

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"ANÁLISIS DE RETROREFLECTIVIDAD DE LAS SEÑALES VERTICALES Y HORIZONTALES DE UN MUESTREO DE LA RED VIAL ESTATAL, A CARGO DE LA DIRECCIÓN PROVINCIAL DE LOS RÍOS"

TESIS DE GRADO

Previo a la obtención del Título de:

INGENIERO CIVIL

Presentada por:

FÉLIX ARQUIMEDES VALDEZ COELLO

GUAYAQUIL – ECUADOR 2015

AGRADECIMIENTO

Agradezco a DIOS por haberme atraído hacia El con cuerdas de amor, por dejar que su amor inunde mi corazón, por dejar que su presencia en mi vida guie mi andar y por permitirme entender que el amor es amor perfecto cuando se entrega, y que cumple su ciclo perfecto cuando respondemos a ese amor.

DEDICATORIA

A mis Padres que hicieron un gran esfuerzo para que pueda alcanzar muchos logros en mi vida, a aquellas personas que con sus palabras alentadoras me motivaron a seguir en esta gran etapa de mi vida.

TRIBUNAL DE GRADUACIÓN

M.Sc Kenny Escobar S. **PRESIDENTE**

M.Sc. Carola Gordíllo DIRECTORA DE TESIS

Ing. Luis Zambrano
VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponden exclusivamente; y el patrimonio intelectual de la misma a la "ESCUELA SUPERIOR POLITECNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Felix Arquimedes Valdez Coello

RESUMEN

Este análisis tiene como objetivo conocer fundamentos de la retroreflectancia de las señales verticales y horizontales y validar el proceso de método de evaluación de retroreflectancia en la señalización vial sugerido por el MTOP. Esta evaluación contribuye a verificar el cumplimiento del desempeño de la vía por el parámetro de retroreflexión.

Se encontrara con teoría de visibilidad nocturna en la de marcación vial, los distintos procedimientos de evaluación de la retroreflexion. Posteriormente la integración y procesamiento de los datos para el análisis.

El procedimiento planteado puede ser utilizado con dispositivos diferentes pero que cumplan con la norma ASTM Práctica estándar para evaluación retrorelfectante en marcas de pavimento, sin embargo se debe considerar el planteamiento del muestreo.

ÍNDICE GENERAL

RESUMEN	V
ÍNDICE GENERAL	VI
ABREVIATURAS	X
ÍNDICE DE FIGURAS	XI
ÍNDICE DE TABLAS	XV
ÍNDICE DE ECUACIÓN	XVII
1. INTRODUCCIÓN	1
1.1. Justificación	1
1.2. Alcance	4
1.3. Objetivos	5
1.3.1. Objetivos Generales	5
1.3.2. Objetivos Específicos	5
1.4. Hipótesis	ε
2. DESCRIPCIÓN DEL PROYECTO	7
2.1. Generalidades	7
2.2. Ubicación	8
2.3. Descripción de la Infraestructura	11
2.4. Metodología empleada	14
2.4.1. Equipo de trabajo	15
3. MARCO TEÓRICO	16
3.1. Señalización horizontal	17
3.1.1. Conceptos generales sobre señalización horizontal	17

3.1.1.1.	Reflexión Especular de la luz	18
3.1.1.2.	Reflexión difusa de la luz	18
3.1.1.3.	Retroreflexión de la luz	19
3.1.1.4.	Retroreflexión en la demarcación horizontal	20
3.1.2. Ge	eometría de la retroreflexión horizontal	21
3.1.3. M i	icroesferas	2 3
3.1.3.1.	Factores que influyen en la retroreflexión	2 3
3.1.4. No	ormas y estándares actuales para analizar la retroreflexio	ón 25
3.1.4.1.	Requerimiento mínimo de retroreflectividad inicial	26
3.1.4.2.	Requerimiento mínimo de retroreflectividad final	27
3.2. Señali	zación vertical	27
3.2.1. Co	onceptos generales sobre la señalización vertical	28
3.2.1.1.	Lámina retroreflectiva	28
3.2.1.2.	Lentes esféricos	28
3.2.1.3.	Elementos microprismáticos	29
3.2.3. Ge	eometría de la retroreflexión	29
3.2.4. Lá	áminasmicroprismáticas	32
	ormas y Estándar actuales para analizar la retroreflexión	
	étodos de mantenimiento de las señales verticales	
	dimiento de muestreo	
	eñalización vertical	
	eñalización horizontal	
3.3.4.1.	Norma ASTM 7585	42
3.3.4.2.	Dirección de Conservación	43
3.3.5. M	etodología de medición	44
3.3.5.1.	Señalización horizontal	44
3.3.5.2.	Metodología de la señalización vertical	46
4. TECNICA,	INSTRUMENTO Y EQUIPO RETROREFLECTOMETRO	
41 Fauin	n a utilizar	/19

4.2. Pr	ocedimientoparalamedicióndel CoeficientedeRetroreflectivida	d 49
4.2.1.	Procedimiento para las Señales Horizontales	49
4.3. Ma	anejo del equipo	52
4.3.1.	Retroreflectómetros para medir las señales horizontales:	52
4.3.2.	Retroreflectómetro para mediciones en señales verticales	54
4.4. Ot	ros Equipos de Medición	55
5. MEDIC	IÓN Y ANÁLISIS DE RESULTADOS	57
5.4		
	iterios para análisis del coeficiente de retroreflectividad	
5.1.1.	Señales horizontales	
5.1.2.	Señales verticales	59
5.2. Re	esultados de la medición del coeficiente de retroreflectividad	60
5.2.1.	Señales horizontales	60
5.2.1	.1. Demarcación del tramo E25 – Baba	60
5.2.2.	Demarcación del Tramo Baba – 3 Marías	65
5.2.3.	Demarcación del tramo Babahoyo – Montalvo	69
5.2.4.	Demarcación del tramo San Juan – Patricia Pilar	74
5.2.2.	Señales verticales	76
5.2.2	2.1. Tramo E25 – Baba	76
5.2.2	2.4. Tramo San Juan – Patricia Pilar	79
5.3. Ar	nálisis de resultados	80
5.3.1.	Tramo E25 – Baba	80
5.3.2.	Tramo Baba – tres Marías	82
5.3.3.	Tramo Babahoyo – Montalvo	83
5.3.4.	Tramo San Juan – Patricia Pilar	84
6. Prove	edores de producto en el Ecuador	92
6.1. En	nnragge	02
	npresas	
6.1.2. vía	Proveedoras de Pintura y microesferas para demarcación de 93	e ia

	Proveedores de las laminas retroreflectiva para la señalización cal	93
7. CO	NCLUSIONES Y RECOMENDACIONES	96
7.1.	Conclusiones	96
7.2.	Recomendaciones	98
7.3.	Reflexiones	99
BIBLIC	OGRAFÍA	
ANEX	os	

ABREVIATURAS

MTOP Ministério de transporte y obras Públicas.

ASTM La Sociedad Americana de Pruebas de

Materiales.

CEN Comité Europeo de Normalización.

AASHTO American Association of State Highway

and Transportation Officials.

ÍNDICE DE FIGURAS

Figura 2.1. Vías seleccionadas de la Provincia de Los Ríos (MTOP, Vías de
La Provincia de los Ríos)
Figura 3.1. Reflexion Especular. Adaptado de
Figura 3.2. Reflexion Difusa. Adaptado de (Frédéric Boily, 2014)
Figura 3.3. Retroreflexion. Adaptado de (Frédéric Boily, 2014)
Figura 3.4. Perlas de vidrios esféricas (Stdrive del Ecuador S.A., 2013) 20
Figura 3.5. Geometría de la retroreflexión. Adoptado de (Frédéric Boily,
2014)
Figura 3.6. Microesfera de vidrio 40 – 60% de profundidad. Adoptado de
(Frédéric Boily, 2014)24
Figura 3.7. Microesfera sin penetración insuficiente. Adoptado de (Frédéric
Boily, 2014)24
Figura 3.8. Microesfera con penetración insuficiente. Adoptado de (Frédéric
Boily, 2014)
Figura 3.9. Ángulo de entrada. Fuente (Barreno, 2014) 30
Figura 3.10. Ángulo de Observación. Fuente: (Barreno, 2014) 31
Figura 3.11.Método de muestreo de la dirección de conservación para
señales vertical41
Figura 3.12.Método de muestreo de la Norma ASTM 7585 para señales
horizontales43

Figura 3.13. Método de muestreo por Dirección de Conservación para
señales horizontales
Figura 4.1.Retroreflectómetro manual Vertical y Horizontal. Fuente: (MTOP,
2014)
Figura 4.2. Retroreflectometro móvil (Vectra Francia, 2015) 56
Figura 5.1. Distribución de valores medidos por intervalos de la Vía E25 –
Baba 61
Figura 5.2. Valores de retroreflectividad por km de la línea derecha de la Vía
E25 – Baba 62
Figura 5.3. Distribución de valores medidos por intervalos de la línea central
de la Vía E25 – Baba 63
Figura 5.4. Valores de retroreflectividad por km de la línea central de la Vía
E25 - Baba
Figura 5.5. Distribución de valores medidos por intervalos de la línea central
del tramo E25 – Baba 64
Figura 5.6. Valores de retroreflectividad de la línea izquierda del tramo E25 –
Baba 64
Figura 5.7. Distribución de valores de medición por intervalos de la línea
derecha de la Vía Baba – Tres Marías 65
Figura 5.8. Valores de retroreflectividad de la línea derecha de la Vía Baba –
Tres Marías66

Figura 5.9. Distribución de valores de medición por intervalos de la línea
izquierda de la Vía Baba – Tres Marías66
Figura 5.10. Valores de retro-reflectividadpor km de la línea izquierda de la
Vía Baba – Tres Marías
Figura 5.11. Distribución de valores de medición por intervalos de la línea
central color amarillo de la Vía Baba – Tres Marías 68
Figura 5.12. Valores de retro-reflectividad por km de la línea central de la Vía
Baba – Tres Marías 69
Figura 5.13. Distribución de valores de medición por intervalos de la línea
derecha de la Vía Babahoyo – Montalvo70
Figura 5.14. Valores de retro-reflectividad por km de la línea central de la Vía
Babahoyo – Montalvo71
Figura 5.15. Distribución de valores de medición por intervalos de la línea
izquierda de la Vía Babahoyo – Montalvo71
Figura 5.16. Valores de retro-reflectividad por km de la línea izquierda de la
Vía Babahoyo – Montalvo72
Figura 5.17. Distribución de valores de medición por intervalos de la línea
central de la Vía Babahoyo – Montalvo73
Figura 5.18. Valores de retro-reflectividad por km de la línea central de la Vía
Babahoyo – Montalvo73
Figura 5.19. Distribución de valores de medición por intervalos de la línea
derecha de la Vía San Juan – Patricia Pilar74

Figura 5.20. Valores de retroreflectividad por km de la línea derecha de la
Vía San Juan – Patricia Pilar
Figura 5.21. Distribución de valores de medición por intervalos de la línea
izquierda de la Vía San Juan – Patricia Pilar75
Figura 5.22. Valores de retroreflectividad de la línea izquierda de la Vía San
Juan – Patricia Pilar76
Figura 5.23. Retroreflectividad de las señales verticales de la vía E25-Baba
77
Figura 5.24. Retroreflectividad de las señales verticales de la vía Baba –
Tres Marías78
Figura 5.25. Retroreflectividad de las señales verticales de la vía Babahoyo –
Montalvo79
Figura 5.26. Retroreflectividad de las señales verticales de la vía San Juan –
Patricia Pilar80

ÍNDICE DE TABLAS

Tabla I. Datos Generales de los tramos escogidos	11
Tabla II. Característica Generales del tramo E-25 - Baba	12
Tabla III. Característica Generales del tramo Baba-Tres Marías	12
Tabla IV. Característica Generales del tramo Babahoyo-Montalvo	13
Tabla V. Características Generales del tramoSan Juan – P. Pilar	14
Tabla VI. Descripción del estudio	15
Tabla VII. Requerimiento de retroreflexión inicial	26
Tabla VIII. Requerimiento de retroreflexión a los 180 días	27
Tabla IX. Umbrales de cumplimiento de estándares de señalización vertical	34
Tabla X. Métodos para cumplir y mantener los niveles mínimos de retroreflectivo	∕idad
	36
Tabla XI División de los métodos	
	38
Tabla XI División de los métodos	38 59
Tabla XII. Coeficientes mínimos de retroreflectividad para cada tramo	38 59 60
Tabla XII. Coeficientes mínimos de retroreflectividad para cada tramo Tabla XIII. Tipos de láminas instaladas en los tramos	38 59 60
Tabla XII. Coeficientes mínimos de retroreflectividad para cada tramo Tabla XIII. Tipos de láminas instaladas en los tramos Tabla XIV.Estado de la línea izquierda del tramo E25 - Baba	38 59 60 81
Tabla XI División de los métodos Tabla XII. Coeficientes mínimos de retroreflectividad para cada tramo Tabla XIII. Tipos de láminas instaladas en los tramos Tabla XIV.Estado de la línea izquierda del tramo E25 - Baba Tabla XV.Estado de la línea central del tramo E25 - Baba	38 59 60 81 81
Tabla XI División de los métodos Tabla XII. Coeficientes mínimos de retroreflectividad para cada tramo Tabla XIII. Tipos de láminas instaladas en los tramos Tabla XIV.Estado de la línea izquierda del tramo E25 - Baba Tabla XV.Estado de la línea central del tramo E25 - Baba Tabla XVI. Estado de la línea derecha del tramo E25 - Baba	38 59 60 81 81 82

Tabla XX. Estado de la línea Izquierda del tramo Babahoyo – Montalvo 83
Tabla XXI. Estado de la línea central del tramo Babahoyo – Montalvo 83
Tabla XXII. Estado de la línea derecha del tramo Babahoyo – Montalvo 84
Tabla XXIII. Estado de la línea derecha del tramo San Juan – Patricia Pilar 85
Tabla XXIV. Estado de la línea izquierda del tramo San Juan – Patricia Pilar 86
Tabla XXV. Señales defectuosa de la vía Baba – Tres Marías 87
Tabla XXVI. Señales defectuosa de la vía S. Juan – P. Pilar
Tabla XXVII. Rendimiento por día de los métodos de medición90
Tabla XXVIII. Rendimiento por día de la señal vertical
Tabla XXIX. Ventajas y desventajas de los métodos de muestreo91
Tabla XXVIII. Empresas de pintura de trafico
Tabla XXIX. Durabilidad de las pinturas94

ÍNDICE DE ECUACIÓN

Ecuación 1	 21
Ecuación 2	 52

CAPÍTULO 1

1. INTRODUCCIÓN

1.1. Justificación

La circulación vehicular tiene un alto impacto en la sociedad, lo que origina que las instituciones o autoridades que velan por la seguridad vial establezcan leyes, medidas, normas, reglamentos, etc., con el objetivo prevenir, reducir y mitigar impactos de los acontecimientos relacionado con circulación de vehículos.

La seguridad vial recae mayormente en la responsabilidad de las personas y también dependerá de la inversión que se provee en la infraestructura

paraasí tener un buen desempeño. La seguridad vial ayuda a reducir los daños producidos por accidentes de tránsito en las vías y tiene como principal objetivo proporcionar seguridad y protección a los usuarios. La seguridad en la infraestructura vial está sujeta a tres factores: el conductor, el funcionamiento relacionado al estado del vehículo, y de la infraestructura vial, siendo esta última competencia del Ministerio de Transporte y Obras Públicas y se relaciona con el estudio, construcción, mejoramiento y mantenimiento, sea este rutinario o periódico. En cada una de estas fases, se consideran las especificaciones y ubicaciones de los dispositivos de control de tráfico.

Los dispositivos de control de tráfico se refieren a los semáforos, las señales verticales preventivas, informativas y reglamentarias, así como el diseño de las líneas de demarcación del pavimento las cuales son señales horizontales. Estas son herramientas necesarias para la regulación de tránsito en las vías y ayudan a prevenir accidentes.

El MTOP es el organismo regulador responsable de exigir a las identidades competentes la colocación de estos dispositivos de control y que estos brinde servicios de calidad, garantizando seguridad y protección de la vida humana.

El MTOP tiene a su disposición el reglamento técnico ecuatoriano 004 "Señalización Vial", el cual para su elaboración fue considerado la mención

del artículo 52 de la constitución política de la República del Ecuador. El protocolo de adhesión de la república del Ecuador, se publicó en el Suplemento del Registro Oficial No 853 del 2 de enero de 1996también por disposiciones de organizaciones como la Organización mundial del comercio, comisión de la comunidad andina y otros organismos nacionales.

El propósito del reglamento técnico ecuatoriano 004, "Señalización vial", es de entregar las especificaciones y requisitos mínimos de cada elemento de señalización, lograr una uniformidad de señalización en las vías del país, con el fin de que se realice un cumplimiento de cada una de las normas que contiene dicho reglamento.

En este reglamento se menciona que las señalizaciones viales ubicadas en las infraestructuras de las vías del país, para un adecuado funcionamiento, deben de cumplir con las siguientes características básicas: que emita un mensaje consistente, estar ubicado en un lugar acorde al diseño geométrico de la vía, la dimensión de las señales en función de la velocidad máxima permitida y una de las más importantes características es la retroreflexión en las señales verticales y horizontales.

Las señales verticales y horizontales deben de ser visualizadas en cualquier periodo del día. En periodos diurnos su visibilidad se logra al adecuado contraste de la señalización y en el periodo nocturno su visibilidad se logra debido a las micro-esferas de vidrios que al ser iluminadas por alguna fuente de luz estas micro-esferas redireccionan una porción de la luz recibida a la fuente emisora. Este proceso es una propiedad de las señales retroreflectivas y se conoce como retroreflexión.

Considerando que la retroreflectividad es de fundamental importancia como uno de los principales factores en relación a la seguridad vial, desde la etapa de diseño como en la de operación, este tema motivó a la realización de esta tesis, por lo cual se plantea como propósito de esta investigación, determinar la calidad de la retroreflectividad de las señales verticales y horizontales de algunas vías de la red estatal de la provincia de Los Ríos, utilizando equipos y procedimientos disponibles en el MTOP y comparándolos con estándares y normativas internacionales.

1.2. Alcance

La red vial estatal a cargo de la Dirección Provincial de Los Ríos a cargo del MTOP está conformado por 336.77kilómetros, lo cual debe mantener un desempeño óptimo en condición estructural y funcional, de acuerdo a los estándares generales exigidos por el MTOP. La señalización vial es un parámetro que contribuye a la seguridad vial que es de suma importancia

tanto para el diseño como para la operación de las vías, por lo cual es el principal punto de interés en este trabajo. Adicionalmente a raíz de un acercamiento con el Ministerio de Transporte y Obras Públicas, se establece la oportunidad de realizar un ejercicio de validación de los resultados obtenidos así como del método de muestreo a utilizarse.

1.3. Objetivos

1.3.1. Objetivos Generales

Realizar un análisis de retroreflectividad de la red vial estatal que está
a cargo de la Dirección Provincial de los Ríos usando una muestra
representativa, y a su vez validar el proceso de muestreo sugerido por
el Ministerio de Transporte y Obras Públicas, con el fin de proveer una
retroalimentación de su eficiencia.

1.3.2. Objetivos Específicos

 Medir la retroreflectividad en las señales verticales y horizontales de una muestra de los Ríos, comparando los resultados obtenidos con estándares de calidad. Verificar la eficiencia del método de muestreo empleado por MTOP en la medición de la retroreflectividad en señales verticales y horizontales en la red vial estatal.

1.4. Hipótesis

Se plantea las siguientes hipótesis, en base a los objetivos específicos:

- Las señalizaciones verticales y horizontales de las rutas seleccionas tienen un desempeño funcional óptimo.
- El muestreo recomendado es óptimo para vías a nivel de red.

CAPÍTULO 2

2. DESCRIPCIÓN DEL PROYECTO

2.1. Generalidades

El Ministerio de Transporte y Obras Públicas de la Dirección Provincial de los Ríos administra un conjunto de vías. Que conforman un total de 336.77 km. que registran alta movilidad y accesibilidad. Esta dirección ha tomado en consideración realizar un análisis de retroreflectividad de las señales verticales y horizontales de los siguientes tramos:

- E485 tramo E25 Baba
- E485 tramo Baba Tres María
- E491 tramo Babahoyo Montalvo
- E25 tramo San Juan P. Patricia Pilar

2.2. Ubicación

Los tramos a intervenir se encuentran ubicados en la parte central del litoral del país, tal como se señala en la Figura 2.1

Figura 2.1.Vías seleccionadas de la Provincia de Los Ríos (MTOP, Vías de la Provincia de los Ríos)

La ruta se encuentra ubicado en el **tramo E-25-Baba**, donde el análisis se desarrolla en el sentido este-oeste hasta llegar al final de la ruta que limita con el inicio de la cantón Baba. Su localización geográfica se halla ubicada en el sur-oeste de la provincia de los Ríos.

