ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"IMPLEMENTACION, ANALISIS Y COMPARACION DE METODOS DE FILTRADO DE SEÑALES DE AUDIO AFECTADAS POR RUIDO BLANCO GAUSSIANO ADITIVO Y RUIDO TIPO PULSOS"

TESINA DE SEMINARIO

Previa a la obtención del Título de:

INGENIERO EN ELECTRONICA Y TELECOMUNICACIONES

Presentado por:

Ronal Fernando Espinoza Rea

Mauro Israel Coronel León

GUAYAQUIL – ECUADOR

2011

AGRADECIMIENTO

Agradecemos a nuestros padres que siempre están pendientes de nuestros éxitos y nuestras caídas.

A la MSc. Patricia Chávez que ha sido nuestra guía y apoyo en la realización de este proyecto.

Y finalmente, y no por ser menos importante sino al contrario, agradecemos a nuestro Padre Dios, porque sin Él, ningún proyecto es posible.

Israel Coronel León Ronal Espinoza Rea

DEDICATORIA

A mi familia, que siempre ha sido un apoyo constante tanto en mi vida como en mi carrera. A mi madre, Vilma, que siempre está pendiente de lo que me falta. Y muy especialmente a mi padre, Maximiliano, que aunque no creía que podía salir adelante en la ESPOL, decidió apoyarme incondicionalmente.

Ronal Fernando Espinoza Rea.

A dios que siempre está conmigo apoyándome en todo, mis padres que hicieron realidad este sueño de los cuales estoy muy orgulloso por su preocupación en todo momento, mi hermano Jonathan que me apoyo en cada caída y me enseño a levantarme y seguir adelante, Diana por su apoyo comprensión y cariño en todo este tiempo.

Mauro Israel Coronel León.

TRIBUNAL DE SUSTENTACION

Msc. Patricia Chávez Profesora de Seminario Ing. Daniel Ochoa Profesor designado por el Decano

DECLARACION EXPRESA

"La responsabilidad del contenido de esta Tes	sina de Grado, nos corresponde
exclusivamente; y el patrimonio intelectual de	e la misma a la ESCUELA SU-
PERIOR POLITÉCNICA DEL LITORAL"	
(Reglamento de Graduación de la ESPOL)	
Ronal Fernando Espinoza R.	Mauro Israel Coronel L.

RESUMEN

El proyecto se enfoca en la comparación de diferentes métodos de filtrado de señales de audio, concentrándonos en la eliminación del Ruido Blanco Gaussiano Aditivo y el Ruido Tipo Pulsos. Los filtros que hemos escogido para este estudio son dos de tipo adaptativo (LMS y RLS) y un filtro IIR Butterworth.

Se buscaron tres filtros de audio que se hayan desarrollado recientemente, se los empleó con una señal de audio afectada por uno de los tipos de ruido descritos y se analizó su comportamiento desde diferentes puntos de vista.

El Ruido Blanco Gaussiano Aditivo (AWGN) es el más conocido y el más combatido de los tipos de ruido. Sin embargo, en nuestro proyecto empleamos también un ruido llamado Ruido Tipo Pulsos, que ha sido poco estudiado. Este tipo de ruido es causado principalmente por los reguladores de luz, las fuentes de corriente directa y cualquier equipo que tenga etapas de rectificación.

Las señales afectadas por el ruido son pasadas a través de los mismos filtros con el propósito de comparar el funcionamiento de ellos, su capacidad para reducir uno u otro tipo de ruido.

Los parámetros utilizados para determinar la efectividad de cada filtro son: la relación señal a ruido (SNR), el Error Medio Cuadrático (MSE) y los resultados de las encuestas al público que, a través de su sentido auditivo, determinará en forma cualitativa cual filtro es el optimo.

INDICE GENERAL

AGRADECIMIENTO	
DEDICATORIATRIBUNAL DE SUSTENTACIÓN	
DECLARACIÓN EXPRESA	
RESUMEN	
INDICE GENERAL	
INDICE DE FIGURAS	
INDICE DE TABLASINTRODUCCIÓN	
INTRODUCCION	XVI
CAPITULO 1	
Análisis Contextual	
1.1. Antecedentes	1
1.2. Objetivo General	2
1.3. Objetivos Específicos	2
• • • · · · · · · · · ·	
CAPÍTULO 2	
Marco Teórico	
2.1. El Ruido	4
2.1.1. Ruido en Sistemas de Audio	4
2.1.2. Ruido Blanco Gaussiano Aditivo	5
2.1.3. Ruido Tipo Pulsos	5
2.2. Los Filtros	6
2.2.1. Métodos de Filtrado de Señales	7
2.2.2. Filtros Adaptativos	8
2.2.3. Filtro IIR Butterworth	9
2.2.4. Filtro LMS	11
2.2.5. Filtro RLS	13

CAPITULO 3

						-	•	
lm	nı	Δn	ገם	'n.	ta	CI.	$\boldsymbol{\cap}$	n
	וש	CII	10		ιa	C.	v	

3.1. Descripción del Hardware15
3.2. Descripción del Software15
3.3. Implementación de Ruido Blanco Gaussiano Aditivo (AWGN)15
3.4. Implementación de Ruido Tipo Pulsos16
3.5. Implementación de Audio17
3.6. Implementación de Filtro IIR Butterworth Pasabajos18
3.7. Implementación del Método de Filtrado IIR Butteworth Pasabajos
con Ruido Blanco Gaussiano Aditivo18
3.8. Método de Filtrado IIR Butterworth Pasabajos con Ruido Tipo
Pulsos20
3.9. Implementación de Filtro LMS20
3.10. Método de Filtrado LMS con Ruido Blanco Gaussiano Aditivo-21
3.11. Método de Filtrado LMS con Ruido Tipo Pulsos22
3.12. Implementación del Filtro RLS23
3.13. Método de Filtrado RLS con Ruido Blanco Gaussiano Aditivo-24
3.14. Método de Filtrado RLS con Ruido Tipo Pulsos25
CAPITULO 4
Pruebas y Resultados
4.1. Método Cuantitativo26
4.2. Filtrado LMS con Ruido AWGN y Ruido Tipo Pulsos26
4.2.1. Voz de Hombre a 8KHz y Ruido AWGN27
4.2.2. Voz de Mujer a 8KHz y Ruido AWGN28
4.2.3. Voz de Niña a 8KHz y Ruido AWGN28
4.2.4. Voz Humana a 20KHz y Ruido AWGN29
4.2.5. Voz de Hombre a 8KHz y Ruido Tipo Pulsos30

4.2.6. Voz de Mujer a 8KHz y Ruido Tipo Pulsos.	31
4.2.7. Voz de Niña a 8KHz y Ruido Tipo Pulsos	32
4.2.8. Voz Humana a 20KHz y Ruido Tipo Pulsos	s32
4.3. Método de Filtrado RLS con Ruido AWGN y Ruido	Tipo Pulsos-33
4.3.1. Voz de Hombre A 8KHZ Y Ruido AWGN	33
4.3.2. Voz de Mujer a 8KHz y Ruido AWGN	34
4.3.3. Voz de Niña a 8KHz y Ruido AWGN	35
4.3.4. Voz Humana a 20KHz y Ruido AWGN	36
4.3.5. Voz de Hombre a 8KHz y Ruido Tipo Pulso	os36
4.3.6. Voz de Mujer a 8KHz y Ruido Tipo Pulsos.	37
4.3.7. Voz de Niña a 8KHz y Ruido Tipo Pulsos	38
4.3.8. Voz Humana a 20KHz y Ruido Tipo Pulsos	s39
4.4. Método de Filtrado Butterworth con Ruido AWGN y	/ Ruido Tipo
Pulsos	39
4.4.1. Voz de Hombre A 8KHZ Y Ruido AWGN	40
4.4.2. Voz de Mujer a 8KHz y Ruido AWGN	40
4.4.3. Voz de Niña a 8KHz y Ruido AWGN	41
4.4.4. Voz Humana a 20KHz y Ruido AWGN	41
4.4.5. Voz de Hombre, mujer, niña y humana cor	n ruido tipo pul-
so	42
4.5. Método Cualitativo	42
4.5.1. Método de filtrado LMS con AWGN	42
4.5.2. Método de filtrado LMS con ruido tipo Puls	sos43
4.5.3. Método de filtrado RLS con AWGN	44
4.5.4 Método de filtrado RLS con ruido tipo Pulso	os44
4.5.5. Método de filtrado Butterworth con AWGN	45
4.5.6 Método de filtrado Butterworth con ruido tip	oo Pulsos46

CONCLUSIONES Y RECOMENDACIONES.

Conclusiones Recomendaciones	
ANEXOS	
Anexo A	52
Anexo B	54
Anexo C	55
Anexo D	56
Anexo E	57
Anexo F	58
BIBI IOGRAFÍA	59

INDICE DE FIGURAS

FIGURA	DETALLE	PÁG.
2.1	Adición del Ruido Blanco Gaussiano a una señal	5
2.2	Pulso de un transiente de entrada de corriente directa	6
2.3	Proceso de filtrado digital de una señal analógica	8
2.4	Componentes de un sistema de filtrado adaptativo	9
2.5	Estructura de un filtro IIR	10
2.6	Banda de transición de un filtro IIR Butterworth	11
2.7	Estructura de un filtro LMS	12
2.8	Estructura de un filtro RLS	14
3.1	Señal de ruido AWGN (μ=0, σ=1, d0=41)	16
3.2	Señal de ruido tipo pulso (A=1, T=5000, T _{up} =90)	17
3.3	Filtro IIR Butterworth pasabajos implementado.	18
3.4	Método de Filtro IIR Butterworth Pasabajos con ruido	19
	AWGN	
3.5	Método de filtrado IIR Butterworth pasa bajo con ruido pul-	20
3.6	so. Método de Filtrado LMS con AWGN	22
3.7	Método de Filtrado LMS con Ruido Tipo Pulso.	23
3.8	Método de Filtrado RI S con AWGN.	24

3.9	Método de filtrado RLS con Ruido Tipo Pulso.	25
4.1	Resultados de la encuesta para LMS con AWGN	46
4.2	Resultados de la encuesta para LMS con ruido tipo pulsos.	46
4.3	Resultados de la encuesta para RLS con AWGN	47
4.4	Resultados de la encuesta para RLS con ruido tipo pulsos	48
4.5	Resultados de la encuesta para BUTTERWORTH con AWGN	48
4.6	Resultados de la encuesta para BUTTERWORTH con ruido tipo pulsos	49

