00    | -457,4     | -459,9  | -440,7     | -512,8     | -631,5     | -537,7     | -350,2     | -526,3     | -557,2     | -515,2   | -455,7     | -510,3     | -569,1     | -579,3     | -453,9     | -479,4    | -502,7     | -503,9    |
| 4                                                | dias                | 48         | 2          | 33         | 4       | N.         | 2          | 60         | 8          | 7/         |            | 87         | 5        | 102        | 70         | 118        | 2          | 130        | 2         | 144        | Ē         |
| cópigo                                           | PROBETA             | PLR-S-1    | PLR-S-2    | PLR-S-1    | PLR-S-2 | PLR-S-1    | PLR-S-2    | P.R.S.1    | PLR-S-2    | PLR-S-1    | PLR-S-2    | P.R.S-1    | PLR-S-2  | P.R.S.1    | PLR-S-2    | P.R.S-1    | PLR-S-2    | P.R.S-1    | PLR-S-2   | P.R.S-1    | P.R.S.2   |
| VICEOUA                                          | rccnA               | 34/07/2000 | 2007110110 | 14/08/2000 | 202001  | 28/08/2000 | 202000     | 41/09/2009 | 00000      | 25/10/2000 | 5007/50/57 | 08/10/2000 | 207010   | 23/10/2009 | 00000000   | 06/11/2009 |            | 20/11/2009 |           | 04/12/2009 |           |
| MEDICIÓN                                         | No.                 |            | -          | ,          | 4       | 3          | ,          | 7          |            | u          | ,          | œ          | ,        | 7          | -          | oc         | ,          | σ          | ,         | ę          | 2         |

TABLA 9
HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS AL AMBIENTE NATURAL

|            |          |                                               |                                                  |                                 |        |          |                           |         |          | ΑX                           | ΑY                 |                       | RESUMEN   |             |
|------------|----------|-----------------------------------------------|--------------------------------------------------|---------------------------------|--------|----------|---------------------------|---------|----------|------------------------------|--------------------|-----------------------|-----------|-------------|
| CCUA       | cópigo   | , <u>, , , , , , , , , , , , , , , , , , </u> | POTENCIAL DE<br>CORROSIÓN E <sub>corr</sub> (mV) | AL DE<br>E <sub>corr</sub> (mV) |        | POTENCIA | POTENCIAL ERI VS CSC (mV) | SC (mV) |          | CORREGID CORREGID O Ecorr vs |                    | PROMEDIO<br>Ecorr CSC | PROMEDIO  | PROMEDIO    |
| TECHA      | PROBETA  | Sell                                          | AX                                               | AY                              | CARA 1 | CARA 2   | CARA 3                    | CARA 4  | PROMEDIO | CSC (CON<br>ERI vs           | CSC (CON<br>ERI vs | (POR<br>PROBETA)      | (FINAL)   | (FINAL)     |
| 34/07/2000 | PX-R-N-1 | 48                                            | -33,90                                           | -33,00                          | -76,20 | -74,50   | -77,50                    | -76,10  | -76,075  | -109,975                     | -109,075           | -109,525              |           |             |
| 110112003  | PX-R-N-2 | 10                                            | -45,70                                           | -44,40                          | -73,50 | -72,60   | -72,50                    | -76,80  | -73,85   | -119,55                      | -118,25            | -118,9                | -114,2125 | -0,1142125  |
| 44/08/2009 | PX-R-N-1 | a                                             | -42,5                                            | -42,3                           | -63,7  | -60      | -64,7                     | -60,3   | -62,175  | -104,675                     | -104,475           | -104,575              |           |             |
| 1,00/2003  | PX-R-N-2 | 35                                            | -33,2                                            | -31,5                           | -58    | -68,1    | -62,2                     | -70,6   | -64,725  | -97,925                      | -96,225            | -97,075               | -100,825  | -0,100825   |
| 28/08/2009 | PX-R-N-1 | 97                                            | -37,8                                            | -35,2                           | -71,5  | -73,5    | -70,4                     | -69,4   | -71,2    | -109                         | -106,4             | -107,7                |           |             |
| 000,500    | PX-R-N-2 | 49                                            | -33,6                                            | -29                             | -58,4  | -58,5    | -65,8                     | -70,5   | -63,3    | -96,9                        | -92,3              | -94,6                 | -101,15   | -0,10115    |
| 41/00/2000 | PX-R-N-1 | 6.0                                           | -32,7                                            | -30,4                           | -79,5  | -77,4    | -76,7                     | -74,5   | -77,025  | -109,725                     | -107,425           | -108,575              |           |             |
| 2021001    | PX-R-N-2 | 3                                             | -30,2                                            | -25,5                           | -59,1  | -60,5    | -75,8                     | -76,9   | -68,075  | -98,275                      | -93,575            | -95,925               | -102,25   | -0,10225    |
| 25/00/2000 | PX-R-N-1 | 7.4                                           | -29,4                                            | -29,8                           | -65,7  | -70,5    | -69,1                     | -72,6   | -69,475  | -98,875                      | -99,275            | -99,075               |           |             |
| 2007/2002  | PX-R-N-2 | :                                             | -26,8                                            | -24,3                           | -60,4  | -53,7    | -66,8                     | -69,7   | -62,65   | -89,45                       | -86,95             | -88,2                 | -93,6375  | -0,0936375  |
| 08/10/2009 | PX-R-N-1 | 87                                            | -35,6                                            | -28,8                           | 7'69-  | -58,6    | -96,3                     | -80,7   | -76,325  | -111,925                     | -105,125           | -108,525              |           |             |
| 207010     | PX-R-N-2 | 5                                             | -25,7                                            | -22,2                           | -64,2  | -57,3    | -84,5                     | -76     | -70,5    | -96,2                        | -92,7              | -94,45                | -101,4875 | -0,1014875  |
| 23/10/2000 | PX-R-N-1 | 100                                           | -39,1                                            | -40                             | -3,5   | -20,5    | -15,1                     | -33,2   | -18,075  | -57,175                      | -58,075            | -57,625               |           |             |
| 20101200   | PX-R-N-2 | 701                                           | -33                                              | -32,7                           | -1,05  | -2,1     | -27,12                    | -13,5   | -10,9425 | -43,9425                     | -43,6425           | -43,7925              | -50,70875 | -0,05070875 |
| 06/11/2000 | PX-R-N-1 | 118                                           | -35,7                                            | -32,7                           | -53,2  | -44,1    | -61,3                     | -62,9   | -55,375  | -91,075                      | -88,075            | -89,575               |           |             |
| 2007       | PX-R-N-2 | 2                                             | -29,7                                            | -27,2                           | -41,3  | -11,3    | -33,5                     | -36,4   | -30,625  | -60,325                      | -57,825            | -59,075               | -74,325   | -0,074325   |
| 20/11/2009 | PX-R-N-1 | 130                                           | -31,1                                            | -30                             | -7,8   | -13,2    | 3,74                      | -11,5   | -7,19    | -38,29                       | -37,19             | -37,74                |           |             |
| 20071110   | PX-R-N-2 | 2                                             | -31,6                                            | -28,8                           | -5,03  | -13,2    | -22,6                     | -11,5   | -13,0825 | -44,6825                     | -41,8825           | -43,2825              | -40,51125 | -0,04051125 |
| 04/12/2009 | PX-R-N-1 | 144                                           | -113,4                                           | -35,7                           | -7,8   | -13,2    | 3,74                      | -11,5   | -7,19    | -120,59                      | -42,89             | -81,74                |           |             |
| 2022       | PX-R-N-2 |                                               | -35,7                                            | -39,2                           | -5,03  | -13,2    | -22,6                     | -11,5   | -13,0825 | -48,7825                     | -52,2825           | -50,5325              | -66,13625 | -0,06613625 |

TABLA 10
HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS AL AMBIENTE NATURAL

|         | PROMEDIO<br>From CSC                             | (FINAL)                 |            | -0,1072    |            | -0,0921   |            | -0,085   |            | -0,0878375 |            | -0,078625 |            | -0,0825    |            | -0,038025 |            | -0,0473125 |            | -0,03272   |            | -0,04332 |
|---------|--------------------------------------------------|-------------------------|------------|------------|------------|-----------|------------|----------|------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|----------|
| RESUMEN | PROMEDIO<br>Front CSC                            | (FINAL)                 |            | -107,2     |            | -92,1     |            | -85      |            | -87,8375   |            | -78,625   |            | -82,5      |            | -38,025   |            | -47,3125   |            | -32,72     |            | -43,32   |
|         | PROMEDIO<br>Ecort CSC                            | (POR<br>Probeta)        | -118,65    | -95,75     | -90,15     | -94,05    | -84,05     | -85,95   | -86,65     | -89,025    | -80,7      | -76,55    | -81,675    | -83,325    | -29,975    | -46,075   | -43,55     | -51,075    | -30,7725   | -34,6675   | -34,3725   | -52,2675 |
| AY      |                                                  | CSC (CON<br>ERI vs CSC) | -117,7     | -95,85     | -90,15     | -93,35    | -84,45     | -85,95   | -87,2      | -87,025    | -81,3      | -75,95    | -82,975    | -81,925    | -29,575    | -48,975   | -43,6      | -47,275    | -31,3225   | -36,4675   | -33,3225   | -51,0675 |
| AX      |                                                  | CSC (CON<br>ERI vs CSC) | -119,6     | -95,65     | -90,15     | -94,75    | -83,65     | -85,95   | -86,1      | -91,025    | -80,1      | -77,15    | -80,375    | -84,725    | -30,375    | -43,175   | -43,5      | -54,875    | -30,2225   | -32,8675   | -35,4225   | -53,4675 |
|         |                                                  | PROMEDIO E              | 9'92-      | -60,75     | -58,45     | -52,75    | -54,65     | 45,85    | -60,3      | -52,525    | -56,5      | 43,85     | -58,275    | -53,225    | -2,075     | -8,575    | -17,1      | -16,275    | -6,7225    | -8,4675    | -6,7225    | -8,4675  |
|         | SC (mV)                                          | CARA 4                  | -83,60     | -52,70     | -67,6      | -45,5     | -69,1      | -40,7    | -76,8      | -44,2      | -72,8      | -28,5     | -75,2      | -27,4      | -18        | -12,5     | -25,3      | 22,5       | -1,06      | -1,5       | -1,06      | -1,5     |
|         | POTENCIAL ERI VS CSC (mV)                        | CARA 3                  | -71,10     | -56,5      | -53,8      | -55,3     | -48        | -48,2    | -58,7      | -50,7      | -51,4      | 47,4      | 89         | -76,6      | -8,5       | -3,7      | -12,5      | -27,5      | -15,73     | -23,2      | -15,73     | -23,2    |
|         | POTENCIA                                         | CARA 2                  | 08'69-     | -73,8      | -51,3      | -62       | -44,8      | -55,4    | -52,7      | -66,5      | -52        | -57,4     | -39        | -61,7      | 29,7       | -3,5      | -1,3       | -42,3      | 3,1        | -11,2      | 3,1        | -11,2    |
|         |                                                  | CARA 1                  | -81,90     | -60,00     | -61,1      | -48,2     | -56,7      | -39,1    | -53        | -48,7      | -49,8      | -42,1     | -50,9      | -47,2      | -11,5      | -14,6     | -29,3      | -17,8      | -13,2      | 2,03       | -13,2      | 2,03     |
|         | AL DE<br>E <sub>corr</sub> (mV)                  | AY                      | -41,10     | -35,10     | -31,700    | -40,600   | -29,800    | -40,100  | -26,9      | -34,5      | -24,8      | -32,1     | -24,7      | -28,7      | -27,5      | -40,4     | -26,5      | -31        | -24,6      | -28        | -26,6      | -42,6    |
|         | POTENCIAL DE<br>CORROSIÓN E <sub>CORR</sub> (mV) | АХ                      | -43,00     | -34,90     | -31,700    | -42,000   | -29,000    | -40,100  | -25,8      | -38,5      | -23,6      | -33,3     | -22,1      | -31,5      | -28,3      | -34,6     | -26,4      | -38,6      | -23,5      | -24,4      | -28,7      | -45      |
|         | diae                                             | nias                    | 48         | 2          | a          | 70        | 97         | 2        | . Bu       | 8          | 7.4        |           | 28         | 5          | 102        | 701       | 118        | 2          | 130        | 200        | 144        | <u> </u> |
|         | cópigo                                           | PROBETA                 | PLR-N-1    | PI-R-N-2   | PI-R-N-1   | PI-R-N-2  | PI-R-N-1   | PI-R-N-2 | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2  | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2  | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PLR-N-2  |
|         | FECHA                                            | ILCIIA                  | 34/07/2000 | 2007/10/10 | 14/08/2000 | 1100/2003 | 28/08/2009 | 0070007  | 44/00/2000 | 2007/2001  | 25/00/2000 | 5003/5003 | 08/10/2000 | 2007/01/00 | 23/40/2000 | 201010102 | 06/44/2000 | 001112003  | 20/41/2000 | 2011112003 | 04/12/2000 | 0025     |
|         | MEDICIÓN                                         | No.                     |            | -          | ,          | 7         | č          | ,        | 7          | -          | v          | ,         | ď          | ,          | 7          | -         | ox         | o          | o          | מ          | Ę          | 2        |