La segunda ruta que se escogió está ubicada en el tramo **Baba – tres Marías**, el punto de partida que se tomó como referencia para indicar el inicio de este tramo se ubica a la salida de cantón Baba donde el análisis se desarrolla en el sentido oeste-este hasta llegar al límite con la provincia del Guayas. Su localización geográfica se halla ubicada en el sur este de la provincia de los Ríos.

Por otra parte, la tercera ruta que se escogió está ubicada en el tramo Babahoyo-Montalvo, El punto de partida que se tomó como referencia para indicar el inicio de este tramo se ubica a la salida de la ciudad de Babahoyo, donde el análisis se desarrolla en el sentido oeste-este hasta llegar al cantón Montalvo. Su localización geográfica se halla ubicada en el sur-este de la provincia de los Ríos.

El punto de partida de la Ruta San Juan-Patricia Pilar que se tomó como referencia para indicar el inicio del tramo se ubica a la salida del Cantón San Juan. El análisis se desarrolla en sentido sur-norte hasta Patricia Pilar. Su localización geográfica se halla ubicada en la Provincia de los Ríos.

Los datos generales de dicho tramo se presentan a continuación en la tabla 1

Tabla I. Datos Generales de los tramos escogidos

Tramo	Abscisas	Latitud	Longitud
E-25-Baba	0+000	01 S 45.3802	079 W 32.3533
L-20-Dapa	16+700	01 S 47.2837	079 W 40.2663
Baba-tres Marías	0+000	01 S 47.1367	079 W 40.8370
Daba-ties Mailas	9+000	01 S 46.4918	079 W 44.4868
Rahahoyo Montalyo	0+000	01 S 48.7402	079 W 30.1394
Babahoyo-Montalvo	30 +000	01 S 47.4196	079 W 17.9437
San Juan-P. Pilar	0+000	01 S 370460	079 W 33.4329
	152+000	00 S 32.6051	079 W 22.3982

2.3. Descripción de la Infraestructura

El tramo**E-25 - Baba** es una vía colectora, que conecta el cantón Baba con un tramo de la vía arterial E-25. A continuación se muestra las características generales del tramo:

Tabla II. Característica Generales del tramo E-25 - Baba

Longitud	16.70 km.
Tipo de terreno	Llano
Ancho de Calzada	9.58 m
Número de carriles	2 de 3.65m cada uno
Ancho de Espaldones	2 m
Superficie de pavimentos	Buen estado
Tiempo de demarcación	Agosto 2014
Tipo de material	Termoplástico
Línea y color:	Línea de Borde (B) / línea central (C)

El tramo **Baba-Tres Marías** es una vía colectora, que conecta el cantón Salitre con Baba, de las provincias del Guayas y Los Ríos respectivamente. A continuación se presenta la característica general del tramo:

Tabla III. Característica Generales del tramo Baba-Tres Marías

Longitud	9.66 km.
Tipo de terreno:	Llano
Ancho de Calzada:	12.30 m
Número de carriles:	2 de 3.65 m cada uno
Ancho de Espaldones:	2.5 m
Superficie de pavimentos:	Deterioro y desgastes
Tiempo de demarcación:	Febrero 2012
Tipo de material:	Pintura base solvente
Línea y color:	Línea de Borde (B) / línea central (C)

El Tramo **Babahoyo-Montalvo** es una vía colectora, que une la provincia de los Ríos y la provincia de Bolívar. Se indica la característica general Babahoyo-Montalvo:

Tabla IV. Característica Generales del tramo Babahoyo-Montalvo

Wortaivo	
Longitud	33 km.
Tipo de terreno:	Llano
Ancho de Calzada:	10.30 m
Número de carriles:	2 de 3.65 m cada uno
Ancho de Espaldones:	1.5 m
Superficie de pavimentos:	Regular
Tiempo de demarcación:	Enero del 2014
Tipo de material:	Pintura base solvente
Línea y color:	Línea de Borde (B) / línea central (C)

La vía San **Juan – Patricia Pilar** forma parte del corredor Troncal de la Costa E-25, que conecta las ciudades de Santo Domingo – Quevedo – Guayaquil, de las provincias de Santo Domingo de los Tsachilas, Los Ríos y Guayas respectivamente. Se presenta la Situación actual de la vía San Juan – Patricia Pilar:

Tabla V. Características Generales del tramo San Juan – P. Pilar

Longitud 152 km.

Tipo de terreno: Ondulado

Ancho de Calzada: 9.30 m.

Número de carriles: 2 de 3.65m cada uno

Ancho de Espaldones: 1 m.

Superficie de pavimentos: Regular

Tiempo de demarcación: Febrero 2012

Tipo de material: Pintura base solvente

Línea y color: Línea de Borde (B) / línea central (C)

2.4. Metodología empleada

En la tabla a continuación se muestran las actividades programadas que se ejecutaron para poder obtener los resultados esperados.

Tabla VI. Descripción del estudio

Actividades

- 1. Estudio de antecedentes y Marco teórico
- 2. Recopilación de datos de la red vial estatal
- 3. Definición de tramos a muestrear
- 4. Toma de retroreflectividad de la señal horizontal y vertical
- 5. Procesamiento de datos
- 6. Análisis de resultados
- 7. Conclusiones y recomendaciones

2.4.1. Equipo de trabajo

Para poder realizar la toma de datos en el campo de las señales verticales y horizontales se contó con las siguientes herramientas:

- 1. Un vehículo para transportar al personal y las herramientas.
- Los dos equipos Easy lux para tomar la medición en las señales vertical y horizontal.
- Un equipo de trabajo conformado por 7 personas, los cuales se encargan de tareas específicas como: desviar el tráfico, lavar y secar el punto de medición, medir, supervisar y conducir.
- Materiales de limpieza: líquido para limpiar las microesferas de vidrios, cepillo, jabón líquido, franelas, escoba, escalera.

CAPÍTULO 3

3. MARCO TEÓRICO

Las señalizaciones en las vías, ya sea verticales u horizontales son herramientas de seguridad vial cuyo principal objetivo es advertir al tránsito. Por este motivo, las señalizaciones deben cumplir ciertos requisitos de visibilidad en el día (contraste) y en la noche (retroreflectividad), bajo cualquier condición climática.

3.1. Señalización horizontal

Las señalizaciones horizontales son marcas adheridas en el pavimento que pueden definirse como: líneas longitudinales, transversales, símbolos y leyendas. En la actualidad hay diferentes tipos de materiales usados para realizar estas marcas viales, ya sea por pintura base solvente o pintura base agua, pintura termoplástica y cintas adhesivas. Cada una de estas tecnologías usadas tiene sus ventajas como desventajas, asociadas con características como su vida útil, calidad, técnica de aplicación y precio. Estas marcas viales tienen una particularidad, que su calidad depende de su visibilidad y el reconocimiento de la geometría de la vía, cuanto mayor la reflectividad, mejor la calidad.(Darío Babić, 2013).

3.1.1. Conceptos generales sobre señalización horizontal

Un ejemplo práctico para entender de manera sencilla sobre el fenómeno que ocurre cuando nos trasladamos en un vehículo por la noche, donde la carretera está sin alumbrado público, es que en ciertas ocasiones la luz emitida por el vehículo pueden producirse diferentes tipos de fenómenos ópticos cuando esta incide en la marcación de la vía.

3.1.1.1. Reflexión Especular de la luz

Este fenómeno ocurre cuando la superficie es microscópicamente lisa, por lo que la luz emitida por la fuente se refleja de manera opuesta con igual ángulo que el de la luz emitida por la fuente. La figura 3.1 ilustra este fenómeno.

Figura 3.1.Reflexion Especular. Adaptado de (Frédéric Boily, 2014).

3.1.1.2. Reflexión difusa de la luz

Este fenómeno ocurre cuando la superficie es microscópicamente irregular. Así la luz emitida por la fuente se refleja en varias direcciones, incluso este puede regresar a los ojos del conductor pero no asegura que sea visible todo el marcado. La figura 3.2 ilustra este fenómeno.

Figura 3.2. Reflexion Difusa. Adaptado de (Frédéric Boily, 2014).

3.1.1.3. Retroreflexión de la luz

Este fenómeno ocurre cuando la superficie contiene elementos reflectantes que redirecciona la luz emitida por la fuente hacia la vista del conductor. La figura 3.3 ilustra este fenómeno.

Figura 3.3. Retroreflexion. Adaptado de (Frédéric Boily, 2014).

3.1.1.4. Retroreflexión en la demarcación horizontal

Es fundamental la retroreflectivdad en la demarcación horizontal ya que se pueden observar correctamente las marcas del carril y es una medida de la visibilidad en la noche. La retroreflectividad se logra mediante perlas de vidrios esféricas (ver figura 3.4.) incorporadas en el material durante la demarcación. Estas tienen un diámetro entre 0.3 mm y 0.6 mm.

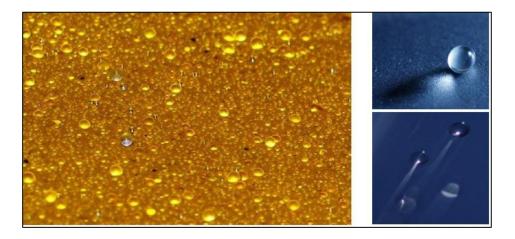


Figura 3.4. Perlas de vidrios esféricas (Stdrive del Ecuador S.A., 2013)

Cuando la luz del vehículo entra en la microesfera, esta se somete a una serie de reflexión y retroreflexión la cual devuelve la luz hacia el conductor (Figura 3.5).La retroreflexión se cuantifica con el coeficiente de luminancia retroreflejada (RL) que se mide en milicandelas por lux por metro cuadrado

 $(mcd/lux - m^2)$ (Frédéric Boily, 2014). Se obtiene mediante la relación entre la luminancia (L) de la línea de puntuación en la dirección de observación y la iluminación (E_l) medido con la normal del suelo como:

$$R_L = L/E_l, (Ec. 1)$$

donde se recomienda una retroreflectivdad mínima de $100\,mcd/lux-m^2$ para una visibilidad adecuada en la noche. La ASTM, práctica estándar E808, específica un tipo de geometría, conocida como geometría de 30 metros(E808, 2011).

3.1.2. Geometría de la retroreflexión horizontal

La medición de la retroreflectividad en la marca de pavimento se la obtiene mediante parámetros geométricos prescritos por normas internacionales dadas por el Comité Europeo de Normalización (CEN) y La sociedad americana de pruebas de materiales (ASTM) con el método de prueba E1710. Este utiliza un retroreflectómetro portátil para la determinación del coeficiente de luminancia reflejada en la marcas del pavimento donde:

- El ángulo de entrada (iluminación) con respecto a la normal del suelo es 88,76° (co- entrada 1.24).
- El ángulo de observación se fija en 1.05° (ángulo entre el eje de iluminación y el eje de observación).

Según lo especificado por el CEN, la geometría del instrumento se basa en la distancia de visión de 30 m., una fuente de emisión de luz (faro) a la altura de 0.65 m. y un observador a 1.2 m. de altura. Esta geometría da un buen indicador de la clasificación visual del material.

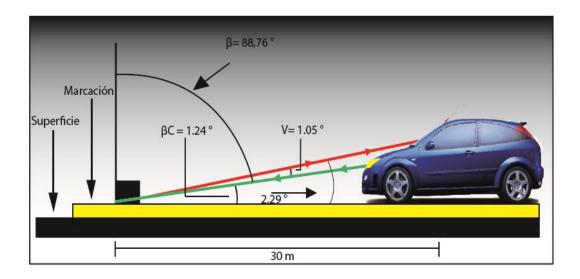
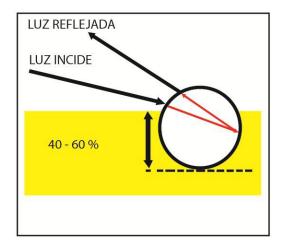
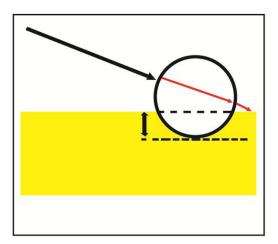


Figura 3.5. Geometría de la retroreflexión. Adoptado de (Frédéric Boily, 2014)

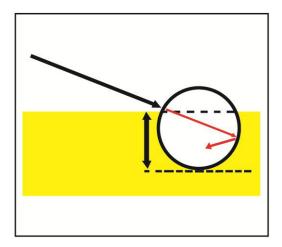

3.1.3. Microesferas

Como se ha mencionado anteriormente, la retroreflectividad se logra mediante la ayuda de pequeñas microesferas de vidrio que se añaden al dejarlos caer (presión a gravedad) o presión a chorro durante la aplicación del material de señalización.

El fenómeno de retrorreflexión en una esfera de vidrio se produce en tres pasos: el rayo de luz que entra en la esfera se refracta, luego se refleja en el material que esta incrustado y después se refracta por segunda vez en dirección a la que procede la luz(Frédéric Boily, 2014).


3.1.3.1. Factores que influyen en la retroreflexión

Para obtener un retorno de luz óptimo dependerá de diversos factores, desde el proceso de fabricación de las microesferas que está asociado con la calidad, hasta la técnica utilizada para la aplicación en el cual infiere en el nivel de penetración de las microesferas en el producto. Siendo la profundidad óptima de empotramiento de entre 40% y 60%(Guanghua Zhang, 2009).


Figura 3.6.Microesfera de vidrio 40 - 60% de profundidad. Adoptado de (Frédéric Boily, 2014)

Si la microesfera tiene una penetración inferior al 40% (superficial) se puede disminuir el tiempo de duración(Hollingsworth, 2012) y la luz atraviesa la microesfera sin reflejarla hacia el conductor(Frédéric Boily, 2014).

Figura 3.7.Microesfera sin penetración insuficiente. Adoptado de (Frédéric Boily, 2014)

Si el nivel de penetración de la miscroesfera es más de 60%, puede disminuir el valor de la retroreflectividad y la luz en la microesfera se somete a reflexión interna.(Hollingsworth, 2012).

Figura 3.8.Microesfera con penetración insuficiente. Adoptado de(Frédéric Boily, 2014)

Otro de los factores que influyen en la retroreflexión es la cantidad de micoresferas añadido al producto de marcado y la calidad de la pigmentación (color).

3.1.4. Normas y estándares actuales para analizar la retroreflexión

La norma técnica Ecuatoriana INEN 1042 (PINTURA PARA SEÑALAMIENTO DE TRÁFICO - REQUISITOS), establece que la

retroreflexión de las demarcaciones en las vías, con el objetivo de tener un óptimo desempeño de visibilidad nocturna, debe de cumplir con un mínimo coeficiente de retroreflexión, los cuales depende de los siguientes factores: el tipo de material, color de línea y el tiempo de exposición al ambiente.

3.1.4.1. Requerimiento mínimo de retroreflectividad inicial

En la INEN 1042 se establece que el valor de retroreflectividad inicial a los 14 días posteriores a la aplicación de la demarcación vial debe de cumplir con los valores de retroreflectividad mínimo establecidos en la siguiente tabla.

Tabla VII. Requerimiento de retroreflexión inicial				
	Color			
Tipo de demarcación	Blanca a $mcd \cdot lux^{-1} \cdot m^{-2}$.	Amarilla ^a $mcd \cdot lux^{-1} \cdot m^{-2}$.		
Base Agua /Solvente	250	200		
Termoplástico	400	325		

^aEstos datos corresponden a valores correspondiente a R_L (Visibilidad nocturna), simulado por el equipo y sobre superficie seca.

3.1.4.2. Requerimiento mínimo de retroreflectividad final

La norma INEN 1042 establece que la retroreflectividad final en pinturas base solvente o agua se debe realizar a los 180 días y la norma internacional AASHTO Designation: M 249-12 para pintura termoplástica deberá ser capaz de mantener el valor mínimo de retroreflectividad a los 180 días de exposición cuando se prueba de acuerdo con ASTM E 1710 detallado en la tabla 10.

Tabla VIII. Requerimiento de retroreflexión a los 180 días				
	Color			
Tipo de demarcación	Blanca ^a	Amarillaa		
	$mcd \cdot lux^{-1} \cdot m^{-2}$.	$mcd \cdot lux^{-1} \cdot m^{-2}$.		
Base Agua / Solvente	100	80		
Termoplástico*	325	200		

 $^{^{}a}$ Estos datos corresponden a valores correspondiente a R_{L} (Visibilidad nocturna), simulado por el equipo y sobre superficie seca.

3.2. Señalización vertical

Se conoce como señalización vertical a los carteles y pórticos que se encuentran a lo largo de la vía, los cuales están compuestos por dispositivos flexibles resistentes al impacto las cuales también contienen una lámina

^{*}Datos obtenidos de (ASTHO, 2012)

retroreflectiva de dicha señal, y están adheridas a un tubo de base el cual proporciona resistencia a la señal. Estas señales se las pueden identificar como señales regulatorias, informativas y preventivas, y estas se distinguen por su forma y color (Calderon, 2011).

3.2.1. Conceptos generales sobre la señalización vertical

3.2.1.1. Lámina retroreflectiva

La lámina retroreflectiva está formada por una cobertura que tiene una superficie externa lisa, donde dentro de ella están incrustados lentes esféricos en una resina transparente.

3.2.1.2. Lentes esféricos

Estos lentes esféricos son conocidos como microesferas de vidrio, las cuales refractan la luz al llegar en la señal y la devuelve al conductor. Las microesferas fueron las más básicas implementadas en las láminas a partir del año 1940 y con el paso del tiempo se pasaron a utilizar las microesferas de vidrio microprimsmáticas, las cuales también son incrustadas en la lámina.

3.2.1.3. Elementos microprismáticos

Estos logranunaretroreflectividad de mejor calidad en las láminas, gracias a su tecnología de microreplicación de un prisma cortado que hace que la luz choque de manera que simula un espejo que regrese la luz. Usualmente se usan a nivel de vía pero en condiciones secas.

También hay otros tipos de elementos microprismáticos que tiene una tecnología de microreplicación de esquina de cubo que hace que la señal sea más brillante por lo que se usa en condiciones de mucha lluvia o neblina. Esta tecnología se conoce como grado diamante y es la más fuerte creada hasta el momento y se usa ampliamente en los pórticos.

3.2.3. Geometría de la retroreflexión

La medición de la retroreflectividad en la señal vertical se la obtiene mediante parámetros geométricos requeridos por la norma internacional ASTM en el método de Prueba E2540"Standard Test Method for Measurement of Retroreflective Signs Using a Portable Retroreflectometer at a 0.5 Degree Observation Angle". Este utiliza un retroreflectómetro portátil con geometría estándar para la determinación de la retroreflexión que enfrenta aproximadamente el conductor de un vehículo de tamaño medio equipado

con faros a aproximadamente a 100 m de distancia. Esta geometría da un buen indicador de la clasificación visual del material donde:

Angulo de entrada: físicamente es el ángulo formado por la línea de proyección de luz hacia la superficie de la señal y la perpendicular trazada entre la pantalla de la señal. Según lo indicado en la Norma ASTM 4956, Su valor es de -4 y 30 grados, medidos siempre en relación con el ángulo de observación. Lo que permite establecer niveles de retroreflexión asociados a distintos tipo de casos. Este factor es de suma importancia debido a que si el ángulo de observación aumenta, la retroreflectividad de la señal disminuye drásticamente(MOPC, 2010).

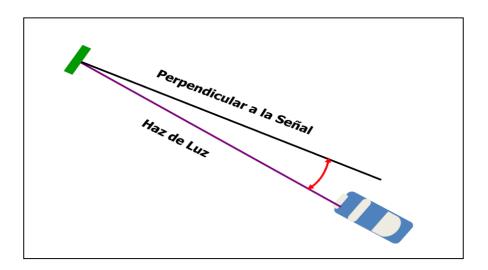


Figura 3.9. Ángulo de entrada. Fuente (Barreno, 2014)

Angulo de observación: Se forma por la luz dirigida a la señal y el rayo retroreflejado a los ojos del conductor. Ver figura. Las láminas retroreflectivas devuelven la luz de forma de cono muy pequeño, presentando una visibilidad muy menor a medida que aumenta el ángulo de observación.(MOPC, 2010) Esto indica que a medida que aumente la distancia vertical entre los focos del vehículo y los ojos del conductor, la visibilidad de la señal será menos efectiva. Para medir valores de retroreflexión según la Norma ASTM D4956 Se fija en 0.2 y 0.5 grados. Los cuales están sujetos al ángulo de entrada.

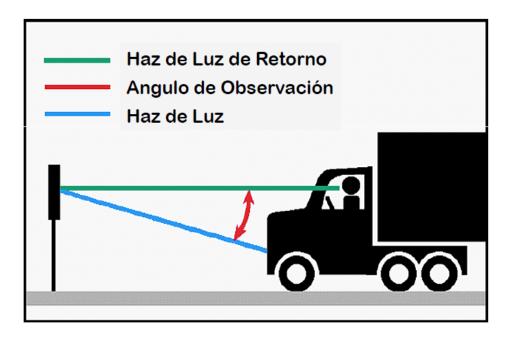


Figura 3.10. Ángulo de Observación. Fuente: (Barreno, 2014)

3.2.4. Láminas microprismáticas

Según la Norma ASTM D4956 – 11 (a) se clasifica en nueve tipos de capas retroreflectivas.