INDICE DE TABLAS

TABLA	DETALLE	PAG
4.1	Resultados obtenidos con voz de hombre y ruido AWGN.	30
4.2	Resultados obtenidos con voz de mujer y ruido AWGN.	31
4.3	Resultados obtenidos con voz de niña y ruido AWGN.	32
4.4	Resultados obtenidos con voz humano y ruido AWGN.	33
4.5	Resultados obtenidos con voz de hombre y ruido tipo pulsos	34
4.6	Resultados obtenidos con voz de mujer y ruido tipo pulso.	34
4.7	Resultados obtenidos de prueba con voz de niña y ruido tipo pulso.	35
4.8	Resultados obtenidos con voz humana y ruido tipo pulso	36
4.9	Resultados obtenidos con voz de hombre y ruido tipo pulso.	37
4.10	Resultados obtenidos con voz de mujer y ruido AWGN.	38
4.11	Resultados obtenidos con voz de niña y ruido AWGN.	38
4.12	Resultados obtenidos con voz humana y ruido AWGN.	39
4.13	Resultados obtenidos con voz hombre y ruido tipo pulsos.	40
4.14	Resultados obtenidos con voz mujer y ruido tipo pulsos.	41
4.15	Resultados obtenidos con voz niña y ruido tipo pulso.	41
4.16	Resultados obtenidos con voz humana y ruido tipo pulso.	42
4.17	Resultados obtenidos con voz hombre y ruido AWGN.	43
4.18	Resultados obtenidos con voz mujer y ruido AWGN.	43

4.19	Resultados obtenidos con voz niña y ruido AWGN.	44
4.20	Resultados obtenidos con voz humana y ruido AWGN	44
4.21	Resultados obtenidos con audios y ruido tipo pulsos.	45

INTRODUCCIÓN

El concepto de ruido tipo pulsos es relativamente nuevo. Los primeros registros de su existencia datan de principios de 1940 [1]. Sin embargo, en los sistemas modernos de comunicación es recurrente debido al apogeo tanto en nuestro país como en la comunidad internacional de las fuentes de corriente directa, los reguladores de voltaje, los sistemas de alimentación ininterrumpida, etcétera, que tienen etapas de rectificación. El ruido blanco gaussiano aditivo sigue presente en los sistemas de comunicación. Se han hecho múltiples estudios de este tipo de ruido y se han creado miles de propuestas para eliminarlo, alcanzando niveles significativos de atenuación.

Nuestro proyecto realiza un estudio comparativo de algunos de los métodos más empleados para la recuperación de señales de audio afectadas por los tipos de ruido antes mencionados.

Los filtros adaptativos que utilizamos tienen una característica muy interesante: a medida que reciben la señal afectada con ruido, van aprendiendo y actualizando los coeficientes para obtener una señal optimizada. Por lo tanto, se supone que los filtros LMS y RLS deberían ser más eficientes que el filtro normal que vamos a utilizar. Sin embargo, a lo largo de este proceso vere-

mos cuál de los 3 filtros es el que mejor funciona con los dos tipos de ruido con los que trabajamos.

CAPÍTULO 1

ANÁLISIS CONTEXTUAL

1.1. ANTECEDENTES

El ruido es un grave inconveniente dentro del ámbito de las telecomunicaciones. Desde hace algunos años se han realizado distintas investigaciones para encontrar la forma de eliminar las perturbaciones que sufren las señales al momento de su transmisión por medios inalámbrico o por cable. Para el efecto se aplico lo que actualmente conocemos como filtrado de señales.

Filtrar una señal es procesarla por medio de una combinación de dispositivos electrónicos, simulaciones o adquisiciones de datos para realizar un análisis de las componentes de frecuencia que forman parte de una señal, para eliminar aquellas que producen alteraciones a la señal original.

1.2. OBJETIVO GENERAL

El objetivo general de este proyecto es realizar un estudio comparativo de algunos de los métodos más empleados para la recuperación de las señales de audio. Es decir, comparar FILTROS. En este sentido hemos buscado tres filtros digitales dirigidos a eliminar el Ruido Blanco Gaussiano Aditivo y el denominado Ruido Tipo Pulsos.

1.3. OBJETIVOS ESPECÍFICOS

- Implementar los filtros utilizando la herramienta Simulink de Matlab, siendo este software uno de los mejores en simulaciones de comunicación.
- Analizar los métodos de filtrado implementados. Tenemos tres tipos de filtros, LMS y RLS, que son adaptativos y un filtro no adaptativo IIR BUTTERWORTH.
- Hacer una comparación de los filtros utilizando para ello Ruido Blanco Gaussiano Aditivo y Ruido Tipo Pulsos.
- Definir cuál de los tres filtros se ajusta mejor a cada tipo de ruido empleado, a través del análisis y el uso de métodos estadísticos con los audios seleccionados.

- Analizar los resultados de esta investigación. Se espera que los filtros LMS y RLS, que son adaptativos, se ajusten mejor al Ruido Tipo Pulsos y el filtro no adaptativo funcione de manera más eficiente con el Ruido Blanco Gaussiano Aditivo, el cual es más tradicional y teóricamente para filtrar su señal no se necesita actualizar los coeficientes del filtro.

CAPÍTULO 2

MARCO TEÓRICO

2.1. EL RUIDO

En los sistemas de comunicación es muy común hablar de esta entidad, que toma algunos nombres, como por ejemplo en el campo médico, es llamado artefacto. El ruido es el conjunto de señales aleatorias e impredecibles de tipo eléctrico originadas en forma natural dentro o fuera de un sistema. Estas señales normalmente se infiltran en la portadora de la información, la cual puede quedar en gran parte oculta o eliminada totalmente. Esto constituye un problema que debe ser resuelto para poder transmitir información de manera eficiente.

2.1.1. Ruido en sistemas de audio

El ruido no es un problema exclusivo de los sistemas de audio. En la transmisión de imágenes y video también existe este fenómeno e incluso ha sido más estudiado que el ruido en los sistemas de audio. Sin embargo, en la transmisión de audio, con la llegada de la digitalización han aparecido nuevos problemas, como pérdida de información o el re-

tardo de la misma esto relacionado con el ruido, lo cual exige nuevos estudios para contrarrestar esos tipos de ruido.

2.1.2. Ruido Blanco Gaussiano Aditivo

El Ruido Blanco Gaussiano Aditivo (So) se denomina así debido a que su distribución se asemeja a una campana de Gauss. [2] Es aditivo porque se puede sumar a la señal recuperada (Si) de un bloque de demodulación (N), como se observa en la Figura 2.1. En la ecuación (1) tenemos la expresión de la función de probabilidad correspondiente.

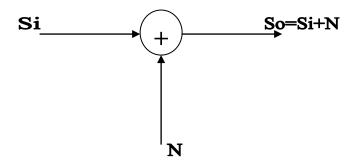


Figura 2.1. Adición de Ruido Blanco Gaussiano Aditivo a una señal

$$p(n) = \left(\frac{1}{\sigma}\sqrt{2\pi}\right)e^{-\frac{n^2}{2\sigma^2}}, donde\ \sigma\ varianza \tag{1}$$

Se dice que es ruido blanco porque tiene una densidad espectral constante entre cero e infinito. [3]

2.1.3. Ruido Tipo Pulsos

El Ruido Tipo Pulsos, o también llamado Clicks&Pops, es una perturbación que se genera en parlantes o audífonos. Aparece cuando las fuentes de audio son encendidas o apagadas, cuando las señales de audio son silenciadas, o cuando son multiplexadas hacia diferentes cargas. Esas situaciones generan un pulso transiente que se descarga a través de la carga del parlante, produciendo un sonido como un chasquido o un taponazo [4]. En la Figura 2.2 se explican los transiente que ocurren en las fuentes de corriente directa.

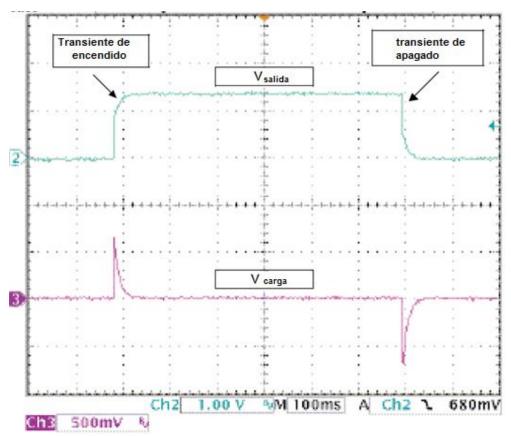


Figura 2.2 Pulso de un transiente de entrada de corriente directa [4]

2.2. LOS FILTROS

Un filtro es un "dispositivo" diseñado para dejar pasar ciertas partes y retener otras. El filtrado "es el proceso de seleccionar, suprimir o atenuar ciertas componentes de una señal". El filtrado sirve para separar las componentes de una señal con el propósito de eliminar aquellas que la distorsionan.

2.2.1. MÉTODOS DE FILTRADO DE SEÑALES

Existen muchos métodos de filtrado de señales, inclusive en la actualidad se continúan desarrollando filtros para eliminar señales cada vez más específicas. Vamos a hacer una enumeración general de los diferentes grupos de filtros que se conocen en la actualidad. Existen los filtros analógicos y los digitales, los primeros dedicados a las señales analógicas (valores dentro de un intervalo) y los segundos a las señales digitales (datos discretos). Los filtros analógicos se clasifican en Pasaaltos, Pasa-bajos, Pasa-banda o Rechazo de banda. Mientras que los digitales son aquellos que toman una muestra de la señal y trabajan sobre ella. Se clasifican principalmente en filtros recursivos (IIR) y no recursivos (FIR). Aquí viene una línea muy delgada en la clasificación de estos filtros; en la actualidad casi no se utilizan los filtros analógicos, ni siquiera para filtrar señales de ese tipo; para el efecto se toma la señal analógica, se la hace digital a través de un convertidor Analógico-Digital, se le hace el proceso de filtrado digital y finalmente se convierte esa señal en Analógica (Figura 2.3). Debido a esta "fusión" de conceptos es que ahora tenemos tanto en filtros IIR como en FIR el concepto

de Pasa-bajos, Pasa-altos, Pasa-banda y Rechazo de Banda que antes sólo teníamos en los analógicos.

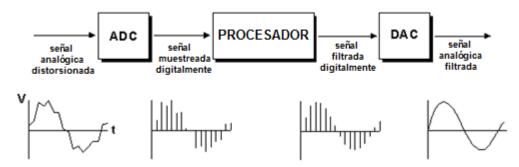


Figura 2.3.- Proceso de filtrado digital de una señal analógica [5].

2.2.2. FILTROS ADAPTATIVOS

Los filtros adaptativos son aquellos que pueden cambiar su comportamiento, es decir, sus coeficientes, que son los que le dan la característica a los filtros digitales, pueden cambiar su valor a medida que se actualiza la información de que disponen, siguiendo un procedimiento llamado algoritmo adaptativo. Cuando se diseña el filtro no se conoce el valor de los coeficientes, estos se calculan al implementarlo y se van actualizando en cada iteración mientras dura su etapa de aprendizaje [6]. Los componentes de un sistema de filtros adaptativos se presentan en la Figura 2.4.