#### 2.5 DETERMINACION DE LA RESISTENCIA A LA POLARIZACION.

Las fórmulas que emplea el método de Rp (Resistencia de Polarización), son las siguientes:

$$Rt = Rp + R\Omega$$
 (ec. 7)

Siendo Rt, la resistencia total en la probeta; Rp la resistencia de polarización y R $\Omega$  la resistencia debida al electrolito, que se lee con el equipo Nilson 400.

$$Rt = \frac{\Delta E}{\Delta I} = \frac{(E-Ecorr)}{\Delta I}$$
 (ec. 8)

El valor de E es el que se lee a los 60 segundos de inyectada la corriente. Ecorr corresponde al potencial de corrosión leído con el multímetro, y el  $\Delta$ l es la corriente aplicada.

$$Rp = \frac{B}{Icorr}$$
 (ec. 9)

El valor de B aplicado, depende de la actividad del acero:

TABLA 11

| Ecorr         | Estado del | Valor de B |
|---------------|------------|------------|
| '             | acero      |            |
| > -0.200 VCSC | Pasivo     | 0.052 V    |
| <-0.350 VCSC  | Activo     | 0.026 V    |

Estas fórmulas se combinan y se despeja la Icorr, de la siguiente forma:

$$Icorr = \frac{B}{\left(\frac{E-Ecorr}{\Delta I}\right)-R\Omega}$$
 (ec. 10)

El valor de lcorr, está dado en Amperios. Luego para obtener la densidad de corriente icorr, se debe dividir para el área expuesta del electrodo de trabajo, que en cada caso es de 20 cm2.

Para esto se tomara como ejemplo las probetas sin inhibidor expuesta a cámara de carbonatación de medición No 4 a los 70 días de exposición con código PX-R-C1 y PX-R-C2.

Cuyos datos son los siguientes:

TABLA 12

| MEDICIÓN<br>No. | FECHA      | CÓDIGO<br>PROBETA | días | POTEI<br>D<br>CORRO<br>E <sub>CORR</sub><br>ELECT<br>DE TRA<br>vs I | E<br>OSIÓN<br>(mV)<br>RODO<br>ABAJO | POTE      | NCIAL E   | RI vs CS  | C (mV)    |
|-----------------|------------|-------------------|------|---------------------------------------------------------------------|-------------------------------------|-----------|-----------|-----------|-----------|
|                 |            |                   |      | AX                                                                  | AY                                  | CARA<br>1 | CARA<br>2 | CARA<br>3 | CARA<br>4 |
| 4               | 25/09/2009 | PX-R-C-1          | 70   | -69                                                                 | -64,7                               | 27,3      | 28,4      | 24,2      | 23,4      |
| 4               | 23/03/2009 | PX-R-C-2          | 70   | -82,8                                                               | -95,2                               | 40,2      | 47,3      | 40        | 70        |

Sacamos un promedio de Potencial ERI vs CSC (mV) para cada probeta:

(CARA1 + CARA2 + CARA3 + CARA4)/4 = Potencial promedio

PX-R-C1prom=25,825 mV

PX-R-C2prom=49,375 mV

Con esto obtenemos un valor corregido de AX y AY para cada probeta:

PX-R-C1: AX=-69+25,825=-43,175mV

AY=-64,7+25,825=-38,875mV

PX-R-C2: AX=-82,8+49,375=-33,425mV

AY=-95,2+49,375=-45,825mV

41

Ahora sacamos un promedio de los potenciales obtenidos de los

electrodos de trabajo por cada probeta:

PX-R-C1:(AX+AY)/2=-41,025mV

PX-R-C2:(AX+AY)/2=-39,625mV

Obteniendo un valor promedio entre las dos probetas:

$$(PX-R-C1 + PX-R-C2)/ = -40,325 \text{ mV}$$

Este valor comparado con las tabla ¿? Nos indica que la probeta se

encuentra en estado pasivo donde se determina que el valor de

B = 0.052 V.

Luego con el potensiogalvanostato obtenemos un potencial a los

60seg para cada probeta:

PX-R-C1: AX=320mV; AY=468mV

PX-R-C2: AX=597mV; AY=389mV

Luego sacamos un valor corregido del potencial a los 60seg, entre el

potencial del electrodo de trabajo a los 60seg y el potencial promedio

de las caras de cada probeta calculada anteriormente:

PX-R-C1: 
$$AX=25,825mV + 320mV = 345,825mV$$
  
 $AY=25,825mV + 468mV = 493,825mV$ 

PX-R-C2: 
$$AX = 49,375 \text{mV} + 597 \text{mV} = 646,375 \text{mV}$$
  
 $AY = 49,375 \text{mV} + 389 \text{mV} = 438,375 \text{mV}$ 

Posteriormente luego de calcular los potenciales con los valores obtenidos del potensiostato y del multimetro, utilizandos el NILSON 400 para medir resistencias en cada electrodo de trabajo para cada probeta:

PX-R-C2: 
$$AX = 3300 \Omega$$
;  $AY = 3000 \Omega$ 

Con esto obtenemos una resistencia promedio para cada probeta:

$$PX-R-C1 = (1700 + 2200)/2 = 1950\Omega$$

$$PX-R-C2 = (3300 + 3000)/2 = 3150\Omega$$

Y finalmente obtenemos una resistencia promedio entre las 2 probetas para este medio sin inhibidor:

RESISTENCIA FINAL = 
$$(1950 + 3150)/2 = 2550 \Omega$$

Ahora procedemos a calcular el icorr para AX y el icorr para el AY de cada probeta:

$$Icorr = \frac{B}{\left(\frac{E - Ecorr}{\Delta I}\right) - R\Omega}$$

PARA LA PROBETA PX-R-C1 - AX

B = 0.052 V

Ecorr = 
$$345,825 - (-43,175) = 389 \text{ mV} = 0,389 \text{ V}$$

Donde el valor de E es el potencial corregido del valor obtenido a los 60seg en el potensiostato y el Ecorr es el potencial corregido del valor obtenido en el multimetro.

 $\Delta I$  es la corriente aplicada.

$$(E - Ecorr)/\Delta I = 19.450,00 \Omega$$

$$((E - Ecorr)/\Delta I) - R = 19.450,00 - 1950 = 17500 \Omega$$

Donde finalmente

$$Icorr = B/17500 = 0,052 / 17500 = 2,9714E-06$$

Obtenemos el icorr:

$$icorr = 2,971 \text{ uA} / 20 \text{ cm}2$$

$$icorr = 0,148571 uA/cm2$$

Densidad de corriente para el electrodo de referencia AX de la probeta PX-R-C1.

De este modo se calcularon todos los resultados para cada electrodo de trabajo de cada probeta mostrados en las siguientes tablas:

### TABLAS DE CALCULOS DE RESULTADOS DE HORMIGONES CON Y SIN INHIBIDOR EXPUESTOS EN DIFERENTES MEDIOS

TABLA 13

A.1 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

|         | DECICTIVID              | AD                         |            | 13011,1875 |            | 16654,32    |             | 17174,7675 |            | 17695,215   |            | 18736,11   |                 | 22899,69   |            | 22032,2775 |            | 21338,3475 |            | 26195,8575  |            | 28277,6475 |
|---------|-------------------------|----------------------------|------------|------------|------------|-------------|-------------|------------|------------|-------------|------------|------------|-----------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|
| RESUMEN | DESICTENC DESICTIVI     | IA FINAL                   |            | 1875       |            | 2400        |             | 2475       |            | 2550        |            | 2700       |                 | 3300       |            | 3175       |            | 3075       |            | 3775        |            | 4075       |
|         | MEDICIÓN DE RESISTENCIA | R PROMEDIO                 | 1400       | 2350       | 1800       | 3000        | 1850        | 3100       | 1950       | 3150        | 2050       | 3350       | 2500            | 4100       | 2400       | 3950       | 2300       | 3850       | 2800       | 4750        | 3100       | 2050       |
|         | ÓN DE RE                | AY                         | 1500       | 2300       | 2000       | 2800        | 2000        | 3000       | 2200       | 3000        | 2300       | 3200       | 2800            | 3900       | 2600       | 3700       | 2500       | 3700       | 3100       | 4400        | 3400       | 4800       |
|         | MEDICI                  | AX                         | 1300       | 2400       | 1600       | 3200        | 1700        | 3200       | 1700       | 3300        | 1800       | 3500       | 2200            | 4300       | 2200       | 4200       | 2100       | 4000       | 2500       | 5100        | 2800       | 2300       |
|         | 0                       | CORREGID<br>O CSC AY       | 206,1      | 115,55     | 392,725    | 437,7       | 377,2       | 415,325    | 493,825    | 438,375     | 389,65     | 454,275    | 692,2           | 563,5      | 459,1      | 615,8      | 301,35     | 425,3      | 448,65     | 539,275     | 467,875    | 490,3      |
|         | ) seg: E(mV)            | CORREGID CORREGID O CSC AY | 158,1      | 198,55     | 349,725    | 245,7       | 328,2       | 518,325    | 345,825    | 646,375     | 333,65     | 523,275    | 447,2           | 9'929      | 1,804      | 604,8      | 417,35     | 474,3      | 408,65     | 664,275     | 528'885    | 837,3      |
|         | POTENCIAL 60 seg:       | ΑV                         | 145        | 09         | 361        | 3/2         | 398         | 374        | 897        | 389         | 363        | 415        | <del>7</del> 79 | 215        | 425        | 699        | 697        | 373        | 422        | 009         | 898        | 371        |
|         | ď                       | AX                         | 26         | 143        | 318        | 483         | 306         | 477        | 320        | 269         | 307        | 514        | 339             | 630        | 369        | 929        | 375        | 422        | 382        | 629         | 439        | 718        |
| AY      | VALOD DE                | B B                        | 0,052      | 0,052      | 0,052      | 0,052       | 0,052       | 0,052      | 0,052      | 0,052       | 0,052      | 0,052      | 0,052           | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052       | 0,052      | 0,052      |
| AX      | VAI OD DE               | B B                        | 0,052      | 0,052      | 0,052      | 0,052       | 0,052       | 0,052      | 0,052      | 0,052       | 0,052      | 0,052      | 0,052           | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052       | 0,052      | 0,052      |
|         | rónico                  | PROBETA                    | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2    | PX-R-C-1    | PX-R-C-2   | PX-R-C-1   | PX-R-C-2    | PX-R-C-1   | PX-R-C-2   | PX-R-C-1        | PX-R-C-2   | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2   | PX-R-C-1   | PX-R-C-2    | PX-R-C-1   | PX-R-C-2   |
|         |                         | FECHA                      | 0000/00/74 | 6007/00/41 | 0006/00/06 | 50/02/00/07 | 44,000/2000 | 1/03/2003  | 0000/00/30 | 50/02/50/02 | 0000000000 | 6007/01/00 | 00/0/0//20      | 5007/01/67 | 06/44/2000 | 6007/11/00 | 20/44/2000 | 5007/11/07 | 0000/07/70 | 6007/71 /50 | 05/04/2040 | 0107/10/60 |
|         | MEDICIÓN                | No.                        |            | _          | ٠          | 7           | ·           |            | ,          | +           | J          |            | J               | D          | 7          | -          | 0          | 0          | o          | c.          | 40         | 2          |