- Tipo I: se conoce como "grado de ingeniería" y tiene elementos de bolas de vidrio. Se la utiliza en autopistas, zonas de construcción y delineadores.
- Tipo II: se conoce como "grado súper de ingeniería" y se la utiliza para señalización en autopistas, zonas de construcción y delineadores.
- Tipo III: se conoce como "alta intensidad" y tiene elementos microprismáticos o bolas de vidrio encapsuladas. Se utiliza en señalización de autopistas, zonas de construcción y delineadores.
- Tipo IV: se conoce como "alta intensidad" y tiene elementos microprismáticos. Se utiliza en señalización de autopistas, en zonas de construcción y delineadores.
- Tipo V: Se conoce como "super alta intensidad" y se la utiliza para delineadores.
- Tipo VI: Es un material de vinil microprismático. Se utiliza en rótulos temporales, anillos de conos de tráfico y cintas de fijación.
- Tipo VII: El uso de esta designación se a discontinuado pero se ha reclasificado como tipo VIII.

- Tipo VIII: tiene material microprismático de esquina de cubo. Su uso es para señalización permanente en las autopistas, zonas de construcción y delineadores.
- Tipo IX: tiene material microprismático de esquina de cubo y su uso es para señalización permanente en las autopistas, zonas de construcción y delineadores.
- Tipo X: El uso de esta designación se ha suspendido pero se ha reclasificado como tipo VIII.
- Tipo XI: Tiene material microprismático de esquina de cubo que tiene forma de diamantes. Su uso es para señalización permanente en las autopistas, zonas de construcción y delineadores(ASTM D4956, 2011).

3.2.5. Normas y Estándar actuales para analizar la retroreflexión en las señales verticales.

El Reglamento Técnico Ecuatoriano RTE INEN 004-1 establece que las señales deben de cumplir con los parámetros de retroreflectividadestablecidospor la Norma ASTM D4956, que ha registrado mínimos coeficientes de retroreflexión que debe cumplir el tipo de señal cuando ha transcurrido un cierto periodo de exposición al aire libre. A

continuación en la siguiente tabla se ilustra los requisitos mínimos para las láminas tipo IV y XI:

Tabla IX. Umbrales de cumplimiento de estándares de señalización vertical

	iibi ales de cui		231411			IVIDAD (co	
TIPO DE SEÑALES				Medición según norma ASTM D 4956-11a,			
		ANTIGÜEDAD		con ángulo de incidencia de - 4°, para ángulos de observación de 0.2° y 0.5°			
				TIPO IV a			0.2 y 0.5 PO XI ^b
				0.2 °	0.5°	0.2 °	0.5°
		Inicial	Bueno	R ≥ 360	R ≥ 150	R ≥ 580	R ≥ 420
	Blanco	36 meses	Regular	R ≥ 288	R ≥ 120	R ≥ 464	R ≥ 336
	Biarico	> 36 meses	Malo	R < 288	R < 120	R < 464	R < 336
		Inicial	Bueno	R ≥ 65	R ≥ 27	R ≥ 87	R ≥ 63
Regulatorias	Rojo	36 meses	Regular	R ≥ 52	R ≥ 21.6	R ≥ 69.9	R ≥ 50.4
3		> 36 meses	Malo	R < 52	R < 21.6	R < 69.9	R < 50.4
		Inicial	Bueno	R ≥ 290	R ≥ 120	R ≥ 460	R ≥ 540
	Verde Limón	36 meses	Regular	R ≥ 232	R ≥ 96	R ≥ 368	R ≥ 432
		> 36 meses	Malo	R < 232	R < 96	R < 368	R < 432
	Amarillo	Inicial	Bueno	R ≥ 270	R ≥ 110	R ≥ 435	R ≥ 315
Preventivas		36 meses	Regular	R ≥ 216	R ≥ 88	R ≥ 348	R ≥ 252
		> 36 meses	Malo	R < 216	R < 88	R < 348	R < 252
	Verde	Inicial	Bueno	R ≥ 50	R ≥ 21	R ≥ 58	R ≥ 42
Informativas		36 meses	Regular	R ≥ 40	R ≥ 16.8	R ≥ 46.4	R ≥ 33.6
		> 36 meses	Malo	R < 40	R < 16.8	R < 46.4	R < 33.6
	Azul	Inicial	Bueno	R ≥ 30	R ≥ 13	R ≥ 26	R ≥ 19
Servicios en la vía		36 meses	Regular	R ≥ 24	<i>R</i> ≥ 10.4	<i>R</i> ≥ 20.8	R ≥ 15.2
		> 36 meses	Malo	R < 24	R < 10.4	R < 20.8	R < 15.2
	Naranja	Inicial	Bueno	R ≥ 145	R ≥ 60	<i>R</i> ≥ 200	<i>R</i> ≥ 150
Temporal Trabajos en la vía		36 meses	Regular	R ≥ 116	R ≥ 48	R ≥ 160	R ≥ 120
		> 36 meses	Malo	R < 116	R < 48	R < 160	R < 120
	Naranja Fosforescente	Inicial	Bueno	R ≥ 105	R ≥ 45	<i>R</i> ≥ 175	R ≥ 125
		36 meses	Regular	R ≥ 84	R ≥ 36	R ≥ 140	R ≥ 100
		> 36 meses	Malo	R < 84	R < 36	R < 140	R < 100
Turísticas	Café	Inicial	Bueno	R ≥ 18	<i>R</i> ≥ 7.5	R ≥ 17	R ≥ 13
		36 meses	Regular	<i>R</i> ≥ 14.4	R ≥ 6	<i>R</i> ≥ 13.6	R ≥ 10.4
		> 36 meses	Malo	R < 14.4	R < 6	R < 13.6	R < 10.4

a: Ver Tabla 5 del ASTM D 4956-11a

b: Ver Tabla 10 del ASTM D 4956-11ª

Para verificar si la señal está cumpliendo con el estándar de calidad, los valores de retroreflectividad medidos con el respectivo retroreflectómetro portátil, deben estar sobre el coeficiente mínimo de retroreflectividad que se indica, el cual depende del tipo de lámina de la señal. En caso que el valor de la medición no supere el mínimo coeficiente de retroreflectividad para el respectivo tipo de señal, estano estaría cumpliendo con los requerimientos.

La tabla 9 también permite cotejarlos valores obtenidos con los contratos de los estándares de mantenimiento por resultados del elemento de seguridad tal como se ha establecido por parte del área de Dirección de Conservación, la cual dispone evaluar el desempeño de la vía, analizando diversos parámetros de interés, siendo uno de ellos la retroreflexión en las señales verticales.

3.2.6. Métodos de mantenimiento de las señales verticales

La administración federal de carreteras (FWHA) ha descrito en el informe de Methods for Maintaining Traffic Sign Retroreflectivity posibles métodos que puede emplear una agencia para mantener un nivel mínimo de retrorefelctividad en las señales verticales.

Estos métodos descritos se los puede utilizar dentro de procesos de gestión de las señales para identificar sistemáticamente señales que no cumplan con

el requerimiento mínimo de retrorefelctividad, tomar medidas para actualizar las señales que se encuentran por debajo del nivel mínimo requerido y monitorear la retroreflectividad de las señales en el lugar. En la siguiente tabla se muestra los métodos que se pueden utilizar para cumplir y mantener niveles mínimos de retroreflectividad.

Tabla X. Métodos para cumplir y mantener los niveles mínimos de retroreflectividad

Método	Descripción	Ventajas	Desventajas
Combinación de	Agencia combina	Método	Potencialmente
Métodos u otros	diferentes	personalizado	laboral y tiempo
método	métodos o adopta	por agencia para	intensivo
	método	lograr efectividad	dependiendo del
	personalizado.	y la eficiencia.	nivel de estudio
			de ingeniería.
Noche Visual	Valoración llevada	Consume menos	Subjetivo y las
inspección	a cabo de acuerdo	tiempo y la	horas
	al procedimiento	general aparición	extraordinarias
	por el inspector	de señales son	que se paga por
	entrenado.	evaluados.	la noche de la
			mano de obra.
Medición de la	Se miden las	La medición	Consume tiempo
retroreflectividad	señales	directa sin	y no puede
en una sesión	con un	subjetivamente y	evaluar otros
	instrumento de	evaluar	factores que
	acuerdo a	objetivamente	afectan
	procedimiento.	señales	apariencia de las
		cuestionables	señales.
Vida esperada	El reemplazo se	Desarrollar la	El tipo lamina y
de la señal	basan en la edad,	vida de servicio	vida esperada
	la garantía, o	local esperado y	debe ser
	degradación de	de fácil	conocido y dar un
	señal láminas.	implementación.	seguimiento de la
			fecha de
			instalación de la
			señal.

Método	Descripción	Ventajas	Desventajas
Reemplazo de	El reemplazo de	Efectivamente	Potencial de
manta	todas las señales	reemplaza todas	residuos
	a intervalos	las señales a la	relativamente
	especificados	vez.	nuevos de las
	basados en la vida		señales.
	más corta del		
	material utilizado.		
Señales de	La sustitución de	Menos mano de	La muestra de
control	señales basadas	obra y desarrolla	señales control de
	en un conjunto de	la esperanza de	debe ser
	muestras de	vida de señas	representativa y
	señales de control.	local.	supervisado.
*Fuente:(Federal highway administration, 2007)			

El método más utilizado para dar mantenimiento a las señales verticales es el de inspección visual. Sin embargo, otros métodos se han probado e implementado incluyendo la medición de retroreflectividad y reemplazos programados basándose en el tiempo de vida de la señal. A continuación se definen los métodos de mantenimientos.

Inspección visual nocturna.- un inspector de señal entrenado evaluara la retroreflectividad de una señal en un vehículo en movimiento en condiciones nocturnas. El inspector identificara las señales que están por debajo de los niveles mínimos de retroreflectividad.

Medición de retrorelfectividad en la señal.- se realiza usando un retroreflectometro, La retroreflectividad de la señal se la compara con el coeficiente mínimo de la señal esperada.

Vida útil esperada de la señal.- En las señales instaladas se le agrega una etiqueta con la fecha de instalación, esto ayuda a reconocer la edad de la señal. La edad de la señal se la compara con el tiempo de vida de la señal esperada.

Reemplazo de manta.- Se reemplazan todas las señales que se encuentran en un intervalo especificado. Evitando evaluar la retroreflectividad. El intervalo de sustitución se basa en el material de corta vida utilizado en esa zona.

Señal de control.- Se basa en el rendimiento de un conjunto de muestra de las señales en el campo, el control de estas señales ayudan a determinar el final de la vida retroreflectantes de las señales.

Los métodos de mantenimiento descrito anteriormente se dividen en dos grupos, los métodos de evaluación y los métodos de gestión.

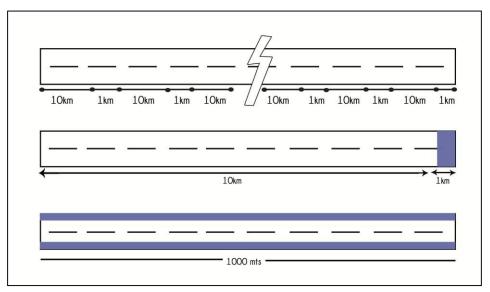
Tabla XI División de los métodos			
Métodos de evaluación	Métodos de Gestión		
Las inspecciones visuales nocturnas	Vida esperada de la señal		
Medicionesde retroreflectividad	Reemplazo de Manta		
	Señales de control		

Los métodos de evaluación incluyen la inspección de las señales en el campo, mientras que los métodos de gestión se basan en técnicas que limitan o eliminan la necesidad de inspecciones de campo. Estos métodos pueden combinarse para lograr prácticas de mantenimientos de las señales retroreflectivas que las agencias pueden usar(Paul J. Carlson, 2014).

Una posible combinación es de un método de gestión con la inspección visual de las señales en el día y la noche. La vida esperada de la señal se basa en la edad y la degradación de los tipos de láminas instaladas. Este método permite dar un seguimiento de la cantidad de las señales existentes, el tiempo de su instalación y donde se encuentran ubicadas. Es recomendable llevar esta información en un registro electrónico para identificar fácilmente los sitios donde se procederá a realizarse el respectivo reemplazo o reparación.

También se podría combinar la vida esperada de la señal con la retroreflectividad medida, donde la medición se realiza en una pequeña muestra en una zona determinada, permitiendo realizar una comparación de retroreflectividad esperada y medida. Estas mediciones ayudan a validar y revisar, la vida útil del tipo de lámina y color utilizada por la agencia.

La construcción del inventario de las señales instaladas en las vías proporciona muchos beneficios para la agencia que administra las vías. El


inventario se puede construir realizando inspecciones visuales para registrar las dimensiones, altura de la señal, tipo de señal, tipo de apoyo, tipo de lámina, tomar un registro fotográfico, etc. Y también con realizar la toma de retroreflectividad con el equipo el cual también proporciona el posicionamiento mediante el dispositivo integrado del GPS.

Además de evaluar la condición inicial de la señal se pueden realizar seguimientos en los Próximos 5 a 7 años mediante los datos proporcionados por la retroreflectividad medida en la señal, estos datos se puede combinar con la vida de servicio estimada de la señal para los próximos años.

3.3. Procedimiento de muestreo

3.3.3. Señalización vertical

El método empleado e inicialmente propuesto por la Dirección de Conservación del Ministerio de Transporte y Obras Públicas establece tomar un muestreo sistemático, el cual consiste en saltarse un número de observaciones (señaleticas) que se encuentran en un intervalo de 10km y a continuación en el siguiente intervalo de un kilómetro establecer una sección de evaluación en donde se realiza mediciones en cada señal encontrada en el respectivo intervalo (ver figura 3.11).

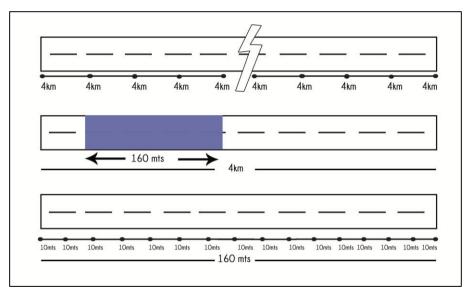


Figura 3.11.Método de muestreo de la dirección de conservación para señales vertical

3.3.4. Señalización horizontal

3.3.4.1. Norma ASTM 7585

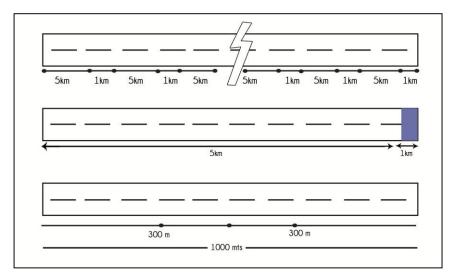

La norma ASTM 7585 describe el criterio de toma de muestra para la determinación de retroreflectividad en las marcas de pavimento de diferentes tipos de longitudes, en base a esto, se considera asociar la longitud de 16 kilómetros para obtener un muestreo a nivel de red. Dado que en la subsección 6.4.3.2 hace referencia que, para una demarcación de 16km., se toma tres secciones de evaluación ubicadas al azar, por tanto se considera que las secciones de evaluación pueden estar separadas cada cinco kilómetros, cumpliendo así esta recomendación. Por otra parte en la sección 6.3.5 menciona que, la sección de evaluación debe tener un tamaño de muestra mínimo de 16 mediciones como se describe en el anexo 1 de dicha norma, donde se obtiene la recomendación que la sección de evaluación debe ser de al menos 125 metros; esto sería que la medición debe hacerse aproximadamente cada 8metros a lo largo de la línea pero por facilidad estas mediciones se tomarán cada 10metros. (ASTM 7585, 2010)

Figura 3.12.Método de muestreo de la Norma ASTM 7585 para señales horizontales

3.3.4.2. Dirección de Conservación

El procedimiento de muestreo empleado por la Dirección de Conservación del Ministerio de Transporte y Obras Públicas indica que para la determinación de la retroreflectividad en las marcas de pavimento, se tiene que definir una sección de evaluación donde el tamaño de la muestra es de solo tres mediciones. Las mediciones se deben hacer cada 300metros a lo largo de la línea, hasta tener el tamaño de muestra fija de tres mediciones. Luego se continua definiendo secciones de evaluación a lo largo de la demarcación cada cinco kilómetro hasta cubrir la distancia requerida.

Figura 3.13.Método de muestreo por Dirección de Conservación para señales horizontales

3.3.5. Metodología de medición

3.3.5.1. Señalización horizontal

Para poder realizar la verificación de la eficiencia del método de muestreo empleado por el MTOP se consideró utilizar otro método de muestreo para la medición de retroreflectividad recomendado por la Sociedad Americana de Pruebas de Materiales (ASTM), práctica estándar 7585 (la cual se encuentra descrita en la sección 3.3.4.1.) para así poder realizar las debidas comparaciones en relación a ambos métodos.

Para el tramo E25 – Baba, el cual fue demarcado con material termoplástico en Julio del 2014 y que tiene un tiempo de 6 meses de exposición al aire libre, se utilizó el método Normado por la ASTM 7585 para tomar las mediciones en las líneas de bordes y de centro, mientras que en los tramos Baba – Tres Marías, Babahoyo – Montalvo y San Juan – Patricia Pilar en la que su demarcación existente fue hecha con material de pintura base solvente, se utilizó el método recomendado por la Dirección de Conservación, tomando las mediciones en las líneas de borde y centro. En el tramo San Juan – Patricia Pilar la cual solo se evaluó las líneas de borde, por razones de seguridad.

La metodología que se utilizó para realizar las mediciones de retroreflectividad en la señalización horizontal para las vías seleccionadas, se detalla a continuación:

- Una vez elegida cada sección representativa en la demarcación de las vías, verificamos que esta esté en excelentes condiciones, no estando afectada por agentes externos como suciedad, marcas de neumáticos o algún factor externo que pueda alterar la demarcación.
- Elegir la sección de evaluación dependiendo del método utilizado para evaluar las demarcaciones en los tramos seleccionados. Luego

- delimitar y colocar señalizaciones necesarias para trabajar con seguridad.
- El punto donde se tomaría la medición debe de estar lavado y secado para que todos los puntos estén en la misma condición. Podría pensarse que la medición podría hacerse sin proceder a limpiar la línea, es decir tal como está en operativo, sin embargo la línea debe ser limpiada dado que la suciedad es relativa de un punto a otro y así no habría condiciones homogéneas para las diferentes mediciones.
- Cerciorarse que el retroreflectómetro este calibrado antes de usar.
- Registrar en una hoja de inspección cada resultado obtenido del respectivo número de mediciones de retroreflexión establecido por el método que se va a evaluar dicha vía.

3.3.5.2. Metodología de la señalización vertical

- Una vez elegida cada sección representativa basados en el método de dirección de conservación, se delimitó y colocó señalizaciones necesarias para trabajar con seguridad.
- El punto donde se tomaría la medición debe de estar lavado y secado para que todos los puntos estén en la misma condición.
- Cerciorarse que el retroreflectómetro este calibrado antes de usar.

 Registrar en una hoja de inspección los tres resultados obtenidos del respectivo número de mediciones de retroreflexión establecido por el método sugerido por la Dirección de conservación.

CAPÍTULO 4

4. TECNICA, INSTRUMENTO Y EQUIPO RETROREFLECTOMETRO

4.1. Equipo a utilizar

Debido a que las señales deben de cumplir con requisitos de contraste y retrorefletividad, existen equipos conocidos como retroreflectómetros manuales que miden estos parámetros en las señalizaciones horizontales y verticales. Estos equipos simulan la interacción de los focos del vehículo, el sistema retroreflectivo y los ojos del conductor. Se trabajó con la marca del equipo Easylux en las señales verticales y horizontales (ver figura 4.1) las cuales cuantifica el fenómeno de retroreflexión en las señales.

Figura 4.1.Retroreflectómetro manual Vertical y Horizontal. Fuente: (MTOP, 2014)

4.2. Procedimiento para la medición del Coeficiente de

Retroreflectividad

El instructivo del ministerio de transporte propone un procedimiento para la medición el cual se resume en las siguientes secciones.

4.2.1. Procedimiento para las Señales Horizontales.

Para realizar la medición del coeficiente de retroreflectividad de las señales horizontales se debe cumplir con el siguiente procedimiento:

 Es recomendable llevar una programación para el trabajo que se debe realizar, determinando una breve descripción de las actividades a ejercer, en donde conste la recopilación de información para la verificación del coeficiente de retroreflectividad en las demarcaciones

- centrales, y los bordes de la carretera. Se deberá indicar el nombre del tramo de la vía y el número de kilómetro donde se va a realizar la recopilación de información.
- 2. Si llegara a pasar de que el punto previsto para la medición, se encuentra inalcanzable por cualquier circunstancia, se realizará la recopilación de la información en los puntos más cercanos, en forma perpendicular al eje de la vía para así facilitar el trabajo.
- Luego, se deberá hacer la limpieza en los puntos donde se llevará a cabo la medición.
- Previo a la calibración del equipo se verificará su funcionamiento incluido el GPS por medio de la opción menú.
- Calibrar el equipo antes de la medición, de acuerdo al procedimiento indicado del manejo del equipo.
- Colocar el equipo sobre la línea que se va a medir el coeficiente de retroreflectividad.
- Toda la información se guarda automáticamente en el software del equipo. Lo más recomendable es anotar la información para que quede respaldada.
- El equipo tiene un GPS que cuando es usado, este registra inmediatamente la ubicación de las señales medidas.
- Se recomienda como mínimo realizar tres (3) mediciones de coeficientes de retroreflectividad por kilómetro.