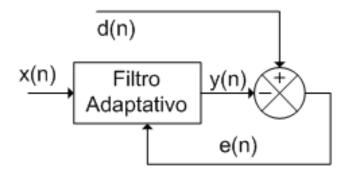
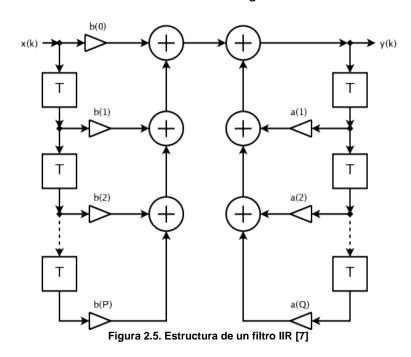


Figura 2.4. Componentes de un sistema de filtrado adaptativo [6]

Donde x(n) es la señal de entrada, d(n) es la señal deseada (óptima), y(n) es la salida del filtro, e(n) es la señal de error, el cual se define como la diferencia entre la señal deseada y la señal de salida. [6]


2.2.3. FILTRO IIR BUTTERWORTH

Un filtro IIR obtiene un número infinito de términos no nulos para la entrada de un impulso. Estos filtros emplean valores de entrada actual y anterior, y además valores anteriores de salida, una retroalimentación. También se llaman recursivos. Su expresión se presenta a continuación:

$$y[n] = \sum_{i=0}^{P} b_i x[n-i] - \sum_{j=1}^{Q} a_j y[n-j]$$
 (2)

Tiene un orden que es el máximo de P y Q, donde P y Q determinan la cantidad de entradas actuales y anteriores respectivamente. Los bloques T son los bloques de transformación, mientras b y a representan

los valores de entrada actual y anterior respectivamente. Una de sus posibles estructuras se detalla en la Figura 2.5.

$$H(z) = \frac{\sum_{i=0}^{P} b_i z^{-i}}{\sum_{j=0}^{Q} a_j z^{-j}}$$
(3)

De esta expresión (3) podemos sacar una de las ventajas de este tipo de filtro sobre los FIR. Para realizar un determinado filtrado necesitamos un menor número de coeficientes debido a que tiene polos y ceros. Los inconvenientes aparecen cuando nos damos cuenta de las inestabilidades que puede producir la presencia de polos. Además estos filtros no garantizan que su función de transferencia sea lineal y la implementación física de estos filtros es más compleja. Dentro de los filtros IIR, el filtro de Butterworth es aquel que tiene la respuesta más plana en f=0 y f=1. Además tiene una ancha banda de transición (Figura 2.6). [8]

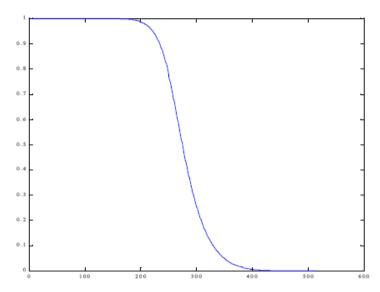


Figura 2.6. Banda de transición de un filtro IIR Butterworth [8]

2.2.4. FILTRO LMS

El filtro LMS es un bloque adaptativo que está basado en el algoritmo LMS, el cual sirve para encontrar los coeficientes del filtro que permitan obtener el valor esperado mínimo del cuadrado de la señal de error, definida como la diferencia entre la señal deseada y la señal producida a la salida del filtro. El algoritmo LMS utilizado en nuestro proyecto está definido por las siguientes ecuaciones:

$$y(n) = w^{T}(n-1)u(n) \tag{4}$$

$$e(n) = d(n) - y(n) \tag{5}$$

$$w(n) = w(n-1) + f(u(n), e(n), \mu)$$
(6)

El algoritmo de actualización de los pesos del filtro se define de la siguiente manera:

$$f(u(n), e(n), \mu) = \mu e(n)u * (n)$$
 (7)

Donde:

n: tiempo discreto;

u(n): vector de muestras en el instante n;

 $u^*(n)$:conjugada compleja del vector de muestras en el instante n;

w(n): vector de pesos estimados en el instante n;

y(n): salida filtrada en el instante n;

e(n): error estimado en el instante n;

d(*n*): respuesta deseada en el instante n

 μ : tamaño de paso de adaptación [9]

Una estructura del filtro LMS se muestra en la Figura 2.7.

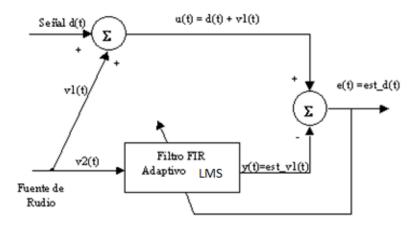


Figura 2.7. Estructura de un filtro LMS [10]

2.2.5. FILTRO RLS

El filtro RLS estima recursivamente los mínimos cuadrados de los pesos de los filtros FIR. Estima los coeficientes, necesarios para convertir la señal de entrada en la señal deseada. El puerto de salida saca la señal de entrada filtrada, que puede ser basada en muestreo o cuadros. La señal de error es el resultado de la resta entre la señal de salida de la señal deseada. El filtro RLS correspondiente se expresa en forma de matriz de la siguiente manera:

$$k(n) = \frac{\lambda^{-1}P(N-1)u(n)}{1+\lambda^{-1}u^{H}(n)P(n-1)u(n)}$$
(8)

$$y(n) = w(n-1)u(n)$$
(9)

$$e(n) = d(n) - y(n) \tag{10}$$

$$w(n) = w(n-1) + K^{H}(n)e(n)$$
(11)

$$P(n) = \lambda^{-1} P(n-1) - \lambda^{-1} k(n) u^{H}(n) P(n-1)$$
 (12)

Donde:

n: tiempo discreto;

u(n): vector de muestras en el instante n;

P(n): matriz de correlación inversa en el instante n;

k(n): vector de ganancia en el instante n;

w(n): vector de claves estimadas en el instante n;

y(n): salida filtrada en el instante n;

e(n): error estimado en el instante n;

d(n): respuesta deseada en el instante n

μ : Factor de olvido [11]

Una estructura del filtro RLS se puede observar en la figura 2.8.

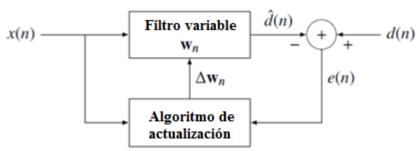


Figura 2.8. Estructura de un filtro RLS [12]

CAPÍTULO 3

IMPLEMENTACION

3.1. DESCRIPCIÓN DEL HARDWARE

Las características se describen en el ANEXO C.

3.2. DESCRIPCIÓN DEL SOFTWARE

Para desarrollar nuestro proyecto hemos utilizado la herramienta Simulink de la plataforma MATLAB, que es un lenguaje de programación de alto nivel que tiene un entorno interactivo y orientado a realizar cálculos con matrices de manera rápida. Simulink nos permite modelar y analizar sistemas dinámicos basados en el uso de diagramas de bloques.

3.3. IMPLEMENTACIÓN DE RUIDO BLANCO GAUSSIANO ADITIVO (AWGN)

Para generar el ruido AWGN utilizamos el bloque generador de ruido gaussiano (Gaussian Noise Generator) con valor medio (Mean value) de cero, varianza (Variance) uno, valor inicial de semilla para generar números aleatorios de 41, tiempo de muestreo (Sample time) fue el mismo del

audio seleccionado. Elegimos la opción interpretar parámetros como vector en una dimensión (Interpret vector parameters as 1-D) y datos de salida simple. La figura 3.1 muestra el ruido generado.

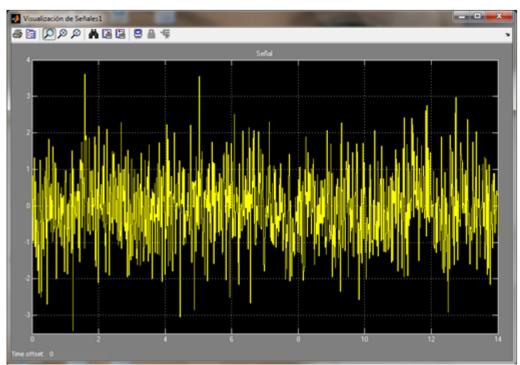


Figura 3.1. Señal de ruido AWGN (μ=0, σ=1, d0=41)

3.4. IMPLEMENTACIÓN DE RUIDO TIPO PULSOS

El ruido tipo pulsos será generado utilizando el bloque generador de pulso, para su implementación se uso un tipo de pulso basado en muestra (sample based), amplitud de 1, periodo de 5000 muestras, ancho de pulso de 90 muestras, retardo de cero y un tiempo de muestreo que ira acorde al audio que se desee seleccionar. Elegimos la opción de interpretar los parámetros como vector en una dimensión. La secuencia de pulso se muestra en la Figura 3.2.

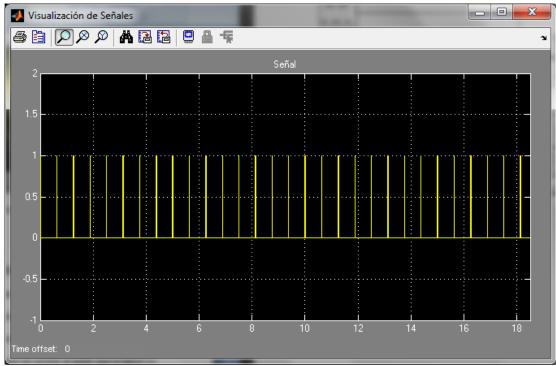


Figura 3.2. Señal de ruido tipo pulso (A=1, T=5000, T_{up}=90)

3.5. IMPLEMENTACIÓN DE AUDIO.

Seleccionamos diferentes tipos de audio: voz de hombre, voz de mujer y voz de niña, con frecuencia de muestreo de 8KHz; y voz humana con 20KHz. Para su implementación utilizamos un bloque que permite importar una señal del espacio de trabajo (Signal From Workspace), la cual se lee con el comando "single(wavread('nombre de audio a utilizar.wav'))", con un tiempo de muestreo igual a 1/frecuencia de muestreo y 32 muestras por cuadro (Samples per frame), elegimos repetición cíclica (Cyclic repetition) en los datos finales de salida. Ver ANEXO D.

3.6. IMPLEMENTACIÓN DE FILTRO IIR BUTTERWORTH PASABAJOS.

El filtro se implementó utilizando el bloque FDATool de Simulink cuya respuesta en frecuencia se muestra en la Figura 3.3 con una frecuencia de corte normalizada de Wc=0.4, orden 20 y atenuación de 3 dB en la frecuencia de corte.