TABLA 14

A.2 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

|          |             |          |           | CA             | CALCULO DE icorr PARA AX                                           | RA AX               |           |           | CAI            | CALCULO DE icorr PARA AY | 4RA AY                                                                |           |           | RESUMEN   |            |
|----------|-------------|----------|-----------|----------------|--------------------------------------------------------------------|---------------------|-----------|-----------|----------------|--------------------------|-----------------------------------------------------------------------|-----------|-----------|-----------|------------|
| MEDICIÓN | UCCUY       | código   | E - Ecorr | (E - Ecorr)/∆I | (E - Ecorr)/\tell   ((E - Ecorr)/\tell)-R B /((E - Ecorr)/\tell)-R | /((E - Ecorr)/AI)-R | icorr     | E - Ecorr | (E - Ecorr)/∆I | ((E - Ecorr)/AI)-R       | E - Ecorr   (E - Ecorr)/Δ  ((E - Ecorr)/Δ)}-R   B /((E - Ecorr)/Δ)]-R | icorr     | icorr     | icorr     | pérdida de |
| No.      | LECURA      | PROBETA  | (V)       | (0hms)         | (0hms)                                                             | А                   | uA/cm2    | (V)       | (Shms)         | (Shms)                   | А                                                                     | uA/cm2    | PROMEDIO  | (FINAL)   | espesor    |
| -        | 44/08/2000  | PX-R-C-1 | 0,2262    | 11.310,00      | 9910                                                               | 5,24723E-06         | 0,2623613 | 0,2575    | 12.875,00      | 11.475,00                | 4,53E-06                                                              | 0,2265795 | 0,2444704 |           |            |
| _        | 14100/2003  | PX-R-C-2 | 0,2842    | 14.210,00      | 11860                                                              | 4,38449E-06         | 0,2192243 | 0,175     | 8.750,00       | 6.400,00                 | 8,13E-06                                                              | 0,40625   | 0,3127371 | 0,2786038 | 3,23       |
| ٠        | 000000000   | PX-R-C-1 | 0,3955    | 39.550,00      | 37750                                                              | 1,37748E-06         | 0,0688742 | 0,4308    | 43.080,00      | 41.280,00                | 1,26E-06                                                              | 0,0629845 | 0,0659293 |           |            |
|          | 50000000    | PX-R-C-2 | 0,5652    | 56.520,00      | 53520                                                              | 9,71599E-07         | 0,04858   | 0,4954    | 49.540,00      | 46.540,00                | 1,12E-06                                                              | 0,0558659 | 0,0522229 | 0,0590761 | 69'0       |
| ۰        | 44/00/2000  | PX-R-C-1 | 0,3776    | 18.880,00      | 17030                                                              | 3,05344E-06         | 0,1526718 | 0,421     | 21.050,00      | 19.200,00                | 2,71E-06                                                              | 0,1354167 | 0,1440442 |           |            |
|          | 1103/2003   | PX-R-C-2 | 0,5576    | 27.880,00      | 24780                                                              | 2,09847E-06         | 0,1049233 | 0,4689    | 23.445,00      | 20.345,00                | 2,56E-06                                                              | 0,1277955 | 0,1163594 | 0,1302018 | 1,51       |
| -        | OUUCIOUISC  | PX-R-C-1 | 0,389     | 19.450,00      | 17500                                                              | 2,97143E-06         | 0,1485714 | 0,5327    | 26.635,00      | 24.685,00                | 2,11E-06                                                              | 0,1053271 | 0,1269493 |           |            |
| +        | 23/03/2003  | PX-R-C-2 | 0,6798    | 33.990,00      | 30840                                                              | 1,68612E-06         | 0,0843061 | 0,4842    | 24.210,00      | 21.060,00                | 2,47E-06                                                              | 0,1234568 | 0,1038814 | 0,1154154 | 1,34       |
| u        | 08/40/2000  | PX-R-C-1 | 0,377     | 18.850,00      | 16800                                                              | 3,09524E-06         | 0,1547619 | 0,428     | 21.400,00      | 19.350,00                | 2,69E-06                                                              | 0,1343669 | 0,1445644 |           |            |
|          | 00/10/2003  | PX-R-C-2 | 0,5956    | 29.780,00      | 26430                                                              | 1,96746E-06         | 0,0983731 | 0,5087    | 25.435,00      | 22.085,00                | 2,35E-06                                                              | 0,117727  | 0,10805   | 0,1263072 | 1,47       |
| c        | 22/40/2000  | PX-R-C-1 | 0,4691    | 23.455,00      | 20955                                                              | 2,48151E-06         | 0,1240754 | 0,7097    | 35.485,00      | 32.985,00                | 1,58E-06                                                              | 0,0788237 | 0,1014496 |           |            |
|          | 2011012003  | PX-R-C-2 | 0,7153    | 35.765,00      | 31665                                                              | 1,64219E-06         | 0,0821096 | 0,6143    | 30.715,00      | 26.615,00                | 1,95E-06                                                              | 0,0976893 | 0,0898994 | 0,0956745 | 1,11       |
| 7        | 06/41/2000  | PX-R-C-1 | 0,4314    | 2,16E+04       | 19170                                                              | 2,71257E-06         | 0,1356286 | 0,4818    | 2,41E+04       | 21.690,00                | 2,40E-06                                                              | 0,1198709 | 0,1277497 |           |            |
| _        | 0011112003  | PX-R-C-2 | 0,627     | 3,14E+04       | 27400                                                              | 1,89781E-06         | 0,0948905 | 0,6501    | 3,25E+04       | 2,86E+04                 | 1,82E-06                                                              | 0,0910524 | 0,0929714 | 0,1103606 | 1,28       |
| ×        | 000011000   | PX-R-C-1 | 0,4391    | 2,20E+04       | 19655                                                              | 2,64564E-06         | 0,1322819 | 0,3198    | 1,60E+04       | 1,37E+04                 | 3,80E-06                                                              | 0,1899196 | 0,1611008 |           |            |
|          | 501 115003  | PX-R-C-2 | 0,5001    | 2,50E+04       | 21155                                                              | 2,45805E-06         | 0,1229024 | 0,4546    | 2,27E+04       | 1,89E+04                 | 2,75E-06                                                              | 0,1377119 | 0,1303071 | 0,1457039 | 1,69       |
|          | 000000000   | PX-R-C-1 | 0,4824    | 2,41E+04       | 21320                                                              | 2,43902E-06         | 0,1219512 | 0,5168    | 2,58E+04       | 2,30E+04                 | 2,26E-06                                                              | 0,1128472 | 0,1173992 |           |            |
|          | 6007/71/160 | PX-R-C-2 | 0,7224    | 3,61E+04       | 31370                                                              | 1,65763E-06         | 0,0828817 | 0,603     | 3,02E+04       | 2,54E+04                 | 2,05E-06                                                              | 0,1023622 | 0,092622  | 0,1050106 | 1,22       |
| Ŷ        | 05/04/2010  | PX-R-C-1 | 0,5416    | 2,71E+04       | 23980                                                              | 2,16847E-06         | 0,1084237 | 0,4675    | 2,34E+04       | 2,03E+04                 | 2,56E-06                                                              | 0,1282367 | 0,1183302 |           |            |
|          | 0000112010  | PX-R-C-2 | 0,8307    | 4,15E+04       | 36485                                                              | 1,42524E-06         | 0,0712622 | 0,4885    | 2,44E+04       | 1,94E+04                 | 2,68E-06                                                              | 0,1341935 | 0,1027279 | 0,110529  | 1,28       |