10.Los formularios para la recopilación de información se deben procesar en oficinas para mayor control.

4.2.2. Procedimiento para las Señales Verticales

Para realizar la medición del coeficiente de retroreflectividad de las señales verticales se debe cumplir el siguiente procedimiento:

- 1. Es recomendable llevar una programación para el trabajo que se debe realizar, detallando una breve descripción de las actividades a ejercer, en donde conste la recopilación de información para la verificación del coeficiente de retroreflectividad en las señales verticales, en las que debe constar nombre del tramo de la vía y kilómetro donde se realizó el trabajo.
- Luego se deberá realizar la limpieza de la placa (señal) con agua y un pedazo de tela absorbente, en las cuales no se debe utilizar ningún producto que altere su condición.
- Previo a la calibración del equipo, se verificará su funcionamiento incluido el GPS por medio de la opción menú.
- Calibrar el equipo antes de la medición, de acuerdo al procedimiento indicado del manejo del equipo.

- Colocar el equipo en la señal y sobre el color que se va a medir el coeficiente de retroreflectividad.
- Toda la información es guardada automáticamente en el software del equipo. Lo más recomendable es anotar la información para que quede respaldada.
- 7. El equipo tiene un GPS que cuando es usado, este registra inmediatamente la ubicación de las señales medidas.
- En las señales verticales, el resultado de la lectura del coeficiente de retroreflectividad deberá ser comparadas con los valores indicados en las normas ASTM D4956, con 36 meses de vida.
- Se recomienda como mínimo realizar tres (3) mediciones de coeficientes de retroreflectividadpor señal.
- 10.Los formularios para la recopilación de información se deben procesar en oficinas para mayor control.

4.3. Manejo del equipo

4.3.1. Retroreflectómetros para medir las señales horizontales:

Pasos para medir el coeficiente de retroreflexión:

- Pulsar el botón "POWER" si se desea conectar y desconectar.
- Seleccionar el botón "MENU" la opción Calibrar así se podrá calibrar el equipo.
- Hacer de acuerdo a como indique las instrucciones de la pantalla del equipo.
- Pulsar el botón amarillo "OK" (lectura de prueba).

Se debe seguir con los siguientes procedimientos en el equipo:

- a) Seleccionar MENU, elegir la opción NUEVO GRUPO y pulsar el botón amarillo "OK".
- b) Con los botones de flechas, se escoger el COLOR de la demarcación y pulsar "ok".
- c) Con los botones de flechas, se escogerá el HITO, donde se debe digitar la abscisa, se debe digitar cada número y pulsar "ok", y se guarda la información el equipo.
- d) En el TIPO DE DEMARCACIÓN, se escogerá el tipo de línea que va a medir y pulsas "Ok".
- e) Una vez que se da seguimiento a este proceso, se continúa realizando la toma de información de la señalización.
- f) Después de la toma de información de la señal, en la pantalla del equipo se muestra:

- RL= Coeficiente de retroreflectividad
- TA= Temperatura Ambiente
- En la esquina inferior derecha, aparece el número de lectura que se ha realizado hasta el momento.

4.3.2. Retroreflectómetro para mediciones en señales verticales

Pasos para tomar la retroreflectividad:

- Pulsar el botón "ON" si se desea conectar y desconectar.
- Seleccionar el botón "MENU" la opción Calibrar así se podrá calibrar el equipo.
- Hacer de acuerdo a como indique las instrucciones de la pantalla del equipo.
- Pulsar el botón "OK" (lectura de prueba).
- Se seguirá el siguiente procedimiento para medir el coeficiente de retroreflectividad:
- a) Seleccionar MENU, elegir la opción NUEVO GRUPO y pulsar el botón rojo.
- b) En la pantalla se muestra tres datos, el color de la placa a medir, el número de la abscisa y un número en la parte superior derecha que es

el número de grupo, se oprime el botón rojo para grabar, el cursor pasa a las centésimas, se oprime el botón rojo, y de esta forma pasa por procesos hasta llegar a los decimales.

- c) Cuando ya ha sido grabada la información se da clic en MENU y en la pantalla se muestra la opción de grabar SI o NO, y se escoge SI.
- d) En la pantalla aparece la siguiente información: GRP=<NUMERO DE GRUPO que se registró>, <el número que se escogió como ABSCISA> en kilómetros, y el color <COLOR>.
- e) Se procede a realizar la medición, para lo cual se colocara el equipo sobre la señal de forma perpendicular, sobre el color escogido, se oprime el botón rojo, la información debe ser anotada. Este procedimiento (e) solamente deberá ser repetido por tres veces en diferentes puntos de la misma placa y del mismo color, estas lecturas sacará un promedio, y servirá para la evaluación.

Los resultados de las mediciones y después que se ha obtenido el promedio, serán comparados con las tablas, para definir la retroreflectividad.

4.4. Otros Equipos de Medición

El retroreflectómetro móvil es un equipo de alto rendimiento debido a que se puede medir la retroreflectividad de manera continua en las demarcaciones de las vías a un ritmo de velocidad vehicular (hasta 100km/h).

Usualmente el retroreflectómetro se fija en la parte lateral de los neumáticos posteriores del vehículo para así poder realizar continuas mediciones en grandes magnitudes de kilómetros.

El ministerio de Quebec – Canadá, cuenta con un retroreflectómetro móvil, el cual además de guardar las mediciones, transfiere la base de datos para un sistema de gestión de activos de la demarcación. Es una manera fácil, sostificada y organizada para ver visualmente un mapeo de la retroreflexión en las vías.

Figura 4.2. Retroreflectómetro móvil (Vectra Francia, 2015)

CAPÍTULO 5

5. MEDICIÓN Y ANÁLISIS DE RESULTADOS

5.1. Criterios para análisis del coeficiente de retroreflectividad

5.1.1. Señales horizontales

Interesados en determinar si la demarcación de un determinado tramo cumple o no con las especificaciones de retroreflectividad se procedió a calcular un intervalo de 95% de confianza para la retroreflectividad media del tramo como:

$$\bar{x} \pm t_{\alpha,n-1} s / \sqrt{n}$$
 (Ec. 2)

donde \bar{x} representa la retroreflectividad promedio obtenida de la muestra, s es la desviación estándar de la muestra, n es el tamaño de la muestra y $t_{\alpha,n-1}$ representa el percentil (1- α)% de una distribución t de Student con n – 1 grados de libertad. Así, podemos asociar al intervalo en (Ec. 2) una prueba de hipótesis unilateral definida como:

$$H_0$$
: $\mu \leq RA \ vs. H_1$: $\mu > RA$

donde probaremos si la retroreflectividad media real cumple con las especificaciones (definido en la hipótesis alterna) o esta no cumple con las especificaciones al no rechazar la hipótesis nula, donde RA representa el mínimo coeficiente de retroreflectividad. Finalmente, rechazaremos H_0 a favor de H_1 , esto es, que la demarcación de un delimitadotramo cumple con las especificaciones, si el RA se encuentra por debajo del límite inferior del respectivo intervalo de confianza.

Debido a que el coeficiente de retroreflectividad mínimo varía de acuerdo al tipo de pintura, el color con el que está demarcada la línea y el tiempo de exposición al aire libre, en la tabla 16 presentamos los coeficientes mínimos deretroreflectividad para cada Tramo.

Tabla XII. Coeficientes mínimos de retroreflectividad para cada tramo					
	F	Ra			
Tramo	(mcd · lu	$x^{-1} \cdot m^{-2}$.)			
	Blanca	Amarilla			
E25 – Baba	325	200			
Baba – 3 María	100	80			
Babahoyo- Montalvo	100	80			
S. Juan – P. Pilar	100	80			

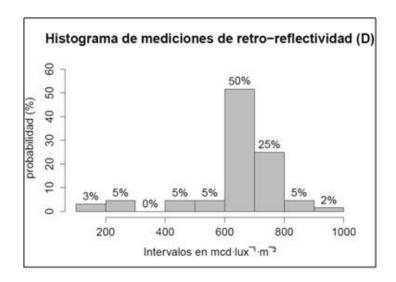
5.1.2. Señales verticales

Consideraremos que una señal vertical no cumple con el requerimiento mínimo cuando por lo menos uno de los valores de retroreflectividad que se obtienen a través de los ángulos de observación no supere el mínimo coeficiente de retroreflectividad respectivo para cada tipo de material como indica la norma ASTM.

Los tipos de láminas de las señales verticales instaladas en los tramos seleccionadas son:

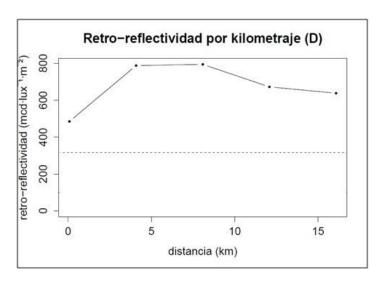
Tabla XIII. Tipos de láminas instaladas en los tramos								
Tramos	Tipo Material	Año de colocación	% requerido del coeficiente mínimo					
E25 – Baba	Tipo XI	2014	100%					
Baba – 3 María	Tipo IV	2011	80%					
Babahoyo-Montalvo	Tipo IV	2014	100%					
S. Juan – P. Pilar	Tipo IV	2012	80%					

5.2. Resultados de la medición del coeficiente de retroreflectividad

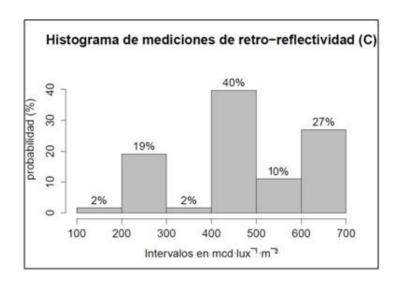

5.2.1. Señales horizontales

5.2.1.1. Demarcación del tramo E25 – Baba

Las medidas fueron tomadas en Enero de 2015 en las líneas de borde derecho, izquierdo y central del tramo E25 – Baba. Se realizaron 85 mediciones por cada línea, obteniendo un total de 255 puntos medidos.


La figura 5.1 representa el histograma de mediciones de retroreflectividad correspondiente a la línea derecha del tramo E25 – Baba. En el se puede

apreciar que un 92% de las mediciones, presentan una retroreflectividad superior a 400 $mcd \cdot lux^{-1} \cdot m^{-2}$. Tan solo un 8% de los valores medidos están por debajo del mínimo para las marcas de material termoplástico de color blanco de $325 \, mcd \cdot lux^{-1} \cdot m^{-2}$.


Figura 5.1. Distribución de valores medidos por intervalos del tramo E25 – Baba.

La figura 5.2 muestra la retroreflectividad por kilómetro de la línea del borde color blanco derecho a lo largo del tramoE25 – Baba. Para todo el tramo se tiene que el promedio de la retroreflectividad por estaciones es superior al mínimo valor especificado ($325 \ mcd \cdot lux^{-1} \cdot m^{-2}$) denotado por una línea horizontal continua. La retroreflectividad promedio para todo el tramo es de $638.57 \ mcd \cdot lux^{-1} \cdot m^{-2}$.

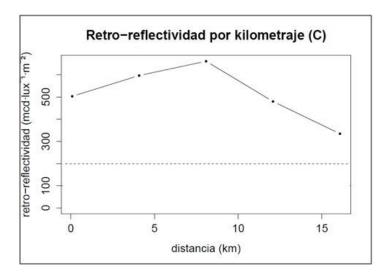


Figura 5.2. Valores de retroreflectividad por km de la línea derecha del tramo E25 – Baba.

Con respecto a la línea central de color amarillo, el histograma de frecuencias muestra que el 98% de las mediciones fueron mayores a 200 $mcd \cdot lux^{-1} \cdot m^{-2}$, el valor mínimo para las marcas de material termoplástica de color amarillo. Sólo un 2% de las mediciones se encuentran por debajo del coeficiente mínimo. Los valores de retroreflectividad media por estaciones se mantuvieron por encima de las especificaciones, a lo largo de todo el tramo (véase figura 5.4).

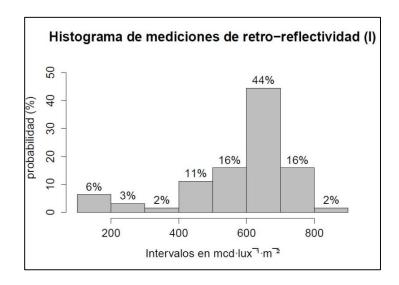
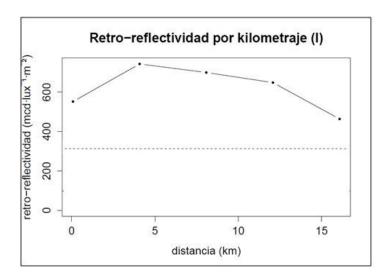
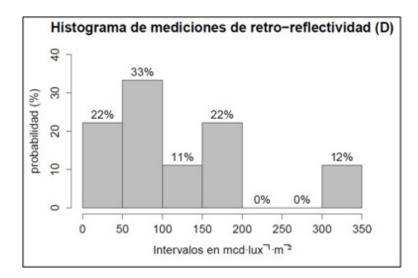

Figura 5.3. Distribución de valores medidos por intervalos de la línea central del tramo E25 – Baba.

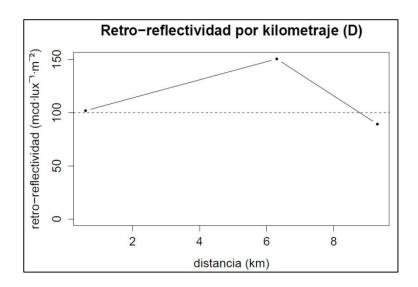
Figura 5.4. Valores de retroreflectividad por km de la línea central del tramo E25 - Baba


Con respecto a la línea de borde izquierda color blanco del tramo, la figura 5.5 representa los valores medición por intervalo donde se puede apreciar que 91% de las mediciones fueron mayores a $325mcd \cdot lux^{-1} \cdot m^{-2}$, el valor

mínimo para las marcas de material termoplástica de color blanco. Tan solo el 9% de los valores medidos están por debajo del coeficiente mínimo.

Figura 5.5. Distribución de valores medidos por intervalos de la línea central del tramo E25 – Baba.


Los valores de retroreflectividad medida por estaciones se mantuvieron por encima de las especificaciones, a lo largo del tramo (véase figura 5.6).


Figura 5.6.Valores de retroreflectividad de la línea izquierda del tramo E25 – Baba.

5.2.2. Demarcación del Tramo Baba – 3 Marías

Visualmente, se aprecia que la marca de pintura del tramo Baba – Tres Marías está totalmente desgastada, su aplicación fue hace tres años. Las mediciones fueron tomadas en Enero de 2015. Se realizaron 9 mediciones por cada línea, obteniendo un total de 27 puntos medidos. Con respecto a estas mediciones la figura5.7 muestra la distribución de los valores de medición por intervalo de la línea color blanco derecho donde el 55% de los valores medidos están por debajo del valor mínimo de una retroreflectividad adecuada (100 $mcd \cdot lux^{-1} \cdot m^{-2}$), Mientras que en la figura 5.8 se aprecia que en las estaciones la retroreflectividad promedio no mantiene una postura determinante para definir si a lo largo del tramo la retroreflectividad está por encima de la especificación.

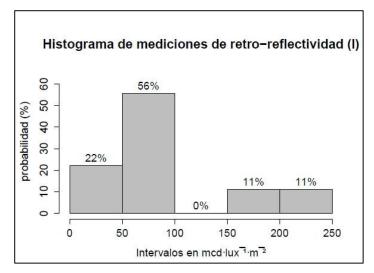
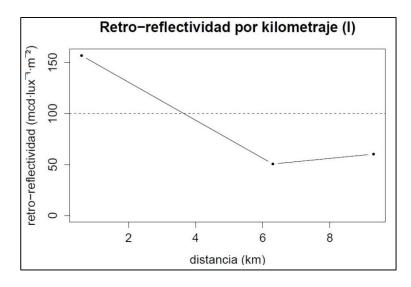
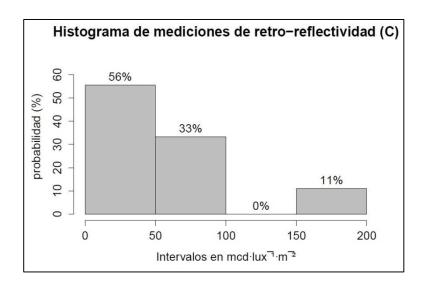


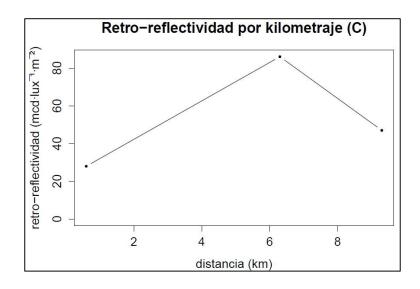
Figura 5.7.Distribución de valores de medición por intervalos de la línea derecha del tramo Baba – Tres Marías.


Figura 5.8.Valores de retroreflectividad de la línea derecha del tramo Baba – Tres Marías.

Con respecto a la línea izquierda color blanco del tramo, basados en la figura 5.9 muestra la distribución de los valores de medición por intervalo donde la medición muestra que el 78% de los valores medidos están por debajo del valor mínimo de la retroreflectividad adecuada (100 $mcd \cdot lux^{-1} \cdot m^{-2}$).

Figura 5.9. Distribución de valores de medición por intervalos de la línea izquierda del tramo Baba – Tres Marías.


En la figura 5.10 se muestra la retroreflectividad por kilómetro de la línea del borde izquierdo del tramo, la cual refleja que la retroreflectividad promedio de cada estación no se mantiene por encima del valor mínimo de retroreflectividad adecuada, es 100 $mcd \cdot lux^{-1} \cdot m^{-2}$. El valor de la media general de todas las mediciones es de 89.33 $mcd \cdot lux^{-1} \cdot m^{-2}$.

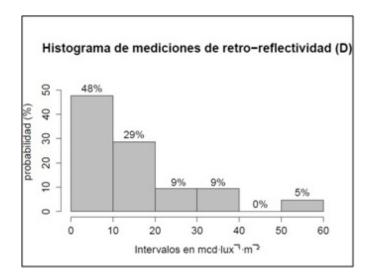

Figura 5.10.Valores de retro-reflectividad por km de la línea izquierda del tramo Baba – Tres Marías.

En relación a la línea central color amarillo del tramo. El histograma de frecuencia de la figura 5.11 muestra la distribución de los valores de medición por intervalo donde el 89% de las mediciones fueron menores a 100 $mcd/lux-m^2$, el valor mínimo de la retroreflectividad adecuada. La retroreflectividad promedio de todos los valores es de 89.33 $mcd/lux-m^2$.

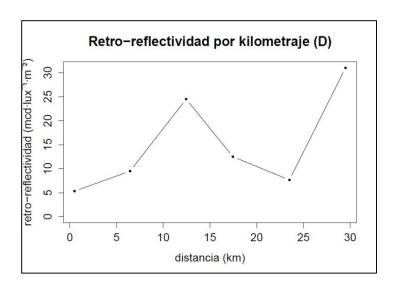
La figura 5.12 muestra la retroreflectividad por kilómetro de la línea central a lo largo del tramo Baba – tres Marías. Para toda la vía se tiene que el promedio de la retroreflectividad por estaciones es inferior al mínimo valor especificado ($100 \ mcd \cdot lux^{-1} \cdot m^{-2}$) denotado por una línea horizontal segmentada. La retroreflectividad promedio de todos los valores es de 89.33 $mcd/lux - m^2$.

Figura 5.11.Distribución de valores de medición por intervalos de la línea central color amarillo del tramo Baba – Tres Marías.

Figura 5.12.Valores de retro-reflectividad por km de la línea central del tramo Baba – Tres Marías.


5.2.3. Demarcación del tramo Babahoyo – Montalvo

La marca de pintura de la vía Babahoyo – Montalvo está totalmente desgastada, su aplicación fue en Enero 2014. Las mediciones fueron tomadas en Enero de 2015. Se realizaron 21 mediciones por cada línea, obteniendo un total de 63 puntos medidos.


La figura 5.13 representa el histograma de mediciones de retroreflectividad correspondiente a la línea color blanco derecha de la vía Babahoyo – Montalvo. En la que se puede apreciar que el 100% de los valores medidos

están por debajo del valor mínimo de una retroreflectividad adecuada (100 $mcd \cdot lux^{-1} \cdot m^{-2}$).

La figura 5.14 muestra la retroreflectividad por kilómetro de la línea del borde derecho de la vía Babahoyo – Montalvo. Como era de esperar, en todo el tramo, el promedio de la retroreflectividad por cada estación este por debajo del valor mínimo especificado.