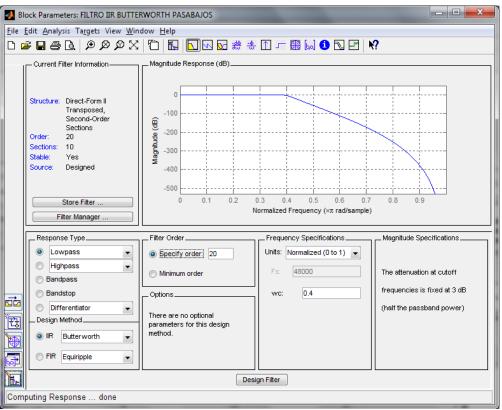


Figura 3.3. Filtro IIR Butterworth pasabajos implementado.

3.7. IMPLEMENTACIÓN DEL MÉTODO DE FILTRADO IIR BUTTER WORTH PASABAJOS CON RUIDO BLANCO GAUSSIANO ADITIVO

El ruido AWGN pasa por el filtro limitante, implementado como un filtro FIR pasa alto con frecuencia normalizada de 0.4 y atenuación de 80 dB,

cuya función es restringir el paso de la señal de ruido a la frecuencia establecida.

Esta señal AWGN se sumó al audio original para generar mi señal con ruido. Esta resultante se ingresó al FILTRO IIR BUTTERWOTH PASA-BAJOS dando como respuesta la señal de audio filtrado.

Mediante el bloque de gráficas de señales se observaron las señales: "audio origen", "audio origen + ruido AWGN" y "audio filtrado", la cual también es escuchada por el ALTAVOZ. Se emplearon los bloques de almacenamiento para calcular el MSE y la SNR; la visualización de cada bloque se representa en la Figura 3.4.

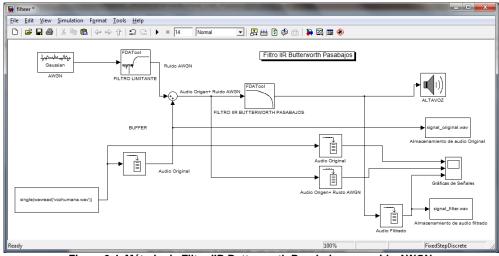


Figura 3.4. Método de Filtro IIR Butterworth Pasabajos con ruido AWGN

3.8. MÉTODO DE FILTRADO IIR BUTTERWORTH PASABAJOS CON RUIDO TIPO PULSOS.

La señal de ruido tipo pulso se sumó al audio seleccionado dando como resultado la señal "ruido pulso + audio origen". Esta pasó por el FILTRO IIR BUTTERWORTH PASABAJOS obteniendo el audio filtrado. El audio filtrado fue escuchado y almacenado para su respectivo análisis, además se visualizaron las señales: "ruido pulso + audio original" y "audio filtrado" en el bloque de grafica de señales como se muestra en la Figura 3.5.

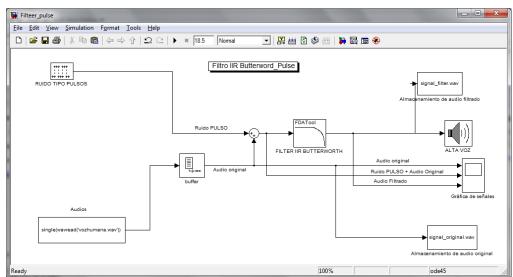


Figura 3.5. Método de filtrado IIR Butterworth pasa bajo con ruido pulso.

3.9. IMPLEMENTACIÓN DE FILTRO LMS

Para la implementación de este filtro utilizamos el bloque "LMS Filter" de Simulink, donde elegiremos el Algoritmo LMS Normalizado (Normalizado LMS) de orden 40, hacemos que el tamaño de paso (**Specify step-size via**) sea especificado con una entrada externa, a la cual podemos asignar valores puntuales para que la adaptación del filtro sea rápida o lenta, fac-

tor de fuga (Leakage factor) 1, peso inicial del filtro cero, habilitamos el puerto adaptativo para actualizar los pesos del filtro y seleccionamos el puerto reinicio con muestras no nulas.

El bloque del filtro LMS consta de 5 entradas y una salida las cuales tienen una función específica, entrada (input) será donde se ingresara la señal que se desea filtrar, deseada (desired) señal a la cual se aplicara el filtro y una señal de salida error donde obtuvimos la señal filtrada. Ver ANEXO E

3.10. MÉTODO DE FILTRADO LMS CON RUIDO BLANCO GAUSSIANO ADITIVO

El ruido AWGN se añadió al audio generando la señal "audio +ruido" que ingresa al puerto "señal deseada" y en el puerto de entrada se ingresa el ruido AWGN. Asignamos una adaptación lenta en 0.002 y rápida en 0.01, para manejar las dos opciones. Habilitamos el puerto adaptativo con 1 y reinicio en cero como se muestra en la Figura 3.6, los parámetros ingresados serán procesados por el filtro LMS dando como resultado un audio filtrado a la salida del puerto "error".

Las señal "audio original", "audio original + ruido" y "audio filtrado" son observadas en el bloque de gráficas de señales, se almacena el audio original y filtrado.

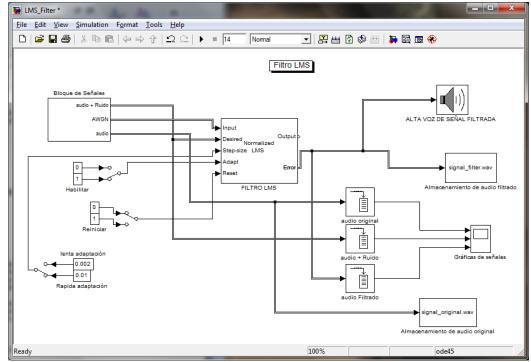


Figura 3.6. Método de Filtrado LMS con AWGN.

3.11. MÉTODO DE FILTRADO LMS CON RUIDO TIPO PULSOS

El ruido tipo pulso se sumó con el audio, dando como resultado la señal "audio +ruido" al cual ingresara al puerto de señal deseada, en cambio en el puerto de entrada se ingresara el ruido tipo pulso, asignamos una adaptación lenta en 0.002 y rápida en 0.5 (para lograr una adaptación óptima) habilitamos el puerto adaptativo con 1 y reinicio en cero como se muestra en la Figura 3.7, los parámetros ingresados son procesados por el filtro LMS dando como resultado un audio filtrado en la salida el "error".

Las señal de audio original, audio "original + ruido" y audio filtrado son observadas en el bloque de gráficas de señales, se almacenara el audio original y filtrado.

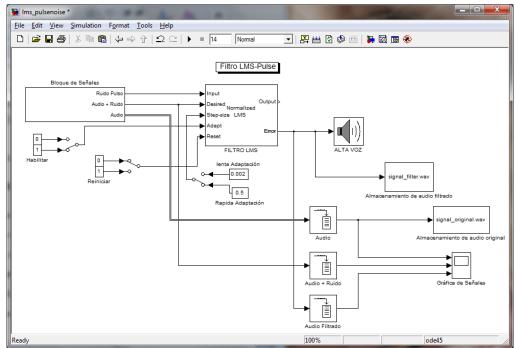


Figura 3.7. Método de Filtrado LMS con Ruido Tipo Pulso.

3.12. IMPLEMENTACIÓN DEL FILTRO RLS

Para la implementación de este filtro utilizamos el bloque "RLS Filter" de Simulink, de orden 8, seleccionamos que el factor de fuga sea configurado manualmente con un valor de 1, peso inicial del filtro cero, con varianza inicial de entrada estimada de 0.1, habilitamos el puerto adaptativo para actualizar los pesos del filtro y el puerto reinicio con muestra cero. Ver en el ANEXO F.

3.13. MÉTODO DE FILTRADO RLS CON RUIDO BLANCO GAUSSIANO ADITIVO

El ruido AWGN se sumó con el audio dando como resultado la señal "audio original + ruido" la cual ingresa al puerto de señal deseada; en el puerto de entrada se pone el ruido AWGN, habilitamos el puerto adaptativo con 1 y reinicio en cero como se muestra en la Figura 3.8, los parámetros ingresados se procesan en el filtro RLS y tenemos un audio filtrado en la salida "error".

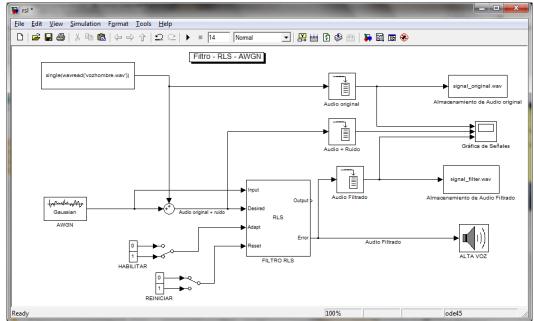


Figura 3.8. Método de Filtrado RLS con AWGN.

Las señal de audio original, audio original + ruido y audio filtrado se observan en el bloque de gráficas de señales y se almacena el audio original y filtrado.

3.14. MÉTODO DE FILTRADO RLS CON RUIDO TIPO PULSOS

El ruido tipo pulso se suma con el audio que se desee filtrar dando como resultado la señal: "audio original + ruido" que ingresa al puerto de señal deseada, en el puerto de entrada ingreso el ruido tipo pulso, habilitamos el puerto adaptativo con 1 y reinicio en cero como se muestra en la Figura 3.9, los parámetros ingresados son procesados por el filtro LMS dando como resultado un audio filtrado en la salida el "error".

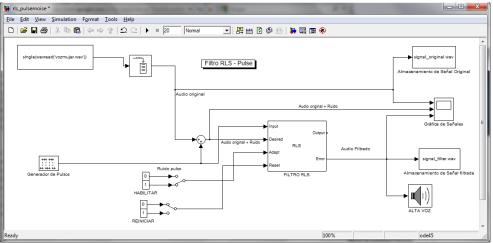


Figura 3.9. Método de filtrado RLS con Ruido Tipo Pulso.

Las señal de audio original, audio original + ruido y audio filtrado son observadas en el bloque de gráficas de señales y se almacena el audio original y filtrado para su análisis respectivo.

CAPÍTULO 4

PRUEBAS Y RESULTADOS

Para las pruebas se ha determinado dos métodos de comparación Método Cuantitativo y Método Cualitativo (Encuesta), estos métodos nos dan la pauta para definir cuál de los métodos de filtrados planteados es el más apropiado en las condiciones seleccionadas.

4.1. MÉTODO CUANTITATIVO.

Para el método cuantitativo se emplearon cuarto tipos de audio: voz masculina, voz mujer, voz niña, voz humana a 20KHz que fueron pasadas por los métodos de filtrado descritos en los cuales variamos parámetros como: longitud del filtro, varianza, factor de fuga y frecuencia de corte para determinar su comportamiento empleo la Relación Señal a Ruido (SNR) y el Error Medio Cuadrático (MSE).