TABLA 15

B.1 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

|         | DECICTIVID              | AD                   |            | 10408,95   |             | 16654,32    |            | 13878,6   |            | 14399,0475 |            | 13184,67   |            | 18389,145  |           | 18042,18  |            | 17001,285 |            | 21511,83   |            | 22032,2775   |
|---------|-------------------------|----------------------|------------|------------|-------------|-------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|-----------|------------|-----------|------------|------------|------------|--------------|
| RESUMEN | DECICTENC DECICTIVID    | IA FINAL             |            | 1500       |             | 2400        |            | 2000      |            | 2075       |            | 1900       |            | 2650       |           | 2600      |            | 2450      |            | 3100       |            | 3175         |
|         | ISTENCIA                | R PROMEDIO           | 1550       | 1450       | 2000        | 2800        | 2000       | 2000      | 2150       | 2000       | 1700       | 2100       | 2750       | 2550       | 2700      | 2500      | 5550       | 2350      | 3400       | 7800       | 3350       | 3000         |
|         | MEDICIÓN DE RESISTENCIA | AY                   | 1900       | 1500       | 2500        | 1900        | 2500       | 2200      | 2700       | 2000       | 1700       | 2100       | 3500       | 2800       | 3200      | 2700      | 3200       | 2400      | 3900       | 2800       | 4200       | 3000         |
|         | MEDIC                   | AX                   | 1200       | 1400       | 1500        | 3700        | 1500       | 1800      | 1600       | 2000       | 1700       | 2100       | 2000       | 2300       | 2200      | 2300      | 1900       | 2300      | 2900       | 2800       | 2500       | 3000         |
|         | 0                       | CORREGID<br>O CSC AY | 130,975    | 113,475    | 452,9       | 345,9       | 451,425    | 338,4     | 470,6      | 501,375    | 405,525    | 469,9      | 586,885    | 401,25     | 518,55    | 408,575   | 639,5375   | 342,7325  | 618,25     | 408,55     | 786,425    | 535,975      |
|         | ) seg: E(mV)            | CORREGID<br>O CSC AX | 114,975    | 85,475     | 330,9       | 289,9       | 311,425    | 276,4     | 323,6      | 270,375    | 346,525    | 326,9      | 523,85     | 516,25     | 370,55    | 326,575   | 544,5375   | 217,7325  | 405,25     | 396'668    | 521,425    | 431,975      |
|         | POTENCIAL 60 seg:       | AY                   | 83         | 59         | 431         | 332         | 644        | 335       | 468        | 501        | 405        | 194        | 999        | 372        | 504       | 392       | 209        | 588       | 689        | 394        | 969        | 447          |
|         | ď                       | AX                   | 11         | 37         | 309         | 276         | 309        | 273       | 321        | 270        | 346        | 318        | 200        | 487        | 356       | 340       | 512        | 164       | 376        | 385        | 431        | 343          |
| AY      | VAI OD DE               | MALON DL<br>B        | 0,052      | 0,052      | 0,052       | 0,052       | 0,052      | 0,052     | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052     | 0,052     | 0,052      | 0,052     | 0,052      | 0,052      | 0,052      | 0,052        |
| AX      | VALOD DE                | B B                  | 0,052      | 0,052      | 0,052       | 0,052       | 0,052      | 0,052     | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052      | 0,052     | 0,052     | 0,052      | 0,052     | 0,052      | 0,052      | 0,052      | 0,052        |
|         | cónico                  | PROBETA              | PI-R-C-1   | PI-R-C-2   | PI-R-C-1    | PI-R-C-2    | PI-R-C-1   | PI-R-C-2  | PI-R-C-1   | PI-R-C-2   | PI-R-C-1   | PI-R-C-2   | PI-R-C-1   | PI-R-C-2   | PI-R-C-1  | PI-R-C-2  | PI-R-C-1   | PI-R-C-2  | PI-R-C-1   | PI-R-C-2   | PI-R-C-1   | PI-R-C-2     |
|         |                         | FECHA                | 4470079000 | 14/00/2003 | 00/06/00/06 | 50/02/00/07 | 4470079000 | 6002/60/1 | 0000/00/36 | 6002/60/62 | 00/40/9000 | 6007/01/00 | 92/40/9000 | 5002/01/07 | 000447000 | 600711100 | 00/44/9000 | 500711177 | 0000000000 | 6002/21/40 | 05/04/2040 | 01 07/1 0/00 |
|         | MEDICIÓN                | No.                  | •          | _          | í           | 7           | ,          | c         | ,          | 4          | 7          | C          | y          | D          | 7         | -         | 0          |           | o          | C          |            | 2            |

TABLA 16

B.2 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

| RESUMEN                  | i corr i corr pérdida de                               | PROMEDIO (FINAL) espesor | 0,285609           | 0,3135394 0,2995742 3,48 | 0,0611119          | 0,0701331 0,0656225 0,76 | 0,1312725          | 0,1513485 0,1413105 1,64 | 0,1285036          | 0,1333187 0,1309112 1,52 | 0,1284891          | 0,1040624 0,1259368 0,127213 1,48 | 0,0938722          | 0,113082 0,1034771 1,20 | 0,1235039          | 0,1265515 0,1369928 0,1302483 1,51 | 0,0843745 0,0919195 | 0,2213348 0,1566271 1,82 | 0,1123897         | 0,1203936 0,1163916 1,35 | 0,0943105          |   |
|--------------------------|--------------------------------------------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|-----------------------------------|--------------------|-------------------------|--------------------|------------------------------------|---------------------|--------------------------|-------------------|--------------------------|--------------------|---|
| 1 AY                     | -Ecorr)/Aŋ-Ħ i corr                                    | A uA/cm2                 | 5,18E-06 0,2590932 | 5,72E-06 0,2858714       | 1,05E-06 0,0523877 | 1,29E-06 0,0644202       | 2,18E-06 0,1091978 | 2,74E-06 0,1369863       | 2,11E-06 0,1057125 | 1,91E-06 0,095641        | 2,39E-06 0,1193756 | 2,08E-06 0,1040624                | 1,76E-06 0,0877637 | 2,53E-06 0,1264899      | 2,04E-06 0,1022013 | 2,53E-06 0,1265515                 | 1,69E-06 0,0843745  | 3,29E-06 0,164297        | 1,75E-06 0,087395 | 2,36E-06 0,1179138       | 1,46E-06 0,0728597 |   |
| CALCULO DE icorr PARA AY | (E - Ecorr)/AI ((E - Ecorr)/AI)-RB (((E - Ecorr)/AI)-R | (Shms)                   | 10.035,00          | 9.095,00                 | 49.630,00          | 40.360,00                | 23.810,00          | 18.980,00                | 24.595,00          | 27.185,00                | 21.780,00          | 24.985,00                         | 29.625,00          | 20.555,00               | 2,54E+04           | 2,05E+04                           | 3,08E+04            | 1,58E+04                 | 2,98E+04          | 2,21E+04                 | 3,57E+04           |   |
| CAL                      | E-Ecorr (E-Ecorr)/A                                    | (V) (Ohms)               | 0,2317 11.585,00   | 0,2109 10.545,00         | 0,5163 51.630,00   | 0,4316 43.160,00         | 0,5162 25.810,00   | 0,4196 20.980,00         | 0,5349 26.745,00   | 0,5837 29.185,00         | 0,4696 23.480,00   | 0,5417 27.085,00                  | 0,6475 32.375,00   | 0,4621 23.105,00        | 0,5628 2,81E+04    | 0,4609 2,30E+04                    | 0,6673 3,34E+04     | 0,3635 1,82E+04          | 0,663 3,32E+04    | 0,497 2,49E+04           | 0,7807 3,90E+04    |   |
|                          | icorr                                                  | uA/cm2 (1                | 0,3121248 0,2      | 0,3412073 0,2            | 0,0698362 0,5      | 0,075846 0,4             | 0,1533471 0,5      | 0,1657106 0,4            | 0,1512947 0,5      | 0,1709964 0,5            | 0,1376025 0,4      | 0,1478113 0,5                     | 9'0 8086660'0      | 0,0996741 0,4           | 0,1448065 0,5      | 0,1474341 0,4                      | 0,0994644 0,6       | 0,2783726 0,3            | 0,1373844 0,6     | 0,1228733 0,4            | 0,1157614 0,7      |   |
| PARA AX                  | (E - Ecorr)/AI ((E - Ecorr)/AI)-RB /((E - Ecorr)/AI)-R | A                        | 6,2425E-06         | 6,82415E-06              | 1,39672E-06        | 1,51692E-06              | 3,06694E-06        | 3,31421E-06              | 3,02589E-06        | 3,41993E-06              | 2,75205E-06        | 2,95623E-06                       | 1,99962E-06        | 1,99348E-06             | 2,89613E-06        | 2,94868E-06                        | 1,98929E-06         | 5,56745E-06              | 2,74769E-06       | 2,45747E-06              | 2,31523E-06        |   |
| CALCULO DE icorr PARA AX | V ((E - Ecorr)/Al)-F                                   | (Ohms)                   | 8330               | 7620                     | 37230              | 34280                    | 16955              | 15690                    | 17185              | 15205                    | 18895              | 17590                             | 20005              | 26085                   | 17955              | 17635                              | 26140               | 9340                     | 18925             | 21160                    | 22460              |   |
| CAI                      |                                                        | (Shms)                   | 00'088'6           | 9.070,00                 | 3 39.230,00        | 8 37.080,00              | 1 18.955,00        | 8 17.690,00              | 7 19.335,00        | 17.205,00                | 9 20.595,00        | 8 19.690,00                       | 1 28.755,00        | 7 28.635,00             | 1 2,07E+04         | 7 2,01E+04                         | 8 2,87E+04          | 8 1,17E+04               | 5 2,23E+04        | 2 2,40E+04               | 2 2,58E+04         |   |
|                          | CÓDIGO E-Ecorr                                         | PROBETA (V)              | PLR-C-1 0,1976     | PI-R-C-2 0,1814          | PLR-C-1 0,3923     | PLR-C-2 0,3708           | PLR-C-1 0,3791     | PLR-C-2 0,3538           | PI-R-C-1 0,3867    | PLR-C-2 0,3441           | PI-R-C-1 0,4119    | PLR-C-2 0,3938                    | PI-R-C-1 0,5751    | PLR-C-2 0,5727          | PI-R-C-1 0,4131    | PI-R-C-2 0,4027                    | PI-R-C-1 0,5738     | PI-R-C-2 0,2338          | PI-R-C-1 0,4465   | PI-R-C-2 0,4792          | PLR-C-1 0,5162     |   |
|                          |                                                        | AL DE                    | d 0000000011       |                          | P OUNCISUNSC       |                          | 44/00/2000         |                          | P OUNCIONISC       |                          | d 0000000000       |                                   |                    | pn/2/11/02              | P 000011110        |                                    | 9000011100          |                          | р описили         |                          | р пелилия          | L |
|                          | MEDICIÓN                                               |                          | -                  | -                        | ,                  | 7                        | ۰                  | ,                        | -                  | +                        | 3                  | 0                                 | ď                  | 0                       | 7                  | _                                  | ×                   | 9                        | o                 | 6                        | ŧ                  | = |