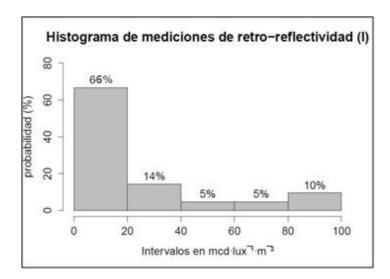
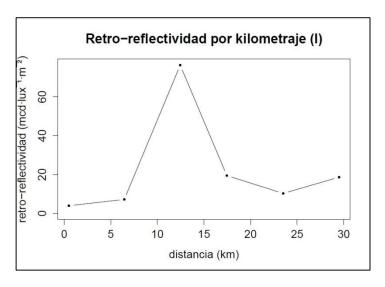
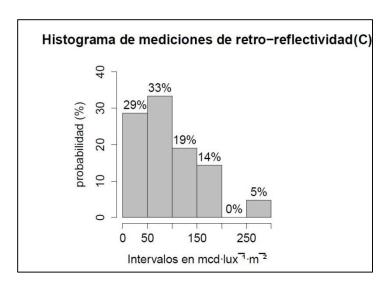


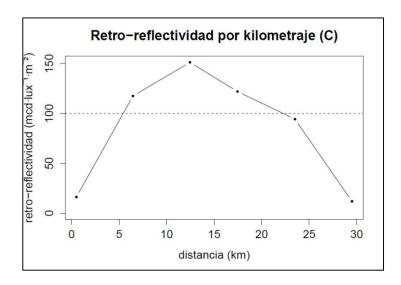
Figura 5.13.Distribución de valores de medición por intervalos de la línea derecha del tramo Babahoyo – Montalvo.


Figura 5.14.Valores de retro-reflectividad por km de la línea derecha del tramo Babahoyo – Montalvo.

Con respecto a la línea color blanco izquierda de la vía. La figura 5.15 muestra la distribución de los valores de medición por intervalo donde se puede apreciar que el 100% de las mediciones están por debajo de 100 $mcd \cdot lux^{-1} \cdot m^{-2}$, el valor mínimo de la retroreflectividad adecuada.

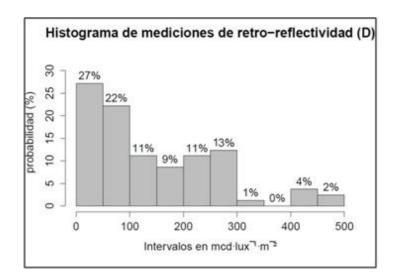

Figura 5.15.Distribución de valores de medición por intervalos de la línea izquierda del tramo Babahoyo – Montalvo.

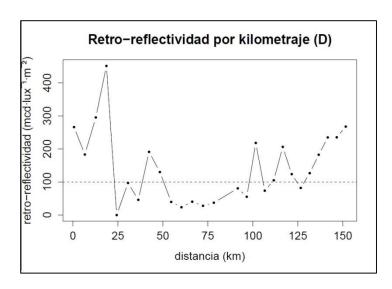
La figura 5.16 muestra la retroreflectividad por kilómetro de la línea del borde izquierda del tramo, el cual se encuentra por debajo de 100 $mcd \cdot lux^{-1} \cdot m^{-2}$, el valor mínimo de retroreflectividad adecuada. El valor de la media general de todas las mediciones es de 24.33 $mcd \cdot lux^{-1} \cdot m^{-2}$.


Figura 5.16.Valores de retro-reflectividad por km de la línea izquierda del tramo Babahoyo – Montalvo.

Con respecto a la línea central amarilla del tramo, El histograma de frecuencia de en la figura 5.17 muestra la distribución de los valores de medición por intervalo donde el 62% de las mediciones están por debajo de $100 \ mcd/lux - m^2$, valor mínimo para marcas de material pintura base solvente. La media aritmética de todos los valores es de $91.95 \ mcd/lux - m^2$.

Figura 5.17.Distribución de valores de medición por intervalos de la línea central del tramo Babahoyo – Montalvo.


Los valores de retroreflectividad media por estación no se mantuvo totalmente por encima de las especificaciones, en todo el trayecto de la vía (véase figura 5.18).


Figura 5.18.Valores de retro-reflectividad por km de la línea central del tramo Babahoyo – Montalvo.

5.2.4. Demarcación del tramo San Juan – Patricia Pilar

El tramo San Juan — Patricia Pilar tiene demarcaciones reparadas y existentes. Las mediciones fueron tomadas en enero de 2015. Se realizaron 81 mediciones por cada línea, obteniendo un total de 162 puntos medidos. Lafigura5.19 muestra la distribución de los valores de medición por intervalo donde la medición muestra que el 49% de los valores medidos están por debajo del valor mínimo de retroreflectividad adecuada (100 $mcd \cdot lux^{-1} \cdot m^{-2}$). De igual forma, el Figura5.20 muestra la retroreflectividad por kilómetro de la línea del borde derecho del tramo y el valor mínimo de retroreflectividad adecuada.

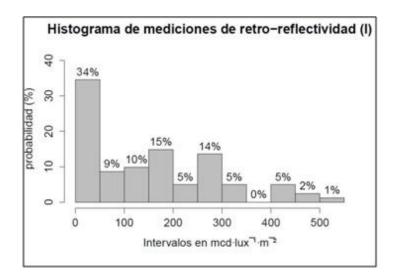
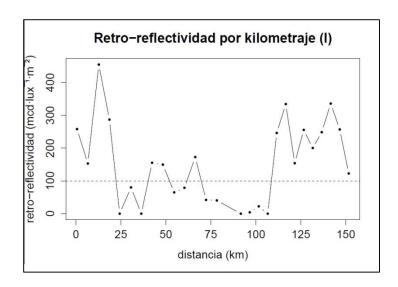


Figura 5.19.Distribución de valores de medición por intervalos de la línea derecha del tramo San Juan – Patricia Pilar.


Figura 5.20.Valores de retroreflectividad por km de la línea derecha del tramo San Juan – Patricia Pilar.

Con respecto a la línea color blanco izquierda del tramo, basados en la figura 5.21 se aprecia que la distribución de los valores de medición por intervalo donde la medición muestra que el 44% de los valores medidos están por debajo del valor mínimo de retroreflectividad adecuada (100 $mcd \cdot lux^{-1} \cdot m^{-2}$).

Figura 5.21.Distribución de valores de medición por intervalos de la línea izquierda del tramo San Juan – Patricia Pilar.

La figura 5.22 muestra la retroreflectividad por kilómetro de la línea del borde izquierdo del tramo y el valor mínimo de retroreflectividad adecuada, es 100 $mcd \cdot lux^{-1} \cdot m^{-2}$. El valor de la media general de todas las mediciones es de 152.53 $mcd \cdot lux^{-1} \cdot m^{-2}$.

Figura 5.22.Valores de retroreflectividad por km de la línea izquierda del tramo San Juan – Patricia Pilar.

5.2.2. Señales verticales

5.2.2.1. Tramo E25 – Baba

De 168 señales correspondientes al tramo E25-Baba, se pudieron evaluar 25 señales obtenidas mediante el método de muestreo de la Dirección de Conservación. De acuerdo alafigura5.23, las señales verticales para el análisis de retroreflectividad no presentaron incumplimiento en alcanzar el umbral mínimo por lo que podemos concluir que las señales verticales de la vía cumplen su debido desempeño.

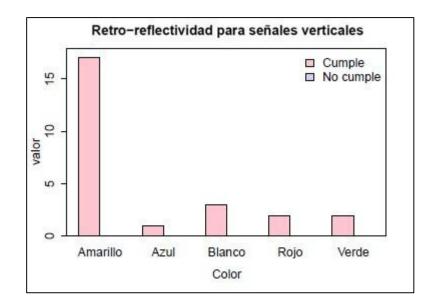
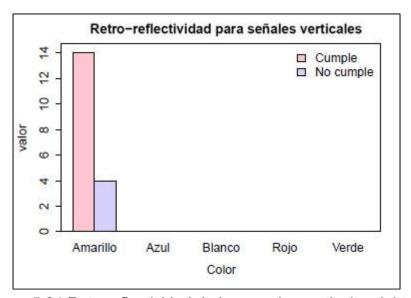



Figura 5.23. Retroreflectividad de las señales verticales del tramo E25-Baba

5.2.2.2. Tramo Baba – Tres Marías

De 81 señales correspondiente al tramo Baba – tres Marías, se evaluaron 18 señales obtenidas mediante el método de muestreo empleado, donde

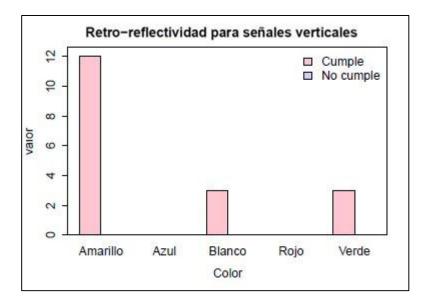

basados en el resultado de las señales evaluadas se puede decir que, el 78% de las señales verticales en el tramo Baba – Tres Marías cumplen los requerimientos mínimos, mientras el 22% no alcanzaron el umbral mínimo como se muestra en la figura 5.24.

Figura 5.24.Retroreflectividad de las señales verticales del tramo Baba – Tres Marías

5.2.2.3. Tramo Babahoyo – Montalvo

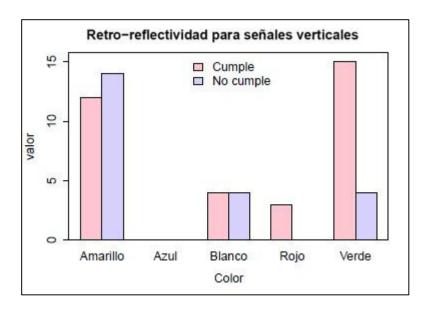

De 249 señales correspondientes al tramo Babahoyo – Montalvo, se evaluaron 18 señales. Basados en las señales verticales analizadas, podemos decir que las señales verticales del tramo cumplieron con el umbral mínimo.

Figura 5.25.Retroreflectividad de las señales verticales del tramo Babahoyo – Montalvo

5.2.2.4. Tramo San Juan – Patricia Pilar

De 309 señales correspondientes al tramo San Juan – Patricia Pilar, 55 señales fueron tomadas para el análisis de retroreflectividad, mediante el método de muestreo de Dirección de Conservación, el 42% de las señaléticas presentaron incumplimiento del umbral mínimo de retroreflectividad.

Figura 5.26.Retroreflectividad de las señales verticales del tramo San Juan – Patricia Pilar

5.3. Análisis de resultados

5.3.1. Tramo E25 - Baba

Con un 95% de confianza podemos asegurar que se cumple con las especificaciones para cada una de las líneas de demarcación del tramo E25 – Baba, dado que el límite inferior del intervalo de 95% de confianza para la media de la retroreflectividad supera el requerimiento mínimo respectivo para cada línea, como se puede apreciar en la siguiente tabla.

	Tabla XIV. Estado de la línea izquierda del tramo E25 - Baba								
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN			
(km)		(mcd·lux ⁻¹ ·m ⁻²)							
0+000	Izquierda	325	455	552	573	SÍ CUMPLE			
4+000	Izquierda	325	683	743	802	SÍ CUMPLE			
8+000	Izquierda	325	663	699	736	SÍ CUMPLE			
12+000	Izquierda	325	633	648	664	SÍ CUMPLE			
16+000	Izquierda	325	432	464	495	SÍ CUMPLE			

	Tabla XV. Estado de la línea central del tramo E25 - Baba							
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN		
(km)	2111271	(mcd·lux ⁻¹ ·m ⁻²)	001102031011					
0+000	Central	200	430	503	576	SÍ CUMPLE		
4+000	Central	200	531	597	662	SÍ CUMPLE		
8+000	Central	200	651	661	671	SÍ CUMPLE		
12+000	Central	200	471	480	488	SÍ CUMPLE		
16+000	Central	200	291	335	378	SÍ CUMPLE		

	Tabla XVI. Estado de la línea derecha del tramo E25 - Baba								
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN			
(km)	EIIVE	(mcd·lux ⁻¹ ·m ⁻²)	001102031011						
0+000	Derecha	325	397	485	573	SÍ CUMPLE			
4+000	Derecha	325	754	788	821	SÍ CUMPLE			
8+000	Derecha	325	733	794	855	SÍ CUMPLE			
12+000	Derecha	325	656	672	688	SÍ CUMPLE			
16+000	Derecha	325	622	638	654	SÍ CUMPLE			

5.3.2. Tramo Baba – tres Marías

Basados en la información proporcionada por la muestra, en cada una de las estaciones con un 95% de confianza no se rechaza H_0 , es decir no se rechaza la hipótesis que postula que la media real de la retroreflectividad se encuentra por debajo del requerimiento mínimo respectivo, así no satisfaciendo los requrimientos.

Tal	Tabla XVII. Estado de la línea izquierda del tramo Baba – Tres Marías								
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN			
(km)		(mcd·lux ⁻¹ ·m ⁻²)							
0+000	Izquierda	100	47.19	157	267	NO CUMPLE			
6+000	Izquierda	100	0.00	51	115	NO CUMPLE			
9+000	Izquierda	100	0.48	60	120	NO CUMPLE			

Ta	Tabla XVIII. Estado de la línea central del tramo Baba – Tres Marías								
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN			
(km)	LINLA	(mcd·lux ⁻¹ ·m ⁻²)	CONCLUSION						
0+000	Centro	80	1.83	28	54	NO CUMPLE			
6+000	Centro	80	0.00	86	215	NO CUMPLE			
9+000	Centro	80	0.00	47	100	NO CUMPLE			

Ta	Tabla XIX. Estado de la línea derecha del tramo Baba – Tres Marías								
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN			
(km)	LINEA	(mcd·lux ⁻¹ ·m ⁻²)	CONCLUSION						
0+000	Derecha	100	0.00	102	232	NO CUMPLE			
6+000	Derecha	100	0.00	151	388	NO CUMPLE			
9+000	Derecha	100	0.00	89	192	NO CUMPLE			

5.3.3. Tramo Babahoyo – Montalvo

En general, para la vía Babahoyo – Montalvo podemos decir que las líneas de borde de la vía no se encuentran en buen estado, no cumpliendo los requerimientos mínimos establecidos para todas las estaciones observadas, a excepción de la segunda estación de la línea central que se encuentra en buen estado.

Tab	Tabla XX. Estado de la línea Izquierda del tramo Babahoyo – Montalvo									
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN				
(km)	LIIVL	(mcd·lux ⁻¹ ·m ⁻²)	CONCESSION							
0+000	Izquierda	100	0.00	4	16	NO CUMPLE				
6+000	Izquierda	100	4.64	7	10	NO CUMPLE				
12+000	Izquierda	100	50.21	76	102	NO CUMPLE				
17+000	Izquierda	100	13.54	20	25	NO CUMPLE				
23+000	Izquierda	100	7.76	10	13	NO CUMPLE				
29+000	Izquierda	100	10.70	19	27	NO CUMPLE				

Tab	Tabla XXI. Estado de la línea central del tramo Babahoyo – Montalvo								
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN			
(km)	LIIVE	(mcd·lux ⁻¹ ·m ⁻²)	CONCLOSION						
0+000	Central	80	9.31	16	23	NO CUMPLE			
6+000	Central	80	80.32	118	155	SÍ CUMPLE			
12+000	Central	80	61.34	151	241	NO CUMPLE			
17+000	Central	80	73.20	122	171	NO CUMPLE			
23+000	Central	80	24.78	94	164	NO CUMPLE			
29+000	Central	80	4.65	12	19	NO CUMPLE			

Tabl	Tabla XXII. Estado de la línea derecha del tramo Babahoyo – Montalvo									
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN				
(km)	LIIVE	(mcd·lux ⁻¹ ·m ⁻²)	CONCLOSION							
0+000	Derecha	100	0.00	5	16	NO CUMPLE				
6+000	Derecha	100	3.39	10	16	NO CUMPLE				
12+000	Derecha	100	15.88	25	33	NO CUMPLE				
17+000	Derecha	100	6.39	13	19	NO CUMPLE				
23+000	Derecha	100	0.00	8	21	NO CUMPLE				
29+000	Derecha	100	0.00	31	77	NO CUMPLE				

5.3.4. Tramo San Juan – Patricia Pilar

Para el tramo San Juan – Patricia Pilar se pudo observar que existen irregularidades en diferentes sectores de tanto la línea izquierda como derecha. Para la línea derecha tan sólo 6 de 27 estaciones cumplen con las especificaciones mientras que para la línea izquierda son 8 de 27 estaciones las que se encuentran en buen estado. Para ambas líneas de la vía, menos del 30% del demarcado se encuentra en buen estado por lo que en general, podemos decir que el demarcado de la vía no se encuentra en buen estado.

Tabla	a XXIII. Est	ado de la lín	ea derecha d	el tramo Sar	ı Juan – Patrio	ia Pilar
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN
(km)	LINEA	(mcd·lux ⁻¹ ·m ⁻²)	CONCLUSION			
0+000	DERECHA	100.00	249.40	266.00	282.60	SÍ CUMPLE
6+000	DERECHA	100.00	102.38	183.00	263.62	SÍ CUMPLE
12+000	DERECHA	100.00	98.58	295.00	491.42	NO CUMPLE
18+000	DERECHA	100.00	396.47	450.67	504.86	SÍ CUMPLE
24+000	DERECHA	100.00	0.00	0.00	0.00	NO CUMPLE
30+000	DERECHA	100.00	69.87	97.00	124.13	NO CUMPLE
36+000	DERECHA	100.00	0.00	46.00	126.62	NO CUMPLE
42+000	DERECHA	100.00	0.00	191.00	387.06	NO CUMPLE
48+000	DERECHA	100.00	43.82	130.00	216.18	NO CUMPLE
54+000	DERECHA	100.00	28.70	39.67	50.64	NO CUMPLE
60+000	DERECHA	100.00	21.09	23.67	26.24	NO CUMPLE
66+000	DERECHA	100.00	26.71	40.33	53.96	NO CUMPLE
72+000	DERECHA	100.00	0.00	28.00	61.67	NO CUMPLE
78+000	DERECHA	100.00	24.91	37.33	49.76	NO CUMPLE
91+000	DERECHA	100.00	68.01	80.67	93.32	NO CUMPLE
97+000	DERECHA	100.00	0.00	55.33	136.56	NO CUMPLE
101+000	DERECHA	100.00	161.05	218.00	274.95	SÍ CUMPLE
106+000	DERECHA	100.00	19.71	73.67	127.62	NO CUMPLE
111+000	DERECHA	100.00	48.35	105.00	161.65	NO CUMPLE
116+000	DERECHA	100.00	0.43	206.00	411.57	NO CUMPLE
121+000	DERECHA	100.00	10.45	123.67	236.89	NO CUMPLE
126+000	DERECHA	100.00	8.30	82.00	155.70	NO CUMPLE
131+000	DERECHA	100.00	0.00	126.67	262.39	NO CUMPLE
136+000	DERECHA	100.00	63.46	182.33	301.21	NO CUMPLE
141+000	DERECHA	100.00	190.69	234.67	278.64	SÍ CUMPLE
146+000	DERECHA	100.00	132.55	235.00	337.45	SÍ CUMPLE
151+000	DERECHA	100.00	58.87	267.33	475.80	NO CUMPLE

Tabla	Tabla XXIV. Estado de la línea izquierda del tramo San Juan – Patricia Pilar					
ABSCISA	LÍNEA	REQ. MIN	L. INF. IC95%	MEDIA	L. SUP. IC95%	CONCLUSIÓN
(km)	LINLA	(mcd·lux ⁻¹ ·m ⁻²)	CONCLUSION			
0+000	IZQUIERDA	100.00	194.36	258.00	321.64	SÍ CUMPLE
6+000	IZQUIERDA	100.00	72.03	153.00	233.97	NO CUMPLE
12+000	IZQUIERDA	100.00	377.45	455.00	532.55	SÍ CUMPLE
18+000	IZQUIERDA	100.00	63.05	287.00	510.95	NO CUMPLE
24+000	IZQUIERDA	100.00	0.00	0.00	0.00	NO CUMPLE
30+000	IZQUIERDA	100.00	62.16	80.00	97.84	NO CUMPLE
36+000	IZQUIERDA	100.00	0.00	0.00	0.00	NO CUMPLE
42+000	IZQUIERDA	100.00	120.69	155.33	189.98	SÍ CUMPLE
48+000	IZQUIERDA	100.00	56.62	149.67	242.72	NO CUMPLE
54+000	IZQUIERDA	100.00	0.00	65.00	169.24	NO CUMPLE
60+000	IZQUIERDA	100.00	0.00	79.00	202.00	NO CUMPLE
66+000	IZQUIERDA	100.00	111.36	172.67	233.97	SÍ CUMPLE
72+000	IZQUIERDA	100.00	1.43	42.00	82.57	NO CUMPLE
78+000	IZQUIERDA	100.00	12.51	40.33	68.15	NO CUMPLE
91+000	IZQUIERDA	100.00	0.00	0.00	0.00	NO CUMPLE
97+000	IZQUIERDA	100.00	0.00	4.00	15.68	NO CUMPLE
101+000	IZQUIERDA	100.00	4.31	22.33	40.36	NO CUMPLE
106+000	IZQUIERDA	100.00	0.00	0.00	0.00	NO CUMPLE
111+000	IZQUIERDA	100.00	0.00	246.33	593.23	NO CUMPLE
116+000	IZQUIERDA	100.00	224.49	334.33	444.18	SÍ CUMPLE
121+000	IZQUIERDA	100.00	0.00	154.00	395.36	NO CUMPLE
126+000	IZQUIERDA	100.00	155.84	255.67	355.49	SÍ CUMPLE
131+000	IZQUIERDA	100.00	33.83	200.33	366.84	NO CUMPLE
136+000	IZQUIERDA	100.00	130.70	248.67	366.63	SÍ CUMPLE
141+000	IZQUIERDA	100.00	146.67	336.00	525.33	SÍ CUMPLE
146+000	IZQUIERDA	100.00	235.94	257.00	278.06	SÍ CUMPLE
151+000	IZQUIERDA	100.00	70.26	122.67	175.07	NO CUMPLE

5.3.2. Señales Verticales

5.3.2.1. Tramo E25 - Baba

De acuerdo a los resultados de medición de retroreflectividad de las señales verticales, se puede considerar que todas las señales verticales instaladas en la respectivo tramo cumplen con los estándares de calidad de la Norma ASTM D4956.