4.2. FILTRADO LMS CON RUIDO AWGN Y RUIDO TIPO PULSOS.

Se procedió a variar la longitud del filtro en los valores de 20,30 y 40, con factores de fuga de 0.25, 0.5, 0.75 y 1 para cada longitud del filtro

donde se tomaron las observaciones respectivas además del respectivo calculo expuesto en este método.

4.2.1. VOZ DE HOMBRE A 8KHz Y RUIDO AWGN.

En esta prueba pudimos observar que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose el valor del SNR entre -15,7779 y -15,7836 y el MSE en 0,52, cuando seleccionamos el valor de factor de fuga 1 la respuesta optima tiene la longitud de 20 con SNR=3,1689 y MSE=6E-3 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -15,7848 y MSE=5,17E-1 como se muestra en la Tabla 4.1

		METODO DE	FILTRADO LMS CON	AWGN		
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR
		0,25			5,16200E-01	-15,7825
	20	0,5	5,17E-01	-15,7848	5,16100E-01	-15,7813
	20	0,75			5,15600E-01	-15,7779
		1			6,00000E-03	3,1389
	30	0,25			5,16300E-01	-15,7832
HOMBRE 8KHz		0,5			5,16200E-01	-15,7825
HOWBRE 6KHZ	30	0,75			5,15900E-01	-15,7802
		1			9,90000E-03	1,3969
		0,25			5,16300E-01	-15,7836
	40	0,5			5,16300E-01	-15,7831
	40	0,75			5,16100E-01	-15,7813
		1			1,31000E-02	0,1838

Tabla 4.1. Resultados obtenidos con voz de hombre y ruido AWGN.

4.2.2. VOZ DE MUJER A 8KHz Y RUDIO AWGN.

Podemos observar que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR está entre -9,7679 y -9,7619 y el MSE está 0,52, cuando seleccionamos el valor de factor de fuga 1 la respuesta es óptima tiene la longitud de 20 con SNR=10,4364 y MSE=4,9E-3 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -9,7691 y MSE=0,5108 como se muestra en la Tabla 4.2.

		METODO DE	FILTRADO LMS CON	AWGN		
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR
		0,25			5,10600E-01	-9,7667
	20	0,5	0,5108	-9,7691	5,10400E-01	-9,7655
	20	0,75			5,10000E-01	-9,7619
		1			4,90000E-03	10,4364
	30	0,25			5,10600E-01	-9,7675
MUJER 8KHz		0,5			5,10500E-01	-9,7667
WOJEK OKHZ	30	0,75			5,10300E-01	-9,7642
		1			7,20000E-03	8,7696
		0,25			5,10700E-01	-9,7679
	40	0,5			5,10600E-01	-9,7673
	40	0,75			5,10400E-01	-9,7655
		1			9,40000E-03	7,5925

Tabla 4.2. Resultados obtenidos con voz de mujer y ruido AWGN.

4.2.3. VOZ DE NIÑA A 8KHZ Y RUIDO AWGN.

Podemos observar que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR está entre -11,7223 y -11,7164 y el MSE en 0,513, cuando seleccionamos el valor de factor de fuga 1 la respuesta optima tiene la longitud de 20 con SNR=8,2513 y MSE=5,2E-3 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -11,7234 y MSE= 0,5134 como se muestra en la Tabla 4.3.

		METODO DE	FILTRADO LMS CON	AWGN				
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR		
		0,25			5,13100E-01	-11,7211		
	20	0,5	0,5134		5,13000E-01	-11,7199		
	20	0,75			5,12600E-01	-11,7164		
		1			5,20000E-03	8,2513	0,5082	19,9747
	30	0,25			5,13200E-01	-11,7218		
NIÑA 8k		0,5			5,13100E-01	-11,7211		
INIINA OK	30	0,75		-11,7254	5,12900E-01	-11,7187		
		1			7,60000E-03	6,5695		
		0,25			5,13300E-01	-11,7223		
	40	0,5			5,13200E-01	-11,7217		
	40	0,75			5,13000E-01	-11,7199		
		1			1,00000E-02	5,3974		

Tabla 4.3. Resultados obtenidos con voz de niña y ruido AWGN.

4.2.4. VOZ HUMANA A 20KHZ Y RUIDO AWGN.

Podemos observar que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR está entre -22,3007 y -22,2951 y el MSE está 0,516, cuando seleccionamos el valor de factor de fuga 1 la respuesta optima tiene la longitud de 20 con SNR=2,1E-3 y MSE=1,6992 3 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -22,3018 y MSE= 0,5169 como se muestra en la Tabla 4.4.

		METODO DE	FILTREDO LMS CON	AWGN		
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR
		0,25			5,16500E-01	-22,2996
	20	0,5	- 0,5168	-22,3018	5,16400E-01	-22,2984
	20	0,75			5,16000E-01	-22,2951
		1			2,10000E-03	1,6992
	30	0,25			5,16600E-01	-22,3003
HUMANO 20k		0,5			5,16500E-01	-22,2996
HOWANO 20K	30	0,75			5,16300E-01	-22,2973
		1			3,10000E-03	-0,0436
		0,25			5,16700E-01	-22,3007
	40	0,5			5,16600E-01	-22,3001
	40	0,75			5,16400E-01	-22,2984
		1			4,10000E-03	-1,2571

Tabla 4.4. Resultados obtenidos con voz humaa y ruido AWGN.

4.2.5. VOZ DE HOMBRE A 8KHz Y RUIDO TIPO PULSOS.

Observamos que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR fluctúa entre 3,4 y 7 mientras que el MSE está en 0,0068/49/25, cuando seleccionamos el valor de factor de fuga 1 la respuesta es optima tiene la longitud de 20 con SNR=17,8091 y MSE=2,26E-4 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR=-1,1 y MSE=0,0176 como se muestra en la Tabla 4.5.

	Filtro LMS - PULSE									
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR				
		0,25			0,0068	3,0034				
	20	0,5			0,0049	4,4685				
	20	0,75			0,0025	7,4541				
		1]	-1,11	2,26E-04	17,8091				
	30	0,25			0,0068	2,9993				
HOMBRE 8KHz		0,5	0,0176		0,0049	4,4602				
HOWBRE ORTIZ		0,75		-1,11	0,0025	7,4273				
		1			2,46E-04	17,4447				
		0,25			0,0068	2,9967				
	40	0,5			0,0049	4,455				
	40	0,75			0,0025	7,4104				
		1			2,64E-04	17,1374				

Tabla 4.5. Resultados obtenidos con voz de hombre y ruido tipo pulsos

4.2.6. VOZ DE MUJER A 8KHz Y RUIDO TIPO PULSOS.

Observamos que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR fluctúa entre 6,7 y 8 mientras que el MSE está 1,21/05E-2 y 7,3E3 cuando seleccionamos el valor de factor de fuga 1 la respuesta optima tiene la longitud de 20 con SNR=22,9615 y MSE= 2,7246E-4 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR=5,2864 y MSE=0,016 como se muestra en la Tabla 4.6.

	Filtro LMS - PULSE									
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR				
		0,25			1,21000E-02	6,4761				
	20	0,5			1,05000E-02	7,0825				
	20	0,75		5,2864	7,30000E-03	8,6651				
		1			2,72460E-04	22,9615				
	30	0,25			1,21000E-02	6,4752				
MUJER 8KHz		0,5	0,016		1,06000E-02	7,0807				
WIOJER OKHZ	30	0,75			7,30000E-03	8,6596				
		1			3,18680E-04	22,2810				
		0,25			1,21000E-02	6,4742				
	40	0,5			1,06000E-02	7,0787				
	40	0,75			7,30000E-03	8,6539				
		1			3,31960E-04	22,1036				

Tabla 4.6. Resultados obtenidos con voz de mujer y ruido tipo pulso.

4.2.7. VOZ DE NIÑA A 8KHZ Y RUIDO TIPO PULSOS.

Observamos que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR fluctúa entre 4,5 y 6 aproximadamente mientras que el MSE está 1,25/08E-2 y 7,5E3 cuando seleccionamos el valor de factor de fuga 1 la respuesta optima tiene la longitud de 20 con SNR=23,0260 y MSE= 1,7654E-4 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR=3,211 y MSE=0,0165 como se muestra en la Tabla 4.7.

			Filtro LMS - PULSE			
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR
		0,25			1,25000E-02	4,5240
	20	0,5			1,08000E-02	5,1457
	20	0,75			7,50000E-03	6,7676
		1			1,76540E-04	23,0260
	30	0,25		3,211	1,25000E-02	4,5234
NIÑA 8k		0,5	0,0165		1,08000E-02	5,1446
IVIIVA OK	30	0,75		3,211	7,50000E-03	6,7641
		1			1,87480E-04	22,7648
		0,25			1,25000E-02	4,5228
	40	0,5			1,08000E-02	5,1435
	40	0,75			7,50000E-03	6,7610
		1			2,16720E-04	22,1353

Tabla 4.7. Resultados obtenidos de prueba con voz de niña y ruido tipo pulso.

4.2.8. VOZ HUMANA A 20KHz Y RUIDO TIPO PULSOS.

Observamos que al momento de mantener fija la longitud del filtro (20,30 y 40) y variar el factor de fuga de 0.25, 0.5, 0.75 el audio filtrado presenta mucho ruido encontrándose que el valor del SNR fluctúa entre -6,-5 y -3 aproximadamente mientras que el MSE está 0,0074 y 0,0126 cuando seleccionamos el valor de factor de fuga 1 la respuesta

optima tiene la longitud de 20 con SNR=17,0299 y MSE= 6,02E-5 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR=-7,5968 y MSE=0,0175 como se muestra en la Tabla 4.8.

			Filtro LMS - PULSE			
Audio	Longitud Filtro	Factor de Fuga	MSE (audio_ruido)	SNR (audio_ruido)	MSE(filtrado)	SNR(filtrado)
		0,25			0,0126	-6,1646
	20	0,5			0,0108	-5,4991
	20	0,75			0,0074	-3,8368
		1		-7,5968	6,02E-05	17,0299
	30	0,25			0,0126	-6,1647
HUMANO 20k		0,5	0,0175		0,0108	-5,4993
HOWANO ZOK	30	0,75	0,0173		0,0074	-3,8383
		1			6,36E-05	16,7943
		0,25			0,0126	-6,1648
	40	0,5			0,0108	-5,4995
	40	0,75			0,0074	-3,8393
		1			7,00E-05	16,3776

Tabla 4.8. Resultados obtenidos con voz humana y ruido tipo pulso.