TABLA 17
C.1 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AGUA SALADA

|         | DECICTIVID              | AD                   |            | 4840,16175 |            | 4631,98275 |             | 4527,89325 |            | 5603,48475 |            | 5291,21625  |            | 4614,6345  |            | 5551,44    |             | 5534,09175 |             | 5256,51975 |            | 5742,27075 |
|---------|-------------------------|----------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|-------------|------------|-------------|------------|------------|------------|
| RESUMEN | DECICTENC               | IA FINAL             |            | 697,5      |            | 667,5      |             | 652,5      |            | 807,5      |            | 762,5       |            | 665        |            | 800        |             | 797,5      |             | 757,5      |            | 827,5      |
|         | STENCIA                 | R PROMEDIO           | 720        | 675        | 099        | 685        | 625         | 680        | 815        | 800        | 770        | 755         | 725        | 605        | 820        | 780        | 790         | 805        | 820         | 969        | 845        | 810        |
|         | MEDICIÓN DE RESISTENCIA | AY                   | 740        | 640        | 099        | 099        | 640         | 029        | 870        | 160        | 810        | 800         | 700        | 580        | 840        | 069        | 800         | 720        | 840         | 750        | 910        | 790        |
|         | MEDICI                  | AX                   | 200        | 710        | 640        | 710        | 610         | 069        | 160        | 840        | 730        | 710         | 750        | 630        | 800        | 870        | 780         | 890        | 800         | 640        | 780        | 830        |
|         | (                       | CORREGID<br>O CSC AY | -5,15      | 112,425    | -557,225   | -398,025   | -518,575    | -438,975   | -458,15    | -388,375   | -468,125   | -393,275    | -457,05    | -385,025   | -398,8     | -422,125   | -470,05     | -418,025   | -338,675    | -483,35    | -486,15    | -483,375   |
|         | seg: E(mV)              | CORREGID<br>O CSC AX | 139,85     | 70,425     | -284,225   | -450,025   | -483,575    | -558,975   | -364,15    | -508,375   | -499,125   | -473,275    | -391,05    | -414,025   | -388,8     | -443,125   | -415,05     | -509,025   | -217,675    | -550,35    | -556,15    | -512,375   |
|         | POTENCIAL 60 seg:       | AY                   | 4          | 113        | -557       | -391       | -504        | -445       | -452       | -388       | -455       | -378        | -456       | -379       | -419       | -423       | -469        | 412        | -358        | -465       | -480       | -483       |
|         | PO                      | AX                   | 141        | 71         | -284       | -443       | -469        | -565       | -358       | -508       | -486       | -458        | -390       | -408       | -409       | -444       | 414         | -503       | -237        | -532       | -550       | -512       |
| AY      | VAI OD DE               | B                    | 0,052      | 0,052      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026       | 0,026      | 0,026      | 0,026      |
| AX      | VALOP DE                | B                    | 0,052      | 0,052      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026       | 0,026      | 0,026      | 0,026      |
|         | cónico                  | PROBETA              | PX-R-S-1   | PX-R-S-2   | PX-R-S-1   | PX-R-S-2   | PX-R-S-1    | PX-R-S-2   | PX-R-S-1   | PX-R-S-2   | PX-R-S-1   | PX-R-S-2    | PX-R-S-1   | PX-R-S-2   | PX-R-S-1   | PX-R-S-2   | PX-R-S-1    | PX-R-S-2   | PX-R-S-1    | PX-R-S-2   | PX-R-S-1   | PX-R-S-2   |
|         |                         | FECHA                | 24/07/2000 | 21/01/2003 | 44,007,000 | 14/00/2003 | 00/00/00/00 | 50/00/5003 | 44/00/2000 | 11/03/2003 | 0000/00/30 | 50/02/50/02 | 00/10/2000 | 00/10/2003 | 93/40/9000 | 5007101767 | 00014470000 | 6007/11/00 | 20/14//2000 | 500711107  | 0000/07/77 | 04/12/2003 |
|         | MEDICIÓN                | No.                  |            | -          | ٠          | 7          | ٠           |            | ,          | 4          | J          |             | Ų          | o          | 7          | _          | 0           |            | o           | c.         | ç          | 2          |

TABLA 18
C.2 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AGUA SALADA

| CALCIII O DE LA CALCADA AV | CALCHI O DE Loca DADA AV | CALCIII O DE L'ACT DADA AV | N V V V V V V V V V V V V V V V V V V V | VA A0              |                                                        |           |           | 12182            | 1000                     | VA A0A0                                              |           |                              |           |            |
|----------------------------|--------------------------|----------------------------|-----------------------------------------|--------------------|--------------------------------------------------------|-----------|-----------|------------------|--------------------------|------------------------------------------------------|-----------|------------------------------|-----------|------------|
|                            |                          |                            | CALC                                    | ULO UE ICOIT F     | AKA AX                                                 |           |           | CALCU            | CALCULO DE ICOTI PARA AY | PAKA AY                                              |           |                              | RESUMEN   |            |
| LECHA                      | código                   | E-Ecorr                    | (E - Ecorr)/AI                          | (E - Ecorr)/∆I)-FB | (E - Ecorr)/AI ((E - Ecorr)/AI)-FB /((E - Ecorr)/AI)-R | icorr     | E-Ecorr ( | E - Ecorr)/AI (E | - Ecorr)/Alj-RB          | (E - Ecorr)/AI (E - Ecorr)/AIJ-R /((E - Ecorr)/AIJ-R | icorr     | icorr                        | rooi      | pérdida de |
| AII.                       | PROBETA                  | (V)                        | (SmHO)                                  | (Ohms)             | А                                                      | uA/cm2    | (V)       | (Shms)           | (SmHO)                   | А                                                    | uA/cm2    | PROMEDIO                     | (FINAL)   | espesor    |
| 24/07/2000                 | PX-R-S-1                 | 0,3543                     | 17.715,00                               | 16995              | 3,05972E-06                                            | 0,1529862 | 0,2415    | 12.075,00        | 11.355,00                | 4,58E-06                                             | 0,228974  | 0,1909801                    |           |            |
| 5002                       | PX-R-S-2                 | 0,3167                     | 15.835,00                               | 15160              | 3,43008E-06                                            | 0,171504  | 0,3139    | 15.695,00        | 15.020,00                | 3,46E-06                                             | 0,1731025 | 0,1723032 0,1816417          | 0,1816417 | 2,11       |
| 44/08/2000                 | PX-R-S-1                 | 0,0547                     | 5.470,00                                | 4820               | 5,39419E-06                                            | 0,2697095 | 0,033     | 3.300,00         | 2.650,00                 | 9,81E-06                                             | 0,490566  | 0,3801378                    |           |            |
| 2002                       | PX-R-S-2                 | 0,0227                     | 2.270,00                                | 1585               | 1,64038E-05                                            | 0,8201893 | 0,0396    | 3.960,00         | 3.275,00                 | 7,94E-06                                             | 0,3969466 | 0,6085679 0,4943529          | 0,4943529 | 5,73       |
| 0000/00/00                 | PX-R-S-1                 | 9590'0                     | 3.280,00                                | 2655               | 9,79284E-06                                            | 0,4896422 | 0,0488    | 2.440,00         | 1.815,00                 | 1,43E-05                                             | 0,7162534 | 0,6029478                    |           |            |
| 2002                       | PX-R-S-2                 | 0,0449                     | 2.245,00                                | 1565               | 1,66134E-05                                            | 0,8306709 | 9680'0    | 4.480,00         | 3.800,00                 | 6,84E-06                                             | 0,3421053 | 0,5863881                    | 0,594668  | 6,90       |
| 44/00/2000                 | PX-R-S-1                 | 0,1184                     | 5.920,00                                | 5105               | 5,09305E-06                                            | 0,2546523 | 0,0944    | 4.720,00         | 3.905,00                 | 90-399'9                                             | 0,3329065 | 0,2937794                    |           |            |
| 5/2005                     | PX-R-S-2                 | 0,0591                     | 2.955,00                                | 2155               | 1,2065E-05                                             | 0,6032483 | 0,1105    | 5.525,00         | 4.725,00                 | 5,50E-06                                             | 0,2751323 | 0,4391903 0,3664848          | 0,3664848 | 4,25       |
| 25/110/2010                | PX-R-S-1                 | 0,0681                     | 3.405,00                                | 2635               | 9,86717E-06                                            | 0,4933586 | 0,0484    | 2.420,00         | 1.650,00                 | 1,58E-05                                             | 0,7878788 | 0,6406187                    |           |            |
| 212003                     | PX-R-S-2                 | 0,0708                     | 3.540,00                                | 2785               | 9,33573E-06                                            | 0,4667864 | 0,0605    | 3.025,00         | 2.270,00                 | 1,15E-05                                             | 0,5726872 | 0,5197368 0,5801778          | 0,5801778 | 6,73       |
| 08/40/2000                 | PX-R-S-1                 | 0,0937                     | 4.685,00                                | 3960               | 6,56566E-06                                            | 0,3282828 | 0,0243    | 1.215,00         | 490,00                   | 5,31E-05                                             | 2,6530612 | 1,490672                     |           |            |
| 012003                     | PX-R-S-2                 | 0,1298                     | 6.490,00                                | 5885               | 4,41801E-06                                            | 0,2209006 | 0,0837    | 4.185,00         | 3.580,00                 | 7,26E-06                                             | 0,3631285 | 0,2920145 0,8913433          | 0,8913433 | 10,34      |
| 02/40/2000                 | PX-R-S-1                 | 0,0708                     | 3.540,00                                | 2720               | 9,55882E-06                                            | 0,4779412 | 0,1103    | 5.515,00         | 4.695,00                 | 5,54E-06                                             | 0,2768903 | 0,3774157                    |           |            |
| 012003                     | PX-R-S-2                 | 0,0939                     | 4.695,00                                | 3915               | 6,64112E-06                                            | 0,3320562 | 0,0643    | 3.215,00         | 2.435,00                 | 1,07E-05                                             | 0,5338809 | 0,4329685 0,405192           | 0,4051921 | 4,70       |
| 06/14/2000                 | PX-R-S-1                 | 0,0927                     | 4.635,00                                | 3845               | 6,76203E-06                                            | 0,3381014 | 0,087     | 4.350,00         | 3.560,00                 | 7,30E-06                                             | 0,3651685 | 0,351635                     |           |            |
| 1,2003                     | PX-R-S-2                 | 0,045                      | 2.250,00                                | 1445               | 1,79931E-05                                            | 0,899654  | 0,0916    | 4.580,00         | 3.775,00                 | 90-368'9                                             | 0,3443709 | 0,6220124 0,4868237          | 0,4868237 | 5,65       |
| 20//41/2000                | PX-R-S-1                 | 0,2341                     | 11.705,00                               | 10885              | 2,38861E-06                                            | 0,1194304 | 0,1699    | 8.495,00         | 7.675,00                 | 3,39E-06                                             | 0,1693811 | 0,1444058                    |           |            |
| 2007                       | PX-R-S-2                 | 0,0648                     | 3.240,00                                | 2545               | 1,02161E-05                                            | 0,5108055 | 0,0723    | 3.615,00         | 2.920,00                 | 8,90E-06                                             | 0,4452055 | 0,4780055 0,3112056          | 0,3112056 | 3,61       |
| 04/12/2010                 | PX-R-S-1                 | 0,0326                     | 1.630,00                                | 785                | 3,3121E-05                                             | 1,656051  | 0,0774    | 3.870,00         | 3.025,00                 | 8,60E-06                                             | 0,4297521 | 1,0429015                    |           |            |
| 5007/7                     | PX-R-S-2                 | 0,0716                     | 3.580,00                                | 2770               | 9.38628E-06 0.4693141                                  | 0.4693141 | 0.0635    | 3.175.00         | 2 365 00                 | 1,10E-05                                             | 0.5496829 | 1.10F_05 0.5496829 0.5094985 | 0.7762    | 00 6       |