5.3.2.2 Tramo Baba - tres Marías

Los resultados de la medición del coeficiente de retroreflectividad de las señales verticales existentes en el tramo dan paso a establecer cierta suspicacia de que realmente existen señales defectuosas con respecto al cumplimiento en el parámetro de retroreflectividad. A continuación en la tabla 18 se presenta el porcentaje de incumplimiento de dichas señales.

Tabla XXV. Señales defectuosa de la vía Baba – Tres Marías				
Vía	Abscisa	Angulo de entrada		
		0.2°	0.5°	
	7+230	85%	100%	
Baba - Tres Marías	7+240	58%	84%	
Daba - Ties Marias	7+720	92%	100%	
	7+860	37%	65%	

5.3.2.3. Tramo Babahoyo – Montalvo

Conforme a los respectivos resultados de la medición de retroreflectividad del muestreo de las señales verticales se puede considerar que todas las señales verticales instaladas en la respectiva vía cumplen con los estándares de calidad de la Norma ASTM D4956.

5.3.2.4. Tramo San Juan – Patricia Pilar

Los resultados de la medición del coeficiente de retroreflectividad de las señales verticales instaladas en el tramo dan paso a establecer cierta suspicacia de que existen señales defectuosas con respecto al cumplimiento en el parámetro de retroreflectividad. A continuación en la tabla XXVI se presenta el porcentaje de incumplimiento de dichas señales.

Tabla XXVI. Señales defectuosa de la vía S. Juan – P. Pilar				
	Porcentaje de			
Abscisa	Incumplimiento			
	0.2°	0.5°		
20+000	21	17		
20+010	33	37		
20+800	9	5		
30+000	8	-		
30+900	100	100		
30+920	-	83		
30+940	84	98		
30+980	88	86		
40+100	27	32		
40+115	64	60		
40+695	60	56		
40+700	8	-		
40+730	12	-		
40+900	58	54		
50+020	6	-2		
50+600	28	32		
50+800	15	21		
50+900	18	21		
60+200	18	23		
60+200	8	-		
70+000	2	-		
70+230	0	-		
101+900	16	15		

5.4. Evaluación de Rendimiento de los Métodos de medición

Durante la realización de las mediciones por el método sugerido por la dirección de conservación y el de la Norma ASTM 7585 en los tramos que se intervinieron se obtuvo lo siguiente:

Tabla XXVII. Rendimiento por día de los métodos de medición				
Rendimiento	Dirección de conservación	ASTM 7585		
Barrido en seco	50km/día	Pocas mediciones podrían ser no significativa		
Limpieza profunda con agua manualmente	20km/día	4km/día		
Lavado con hidrolavadora	-	12km/día		

Tabla XXVIII. Rendimiento por día de la señal vertical			
Rendimiento	Dirección de conservación		
Limpieza con paño húmedo	100km/día		

Tabla XXIX. V	entajas y desventajas de los n	nétodos de muestreo
Método	Ventajas	Desventajas
Dirección de conservación	Rápido	Pocas mediciones podrían generar muestreo no significativo
Norma ASTM 7585	Determina un tamaño de muestra representativo para a nivel de red vial o a nivel de proyecto.	Requiere mayor tiempo

CAPÍTULO 6

6. Proveedores de producto en el Ecuador

El desarrollo de este capítulo tiene la finalidad de proporcionar al Ministerio de Transporte y Obras Públicas una base de datos de empresas proveedoras de los elementos de señalización horizontal y vertical.

6.1. Empresas

6.1.2. Proveedoras de Pintura y microesferas para demarcación de la vía

En el listado que se presenta a continuación, se hace referencias a nombres de empresas reconocidas y respetadas por la calidad de sus servicios en el mercado nacional.

Tabla XXX. Empresas de pintura de trafico
Sherwin- Williams
Swarco
Pintuco
Unidas
3M

6.2. Proveedores de las láminas retroreflectiva para la señalización vertical

Con referencia a las empresas proveedoras de las láminas para las señalizaciones verticales, únicamente la empresa 3M está brindando estos productos.

6.3. Calidad y garantía de los productos

En general, los productos que estas empresas proporcionan son las pinturas base solvente, base agua y pintura termoplástica para la demarcación de la vía, además de disponer también de microesferas.

En la actualidad, la garantía de la durabilidad de la pintura no ha sido demostrada por las empresas de pintura en el Ecuador, pero experiencias internacionales mantienen un registro de la durabilidad. Con referencia a la calidad de la pintura se logra cumplir los requerimientos establecidos por las normas ecuatorianas.

Tabla XXXI. Durabilid	lad de las pinturas
Pintura	Durabilidad
Base solvente	2 – 6 meses
Base agua estándar tipo I	2 – 6 meses
Termoplástico	2 – 5 meses
Epóxicas	2 – 5 años
Poliuretanos	2 – 5 años
Metacrilatos	3 – 5 años
Poliurina	3 – 4 años
Cintas	2 – 3 años

6.4. Análisis de costo

En el anexo C se presentan los análisis de precios unitarios para la colocación de las señales verticales y señales horizontales.

CAPÍTULO 7

7. CONCLUSIONES Y RECOMENDACIONES

7.1. Conclusiones

- El método de dirección de conservación tiene una cobertura menor que el método ASTM 7585 tomando del 18% de los puntos de medición por el método ASTM 7585.
- Método de dirección de conservación requiere de cinco veces menos tiempo para la toma de datos que el Método ASTM 7585.
- 3. El método de medición por la Norma ASTM 7585 debido a que necesita de un número mayor de observaciones, provee resultados más precisos y da una lectura más fiable para el tramo de carretera.

- La retroreflectividad de las señales horizontales y verticales de la vía
 E25 Baba cumple con los estándares de calidad.
- 5. La retroreflectividad de las señales horizontales de la vía Baba Tres Marías no cumplen con los estándares de calidad. Con respecto a las señales verticales, un 22% de ellas no cumplen con las especificaciones.
- 6. Para la retroreflectividad de las señales horizontales de la vía Babahoyo Montalvo, estas no cumplen con los estándares de calidad a lo largo de la carretera, mientras que para las señales verticales todas cumplieron con las especificaciones.
- 7. Para algunos tramos de la vía San Juan Patricia Pilar las señales horizontales no satisfacen las especificaciones donde al inicio y final del tramo, las líneas se encuentran en aparentemente en mejor estado que para el resto de la carretera. Un poco más de 41% de las señales verticales de la vía no cumplen con las especificaciones.

7.2. Recomendaciones

A la Dirección de conservación del Ministerio de Transporte y Obras Públicas:

- Es necesario realizar el monitorio continuo de valores de retroreflectivad con el fin de retroalimentar a INEN estos resultados y exigir garantía de calidad de productos de señalización a los proveedores y aplicadores.
- Aumentar el tamaño de muestreo para toma de mediciones de retroreflectividad en señalética horizontal, a nivel de red vial estatal.
- Implementar sistema de gestión de activos de seguridad vial, es decir, de señales verticales y señales horizontales en la red vial estatal, basándose en los resultados obtenidos a través de los muestreos de condición de retroreflectividad.
- Utilizar el equipo de alto rendimiento para obtener mediciones continuas de la retroreflexión de las señales horizontales, con el fin de monitorear una curva de comportamiento de sus valores a lo largo del tiempo.

7.3. Reflexiones

De acuerdo a la revisión de literatura, en los Estados Unidos, los materiales más utilizados para el demarcado de pavimento son las pinturas de agua (59.99%) y termoplástica (23%)(Hollingsworth, 2012). De esto se puede rescatar que a pesar que la pintura termoplástica tenga una vida útil de hasta 4 años, esta podrían ser una pintura efectiva en términos de retroreflectividad, ya que, si bien la pintura puede estar visiblemente demarcada sobre las vías, esta podría carecer de propiedades retroreflectivas, por lo que esto implicaría la aplicación de una nueva pintura.

Para poder obtener el porcentaje de pintura, hay que considerar la cantidad de pintura que se necesita para la línea en kilómetros que se requiere pintar. En base a esto se obtendría un porcentaje, a través del cual se podría decidir si fuese convenienteo no invertiren el material de aplicación.

La red vial de Los Ríos es una red que se le ha dado mantenimiento continuamente. Por esto hay una tendencia a mejor respuesta en la durabilidad de las placas que de las pinturas.

ANEXOS

ANEXO A DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN VERTICAL

DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN VERTICAL DEL TRAMO "E25 – BABA"

CARRETERA: E25 - BABA INICIO: 0+000 PORTICO INFORMATIVO

19 Cumple	420 Cumple		42 Cumple											
26	280	83	86	900	580	580	580 580 87 87 87	87 87 88 87 87 435	87 87 87 435 435	87 87 87 87 435 435 435	87 87 87 435 435 435 435	87 87 87 435 435 435 435 435	435 435 435 435 435 435 435 435	435 435 435 435 435 435 435 435 435 435
61	701	88		182							- 			
132.33	1353.33	200.33		394.00	394.00	394.00	394,00 1236,00 1736,00 1196,00	394,00 1236,00 1736,00 1196,00	394.00 1236.00 1141.00 1141.00	394.00 1236.00 1186.00 1141.00 1135.33	394.00 1236.00 1141.00 1115.33 1135.33	394.00 1236.00 1141.00 1115.33 1135.33	394.00 1236.00 1141.00 1173.00 1210.00	394.00 1236.00 11196.00 11135.33 1135.33 1136.00 1073.00
58.9	62.3 709 716	77.5	91.6	91.6 188 182 176	91.6 1182 176 176 176 176 182 183 183 184 185 185 185 185 185 185 185 185 185 185	91.6 188 182 176 176 654 654 654 180	91.6 188 188 176 654 666 666 666 196 180 188 571 571	91.6 182 182 176 654 654 656 666 666 667 180 180 180 180 180 180 180 180 180 180	91.6 182 176 654 666 666 666 667 190 180 188 571 571 573 574 574 575 576 576 577 578 578 578 578 578 578 578 578 578	91.6 182 182 186 654 656 656 656 656 656 656 656 656 65	91.6 1182 176 654 664 666 666 667 180 180 180 180 180 180 180 180 180 180			
133	124 1423	179	205	205 205 403 387 392	217 205 205 403 387 387 1236 1236	205 205 403 403 392 1236 1236 1236 1236 376 376								
R5-6	R4 - 1B			G 15.15.	R1.18 R2-138	R1-18 R2-138 R7-18	R1-18 R2-138 R1-18	R1-18 R2-138 R1-18 P1-281	 	╎ ┪╎╸	╶ ┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩	┆┩╏ ┦╃╫╫	╶ ┩┩┩┩┩┩┩┩┩┩┩	╶ ┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩
Azul	Візисо		Verde	Verde Rojo	Rojo Rojo Blanco	Rojo Rojo Rojo	Rojo Rojo Rojo Amarilio	Rojo Rojo Rojo Amarilio	Rojo Rojo Rojo Amarillo Amarillo	Rojo Rojo Amarilio Amarilio Amarilio	Rojo Rojo Amarilio Amarilio Amarilio Amarilio	Rojo Rojo Amarilio Amarilio Amarilio Amarilio Amarilio Amarilio	Rojo Rojo Amarilio Amarilio Amarilio Amarilio Amarilio Amarilio Amarilio	Rojo Rojo Amarilio Amarilio Amarilio Amarilio Amarilio Amarilio Blanco
Parada	Velocidad		Kilometraje	Kilometraje Pare	Kilometraje Pare No rebasar	Kilometraje Pare No rebaser Pare	Kilometraje Pare No rebaser Pare Curva iz	Kilometraje Pare No rebasor Pare Curva iz	No rebaser Pare Pare Curva iz Chevron	No rebasar Pare Pare Curva iz Chevron Chevron	No rebasar Pare Pare Curva iz Chevron Chevron	No rebasar Pare Pare Curva iz Chevron Chevron Chevron	No rebasar Pare Pare Curva iz Chevron Chevron Chevron	
Regulatoria	Regulatoria		Informativa	Informativa Regulatoria	informativa Regulatoria Regulatoria	Informative Regulatoria Regulatoria Regulatoria	Informativa Regulatoria Regulatoria Regulatoria Preventiva	Informativa Regulatoria Regulatoria Regulatoria Preventiva Preventiva	Regulatoria Regulatoria Regulatoria Regulatoria Preventiva Preventiva	Regulatoria Regulatoria Regulatoria Regulatoria Preventiva Preventiva	Regulatoria Regulatoria Regulatoria Preventiva Preventiva Preventiva Preventiva	Regulatoria Regulatoria Regulatoria Preventiva Preventiva Preventiva Preventiva Preventiva	Regulatoria Regulatoria Regulatoria Preventiva Preventiva Preventiva Preventiva Preventiva Preventiva	Regulatoria Regulatoria Regulatoria Preventiva Preventiva Preventiva Preventiva Preventiva Preventiva Preventiva Regulatoria
Kuulekoo				×	×	×	×	×	×	×	×	×	×	×
× × ×	×		×	×	×	×	×	× × × ×	× × × × × ×	× × × × × ×	× × × × × × ×	× × × × × × × × ×	× × × × × × × × ×	× × × × × × × × ×
LONGITUD E	079 W 32.4829		079 W 37.5630	079 W 37.5630 079 W 37.5221	079 W 37.5630 079 W 37.5221 079 W 37.6325	079 W 37.5620 079 W 37.5221 079 W 37.6520	079 W 37.5630 079 W 37.5321 079 W 37.6325 079 W 37.6914	079 W 37.5620 079 W 37.6221 079 W 37.6826 079 W 37.6814	779 W 37,5820 779 W 37,6525 779 W 37,6520 779 W 37,6520 779 W 37,7620	79 W 37.5830 779 W 37.5821 079 W 37.5620 079 W 37.762 079 W 37.762 079 W 37.7620	779 W 37.5620 779 W 37.5620 779 W 37.5620 779 W 37.7620 779 W 37.7620 779 W 37.7620 779 W 37.7620	779 W 37.5620 779 W 37.5620 579 W 37.6620 679 W 37.7620 679 W 37.7620 679 W 37.7620 679 W 37.7620	779 W 37.5620 779 W 37.5620 779 W 37.6620 779 W 37.7620 779 W 37.7620 779 W 37.7620 779 W 37.7606 779 W 37.7606	779 W 37.5521 779 W 37.5521 779 W 37.5525 779 W 37.5520 779 W 37.7520 779 W 37.7520 779 W 37.7509 779 W 37.7509 779 W 37.7509
1ATITUD L	01 S 45.4091 07		01 S 47.0362 07		┈╎┈╎═╎┈╎┈╎┈╎┈╏┈╏┈╏ ┈	╶┦╺╣═┦┈╏┈╏┈╏┈╏┈╏┈╏┈╏┈ ╏┈╏	▕▕▗ ▎ ▄ ▎ ▕ ▗▎ ▕ ▄ ▍ ▘ ▍ ▝▄ ▍ ▘ ┃	▕▝	╶┦╶╣═╎╶╎╶╎═╏╴┦╶╏═╂┈╏╶╏═╏┈╏╶╏┈ ╏	▗▍▗▎▀▎▕▗▝▞▕▐▗▝▀▋▄▎▗▋▀▍▄▋▗▊▗▊▄▋▗▐▗▐▆ ▜▀▜▘ ▋ ▗▜▀	▕▕▗ ▎ ▕▕▕▕▕▕▕Ŏ ▕▕Ŏ ▕▕Ŏ			
1NICIAL 0+040 01 S	0+140 01 S	-		 - - - - - - - - - - - - - - - - - - -					╿╸┩╶┦╸┩╶┩╸┪			┞┩╣┩╣┩╣┪╏ ┪╫┪┪┪		
-	2	-												

CARRETERA: E25 - BABA INICIO: 0+000 PORTICO INFORMATIVO

S S S S S S S S S S S S S S S S S S S	T		1	<u>a</u>	T		49		1	<u>.</u>			e e			e e			e	1	<u> </u>	e l			Jie Jie			ale			a		
OBSERVACIONES				Cumple			Ситр		,	Cumple			Cumple			Ситріе			Сищріе		,	Tramble		ľ	Cumple			Cumple			Cample		
UMBRAL REQUERIDO	05,			315			315			315			315			315			315			315			315			315			42		
UMBRAL R	020			435			435			435			435			435			435			435			435			435			58		
ROMEDIO	050			546			550			554			546			561			537			547			541			549			93		
LECTURA PROMEDIO	020			1092.33			1107.67			1150.00			1159.00			1218.33			1068.33			1249.67			1140.33			1111.33			204.33		
RAS	05°		582	545	543	551	548	554	578	562	578	523	595	532	542	551	568	564	532	576	502	543	567	531	526	559	537	528	295	552	101	91.9	84.7
LECTURAS	02°		1220	1025	1101	1151	1049	1049	1225	1051	1156	1243	1175	1149	1153	1235	1196	1224	1087	1055	1063	1278	1228	1243	1136	1174	1111	1143	1067	1124	218	206	180
CODIGO				P1 - 2B			D6-2B1			D6 - 2B I			D6-281			06.281			D6-281			D6-281			D6-2B1			06-281			٥		
COLOR	!			Amanilo			Amarillo			Amarillo			Amarillo			Amarillo			Amanillo			Amarillo			Amarillo			Amenillo			Verde		
TIPO SEÑAL				Curvaiz			Chever			Chevion			Chevron			Phoven	5		Chevron			Chevron			Chevron			Chevron			Kilometraje		
CLASE		-		Preventiva			Browenting	Danina d		Droventiva			Preventiva			Contraction	rievenius		Preventiva			Preventiva			Droventiva			Proventiva			toformativa		
	Cuasino	201010		>	(
0081	IIIO I IZOII	DENECTIO		-	1		;	\ \		,	1		,	,		,	×		,	Ç		,	,		,	,		,	,		,	,	
040104000	OGRAFICAS	TONGILOD		2000	0/9 W 3/.0000			079 W 37.9006			9005.15 W 27.0		0000	8018.75 W 870			079 W 37.9109		02001010	0/9 W 5/.5100		0.000	079 W 37.9150		0000	079 W 37.93U3		0000	079 W 37.9303		0.00	079 W 37.3440	
	٦	ראווועט			01 S 47.2154 D			01 S 47.2414 0			01 S 47.2414 0			01 S 47.2525		-+	01 S 47.2526 (-	01 S 47.2629		+	01 S 47.2629		-	01 S 47.2956		+	01 S 47,2956		+	01 S 47.3284	_
	NSTANCIA CC	1	INICIAL	+	10+760 0		\dashv	10+900 0		1	10+900		1	10+920		-1	10+920 (7	10+940		1	10+940		7	10+960		╅	10+960		十	11+000	
Ì	GRUPO				16			17			18			19			20			21			22			23			24			52	
	SUB	TRAMO																															

DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN VERTICAL DEL TRAMO "BABA – TRES MARÍAS"

TRAMO: BABA - TRES MARIAS INICIO: 0+000 INTERSECION EN Y

OBSERVACIONES No cumple No cumple LECTURA PROMEDIO UMBRAL REQUERIDO 02° 05° 88 88 88 88 88 88 89 8 88 88 88 516 216 216 216 216 216 216 216 216 318 216 462 473 413 410 419 422 418 377 8 965.00 841,00 758.67 10.43 838.67 875.00 887.00 932.67 867.00 176,67 3.73 413 4.3 1.5 635 359 391 LECTURAS 02° 05° 875 875 875 875 867 867 867 867 867 867 892 926 891 981 982 983 841 4 841 3.8 33 802 D6 - 2B I D6-28 D P1-2BD P6-17B D6 - 2B I D6 - 2B I D6 - 28 I D6 - 2B I D6 - 2B I D6 - 2B I D6-2B1 CODIGO CLASE TIPO SEÑAL COLOR SEÑAL Amarillo Amarillo Amarillo Amerillo Amarillo Amarillo Amarillo Amarillo Amanilo Amanillo Amanillo Chevron Chevron Chevron Chevron Chavron Chevron Curva de Chevron Chevron Animat Chevron Preventiva LADO DERECHO IZQUIERDO × GRUPO DISTANCIA COORDENAS GEOGRAFICAS
AL NODO LATITUD LONGITUD 079 W 43,8693 079 W 43.8750 079 W 43.8750 079 W 43,8746 079 W 43.8810 079 W 43.8693 079 W 43,8568 01 S 46.6898 079 W 43.8158 079 W 43.8457 079 W 43.8568 079 W 43.8627 01 \$ 46,8223 01 S 47,0290 01 S 46,7476 01 \$ 46.7650 01 S 46,7476 01 S 46,7550 01 \$ 46.7098 01 S 46,7106 01 S 46.7106 01 S 46,7339 7+500 7+180 7+240 7+080 7+120 7+230 INICIAL 7+040 7+060 7+100 7+160 7+000 Ξ 10 SUB