4.3. MÉTODO DE FILTRADO RLS CON RUIDO AWGN Y RUIDO TIPO PULSOS.

Utilizando el método cuantitativo se procedió a variar la longitud del filtro en los valores de 8,16 y 32, con varianza de 0.1, 1, y 5 para cada longitud del filtro donde se tomaran las observaciones respectivas además del respectivo cálculo expuesto en este método.

4.3.1. VOZ DE HOMBRE A 8KHz Y RUIDO AWGN.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 sin importar el cambio de varianza, cuando se vario la longitud la

respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación de longitud 8 y varianza 0,1 con SNR=30,545 y MSE=2,6817E-6 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -15,784 y MSE=0,5165 como muestra la Tabla 4.9.

	Metodo de Filtrado RLS - AWGN									
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)				
		0.1	0,5165		2,6817E-06	30,5453				
[8	1			6,7606E-06	26,5295				
		5		-15,784	1,7814E-05	22,3217				
	16	0.1			3,3686E-06	29,5548				
HOMBRE 8KHz		1			8,5153E-06	25,5274				
		5			2,0913E-05	21,6253				
		0.1			4,1273E-06	28,6727				
	0	1			9,5790E-06	25,0162				
		5			2,4520E-05	20,9341				

Tabla 4.9. Resultados obtenidos con voz de hombre y ruido tipo pulso.

4.3.2. VOZ DE MUJER A 8KHz Y RUIDO AWGN.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 y 16 sin importar el cambio de varianza, mientras con longitud 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación de longitud 8 y varianza 0,1 con SNR=37,7196 y MSE=9,109E-6 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -15,784 y MSE=0,5165 como muestra la Tabla 4.10.

	Filtro RLS - Pulse									
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)				
		0.1		5,2862	1,1351E-05	36,7643				
	8	1			1,4982E-05	35,5589				
		5	0,016		3,5079E-05	31,8640				
		0.1			1,83E-05	34,6846				
MUJER 8KHz	16	1			2,18E-05	33,9312				
		5			4,1340E-05	31,1508				
		0.1			3,3264E-05	32,0948				
	32	1			3,6356E-05	31,7088				
		5			5,4793E-05	29,9273				

Tabla 4.10. Resultados obtenidos con voz de mujer y ruido AWGN.

4.3.3. VOZ DE NIÑA A 8KHZ Y RUIDO AWGN.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 y 16 sin importar el cambio de varianza mientras con longitud 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación de longitud 8 y varianza 0,1 con SNR=35,1767 y MSE=1,0759E-5 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -11,7262 y MSE=0,5134 como muestra la Tabla 4.11.

	Filtro RLS - AWGN								
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)			
		0.1	-		1,0759E-05	35,1767			
	8	1			2,0403E-05	32,3976			
		5		-11,7262	4,6501E-05	28,8198			
	16	0.1			2,5985E-05	31,3472			
NIÑA 8k		1	0,5134		3,8154E-05	29,6790			
		5			6,7429E-05	27,2059			
		0.1			7,1302E-05	26,9634			
	32	1			8,4184E-05	26,2421			
		5			1,1944E-04	24,7227			

Tabla 4.11. Resultados obtenidos con voz de niña y ruido AWGN.

4.3.4. VOZ HUMANA A 20KHZ Y RUIDO AWGN.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 sin importar el cambio de varianza mientras con longitud 16 y 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación de longitud 8 y varianza 0,1 con SNR=30,5453 y MSE=2,6817E-6 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -22,3039 y MSE=0,5168 como muestra la Tabla 4.12

	Filtro RLS - AWGN									
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)				
		0.1		-22,3039	2,6817E-06	30,5453				
	8	1			6,7606E-06	26,5295				
		5			1,7814E-05	22,3217				
		0.1			3,3686E-06	29,5548				
HUMANO 20k	16	1	0,5168		8,5153E-06	25,5274				
		5			2,0913E-05	21,6253				
		0.1			4,1273E-06	28,6727				
	32	1			9,5790E-06	25,0162				
		5			2,4520E-05	20,9341				

Tabla 4.12. Resultados obtenidos con voz humana y ruido AWGN.

4.3.5. VOZ DE HOMBRE A 8KHz Y RUIDO TIPO PULSO.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 sin importar el cambio de varianza mientras con longitud 16 y 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación

de longitud 8 y varianza 0,1 con SNR=29,158 y MSE=3,51E-6 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -1,1101 y MSE=0,0176 como muestra la Tabla 4.13.

	Filtro RLS - Pulse										
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)					
		0.1			3,51E-06	29,158					
	8	1		-1,1101	5,36E-06	27,3197					
		5			1,60E-05	22,5671					
		0.1	0,0176		3,80E-06	28,8154					
HOMBRE 8KHz	16	1			5,64E-06	27,0987					
		5			1,63E-05	22,4889					
		0.1			4,95E-06	27,6662					
	32	1			6,81E-06	26,2804					
		5			1,75E-05	22,1816					

Tabla 4.13. Resultados obtenidos con voz hombre y ruido tipo pulsos.

4.3.6. VOZ DE MUJER A 8KHZ Y RUIDO TIPO PULSO.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta óptima al momento de mantener la longitud del filtro en 8 y 16 sin importar el cambio de varianza mientras con longitud 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación de longitud 8 y varianza 0,1 con SNR=36,7643 y MSE=1,1351E-5 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= 5,2862 y MSE=0,016 como muestra la TABLA 4.14

	Filtro RLS - Pulse									
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)				
		0.1			1,1351E-05	36,7643				
	8	1			1,4982E-05	35,5589				
		5			3,5079E-05	31,8640				
		0.1			1,83E-05	34,6846				
MUJER 8KHz	16	1	0,016	5,2862	2,18E-05	33,9312				
		5			4,1340E-05	31,1508				
		0.1			3,3264E-05	32,0948				
	32	1			3,6356E-05	31,7088				
		5			5,4793E-05	29,9273				

Tabla 4.14. Resultados obtenidos con voz mujer y ruido tipo pulsos.

4.3.7. VOZ DE NIÑA A 8KHZ Y RUIDO TIPO PULSOS.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 y 16 sin importar el cambio de varianza mientras con longitud 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la combinación de longitud 8 y varianza 0,1 con SNR=33,4049 y MSE=1,5753E-5 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= 3,2109 y MSE=0,0165 como muestra la TABLA 4.15.

	Filtro RLS - Pulse										
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)					
		0.1			1,5753E-05	33,4049					
	8	1			1,9847E-05	32,4015					
		5			4,2150E-05	29,1305					
		0.1			3,40E-05	30,0646					
NIÑA 8k	16	1	0,0165	3,2109	3,73E-05	29,6584					
		5			5,7145E-05	27,8087					
		0.1			4,6724E-05	28,6830					
	32	1			4,9230E-05	28,4561					
		5			6,6856E-05	27,127					

Tabla 4.15. Resultados obtenidos con voz niña y ruido tipo pulso.

4.3.8. VOZ HUMANA A 20KHZ Y RUIDO TIPO PULSO.

Una vez obtenido los resultados podemos resaltar que se encontró una respuesta optima al momento de mantener la longitud del filtro en 8 sin importar el cambio de varianza mientras con longitudes de 16 y 32 la respuesta se fue deteriorando ya que el audio filtrado se reproducía con lentitud, cabe recalcar que los niveles de SNR y MSE para todas la pruebas fueron "BUENOS" siendo la más eficiente la de longitud 8 y varianza 0,1 con SNR=29,158 y MSE=3,51E-9 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -7,8178 y MSE=0,0175 como muestra la Tabla 4.16.

	Filtro RLS - Pulse								
Audio	Longitud Filtro	Variance	MSE (audio_ruido)	SNR (audio_ruido)	MSE (filtrado)	SNR(filtrado)			
		0.1			3,51E-06	29,158			
	8	1		-7,8178	5,36E-06	27,3197			
		5	0,0175		1,60E-05	22,5671			
	16	0.1			3,80E-06	28,8154			
HUMANO 20k		1			5,64E-06	27,0987			
		5			1,63E-05	22,4889			
		0.1			4,95E-06	27,6662			
	32	1			6,81E-06	26,2804			
		5			1,75E-05	22,1816			

Tabla 4.16. Resultados obtenidos con voz humana y ruido tipo pulso.

4.4. MÉTODO DE FILTRADO BUTTERWORTH CON RUIDO AWGN Y RUIDO TIPO PULSO.

Luego de realizar varias pruebas hemos determinado que para la evaluación de este método la longitud del filtro será fija en 20 mientras variaremos la frecuencia de corte que en resultados externos es la más idónea para determinar la respuesta del método esto se aplicara para ruido AWGN y ruido tipo pulso.

4.4.1. VOZ DE HOMBRE A 8KHz Y RUIDO AWGN.

La respuesta más óptima encontrada fue con Wc (Frecuencia Normalizada de corte) 0,4 con SNR =-4.5549 y MSE =3,89E-2 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -15,1357 y MSE=0,448 mientras que variando la Wc a 0,6 el método se vuelve ineficiente como se muestra en la Tabla 4.17.

Filtro Butterworth - AWGN								
Audio Longitud Wc MSE (audio_ruido) SNR (audio_ruido) MSE SNR								
HOMBRE 8KHz 20		0.4448	-15,1357	3,8900E-02	-4,5549			
		0,6	0,4440	-13,1537	6,7400E-02	-6,9422		

Tabla 4.17 Resultados obtenidos con voz hombre y ruido AWGN.

4.4.2. VOZ DE MUJER A 8KHz Y RUIDO AWGN.

La respuesta más óptima encontrada fue con Wc (Frecuencia Normalizada de corte) 0,4 con SNR =-4,4118 y MSE =1,4880E-3 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -9,1785 y MSE=0,446 mientras que variando la Wc a 0,6 el método se vuelve ineficiente como se muestra en la Tabla 4.18.

Filtro Butterworth - AWGN								
Audio Longitud Wc MSE (audio_ruido) SNR (audio_ruido) MSE SNR								
MILIED OVUS	8KHz 20 0,4 0,446	-9.1785	1,4880E-01	-4,4118				
MUJER 8KHz		0,6	0,440	-5,1765	1,7230E-01	-5,0492		

Tabla 4.18 Resultados obtenidos con voz mujer y ruido AWGN.

4.4.3. VOZ DE NIÑA CON A 8KHz Y RUIDO AWGN.

La respuesta más óptima encontrada fue con Wc (Frecuencia Normalizada de corte) 0,4 con SNR =-3,3 y MSE =7,58E-2 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -11,12 y MSE=0,4461 mientras que variando la Wc a 0,6 el método se vuelve ineficiente como se muestra en la Tabla 4.19.

Filtro Butterworth - AWGN								
Audio Longitud Wc MSE (audio_ruido) SNR (audio_ruido) MSE SNR								
NIÑO 8KHz	20	0,4	0.4461	-11,12	7,5800E-02	-3,3001		
INTINO 6KHZ	20	0,6	0,4401	-11,12	1,4700E-01	-6,1786		

Tabla 4.19 Resultados obtenidos con voz niña y ruido AWGN.