TABLA 19
D.1 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AGUA SALADA

|         | DECICTIVID              |                      |            | 4805,46525 |            | 5239,1715  |             | 4510,545    |            | 5829,012   |            | 8292,4635  |            | 5152,43025 |             | 5256,51975 |              | 6054,53925 |            | 4978,94775 |            | 5343,261   |
|---------|-------------------------|----------------------|------------|------------|------------|------------|-------------|-------------|------------|------------|------------|------------|------------|------------|-------------|------------|--------------|------------|------------|------------|------------|------------|
| RESUMEN | DECICTENC               | IA FINAL             |            | 692,5      |            | 755        |             | 099         |            | 840        |            | 1195       |            | 742,5      |             | 2,737      |              | 872,5      |            | 717,5      |            | 770        |
|         | STENCIA                 | R PROMEDIO           | 57.2       | 099        | 008        | 710        | 502         | 969         | 875        | 908        | 1600       | 062        | 058        | 929        | 820         | 969        | 915          | 830        | 710        | 725        | 840        | 200        |
|         | MEDICIÓN DE RESISTENCIA | AY                   | 770        | 920        | 810        | 280        | 710         | 520         | 940        | 860        | 1800       | 700        | 006        | 530        | 830         | 620        | 940          | 770        | 740        | 099        | 870        | 029        |
|         | MEDIC                   | AX                   | 089        | 770        | 790        | 840        | 700         | 029         | 810        | 750        | 1400       | 880        | 800        | 740        | 810         | 770        | 890          | 890        | 089        | 800        | 810        | 730        |
|         | 0                       | CORREGID<br>O CSC AY | 291,05     | -261,975   | 36,98      | -324,15    | -333,45     | -536,825    | -360,975   | -389,2     | -382,5     | -425,85    | -293,775   | -286,275   | -200,2      | -397,1825  | -558,725     | -388,1     | -538,55    | -420,55    | -452,775   | -412,275   |
|         | L 60 seg: E (mV)        | CORREGID<br>O CSC AX | 72,05      | -208,975   | -454,05    | -443,15    | -358,45     | -429,825    | -569,975   | -465,2     | -207,5     | -442,85    | -418,775   | -226,275   | -344,2      | -424,1825  | -458,725     | -436,1     | -353,55    | -427,55    | -475,775   | -412,275   |
|         | POTENCIAL 6             | AY                   | 767        | 197-       | 89         | 067-       | -263        | 767-        | -332       | 206-       | -374       | -412       | 117-       | 8/2-       | -213        | 686-       | <i>L</i> 99- | -385       | -532       | 405        | 984-       | -404       |
|         | ď                       | AX                   | 73         | -208       | 433        | -409       | -288        | -387        | -541       | -383       | -199       | -429       | -402       | -218       | -357        | -416       | -467         | -433       | -347       | 412        | -459       | 404        |
| AY      | VAI OP DE               | B                    | 0,052      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026       | 0,026      | 0,026      | 0,026      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026        | 0,026      | 0,026      | 0,026      | 0,026      | 0,026      |
| AX      | VAI OR DE               | B                    | 0,052      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026       | 0,026      | 0,026      | 0,026      | 0,026      | 0,026      | 0,026      | 0,026       | 0,026      | 0,026        | 0,026      | 0,026      | 0,026      | 0,026      | 0,026      |
|         | cónigo                  | PROBETA              | PI-R-S-1   | PI-R-S-2   | PI-R-S-1   | PI-R-S-2   | PI-R-S-1    | PI-R-S-2    | PI-R-S-1   | PI-R-S-2   | PI-R-S-1   | PI-R-S-2   | PI-R-S-1   | PI-R-S-2   | PI-R-S-1    | PI-R-S-2   | PI-R-S-1     | PI-R-S-2   | PI-R-S-1   | PI-R-S-2   | PI-R-S-1   | PI-R-S-2   |
|         |                         | FECHA                | 24/07/2000 | 01/01/2003 | 44/02/2000 | 14/00/2003 | 00/06/20/86 | 50/02/00/07 | 44/00/2000 | 11/03/2003 | 0006/00/36 | 5002/60/62 | 00/40/2000 | 6007/01/00 | 00/10/10/00 | 5007/01/07 | 000447000    | 6007/11/00 | 00/44/0000 | 5007/11/07 | 0000000000 | 04/12/2003 |
|         | MEDICIÓN                | No.                  | •          | -          | ٠          | 7          | 3           |             | _          | 4          | 3          | c          | ú          | D          | 7           | -          | 0            | 0          | c          |            | Ŷ          |            |

TABLA 20
D.2 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AGUA SALADA

|         |                          | pérdida d                                      | espesor  |             | 2,19        |             | 3,47                |            | 2,86        |             | 2,71       |             | 3,53                |              | 1,64        |               | 3,20             |             | 3,54                |             | 4,14                |             | 5,53                          |
|---------|--------------------------|------------------------------------------------|----------|-------------|-------------|-------------|---------------------|------------|-------------|-------------|------------|-------------|---------------------|--------------|-------------|---------------|------------------|-------------|---------------------|-------------|---------------------|-------------|-------------------------------|
|         | RESUMEN                  | icorr                                          | (FINAL)  |             | 0,1884685   |             | 0,2994164           |            | 0,2464445   |             | 0,2336444  |             | 0,3047321           |              | 0,1417939   |               | 0,2761728        |             | 0,3050646           |             | 0,3565575           |             | 0,4767239                     |
|         |                          | icorr                                          | PROMEDIO | 0,1594755   | 0,2174614   | 0,4091873   | 0,0824873 0,1896455 | 0,1832652  | 0,3096239   | 0,2830903   | 0,1841984  | 0,2618219   | 0,3762663 0,3476423 | 0,1629225    | 0,1206654   | 0,2005956     |                  | 0,3648087   | 0,2901786 0,2453206 | 0,3133399   | 0,3997751           | 0,6545494   | 0,2951192 0,2988984 0,4767239 |
|         |                          | icorr                                          | uA/cm2   | 0,1368781   | 0,2647658   | 0,0256917   | 0,0824873           | 0,1789401  | 0,3909774   | 0,2100162   | 0,1808067  | 0,3055229   | 0,3762663           | 0,1377119    | 0,1499423   | 0,0852739     | 0,380117 0,35175 | 0,4193548   | 0,2901786           | 0,3462051   | 0,3080569 0,3997751 | 0,342556    | 0,2951192                     |
| VA AGAG | PAKA AY                  | H-(IA/(1705 - 50017)/AJ-14 /([E - Ecorr)/AJ]-F | А        | 2,74E-06    | 5,30E-06    | 5,14E-07    | 1,65E-06            | 3,58E-06   | 7,82E-06    | 4,20E-06    | 3,62E-06   | 6,11E-06    | 7,53E-06            | 2,75E-06     | 3,00E-06    | 1,71E-06      | 7,60E-06         | 8,39E-06    | 5,80E-06            | 6,92E-06    | 6,16E-06            | 6,85E-06    | 90-306'S                      |
|         | CALCULO DE icorr PARA AY | H-(I∆\(rios3 - 3)                              | (SmHO)   | 18.995,00   | 4.910,00    | 50.600,00   | 15.760,00           | 7.265,00   | 3.325,00    | 6.190,00    | 7.190,00   | 4.255,00    | 3.455,00            | 9.440,00     | 8.670,00    | 15.245,00     | 3.420,00         | 3.100,00    | 4,48E+03            | 3,76E+03    | 4,22E+03            | 3,80E+03    | 4,41E+03                      |
| 2       | CALC                     |                                                | (Ohms)   | 19.720,00   | 5.570,00    | 51.400,00   | 16.470,00           | 7.970,00   | 3.920,00    | 7.065,00    | 7.995,00   | 5.855,00    | 4.245,00            | 10.290,00    | 9.305,00    | 16.065,00     | 4.115,00         | 4.015,00    | 5,31E+03            | 4,47E+03    | 4,95E+03            | 4,64E+03    | 5,11E+03                      |
|         |                          | E-Ecorr                                        | (V)      | 0,3944      | 0,1114      | 0,514       | 0,1647              | 0,1594     | 0,0784      | 0,1413      | 0,1599     | 0,1171      | 0,0849              | 0,2058       | 0,1861      | 0,3213        | 0,0823           | 0,0803      | 0,1062              | 0,0893      | 0,0989              | 0,0927      | 0,1021                        |
|         |                          | icorr                                          | uA/cm2   | 0,1820728   | 0,1701571   | 0,7926829   | 0,2968037           | 0,1875902  | 0,2282704   | 0,3561644   | 0,1875902  | 0,2181208   | 0,3190184           | 0,1881331    | 0,0913884   | 0,3159174     | 0,3233831        | 0,3102625   | 0,2004626           | 0,2804746   | 0,4914934           | 0,9665428   | 0,3026775                     |
| 24 40   | PAKA AX                  | B /((E - Ecorr)/ΔI)-R                          | А        | 3,64146E-06 | 3,40314E-06 | 1,58537E-05 | 5,93607E-06         | 3,7518E-06 | 4,56541E-06 | 7,12329E-06 | 3,7518E-06 | 4,36242E-06 | 6,38037E-06         | 3,76266E-06  | 1,82777E-06 | 6,31835E-06   | 6,46766E-06      | 6,20525E-06 | 4,00925E-06         | 5,60949E-06 | 9,82987E-06         | 1,93309E-05 | 6,05355E-06                   |
|         | CALCULO DE ICOTT PARA AX | (E - Ecorr)/∆I) ((E - Ecorr)/∆I)-R             | (0hms)   | 14280       | 7640        | 1640        | 4380                | 6930       | 5695        | 3650        | 6930       | 2960        | 4075                | 6910         | 14225       | 4115          | 4020             | 4190        | 6485                | 4635        | 2645                | 1345        | 4295                          |
| -       | CAL                      | (E - Ecorr)/∆I                                 | (Ohms)   | 15.005,00   | 8.300,00    | 2.440,00    | 5.090,00            | 7.635,00   | 6.290,00    | 4.525,00    | 7.735,00   | 7.560,00    | 4.865,00            | 7.760,00     | 14.860,00   | 4.935,00      | 4.715,00         | 5.105,00    | 7,32E+03            | 5,35E+03    | 3,37E+03            | 2,19E+03    | 5,00E+03                      |
|         |                          | E-Ecorr                                        | (V)      | 0,3001      | 0,1660      | 0,0244      | 0,0509              | 0,1527     | 0,1258      | 9060'0      | 0,1547     | 0,1512      | 0,0973              | 0,1552       | 0,2972      | 0,0987        | 0,0943           | 0,1021      | 0,1463              | 0,1069      | 0,0674              | 0,0437      | 6660'0                        |
|         |                          | código                                         | PROBETA  | PFR-S-1     | PHR-S-2     | PFR-S-1     | PHR-S-2             | PFR-S-1    | PHR-S-2     | PFR-S-1     | PI-R-S-2   | PFR-S-1     | PHR-S-2             | PLR-S-1      | PHR-S-2     | PrR-S-1       | PLR-S-2          | P-R-S-1     | PHR-S-2             | PFR-S-1     | PHR-S-2             | PFR-S-1     | PrR-S-2                       |
|         |                          | CCCUA                                          | LECTIA   | 34/07/2000  | 011011000   | 44/108/2010 | 1400/2003           | 0000000000 | 2010012003  | 44/100/2010 | 1103/2003  | 00/00/00/20 | 5002/5002           | 00//0//0//00 | 00/10/00    | 02/11/1/00/00 | 50170107         | 00/44/2000  | 001117000           | 00/44/2000  | 5017111702          | 0000000000  | 6007/71/40                    |
|         |                          | MEDICIÓN                                       | No.      | -           | -           | ,           |                     | ٠          |             | ,           |            | 7           |                     | ä            |             | 7             | _                | ŏ           |                     | 0           |                     | 40          | $\Box$                        |