TRAMO; BABA - TRES MARIAS INICIO: 0+000 INTERSECION EN Y

rn i		_		_	-		_		_	1	Т	Т				Γ	_	_	_	Т	Т	T	-	Т	Т	_
UMBRAL REQUERIDO OBSERVACIONES			Cumple				Cumple			ajam.	aidiin			Cumple			,	cambie			No cumple			No cumple		
EQUERIDO	05°		88				88				88			88				88			88			88		
UMBRAL RI	020		216				216				216			216				216			216			216		
LECTURA PROMEDIO	050		402				375				376			373				348			0			4		
LECTURA	02°		842 33				788.00				774.00			769.67				717.33			2.00			15.60		
LECTURAS	05°		301	3	408	408	352	396	250	3/0	401	313	414	380	247	10	392	359	375	311	O	О	D	4	4.4	4.4
LECTI	020		155	210	842	842	731	836	200	181	830	639	853	788	2	21	808	736	761	655	1,4	2,3	2,3	15.6	15.6	15.6
Copies	200		200	0P - ZB 0			0 86 90	207-07			D6 - 2B D			U 80. 90	27.00			D6-28D			D6-28 D			P2 - 5f		
80100	10100		3	Amanilo			4	ATIBILIO			Amanilo			Amenillo	Allenino			Amarillo			Amadilo			Amenillo		
TOO SERVE	וויט טבואדר			Chevron				Chevron			Chevron				Chevron	:		Chevron			Carrya			Intercention		
Т		SENAL		Preventiva				Preventiva			Preventiva				Preventiva			Praventiva			Denvertive			Drawentiva	Tallinabil	
	00	IZQUIERDO		×				×			×				×			×			,	\ \		,		
	LADO	DERECHO																								
	EOGRAFICAS	LONGITUD		070 W 43 8810	2000			079 W 43,8878			70000 42 42 020	U/9 VY 43,030/			079 W 43.8987			0000 15 11 010	0/9 W 43.3030			079 W 43.9169			079 W 44.0450	
	JORDENAS G	LATITUD		0 0000 67 0 10	+			01 S 47,0525 (+	01547,0703			01 S 47.0703			-+-	01 \$ 47.0873			01 S 47.0852		-	01 S 47.2000	
	DISTANCIA COORDENAS GEOGRAFICAS	AL NODO	INICIAL	t	14340			7+560			╁	7+580			7+600			+	7+620		1	7+720		1	7+860	
	GRUPO			!	12			13				4			15				16			17			18	
	SUB	LEAMO			1																					

DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN VERTICAL DEL TRAMO "BABAHOYO - MONTALVO"

LECTURAS LECTURA PROMEDIO LIBRAL REQUERIDO OBSERVACIONES 02° 05° 05°	Cumple	-	Cumpe	Cumble	ejow.j.		Cumple	Cumple	Cumole		Cumple	Cumple		Ситре	Cumple		Cumple	Cumple		Cumple	Cumple	Сипре	3	Solito	gown
OS: OS:	110	,	011	150	150	201	21	21	110		110	110		110	150		110	21		110	110	110		2	-
MBRAL RE	270		270	360	600	nac	95	20	020		270	270		270	360		270	99		270	270	270		270	
ROMEDIO L	404		377	452		494	46	99	Ş	2	413	409		437	485		489	4		426	438	327		395	
LECTURA P	824		876	938		1018	131	150	3	345	856	838		890	992		982	123	1	868	906	744	\perp	807	
SCTURAS 20 05°			3 1 3	45 459	ł I	1 1	1 1	20 43	Ιī	1 1	370 201 868 421 868 421			Ш			\perp		┯	╌	868 425 912 442			832 409 832 409	_
COLOR	AMARILLO 80	+	AMARILLO 8	BLANCO 9		BLANCO 10	VERDE 1	VERDE 1		AMARILLO	AMARILLO	AMARILLO	Τ.	AMARILLO	BLANCO		AMARILLO	VERDE		AMARILLO	AMARILLO	AMARILLO		AMARILLO	
copido	D6-28D		P6-58	R4 - 18		R4 - 18	a	11 - 484		D6-2BD	P1-281	D6-281		D6 - 281	R4 - 18		P6 · 2B	o		D6-2BD	D6-2BD	P1-281		D6-281	
TIPO SENAL	CHEVRON		BTA	VELOCIDAD		VELOCIDAD	KILOMETRAJE	LUGAR		CHEVRON	CURVA	CHEVRON		CHEVRON	VELOCIDAD		ZONA ESCOLAR	KILOMETRAJE		CHEVRON	CHEVRON	CIRVA		CHEVRON	
CLASE	PREVENTIVA		PREVENTIVA	REGULATORIA		REGULATORIA	INFORMATIVA	INFORMATIVA		PREVENTIVA	PREVENTIVA	ODENCATIVA	LUCACIALIA	PREVENTIVA	ATOOLI ATOOL	REGUENIONS	PREVENTIVA	INFORMATIVA		PREVENTIVA	PREVENTIVA	DOCUCALTIVA	נונרות	PREVENTIVA	
LADO DERECHO IZQUIERDO	×		×	×		×	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		×	×	,	,	×		×	×	,	\	×	×			×	
GRUPO DISTANCIA COORDENAS GEOGRAFICAS	11	0300.534.60	079W29.8771	702V 4794	0700 (7000)	079W27,4631	079W27.2618	OUT OUT OF THE	Ot SWICE CO.	079W25.3478	079W25.0756		079W242542	079W24.1486		079W22.3057	079W22.3057		0/9W19.7828	079W19.3613	025 61 W070		079W19.2542	079W18.0447	
OORDENAS		01048.0413	01548.6375	2077 07-370	01549,4407	01849.4475	71036017		U1550U.4214	01551.0578	01851.1047		01850.9620	01250.9769		01S51.4628	01851,4628		01850.1712	01849.8640	04040 8515	210025	01S49.6428	01547,5896	
DISTANCIA CO		0+300	0+200		0+220	6+300	8-1700	3	009+6	11+700	12+050		13+600	13+900		17+600	17+600		23+500	24+500		24+100	24+750	29+600	
SUB GRUPO DISTA		-	2		8	4		,	9	7	8		6	₽		F	12		5	7		2	16	17	

DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN VERTICAL DEL TRAMO "SAN JUAN – PATRICIA PILAR"

TRAMO; SAN JUAN - PATRICIA PILAR INICIO: 0+000 ROTULO INFORMATIVO (BIENVENIDO)

ERIDO OBSERVACIONES	050	No compa	NO CELIFICIA		17 No cumple			17 Cumple			ojamijo W	ardinips ou			22 Cumple		1	88 No cumple			22 Cumple			88 No cumple		88 No cumple	+		-	88 NO CUILIPIE		1	120 No cumple		1	17 No cumple				88 No cumple				
UMBRAL REQUERIDO	020		212	1	ç	2		40				216			52			216			52			216		216	017			216			288			\$0				216	216	216	216	216
Н	050		73		;			55				28			52			92			2			0		į.	0			2			17			12		İ		38	38	38	38	35
IRA PROF	020		170.67		1	76.97		134.67				197.33			131.67			199.33			169.67			0.00	-	20 02	323.67			34.37			33.97			29.27				7.63	77.63	7.63	7.63	77.63
TEC		\dashv	+	+	+	$\frac{1}{1}$	+	+	1	-	-	1			_						L	ŀ	_	-		$\frac{1}{1}$	+	_		-					-		3			-	\vdash			
LECTURAS	920		82.3	d, L,	3	10.6	2 0	583	3.00	202	51.3	73.4	93.9	83.9	51.9	55.4	47.5	83.2	98.2	94.6	66.1	63.5	63.5	-	-) 	14.6	14.8	16.1	1.74	1.59	1.51	17.4	16.4	18.2	11.3	11,3	5	_	35.	36.5	35.5	35.5	35.5 35.5 34.4 198 219
TEC	050		186	6/13	1	27.1	+ 07	4.02	543	135	126	182	217	193	131	142	122	180	214	204	111	166	168	0	-	١	315	315	8	37.4	33.8	31.9	34.2	31.5	36.2	29.7	28.3	5	0.67	79.5	79.5	79.5	79.5	79.5 79.5 73.9 380 413
CODIGO			P1-2B1					1	1 - 484			P1-2B1			R4 - 48			P1-281			BA . 4B			P1 . 2B			P6 - 18			P6 - 2B			R4 - 18			٥				186.281	D6-281	D6-281	D6-281	D6 - 28 I R2 - 138
COLOR			Amarillo			Verde			Verde			Amanilo			Rojo			Amadio			olog	n n		Amarillo	Citothic		Amarillo			Amarillo			Blanco			Verde				Amarillo	Amarillo	Amarillo	Amarillo	Amarilo Blanco
TIPO SENAL			Curva (iz)			Kilometraje	1		Informacion			Curva (iz)			Deduc, Valo			Curva (iz)			Section 1	Yed-velo		19	Curva (12)		Cruzar		-	Aviso de muro			Velocidad			Kilometraie				000	Chevron	Chevron	Chevron	Chevron No Rebasar
	SENAL		Preventiva			Informativa		-	Informativa			Preventiva			Opendatoria	╫		Compatible	300000			Kegulatona	1		Preventiva		Preventiva			Preventiva	1		Regulatoria			Informativa	2				Preventiva	Preventiva	Preventiva	Preventiva Regulatoria
-	OHERDO																	,	 			×														,					×	×	×	×
004	DEPECHO POUIE	2111	×		_	×			×			×				\ \		-	1						×		×			×			,	<			-							×
200000000000000000000000000000000000000		-	079 W 29,6805			079 W 29.6805			079 W 29.6805			070 W 20 4185	2012			079 W 29.3795			079 W 26.9414			079 W 26.7838			079 W 26.5047		079 W 26.5040			070 to 25 4800	113 11 20-1000		7707 00 111	U/9 W 25.4014			079 W 24.9747				079 W 24.9408	079 W 24,9408	079 W 24.9408	079 W 24.9408 079 W 24.9439
	;;†	ייייייייייייייייייייייייייייייייייייייי	01 S 28 3347 07	1		01 S 28.3347 0			01 \$ 28,3347 0	+		04 50 70 50 50	+		-	01 \$ 27.7852 0			01 \$ 24.9933 0			01 S 24.9279 0		\rightarrow	01 \$ 24.8349 0		01 \$ 24.8340	+-		+	01 5 44.0201		$\boldsymbol{+}$	01 S 24.8253		-	01 S 21,3235				01 \$ 21.3341			
	STANCIA CL	AL NODO	╁	十		20+000 0	┢		20+200 0	╁		╁	20+02		┪	21+000 0		┪	30+000			30+300			30+900		30+920	┪	+	†	30+340		┪	30+980		-	40+100				40+115	+	+	+++
Ţ	GRUPO		-			2	-		r	,			*			2			9			7			8		0	B		1	2			=			12				13	13	13	13
	SUB	TRAMO	CAITANIAC	2																-			-						†															

TRAMO: SAN JUAN - PATRICIA PILAR INICIO: 0+000 ROTULO INFORMATIVO (BIENVENIDO)

OBSERVACIONES			No cumple			No cumpie			No cumple			Ситріе			Cumple			Cumpie			Cumple			No cumple			No cumple			No cumple			No cumple			No compie			No cumple			No cumple		
GUERIDO	g		88			120			120			88			22			88			88			88			88			17			88			17			17			88		
UMBRAL REQUERIDO	220		216			288			288			216			52			216			216			216			216			40			216			40			40			216		
+	62	_	39			130			138			104			164			151			148			41			90			11			69			13			13			95		
LECTURA PROMEDIO	05°		86.93			264.67			254.67			218.67			307,67			314.67			288.00			90.63			203.33			28.93			182.67			32,90			32.67			198.28		
3AS	020		37.1	39.3	39.3	138	<u>\$</u>	98	144	130	140	95,1	117	98.8	157	157	177	159	159	135	142	151	151	28	88	0	5.78	86.8	86	10,9	10,9	12.5	80.8	89.3	37.7	13.1	13.1	13.8	12.9	12.1	14	97.6	97.6	88.8
LECTURAS	020		4.48	88.2	88.2	276	303	215	266	241	257	211	234	211	291	291	341	339	325	280	288	288	288	189	81	1.9	224	193	193	27.5	27.5	31.8	184	196	168	32.3	32,3	34.1	32.3	31.1	34.6	200.23	200.6	194
CODIGO			D6-281			R4 - 18			R4 - 1B	!		P6 - 58	23		84-48			P6 - 5B			P6 - 5B			P1-281			P1-28D			۵			P1-281			۵			0			P1.2B0		
COLOR			Amarillo			Blanco			Blanco	200		Amarillo	Olite Illia		Roio			Amarillo			Amarillo			Amarillo			Amarillo			Verde			Amarillo			Verde			Verde			Amarillo		
TIPO SENAL			Cheuma			SOKWH			20.534	Link		ΔΤα	¥ 0		olev-hoo			BTA			RTA			Curva (iz)	(2)		(do)	Carlos (ac)		Kilometraie	km135		Curva (iz)			Klometraje	ka 144		Kilometraie	Xm 144		Curva (de)		
	SENAI		Contraction	Lievelinve		Romilatoria	Negulatoria			Regulatoria		4	Preventiva		rises de la constante de la co	DE GARAGO	-	Preventiva			Contraction	rickelluka		Contraction of the Contraction o	LICACIONA			Frevenciva		Informativa			Preventiva			informativa			Informativa			Preventiva		
-	COURTON	CONTRACT.					1					,	×		,						,	4								>	· ·		×									>		
ADO	mod oncode	חישאפר		×		† ,	×	+		×		1						\ \ \	\ \									×								>	,		,	Ç				
CERTICAS		LONGITOD		079 W 24.8842			079 W 24.8842			079 W 8949			079 W 8949			079 w 24.5039		000000000000000000000000000000000000000	079 W 24.9039			079 W 24.9341			079 W 24.9451			079 W 25.5649		0000	079 W 25.5408		2002 30 01 010	113 W 23.3389		Caca ac in cac	Ury w Za.5359		0000	Ura w 25.5559		0101 10 11 010	U/9 W 25.039	
CONTANCIA COORDENAS GEOGRAFICAS	UKDENAS GE	LATITUD	-	01 \$ 21.0886 07		-	01 \$ 21.0886 07		4	01 \$ 21,0697		4	01 S 21.0697		\rightarrow	01 \$ 21.0392 0		+	01 \$ 21.0392 0	-	_	01 \$ 20,9835 0			01 S 20. 9595 D		-	01 S 16.5535 0			01 S 16.3959 0			01 5 15.3995			01 \$ 16.2483			01 S 11.8568		$\boldsymbol{+}$	01 S 11.8568	1
00 41011120	ISTANCIA CO		+	40+695 0		+	40+200 0		1	40+730 0		\dashv	40+730 0		7	40+760 0		\forall	40+760 0		1	40+860		7	40+900 0		_	50+020 (+	20+600		-	20+800		+	20+900		7	60+200		+	60+200	
r	GRUPO	1		15			16			17			18			19			2			21			22			23			24			25			26			27			28	
+	SUB	TRAMO							⁻			-																																

TRAMO; SAN JUAN - PATRICIA PILAR INICIO: 0+000 ROTULO INFORMATIVO (BIENVENIDO)

020
- 1
-
1
1
R4 - 1B
T
R2 - 13B
Γ
P6 - 5B
P6 - 5B
P6-5B
P1 - 28
P1 - 2B D
١
ا
P6 - 5B
P6 - 5B

TRAMO: SAN JUAN - PATRICIA PILAR INICIO: 0+000 ROTULO INFORMATIVO (BIENVENIDO)

			֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֜֜֜֓֓֓֜֜֜֜֓֓֓֜֜֜֜֓֜֓֜֓֜֓	-	5		200	200	25				1			
GRUPO	DISTANCIA	COOKDENAS	DISTANCIA COORDENAS GEOGRAFICAS	CHUEDE	POLIFEDO	SENAL				020	050	020	05°	050	020	
	AL NODO	CALLING	2011201													
	NICIAL	1000 00	070 181 20 5310		×	Preventiva	BTA	Amarillo	P6-5B	281	133	286.67	137	216	88	cumple
43	101+400	1265.55 00	07.9 VV 25.35.3							272	133					-
										307	145					-10
		0070 11 0 00	1202 00 141 000	>		Preventiva	BTA	Amarillo	P6-5B	305	139	297.67	139	216	88	Cumpie
4	101+60U	00 3 22,7430	019 44 23:0001							294	139					
										294	139					
			2000		>	toformativa	Kilometraje	Verde	٥	144	58.6	144.00	58	40	17	Cumple
45	101+600	00 S 55.2498	079 W 29.5001		ļ	Data House				144	56.5			į		
										14.	59.8					
			0000	1		Confermental	Kilometraie	Verde	٥	155	57.3	146.33	52	40	17	Cumple
94	101+800	00 S 55.1348	079 W 29.5062	×		e in little and a	KW			155	57.3					
										129	48.8					
						December	Circus (iv)	Amarillo	P1-281	190	79.8	181.00	75	216	88	No cumple
47	101+900	00 S 55,1109	079 W 29,610Z	<		200000000000000000000000000000000000000	(2)			791	66.4					
										191	78.8					
			-				Vilometraio	Vorde	۵	122	46	130,67	90	40	17	Cumple
48	111+350	00 \$ 50.6522	079 W 29.2576	×		PANSHINGHIN	E S			135	52					
										135	52					
				,		foformativa	Kilometraie	Verde	٥	152	55	144.67	55	\$	2;	Cumple
	121+800	00 \$ 46.00 79	079 W Z7.6842				mx			140	55					
										142	54.6					
					×	Informativa	Kilometraie	Verde	٥	119	45.3	109,00	14	40	17	Ситріе
22	121+800	00 \$ 46.00 79	079 W 27.8842		,		5			102	38.1					
										106	38.1					
		7000	20 101 02 24 26	>		Informativa	Kilometraie	Verde		121	44.8	121.67	45	40	17	Cumple
51	131+300	00 S 41.2261					Ē			133	49.6					
	-									111	41.5					
		1000	377777		×	Informativa	Kilometraje	Verde	۵	132	49.6	134.33	50	40	17	Cumple
22	131+300	06 \$ 41.2201	┪				κm			132	49.6					
										139	52.1					-
		2000 300	070 18 24 8518	>		Informativa	Kilometraje	Verde	٥	149	55	146.33	25	04	2	Cumple
8	14/00	00 2 30°3200	+				EX			149	55					
										141	51.4					
		0000	270 110 02 0545	,	×	informativa	Kilometraje	Verde	٥	141	53.8	143.33	2	40	17	Cumple
\$	141+700	00 \$ 36.9283	-				Ę			141	53.8					
										148	55.7		_			
	300	0000000	070 M 02 A713	×		Informativa	Kilometraje	Verde	۵	141	22	135.67	52	40	17	Cumple
22	151+300	00 3 32.3430	-[-				km			133	52					
										133	52					

ANEXO B

ANÁLISIS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN HORIZONTAL

ANÁLISIS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN HORIZONTAL DEL TRAMO "E25 – BABA"

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA IZQUIERDA DEL TRAMO "E25 - BABA"

Grupo	Abscisa	Linea blanca Izquierda	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)	Catanaa	U			(mcd·lux	(⁻¹ ·m ⁻²)	
1	0+000	522							
1	0+010	164						N.	
1	0+010	171				1			
1	0+020	178	1			1		1	
1	0+040	695	1						
1	0+050	536	1						
1	0+060	143	1						
1	0+070	691	1						
1	0+080	708	229.19	17	1.75	97.05	455.01	552.06	649.11
1	0+090	721							
1	0+100	685							
1	0+110	711	1						
1	0+110	686	1						
1		692	1						
1		732	1						
1		692	1						
1		658	1						
2									
2			1						
2		841	1						
2		0.12	1						
2			1			1			
2		691	1						
2		031	1						
2			1						
2		714	62.50	5	2.13	59.58	683.22	742.80	802.38
2		,,,,							
2			-						
2		768	1						
			7						
- 2			7						
- 2		700	7						
						1			
			7						
	8+000								
	8+010		7		1		1		
	8+020	697	7	1			1		
	8+030		7	1	1		1		
	3 8+040								
	3 8+050	654		1			1		
	3 8+060			1	1	-			
	3 8+070			1		oppus manan	1222	600.10	725.70
	3 8+080	758	49.47	7	1.94	36.33	663.10	699.43	735.76
	3 8+090			1				1	
	3 8+100			1	1			1	
	3 8+110	670		1	1		1		
	3 8+120			1	1		1		
	3 8+130	748			1				
	3 8+140	737		1	1		1	1	
	3 8+150								
	3 8+160	632							