4.4.4. VOZ HUMANA A 20KHz Y AWGN.

La respuesta más óptima encontrada fue con Wc (Frecuencia Normalizada de corte) 0,4 con SNR =-0,5772 y MSE =3,3E-3 teniendo como referencia que la señal de audio antes de ser filtrada tiene un SNR= -21,6156 y MSE=0,4468 mientras que variando la Wc a 0,6 el método se vuelve ineficiente como se muestra en la Tabla 4.20.

Filtro Butterworth - AWGN								
Audio Longitud Wc MSE (audio_ruido) SNR (audio_ruido) MSE SNR						SNR		
HUMANO 20k 20	20	0,4	0.4468	-21.6126	3,3000E-03	-0,5772		
	20	0,6	0,4400	-21,0120	4,3600E-02	-11,7796		

Tabla 4.20 Resultados obtenidos con voz humana y ruido AWGN.

4.4.5. VOZ DE HOMBRE, VOZ DE MUJER, VOZ DE NIÑA Y VOZ HUMANA CON RUIDO TIPO PULSO.

Para este tipo de ruido el método de filtrado Butterworth no es optimo porque se tiene como referencia que la señal de audio antes de ser filtrada tiene valores de SNR y MSE muy similares con los del filtrado como lo muestra la Tabla 4.21.

_Método de Filtrado Butterworth - Pulse										
Audio	Longitud	Wc	MSE (audio_ruido)	SNR (audio_ruido)	MSE	SNR				
HOMBRE 8KHz	20	0,4	0,0185 -1,3207	5,5900E-02	-6,1274					
TIONBIL BRITZ	20	0,6	0,0185	-1,3207	4,2400E-02	-4,9253				
MUJER 8KHz 20	0,4	0,018	4,7603	1,6310E-01	-4,8099					
IVIOJEN ON HZ	20	0,6	0,016	4,7005	0.1444	-4,2824				
NIÑA 8KHz	20	0,4	0,0182	2,7674	9,1500E-02	-4,1219				
INIINA OKITZ	20	0,6	0,0182	2,7074	1,2050E-01	-5,3141				
HUMANO 20k	20	0,4	0.010	-7,9391	2,0400E-02	-8,2745				
HUIVIANO 20K	20	0,6	0,018	-7,5551	0.0182	-7,7809				

Tabla 4.21 Resultados obtenidos con audios y ruido tipo pulsos.

4.5. MÉTODO CUALITATIVO.

El método cualitativo está basado en una encuesta de satisfacción realizada a 30 personas expusieron su criterio de acuerdo a lo que escuchaban, seleccionamos los audios de: voz de hombre, voz de mujer, voz de niña que fueron pasadas por los métodos de filtrado, los parámetros de evaluación elegidos fueron: excelente, muy bueno, bueno, regular y malo.

4.5.1. MÉTODO DE FILTRADO LMS CON AWGN

Comenzamos evaluando los audios con interferencia AWGN por filtrado LMS. Los resultados obtenidos se representan en la Figura 4.22 deter-

minando al filtro como "MUY BUENO y BUENO", el 62% de los encuestados seleccionaron estos audios como "BUENOS".

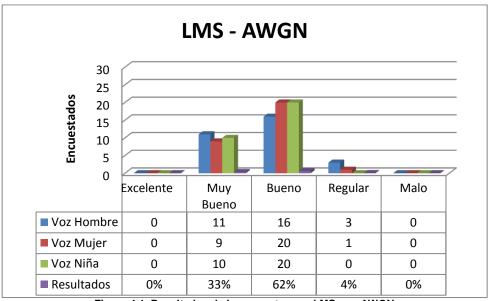


Figura 4.1. Resultados de la encuesta para LMS con AWGN

4.5.2. MÉTODO DE FILTRADO LMS CON RUIDO TIPO PULSOS

Ahora cambiamos la interferencia a ruido tipo pulso donde los resultados fueron más claros como muestra la Figura 4.23, el 94% de los encuestados lo calificaron como "REGULAR".

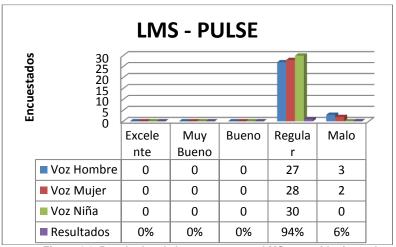


Figura 4.2. Resultados de la encuesta para LMS con ruido tipo pulsos.

4.5.3. MÉTODO DE FIILTRADO RLS CON AWGN

El método de filtrado RLS con interferencia AWGN arrojó los resultados mostrados en Figura 4.24 donde el 87% de los encuestados lo calificaron como "EXCELENTE"

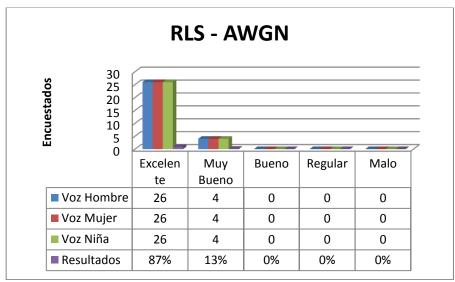


Figura 4.3. Resultados de la encuesta para RLS con AWGN

4.5.4. MÉTODO FILTRO RLS CON RUIDO TIPO PULSOS

Utilizando ruido tipo pulsos encontramos que los audios se comportaron de una manera diferente: para la "Voz de mujer" se calificó como "EX-CELENTE" mientras que para la "Voz de Hombre" está entre "MUY BUENO y BUENO"; por último la "Voz Niña" se determinó como "RE-GULAR", en una proyección global el 30% de los encuestados seleccionaron estos audios como "BUENOS" mostrador Figura 4.25.

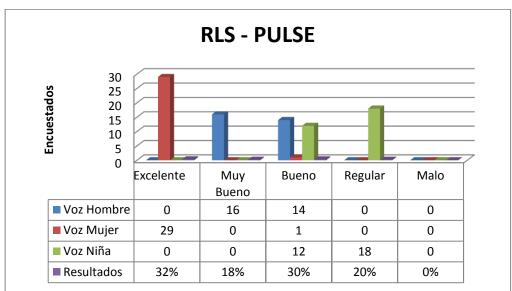


Figura 4.4. Resultados de la encuesta RLS con ruido tipo pulso

4.5.5. MÉTODO DE FILTRADO BUTTERWORTH CON AWGN

En este filtro Butterworth con interferencia AWGN se observó una clara tendencia para los audios ya que todos se calificaron como "EXCE-LENTE" como se muestra en la Figura 4.26, el 100% de los encuestados emitieron el mismo criterio.

Figura 4.5. Resultados de la encuesta para BUTTERWORTH CON AWGN

4.5.6. MÉTODO DE FILTRADO BUTTERWORTH CON RUIDO TIPO PUL-SOS

Se realizó el cambio a ruido pulsos donde la calificación fue de "MALA" para los audios como se muestra en la Figura 4.27, siendo el 90% que lo determinaron de esta manera.

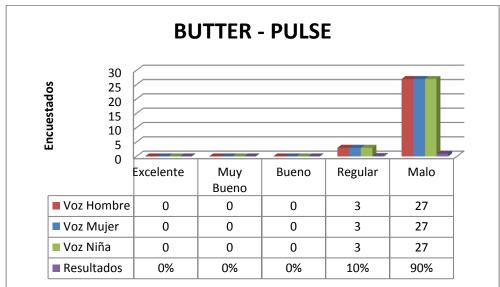


Figura 4.6. Resultados de la encuesta para BUTTERWORTH con ruido tipo pulso

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- 1.- Analizando las pruebas realizadas podemos apreciar que existen muchas similitudes en los resultados obtenidos en el método cuantitativo y cualitativo. Dichos datos se encuentra estrechamente relacionados para todos los métodos de filtrados, como por ejemplo, en el método filtrado BUTTER-WORTH con AWGN el MSE disminuyó en un 99.26% y la SNR se incrementó un 96,19% mientras que la opinión de los encuestados fue del 90% eligiéndolo como "EXCELENTE". En el caso del método RLS con Ruido Tipo Pulsos los datos cuantitativos tuvieron variaciones dependiendo del tipo de audio seleccionado, obteniendo una respuesta óptima al escoger Voz de Mujer con un incremento en la SNR del 99.9% y disminución en el MSE del 85.6%. Mientras que los encuestados tuvieron criterios divididos de acuerdo al tipo de audio escuchado, determinando el audio Voz de Mujer como "EXCELENTE" con un 32%.
- 2.- Los resultados obtenidos por el filtrado LMS con AWGN y ruido tipo PULSO fueron muy satisfactorios. Ya que se tuvo un valor promedio de disminución del 99,11% para MSE, un incremento de la SNR 165,8% con AWGN, mientras para el ruido tipo PULSO el MSE decreció 98,9 % y la SNR aumento 103,58%, Los encuestados lo calificaron como "BUENO" con el

62% para AWGN y "REGULAR" con el 94% para ruido tipo PULSO, se determina a este filtro como una buena opción para minimizar ruido AWGN.

- 3.- Dentro del análisis realizado hemos determinado al filtrado RLS con AWGN y ruido tipo PULSO como óptimo basándonos en los datos obtenidos, donde el valor de MSE promedio decreció en un 99,99% y aumento promedio de la SNR de 146,48% para AWGN mientras que para el ruido tipo PULSO el MSE decremento en un 99,95% y aumento la SNR de 101,67%. Por otro lado los encuestados lo determinaron como "EXCELENTE" con el 87% para AWGN, con ruido tipo PULSO se mostro una opinión compartida para cada audio encasillándolo en nivel medio con aproximadamente 80%, afirmando de esta manera su uso en los diferentes equipo electrónico y de telecomunicaciones.
- 4.- Para todas las señales de audio utilizadas en el método de filtrado LMS con ruido AWGN y ruido tipo pulso la respuesta óptima se da con longitudes de filtros bajos y factor de fuga de 1, valor preponderante para una respuesta favorable, mientras que el RLS tendrá su mejor respuesta con longitud 8 y varianza variable estando sujeta al audio que seleccionemos ya que para los audios mujer y niña la máxima longitud para un buen funcionamiento será entre 8 y 16 posterior a estos valores la señal se reproducirá con lentitud.