TABLA 21

E.1 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

|         | PECICTIVID              | AD                   |            | 12490.74   |            | 17695.215  |            | 22379.2425 |            | 30879.885 |            | 35390.43    |            | 36084.36   |            | 40768.3875 |             | 44064.555  |            | 45972.8625 |            | 56208.33   |
|---------|-------------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|
| RESUMEN | DECICTENC D             | IA FINAL             |            | 1800       |            | 2550       |            | 3225       |            | 4450      |            | 5100        |            | 5200       |            | 5875       |             | 6350       |            | 6625       |            | 8100       |
|         |                         | R PROMEDIC           | 1950       | 1650       | 2800       | 2300       | 3550       | 2900       | 4650       | 4250      | 9999       | 4550        | 9999       | 4850       | 6500       | 5250       | 00/9        | 0009       | 7250       | 0009       | 8200       | 8000       |
|         | MEDICIÓN DE RESISTENCIA | AY                   | 1900       | 1500       | 2800       | 2200       | 3700       | 2800       | 4600       | 3700      | 5900       | 4500        | 5400       | 4600       | 6700       | 5200       | 0069        | 0009       | 7400       | 6300       | 8200       | 8200       |
|         | MEDICIÓ                 | AX                   | 2000       | 1800       | 2800       | 2400       | 3400       | 3000       | 4700       | 4800      | 5400       | 4600        | 9200       | 5100       | 6300       | 5300       | 0099        | 0009       | 7100       | 9200       | 8200       | 7800       |
|         | )                       | CORREGID<br>O CSC AY | 62.925     | 307.15     | 131.825    | 175.275    | 406.8      | 409.7      | 420.975    | 456.925   | 501.525    | 480.35      | 545.675    | 494.5      | 554.925    | 544.0575   | 481.625     | 563.375    | 522.81     | 317.9175   | 669.81     | 751.9175   |
|         | seg: E(mV)              | CORREGID<br>O CSC AX | 396.925    | 278.15     | 223.825    | 154.275    | 8709       | 341.7      | 586.975    | 358.925   | 660.525    | 421.35      | 633.675    | 386.5      | 697.925    | 451.0575   | 701.625     | 615.375    | 817.81     | 446.9175   | 860.81     | 716.9175   |
|         | POTENCIAL 60 seg:       | AY                   | 139        | 381        | 194        | 240        | 478        | 473        | 498        | 525       | 571        | 543         | 622        | 599        | 573        | 999        | 537         | 594        | 530        | 331        | 229        | 292        |
|         | PC                      | AX                   | 473        | 352        | 286        | 219        | 629        | 405        | 664        | 427       | 730        | 484         | 710        | 457        | 716        | 462        | 157         | 646        | 825        | 460        | 898        | 730        |
| AY      | VALOR DE                | B                    | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052     | 0.052      | 0.052       | 0.052      | 0.052      | 0.052      | 0.052      | 0.052       | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      |
| AX      | VAI OP DE               | B B                  | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052     | 0.052      | 0.052       | 0.052      | 0.052      | 0.052      | 0.052      | 0.052       | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      |
|         | cónigo                  | PROBETA              | PX-R-N-1   | PX-R-N-2   | PX-R-N-1   | PX-R-N-2   | PX-R-N-1   | PX-R-N-2   | PX-R-N-1   | PX-R-N-2  | PX-R-N-1   | PX-R-N-2    | PX-R-N-1   | PX-R-N-2   | PX-R-N-1   | PX-R-N-2   | PX-R-N-1    | PX-R-N-2   | PX-R-N-1   | PX-R-N-2   | PX-R-N-1   | PX-R-N-2   |
|         |                         | FECHA                | 24/07/2000 | 31/01/2003 | 44/08/2000 | 6007/00/41 | 0000/00/00 | _          | 44/00/2000 | 1/03/2003 | 0000/00/30 | 50/02/50/62 | 00/10/2000 | 00/10/2003 | 03/10/2000 | 5007/01/67 | 000/44/9000 | 6007/11/00 | 00/44/0000 | 6007/11/07 | 0000000000 | 04/12/2003 |
|         | MEDICIÓN                | No.                  | ,          | -          | ,          | 7          | 3          |            |            | +         | J          | 9           | Ų          | 0          | 7          | -          | 0           | 0          | 0          | c.         | 40         | 2          |

TABLA 22

E.2 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

|          |              |          |           | CALC           | CALCULO DE icorr PARA AX | PARA AX                                                |            |           | CALC           | CALCULO DE icorr PARA AY | PARA AY                                                 |                       |                                  | RESUMEN    |            |
|----------|--------------|----------|-----------|----------------|--------------------------|--------------------------------------------------------|------------|-----------|----------------|--------------------------|---------------------------------------------------------|-----------------------|----------------------------------|------------|------------|
| MEDICIÓN | VICTOR       | código   | E - Ecorr | (E - Ecorr)/∆I | ((E - Ecorr)/Alj-R       | (E - Ecorr)/Al ((E - Ecorr)/Al)-R B ((E - Ecorr)/Al)-R | icorr      | E - Ecorr | (E - Ecorr)/∆I | ((E - Ecorr)/Alj-R       | (E - Ecorr)/Δ1 ((E - Ecorr)/Δ1]-R B /((E - Ecorr)/Δ1]-R | icorr                 | icorr                            | icorr      | pérdida de |
| No.      | LECTIA       | PROBETA  | (V)       | (ohms)         | (SmhO)                   | А                                                      | uA/cm2     | (V)       | (Ohms)         | (Shms)                   | А                                                       | uA/cm2                | PROMEDIO                         | (FINAL)    | espesor    |
| -        | 24/07/2000   | PX-R-N-1 | 0.5069    | 25,345.00      | 23395                    | 2.2227E-06                                             | 0.11113486 | 0.172     | 8,600.00       | 6,650.00                 | 7.82E-06                                                | 0.39097744 0.25105615 | 0.25105615                       |            |            |
| -        | 0110112003   | PX-R-N-2 | 0.3977    | 19,885.00      | 18235                    | 2.85166E-06                                            | 0.14258294 | 0.4254    | 21,270.00      | 19,620.00                | 2.65E-06                                                | 0.13251784            | 0.13251784 0.13755039            | 0.19430327 | 2.25       |
| ,        | 14/08/2000   | PX-R-N-1 | 0.3285    | 32,850.00      | 30050                    | 1.73045E-06                                            | 0.08652246 | 0.2363    | 23,630.00      | 20,830.00                | 2.50E-06                                                | 0.12481997 0.10567122 | 0.10567122                       |            |            |
| 7        | 1400/2003    | PX-R-N-2 | 0.2522    | 25,220.00      | 22920                    | 2.26876E-06                                            | 0.11343805 | 0.2715    | 27,150.00      | 24,850.00                | 2.09E-06                                                | 0.10462777 0.10903291 |                                  | 0.10735206 | 1.25       |
| ٠        | ORINGIANO    | PX-R-N-1 | 0.6168    | 30,840.00      | 27290                    | 1.90546E-06                                            | 0.09527299 | 0.5132    | 25,660.00      | 22,110.00                | 2.35E-06                                                | 0.11759385 0.10643342 | 0.10643342                       |            |            |
| ,        | 2010012003   | PX-R-N-2 | 0.4386    | 21,930.00      | 19030                    | 2.73253E-06                                            | 0.13662638 | 0.502     | 25,100.00      | 22,200.00                | 2.34E-06                                                | 0.11711712            | 0.11711712 0.12687175            | 0.11665258 | 1.35       |
| 7        | 44/00/2000   | PX-R-N-1 | 0.6967    | 34,835.00      | 30185                    | 1.72271E-06                                            | 0.0861355  | 0.5284    | 26,420.00      | 21,770.00                | 2.39E-06                                                | 0.11943041 0.10278295 | 0.10278295                       |            |            |
|          | 1103/2003    | PX-R-N-2 | 0.4572    | 22,860.00      | 18610                    | 2.7942E-06                                             | 0.13970983 | 0.5505    | 27,525.00      | 23,275.00                | 2.23E-06                                                | 0.11170784            | 0.11170784 0.12570884            | 0.1142459  | 1.33       |
| u        | 00/10/10/150 | PX-R-N-1 | 0.7594    | 37,970.00      | 32320                    | 1.60891E-06                                            | 0.08044554 | 0.6008    | 30,040.00      | 24,390.00                | 2.13E-06                                                | 0.10660107 0.09352331 | 0.09352331                       |            |            |
| 2        | 2010312003   | PX-R-N-2 | 0.5108    | 25,540.00      | 20990                    | 2.47737E-06                                            | 0.12386851 | 0.5673    | 28,365.00      | 23,815.00                | 2.18E-06                                                | 0.10917489 0.1165217  |                                  | 0.1050225  | 1.22       |
| œ        | 08/40/2000   | PX-R-N-1 | 0.7456    | 37,280.00      | 31730                    | 1.63883E-06                                            | 0.08194138 | 0.6508    | 32,540.00      | 26,990.00                | 1.93E-06                                                | 0.09633197            | 0.08913668                       |            |            |
| >        | 00.10.5003   | PX-R-N-2 | 0.4827    | 24,135.00      | 19285                    | 2.6964E-06                                             | 0.13481981 | 0.5872    | 29,360.00      | 24,510.00                | 2.12E-06                                                | 0.10607915            | 0.10607915 0.12044948            | 0.10479308 | 1.22       |
| 7        | 22/10/2000   | PX-R-N-1 | 0.7551    | 37,755.00      | 31255                    | 1.66373E-06                                            | 0.08318669 | 0.613     | 30,650.00      | 24,150.00                | 2.15E-06                                                | 0.10766046 0.09542357 | 0.09542357                       |            |            |
| -        | 2010102      | PX-R-N-2 | 0.495     | 24,750.00      | 19500                    | 2.66667E-06                                            | 0.13333333 | 0.5877    | 29,385.00      | 24,135.00                | 2.15E-06                                                | 0.10772737            | 0.10772737 0.12053035            | 0.10797696 | 1.25       |
| •        | 08/11/2000   | PX-R-N-1 | 0.7927    | 39,635.00      | 32935                    | 1.57887E-06                                            | 0.07894337 | 0.5697    | 2.85E+04       | 2.18E+04                 | 2.39E-06                                                | 0.11934818 0.09914577 | 0.09914577                       |            |            |
| >        | 000711100    | PX-R-N-2 | 0.6757    | 33,785.00      | 27785                    | 1.87151E-06                                            | 0.09357567 | 0.6212    | 3.11E+04       | 2.51E+04                 | 2.08E-06                                                | 0.103751              | 0.103751 0.09866333              | 0.09890455 | 1.15       |
| o        | 20//11/2000  | PX-R-N-1 | 0.8561    | 42,805.00      | 35555                    | 1.46252E-06                                            | 0.07312614 | 95.0      | 2.80E+04       | 2.08E+04                 | 2.51E-06                                                | 0.1253012             | 0.09921367                       |            |            |
| >        | 2004         | PX-R-N-2 | 0.4916    | 2.46E+04       | 18580                    | 2.79871E-06                                            | 0.13993541 | 0.3598    | 1.80E+04       | 1.20E+04                 | 4.34E-06                                                | 0.21684737            | 0.21684737 0.17839139            | 0.13880253 | 1.61       |
| Ų.       | 04/12/2000   | PX-R-N-1 | 0.9814    | 4.91E+04       | 40870                    | 1.27233E-06                                            | 0.06361634 | 0.7127    | 3.56E+04       | 2.74E+04                 | 1.90E-06                                                | 0.09476946            | 0.0791929                        |            |            |
| 2        | 0003/3/11/0  | PX-R-N-2 | 0.7657    | 3.83E+04       | 30285                    | 1.71702E-06                                            | 0.08585108 | 0.8042    | 4.02E+04       | 3.22E+04                 | 1.61E-06                                                | 0.08072027            | 0.08072027 0.08328568 0.08123929 | 0.08123929 | 0.94       |

TABLA 23 F.1 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

|         | DECICTIVID              |                      |            | 13358.1525 |            | 15960.39   |             | 20991.3825 |            | 26889.7875 |            | 32788.1925 |           | 36951.7725 |            | 41635.8    |            | 46319.8275 |            | 46666.7925 |            | 56902.26   |
|---------|-------------------------|----------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| RESUMEN | DECICTENC               |                      |            | 1925       |            | 2300       |             | 3025       |            | 3875       |            | 4725       |           | 5325       |            | 0009       |            | 6675       |            | 6725       |            | 8200       |
|         | STENCIA                 | R PROMEDIO           | 2200       | 1650       | 2400       | 2200       | 3100        | 2950       | 4050       | 3700       | 4900       | 4550       | 9529      | 5400       | 0009       | 0009       | 0099       | 0529       | 0089       | 0999       | 0068       | 7500       |
|         | MEDICIÓN DE RESISTENCIA | AY                   | 2400       | 1700       | 2000       | 2200       | 2600        | 3000       | 3300       | 3800       | 3900       | 4800       | 4800      | 5400       | 0099       | 0009       | 0099       | 7000       | 9009       | 0089       | 0002       | 7400       |
|         | MEDIC                   | AX                   | 2000       | 1600       | 2800       | 2200       | 3600        | 2900       | 4800       | 3600       | 0069       | 4300       | 00/9      | 5400       | 0049       | 0009       | 00//       | 0099       | 8000       | 0099       | 10800      | 0092       |
|         | 0                       | CORREGID<br>O CSC AY | 362.4      | 311.25     | 193.55     | 123.25     | 458.35      | 412.15     | 513.7      | 456.475    | 591.5      | 551.15     | 596.725   | 622.775    | 650.925    | 725.425    | 630.9      | 635.725    | 598.2775   | 468.5325   | 767.2775   | 629.5325   |
|         | 0 seg: E (mV)           | CORREGID<br>O CSC AX | 352.4      | 338.25     | 213.55     | 298.25     | 469.35      | 459.15     | 530.7      | 499.475    | 5.873      | 602.15     | 630.725   | 685.775    | 609.925    | 659.425    | 6:01/      | 677.725    | 678.2775   | 693.5325   | 774.2775   | 765.5325   |
|         | POTENCIAL 60 seg:       | AY                   | 439.00     | 372        | 252        | 9/1        | 513         | 458        | 574        | 609        | 849        | 969        | 999       | 9/9        | 899        | 134        | 849        | 652        | 909        | 117        | 174        | 638        |
|         | )d                      | AX                   | 429.00     | 668        | 272        | 351        | 524         | 909        | 169        | 299        | 069        | 979        | 689       | 682        | 612        | 899        | 827        | 694        | 989        | 202        | 187        | 174        |
| AY      | VAI OD DE               | B B                  | 0.052      | 0.052      | 0.052      | 0.052      | 0.052       | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052     | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      |
| AX      | VAI OD DE               | B B                  | 0.052      | 0.052      | 0.052      | 0.052      | 0.052       | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052     | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      | 0.052      |
|         | cónico                  | PROBETA              | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1    | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1  | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   | PI-R-N-1   | PI-R-N-2   |
|         |                         | FECHA                | 24/07/2000 | 31/07/2003 | 44/00/2000 | 14/00/2003 | 00/00/00/00 | 20/00/2003 | 4470079000 | 6002/60/1  | 0006/00/26 | 6002/60/62 | 00/40/000 | 00/10/2003 | 92/40/9000 | 6002/01/62 | 00/44/9000 | 00/11/2003 | 20/44/2000 | 5007111707 | 0000000000 | 04/12/2003 |
|         | MEDICIÓN                | No.                  |            | -          | c          | 7          | ,           |            | ,          | 4          | 2          |            | ų         | 0          | 7          |            | 0          | 0          | ٥          |            | ç          | 2          |

TABLA 24

F.2 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

|          |              |          |           | CALC           | CALCULO DE icorr PARA AX | PARA AX                                                |           |         | CAL            | CALCULO DE ICOTT PARA AY          | PARA AY              |                     |                               | RESUMEN   |            |
|----------|--------------|----------|-----------|----------------|--------------------------|--------------------------------------------------------|-----------|---------|----------------|-----------------------------------|----------------------|---------------------|-------------------------------|-----------|------------|
| MEDICIÓN | נבעחע        | código   | E · Ecorr | (E - Ecorr)/Aı | (E - Ecorr)/Aŋ-R         | (E - Ecorr)/ΔI ((E - Ecorr)/ΔIJ-R B ((E - Ecorr)/ΔIJ-R | icorr     | E-Ecorr | (E - Ecorr)/∆ı | (E - Ecorr)/At ((E - Ecorr)/Atj-R | B/((E · Ecorr)/∆ı}-R | icorr               | icorr                         | _         | oérdida de |
| No.      | TECHA        | PROBETA  | (N        | (Ohms)         | (Ohms)                   | А                                                      | uA/cm2    | (V)     | (Ohms)         | (Shms)                            | A                    | uA/cm2              | PROMEDIO                      | (FINAL)   | espesor    |
| -        | 24/07/2000   | PI-R-N-1 | 0.472     | 23,600.00      | 21400                    | 2.42991E-06                                            | 0.1214953 | 0.4801  | 24,005.00      | 21,805.00                         | 2.38E-06             | 0.1192387           | 0.120367                      |           |            |
| -        | 0110115000   | PI-R-N-2 | 0.4339    | 21,695.00      | 20045                    | 2.59416E-06                                            | 0.1297082 | 0.4071  | 20,355.00      | 18,705.00                         | 2.78E-06             | 0.1390003           | 0.1343542 0.1273606           | 0.1273606 | 1.48       |
| , 6      | 0006/60/74   | PI-R-N-1 | 0.3037    | 30,370.00      | 27970                    | 1.85913E-06                                            | 0.0929567 | 0.2837  | 28,370.00      | 25,970.00                         | 2.00E-06             | 0.1001155           | 0.0965361                     |           |            |
|          | 1410012003   | PI-R-N-2 | 0.393     | 39,300.00      | 37100                    | 1.40162E-06                                            | 0.0700809 | 0.2166  | 21,660.00      | 19,460.00                         | 2.67E-06             | 0.1336074           | 0.1336074 0.1018441 0.0991901 | 0.0991901 | 1.15       |
| ,        | 0000/00/00   | PI-R-N-1 | 0.553     | 27,650.00      | 24550                    | 2.11813E-06                                            | 0.1059063 | 0.5428  | 27,140.00      | 24,040.00                         | 2.16E-06             | 0.1081531 0.1070297 | 0.1070297                     |           |            |
|          | 2010012003   | PI-R-N-2 | 0.5451    | 27,255.00      | 24305                    | 2.13948E-06                                            | 0.1069739 | 0.4981  | 24,905.00      | 21,955.00                         | 2.37E-06             | 0.118424            | 0.112699                      | 0.1098643 | 1.27       |
| ,        | 44/00/2000   | PI-R-N-1 | 0.6168    | 30,840.00      | 26790                    | 1.94102E-06                                            | 0.0970511 | 0.6009  | 30,045.00      | 25,995.00                         | 2.00E-06             | 0.1000192           | 0.0985352                     |           |            |
|          | 1103/2003    | PI-R-N-2 | 0.5905    | 29,525.00      | 25825                    | 2.01355E-06                                            | 0.1006776 | 0.5435  | 27,175.00      | 23,475.00                         | 2.22E-06             | 0.1107561 0.1057169 |                               | 0.102126  | 1.18       |
| u        | 05/00/2000   | PI-R-N-1 | 0.6536    | 32,680.00      | 27780                    | 1.87185E-06                                            | 0.0935925 | 0.6728  | 33,640.00      | 28,740.00                         | 1.81E-06             | 0.0904662 0.0920294 | 0.0920294                     |           |            |
|          | 2010312003   | PI-R-N-2 | 0.6793    | 33,965.00      | 29415                    | 1.76781E-06                                            | 0.0883903 | 0.6271  | 31,355.00      | 26,805.00                         | 1.94E-06             | 0.0969968           | 0.0969968 0.0926936 0.0923615 | 0.0923615 | 1.07       |
|          | 00/10/10/00  | PI-R-N-1 | 0.7111    | 35,555.00      | 30305                    | 1.71589E-06                                            | 0.0857944 | 0.6797  | 33,985.00      | 28,735.00                         | 1.81E-06             | 0.090482            | 0.0881382                     |           |            |
|          | 00/10/00     | PI-R-N-2 | 0.7705    | 38,525.00      | 33125                    | 1.56981E-06                                            | 0.0784906 | 0.7047  | 35,235.00      | 29,835.00                         | 1.74E-06             | 0.087146            | 0.087146 0.0828183 0.0854782  | 0.0854782 | 0.99       |
| , ,      | 02/11/1/2000 | PI-R-N-1 | 0.6403    | 32,015.00      | 26015                    | 1.99885E-06                                            | 0.0999423 | 0.6805  | 34,025.00      | 28,025.00                         | 1.86E-06             | 0.0927743           | 0.0963583                     |           |            |
| ,        | 501.1015003  | PI-R-N-2 | 0.7026    | 35,130.00      | 29130                    | 1.7851E-06                                             | 0.0892551 | 0.7744  | 38,720.00      | 32,720.00                         | 1.59E-06             | 0.0794621           | 0.0794621 0.0843586 0.0903585 | 0.0903585 | 1.05       |
| 0        | 08/44/9000   | PI-R-N-1 | 0.7544    | 3.77E+04       | 31120                    | 1.67095E-06                                            | 0.0835476 | 0.6745  | 3.37E+04       | 2.71E+04                          | 1.92E-06             | 0.0958525           | 0.0897                        |           |            |
|          | 0011117000   | PI-R-N-2 | 0.7326    | 3.66E+04       | 29880                    | 1.74029E-06                                            | 0.0870147 | 0.683   | 3.42E+04       | 2.74E+04                          | 1.90E-06             | 0.0948905           | 0.0948905 0.0909526 0.0903263 | 0.0903263 | 1.05       |
| 0        | 20/14/2000   | PI-R-N-1 | 0.7085    | 3.54E+04       | 28625                    | 1.81659E-06                                            | 0.0908297 | 0.6296  | 3.15E+04       | 2.47E+04                          | 2.11E-06             | 0.1053485           | 0.0980891                     |           |            |
|          | 2011112003   | PI-R-N-2 | 0.7264    | 3.63E+04       | 29670                    | 1.75261E-06                                            | 0.0876306 | 0.505   | 2.53E+04       | 1.86E+04                          | 2.80E-06             | 0.1397849           | 0.1397849 0.1137078 0.1058984 | 0.1058984 | 1.23       |
| 40       | 0/1/2/2000   | PI-R-N-1 | 0.8097    | 4.05E+04       | 31585                    | 1.64635E-06                                            | 0.0823176 | 0.8006  | 4.00E+04       | 3.11E+04                          | 1.67E-06             | 0.0835207           | 0.0829191                     |           |            |
|          | 2007/71 140  | PI-R-N-2 | 0.819     | 4.10E+04       | 33450                    | 1.55456E-06                                            | 0.077728  | 0.6806  | 3.40E+04       | 2.65E+04                          | 1.96E-06             | 0.0980023           | 0.0980023 0.0878651 0.0853921 | 0.0853921 | 0.99       |