- 5.- La implementación de un filtro comercial como el Butterworth puede ser útil en ocasiones donde el ruido fluctúa en niveles bajos, como pudimos observar al usar este método en señales afectados por el ruido AWGN arrojando un valor decreciente promedio de MSE 85.04% y aumento de la SNR 86,40%, mientras para el ruido tipo pulso el MSE aumento un 61.94% y SNR disminuyo un 133,12% estos dato nos reflejan la ineficiencia del filtrado esto se corrobora con lo expresado por los encuestados expresando con el 100% dando "EXCELENTE" para AWGN y "MALO" con el 90%.
- 6.- La cantidad de ruido fue la misma para los métodos de filtrado LMS y RLS con AWGN y ruido tipo PULSO, pero todos los audios seleccionados no fueron afectadas con la misma cantidad de ruido. Se encontró al audio de voz humana con SNR de -22,304 siendo el más afectado y el audio de voz de mujer el menos afectado con -9,7691 en AWGN para ruido tipo PULSO se mantuvo los mismo resultado con valores diferentes.

RECOMENDACIONES

- 1. Se deberá fomentar la investigación a estudiantes de Ing. Electrónica y Telecomunicaciones de estos métodos de filtrado en la implementación de equipos electrónicos o canales de telecomunicaciones para comprobar su funcionalidad en tiempo real teniendo como base la documentación y pruebas realizadas en este proyecto.
- 2. Tomar en cuenta que para este trabajo la señal de audio y el ruido deberá encontrarse en el mismo tiempo de muestro para que estas señales se puedan sumar y lograr un buen funcionamiento y análisis.
- 3. El medio de comunicación inalámbrico como por ejemplo las antenas RF está expuesto a interferencia de todo tipo, por lo tanto se recomienda realizar investigaciones que ayuden a solventar este inconveniente ya que de lo contrario esta tecnología terminara desapareciendo y por ende no se podrá aprovechar de los grandes beneficios que nos brinda.
- 4.- Se deberá encontrar el valor optimo para poder utilizar de una manera eficiente el método de filtrado RLS ya que en cierto niveles de longitud de filtro la señal es filtrada a su mínimo de ruido pero habrá una zona de incertidumbre como se mostró en las pruebas, donde el audio se verá afectado por lentitud en su reproducción.

ANEXOS

ANEXO A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

ENCUESTA

COMPARACIÓN DE METODOS DE FILTRADO DE SE-ÑALES DE AUDIO

Prueba 1 (LMS - AWGN)

	Pruel Pruel	ba 1 (LMS – AWG	N)		
Audio	Excelente	Muy Bueno	Bueno	Regular	Malo
Voz Hombre					
Voz Mujer					
Voz Niña					
	Prueb	a 1.1 (LMS – PUL	SE)		
Audio	Excelente	Muy Bueno	Bueno	Regular	Malo
Voz Hombre					
Voz Mujer					
Voz Niña					
	Prue	ba 2 (RLS – AWG	N)		
Audio	Excelente	Muy Bueno	Bueno	Regular	Malo
Voz Hombre					
Voz Mujer					
Voz Niña					
	Pruel	oa 2.1 (RLS – PULS	SE)		
Audio	Excelente	Muy Bueno	Bueno	Regular	Malo
Voz Hombre					
Voz Mujer					
Voz Niña					
	Pruek	a 3 (Butter – AW	GN)		
Audio	Excelente	Muy Bueno	Bueno	Regular	Malo
Voz Hombre					
Voz Mujer					
Voz Niña					

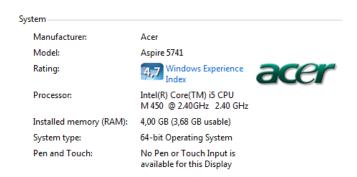
Prueba 3-1(Butter -Pulse) 1

Audio	Excelente	Muy Bueno	Bueno	Regular	Malo
Voz Hombre					
Voz Mujer					
Voz Niña					

ANEXO B

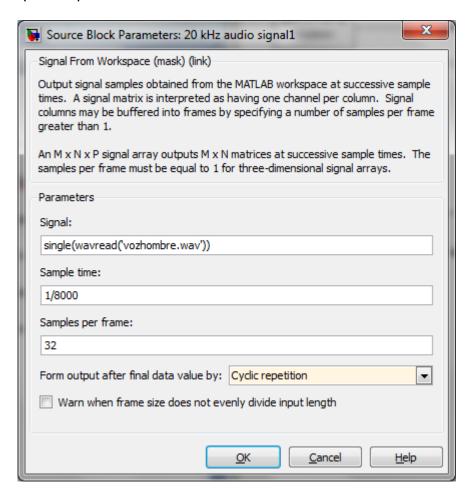
El programa describe el cálculo de los parámetros Error Medio cuadrático (MSE) y relación señal a ruido (SNR).

El siguiente código calcula la SNR y el MSE de la señal antes de ser filtrado.

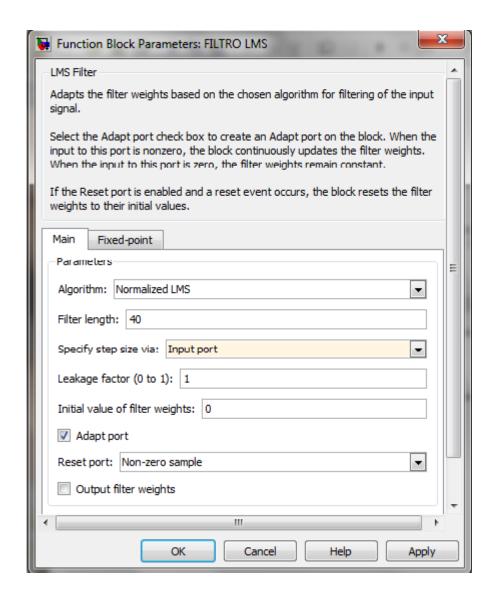

```
[signal]=wavread('signal_original.wav');
n=length(signal);
y=wavread('audio_ruido.wav');
%MSE de la señal antes de ser filtrada.
MSE=sum((y-signal).^2)/n;
disp(MSE)
%SNR de la señal antes de ser filtrada.
SNR=10.*log10(1/n.*(sum(signal.^2))./MSE);
disp(SNR)
```

El siguiente código calcula la SNR y el MSE de la señal filtrada.

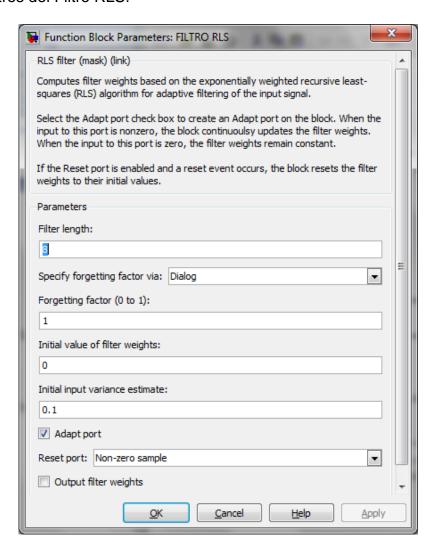
```
[signal]=wavread('signal_original.wav');
n=length(signal);
y=wavread('signal_filter.wav');
%MSE de la señal filtrada.
MSE=sum((y-signal).^2)/n;
disp(MSE)
%SNR de la señal filtrada.
SNR=10.*log10(1/n.*(sum(signal.^2))./MSE);
disp(SNR)
```


ANEXO C

Nuestro proyecto fue desarrollado utilizando un ordenador portátil con un procesador Intel Core i5, velocidad de procesamiento de 2.4 GHz, memoria RAM de 4 GB, Sistema Operativo Windows 7 de 64 bits y memoria de almacenamiento de 450 GB.


ANEXO D

Parámetros para importar los archivos de audio.


ANEXO E

Parámetros del filtro LMS.

ANEXO F

Parámetros del Filtro RLS.

BIBLIOGRAFIA

- [1] Brinkmann, Heinz H. TECHNIQUES AND PROCEDURES FOR THE MEASUREMENT OF IMPULSE NOISE.
- http://ftp.rta.nato.int/public//PubFulltext/RTO/EN/RTO-EN-011///EN-011-01.pdf. Fecha de publicación Agosto 2009. Fecha de consulta Agosto 2011
- [2] García, Ed. QUÉ ES EL RUIDO. http://www.eveliux.com/mx/que-es-el-ruido.php. Fecha de publicación Noviembre 2008. Fecha de consulta Abril 2011
- [3] Universidad de Alcalá de España.. TRANSMISIÓN DE DATOS http://agamenon.tsc.uah.es/Asignaturas/it/TxDatos/apuntes/Tema_1_Introduc cion.pdf Fecha de publicación Marzo 2006. Fecha de consulta Abril 2011
- **[4]** Robinson, Allan y Lok, Tim AUDIO CLICK AND POP NOISE CHARACTERIZATION AND ELIMINATION TECHNIQUES. http://www.engenius.net/includes/files/avt_041309a.pdf. Fecha de publicación Abril 2009. Fecha de consulta Junio 2011
- **[5]** Gosh, Ranjan. IMPLEMENTATION OF DIGITAL FIR FILTER ON 8051 MICROCONTROLLER

http://iitkgp.vlab.co.in/?sub=39&brch=125&sim=637&cnt=1 Fecha de consulta junio 2011

- [6] Criollo, Edgar Hernando CANCELACIÓN DE RUIDO, MEDIANTE EL USO DE FILTROS ADAPTATIVOS IMPLEMENTADOS CON ALGORITMOS LMS Y RLS. http://media.tripod.lycos.com/3168697/1713814.pdf Fecha de publicación Abril 2011. Fecha de consulta Julio 2011
- [7] Gómez, Manuel. FILTRO DIGITAL IIR http://www.duiops.net/hifi/enciclopedia/filtro-digital-IIR.htm Fecha de publicación diciembre 2007. Fecha de consulta julio de 2011

- [8] Sisttel Argentina. DISEÑO DE FILTROS DIGITALES EMPLEANDO MATLAB. http://www.sisttel.com.ar/download/Filtros%20activos.pdf. Fecha de publicación Octubre 2001. Fecha de consulta Junio 2011
- [9] Mathworks. LMS FILTER.

http://www.mathworks.com/help/toolbox/dsp/ref/lmsfilter.html. Fecha de consulta julio 2011

[10] Alcarraz, Andrés y Valdés, Álvaro. CANCELADOR DE RUIDO UTILIZANDO UN FILTRO ADAPTIVO NLMS.

http://iie.fing.edu.uy/ense/asign/dsp/proyectos/1999/nlms/dsp1.htm. Fecha de publicación Diciembre 1999. Fecha de consulta Julio 2011

[11] Mathworks. RLS FILTER.

http://www.mathworks.com/help/toolbox/dsp/ref/rlsfilter.html. Fecha de consulta Julio 2011

[12] Wikimedia Foundation. RECURSIVE LEAST SQUARES FILTER http://en.wikipedia.org/wiki/Recursive_least_squares_filter Fecha de publicación febrero 2011. Fecha de consulta julio 2011