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA IZQUIERDA DEL TRAMO "E25 - BABA"

Grupo	Abscisa	Linea blanca Izquierda	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
-	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U		(Eleganical St.	(mcd·lux	x ⁻¹ ·m ⁻²)	
4	12+000	603							
4	12+010	604							
4	12+020	622)					
4	12+030	568							
4	12+040	694							
4	12+050	660							
4	12+060	704							
4	12+070	663	1						
4	12+080	657	36.63	17	1.75	15.51	632.78	648.29	663.80
4	12+090	683]						
4	12+100	681	1			1			
4	12+110	640	1						
4	12+120	681							
4	12+130	638						1	
4	12+140	640							
4	12+150	619							
4	12+160	664							
5	16+000	498							
5	16+010	519							
5	16+020	534	1						
5	16+030	444							
5	16+040	474		1					
5	16+050	515							
5	16+060	486							
5	16+070	506						462.00	
5	16+080	515	74.41	17	1.75	31.51	432.37	463.88	495.39
5	16+090	508							
5	16+100	495							
5	16+110	300		1	1				
5	16+120	449]	1					
5	16+130	447		1					
5	16+140	288		1			1		
5		525		1				1	
5		383							

Nota: De manera de ejercicio no se realizo la medicion en los espacion en blanco

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA CENTRAL DEL TRAMO "E25 - BABA"

Grupo	Abscisa	Linea amarilla Central	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(Done)	(mcd·lux ⁻¹ ·m ⁻²)	estariuur	U			(mcd·lux	(-1·m-2)	
-	(km)			U		T			
1	0+000	216 203							
1	0+010								
1	0+020	299 572							
1	0+030	601					1		
1	0+040 0+050	650					1		
1	0+050	143				8			
1	0+080	584	1						
1	0+070	622	172.61	17	1.75	73.09	429.97	503.06	576.15
1	0+080	551	1,2.01			227-2012/2020			
1	0+090	626	1						
		622							
1	0+110	453							
1	0+120 0+130	615	1						
1		564	-						
1	0+140 0+150	635	1						
1		596	+						
1		390							
2		581	-	33 6	2.02				
2		361	-						
			-						
2		614	-{			65.26			
2		014	-						
2			-						
2		444	-					596.67	
2		444	79.33				531.41		661.93
2			- 75.55						
2		648	-						
2		046	-						
2			-						
2		649	-						
2		649	-						
		-	-						
- 7		644	-						
		644							
	8+000	644	-						
	8+010	044	-		1				
	8+020 8+030		-	1	1				
	A 1000 March 1000 Marc	654	-	1	1				
	8+040 8+050	034	-	1				1	
	8+050		-	1	1			1	
		677	-	1		1		1	
		6//	12.55	6	2.02	10.33	650.67	661.00	671.33
			- 12.55	1					
_		670	-	1	1				
	3 8+100	670	-	1	1			1	
	3 8+110	-	-		1				
	3 8+120	668	-	1	1				
	3 8+130	000	\dashv	1			1		
	3 8+140		\dashv	1			1		
	3 8+150	653	-						
	3 8+160	000			1				

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA CENTRAL DEL TRAMO "E25 - BABA"

Grupo	Abscisa	Linea amarilla Central	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lux	< ¹ ·m ⁻²)	
4	12+000	461							
4	12+010	450							
4	12+020	467					1		
4	12+030	489					1		
4	12+040	496	i						
4	12+050	465	1						
4	12+060	490	1				- 1		
4	12+070	475	1				N.		
4	12+080	464	20.57	17	1.75	8.71	471.00	479.71	488.42
4	12+090	443	1						
4	12+100	481	1						
4	12+110	490	1						
4	12+120	487							
4	12+130	490	1						
4	12+140	493							
4	12+150	531	1					1	
4	12+160	483							
5	16+000	434							
5	16+010	481		1					
5	16+020	451							
5	16+030	444							
5	16+040	474							
5	16+050	304							
5	16+060	292							
5	16+070	284						224.50	277.02
5	16+080	417	102.37	17	1.75	43.35	291.24	334.59	377.93
5	16+090	424		1					
5	16+100	275							
5	16+110	300							
5	16+120	267							
5	16+130	208							
5	16+140	220					1		
	16+150	209	_						
	16+160	204							

Nota: De manera de ejercicio no se realizo la medicion en los espacion en blanco

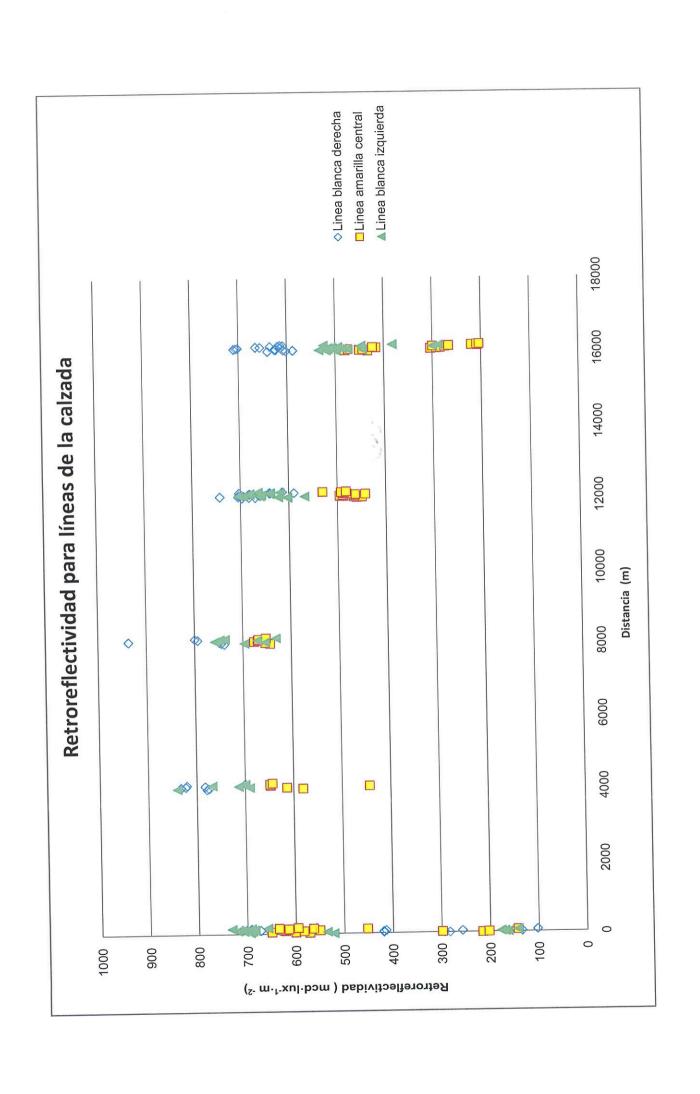
ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA DERECHA DEL TRAMO "E25 - BABA"

	Absolon	Linea blanca	Desviacion	Tamaño de	t (student)	Error	Limite	Media	Limite
Grupo	Abscisa	Derecha	estandar	muestra	1 (323231)		inferior	-1 -2.	superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lux	(*m*)	-
1	0+000	284							
1	0+010	295							
1	0+020	135					1		
1	0+030	420							
1	0+040	258							
1	0+050	420					- 1		
1	0+060	103							
1	0+070	415]	6,49300			206.74	485.00	573.26
1	0+080	691	208.44	17	1.75	88.26	396.74	485.00	5/3.20
1	0+090	655							
1	0+100	673							
1	0+110	685						1	
1	0+120	711]					1	
1	0+130	615							
1		692							
1	0+150	635							
1	0+160	558							
2	4+000	779							
2	4+010			7	1.94				821.05
2									
2		775				33.33			
2			1						
2			7						
7		833	1						
- 2			7					100000000000000000000000000000000000000	
	4+080	823	45.38				754.38	787.71	
	4+090	783							
	4+100		7						
	4+110		7						
	2 4+120	821	7						
	2 4+130		1						
	2 4+140		7						
	2 4+150	700	1						
	2 4+160		1						
	3 8+000	739			16				
	3 8+010				1				
	3 8+020				1				
	3 8+030	745	7	1					
	3 8+040		7			1			
	3 8+050								
	3 8+060	749	7			1			
	3 8+070		7	1		1		1	
	3 8+080		74.75	6	2.02	61.49	732.51	794.00	855.49
	3 8+090	937		1	1				
	3 8+100	-		1	1				
	3 8+110			1	1				
	3 8+120	794			1				
	3 8+130	/51	┑		1				
	3 8+140		┪	1	1				
	3 8+150	800	7	1	1		1	1	
	3 8+160	-	-	1					

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA DERECHA DEL TRAMO "E25 - BABA"

Grupo	Abscisa	Linea blanca Derecha	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lux	x ⁻¹ ·m ⁻²)	
4	12+000	697							
4	12+010	670						- 1	
4	12+020	683							
4	12+030	705							
4	12+040	743							
4	12+050	694	1						
4	12+060	660]						
4	12+070	704	1						
4	12+080	663	37.20	17	1.75	15.75	656.43 672.18	672.18	687.93
4	12+090	657	1		1				
4	12+100	683	1						
4	12+110	681	1						
4	12+120	640	1						
4	12+130	590							
4	12+140	703							
4	12+150	640							
4	12+160	614							
5	16+000	640							
5	16+010	602	1						
5	16+020	588	1						
5	16+030	608	1						
5	16+040	625							
5	16+050	623							
5		625							
5	16+070	710							
5	16+080	706	37.57	17	1.75	15.91	621.80	637.71	653.61
5		702							
5		614							1
5		656		1					
5		665	-						
5		635							
5		619	7		1			1	
5		609			l .				
5		614	7					2.	

Nota: De manera de ejercicio no se realizo la medicion en los espacion en blanco


DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DEL TRAMO "E25 - BABA"

	Coorde	nadas	Linea blanca	Linea amarilla	Linea blanca	
oscisa	Latitud	Longuitud	Derecha	Central	Izquierda	
(km)	Latitud	- Congress	(mcd·lux ⁻¹ ·m ⁻²)	(mcd·lux ⁻¹ ·m ⁻²)	(mcd·lux ⁻¹ ·m ⁻²)	
0+000	01 S 45.3802	079 W 32.3533	284	216	522	
0+000	01 S 45.3833	079 W 32.3968	295	203	164	
0+010	01 S 45.3858	079 W 32.4070	135	299	171	
	01 S 45.3884	079W 32.4068	420	572	178	
0+030	01 S 45.3872	079W 32.4114	258	601	695	
0+040	01 S 45.3872	079W 32.4114	420	650	536	
0+050	01 S 45.3862	079W 32.4114	103	143	143	
0+060 0+070	01 S 45.3872	079W 32.4114	415	584	69:	
10-07-00-00-0	01 S 45.3872	079W 32.4114	691	622	70	
0+080	01 S 45.3872	079W 32.4114	655	551	72	
0+090		079W 32.4114	673	626	68	
0+100	01 \$ 45.3872	079W 32.4114	685	622	71	
0+110	01 \$ 45.3872	079W 32.4114	711	453	68	
0+120	01 S 45.3872		615	615	69	
0+130	01 S 45.3872	079W 32.4114	692	564	73	
0+140	01 \$ 45.3872	079W 32.4114	635	635	69	
0+150	01 S 45.3872	079W 32.4114	558	596	65	
0+160	01 S 45.3872	079W 32.4114	779	330	9990	
4+000	01 S 46.0390	079W 34.4340	113	581		
4+010	01 S 46.0390	079W 34.4340		301	84	
4+020	01 S 46.0390	079W 34.4340	775			
4+030	01 S 46.0390	079W 34.4340	113	614		
4+040	01 S 46.0390	079W 34.4340		014	69	
4+050	01 S 46.0390	079W 34.4340	022			
4+060	01 S 46.0390	079W 34.4340	833	444	P. Control of the Con	
4+070	01 S 46.0390	079W 34.4340	022	444	7:	
4+080	01 S 46.0390	079W 34.4340	823			
4+090	01 S 46.0390	079W 34.4340	783	648		
4+100	01 S 46.0390	079W 34.4340		040	7	
4+110	01 S 46.0390	079W 34.4340	004		,	
4+120	01 S 46.0390	079W 34.4340	821	649		
4+130	01 S 46.0390	079W 34.4340		649	7	
4+140	01 S 46.0637	079W 34.5084	700		,	
4+150	01 S 46.0637	079W 34.5084	700	CAA		
4+160	01 S 46.0637	079W 34.5084		644		
8+000	01 S 46.7018	079w 36.4881	739	C44		
8+010	01 S 46.7018	079w 36.4881		644	6	
8+020	01 S 46.7018	079w 36.4881				
8+030	01 S 46.7018	079w 36.4881	745	65.4		
8+040	01 S 46.7018	079w 36.4881		654	6	
8+050	01 S 46.7018	079w 36.4881				
8+060	01 S 46.7018	079w 36.4881	749	677		
8+070	01 S 46.7286	079W 36.5620		677		
8+080	01 S 46.7286	079W 36.5620			-	
8+090	01 S 46.7286	079W 36.5620	937			
8+100	01 S 46.7286	079W 36.5620		670		
8+110	01 S 46.7286	079W 36.5620			(
8+120	01 S 46.7286	079W 36.5620	794			
8+130	01 S 46.7286	079W 36.5620		668		
8+140	01 S 46.7286	079W 36.5620				
8+150	01 S 46.7286	079W 36.5620	800			
8+160	01 S 46.7286			653		

DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DEL TRAMO "E25 - BABA"

	Coorde	nadas	Linea blanca	Linea amarilla	Linea blanca
scisa	Latitud	Longuitud	Derecha	Central	Izquierda
12+000	01 S 47.7738	079W 38.1330	697	461	603
12+010	01 S 47.7788	079W 38.1377	670	450	604
12+020	01 S 47.7831	079W 38.1978	683	467	622
12+030	01 S 47.7831	079W 38.1978	705	489	568
12+040	01 S 47.7831	079W 38.1468	743	496	694
12+050	01 S 47.7831	079W 38.1468	694	465	660
12+060	01 S 47.7831	079W 38.1468	660	490	704
12+070	01 S 47.7831	079W 38.1468	704	475	663
12+080	01 S 47.7819	079W 38.1936	663	464	657
12+090	01 S 47. 7755	079W 38.2003	657	443	683
12+100	01 S 47. 7755	079W 38.2003	683	481	681
12+110	01 S 47. 7755	079W 38.2003	681	490	640
12+120	01 S 47. 7755	079W 38.2003	640	487	681
12+130	01 S 47. 7755	079W 38.2003	590	490	638
12+140	01 S 47. 7743	079W 38.2408	703	493	640
12+150	01 S 47.7692	079W 38.2511	640	531	619
12+160	01 S 47.7692	079W 38.2511	614	483	664
16+000	01 S 47.3078	079W 40.2084	640	434	498
16+010	01 S 47.3086	079W 40.2160	602	481	519
16+020	01 S 47.3075	079W 40.2184	588	451	534
16+030	01 S 47.3049	079W 40.2275	608	444	44
16+040	01 S 47.2991	079W 40.2343	625	474	47-
16+050	01 S 47.2991	079W 40.2343	623	304	51
16+060	01 S 47.2911	079W 40.2481	625	292	48
16+070	01 S 47.2946	079W 40.2442	710	284	50
16+080	01 S 47.2946	079W 40.2442	706	417	51
16+090	01 S 47.2946	079W 40.2442	702	424	50
16+100	01 S 47.2946	079W 40.2442	614	275	49
16+110	01 S 47.2946	079W 40.2442	656	300	30
16+120	01 S 47.2837	079W 40.2663	665	267	44
16+130	01 S 47.2837	079W 40.2663	635	208	44
16+140	01 S 47.2837	079W 40.2663	619	220	28
16+150	01 S 47.2837	079W 40.2663	609	209	52
16+160	01 S 47.2837	079W 40.2663	614	204	38

Notas: De manera de ejercicio no se tomo retro-reflectividad en los escapcios en blanco

ANÁLISIS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN HORIZONTAL DEL TRAMO "BABA – TRES MARÍAS"

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA DERECHA DEL TRAMO "BABA - TRES MARÍAS"

Grupo	Abscisa	Linea blanca Derecha	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U		(mcd·lux ⁻¹ ·m ⁻²)			
1	0+300	61						400	222
1	0+600	54	77.16	3	2.92	130	0	102	232
1	0+900	191							
2	6+000	104			555155555		_	454	388
2	6+300	309	140.92	3	2.92	238	0	151	388
2	6+600	39							
3	9+000	63							102
3	9+300	159	60.93	3	2.92	103	0	89	192
3	9+600	46							

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA CENTRAL DEL TRAMO "BABA - TRES MARÍAS"

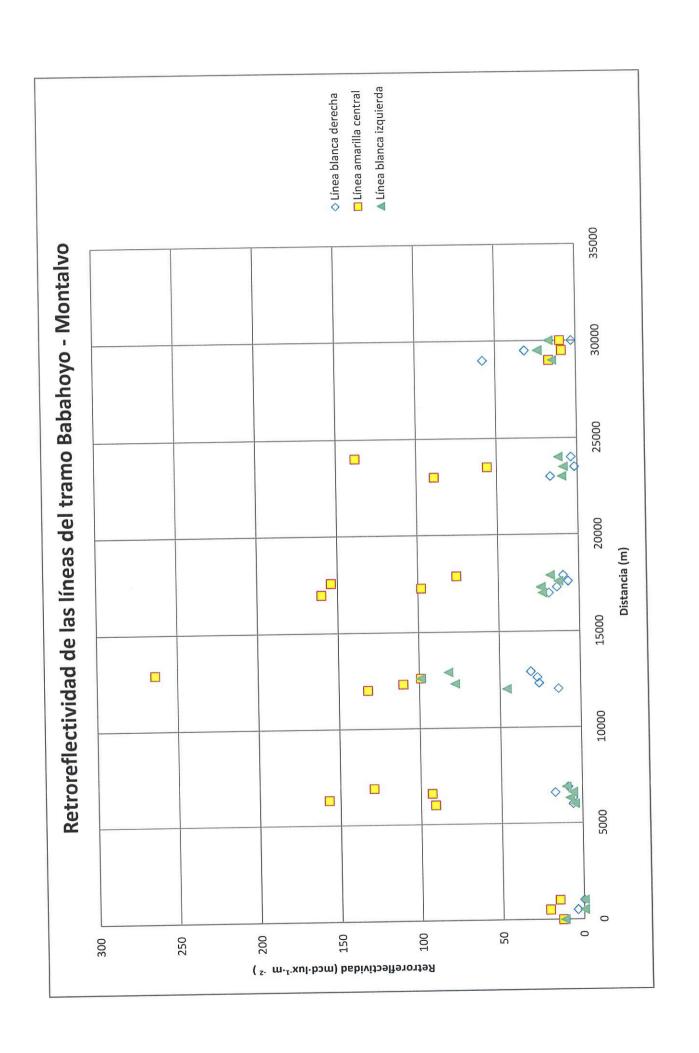
Grupo	Abscisa	Linea amarilla central	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite Inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lu	ıx ⁻¹ ·m ⁻²)	
1	0+300	43				Moderne	_	20	
1	0+600	12	15.52	3	2.92	26	2	28	54
1	0+900	29							
2	6+000	7						0.5	215
2	6+300	160	76.62	3	2.92	129	0	86	213
2	6+600	91							
3	9+000	12						47	100
3	9+300	73	31.48	3	2.92	53	0	47	100
3	9+600	56							

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA IZQUIERDA DEL TRAMO "BABA - TRES MARÍAS"

Grupo	Abscisa	Linea blanca Izquierda	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lu	x ⁻¹ ·m ⁻²)	
1	0+300	214			theory are	***********		457	267
1	0+600	171	65.14	3	2.92	110	47	157	267
1	0+900	86							
2	6+000	9						51	115
2	6+300	60	37.87	3	2.92	64	0	21	113
2	6+600	83							
3	9+000	25						60	120
3	9+300	96	35.50	3	2.92	60	0	60	120
3	9+600	60							

ANÁLISIS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN HORIZONTAL DEL TRAMO "BABAHOYO - MONTALVO"

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA IZQUIERDA DEL TRAMO "BABAHOYO - MONTALVO"


Grupo	Abscisa	Linea blanca Izquierda	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lu	x ⁻¹ ·m ⁻²)	
1	0+000	12				20.00	200		
1	0+500	0	6.93	3	2.92	12	0	4	16
1	1+000	0						-	
2	6+000	5							
2	6+300	8	2.22	4.00	2.35	2.61	5	7	10
2	6+600	6	2.22	4.00	2.00				
2	6+900	10							
3	12+000	46							
3	12+300	78	22.13 4.00	4.00	2.35	26.04	50	76	102
3	12+600	99							
3	12+900	82							
4	17+000	23							
4	17+300	24	5.07	4.00	2.35	5.96	14	20	25
4	17+600	13	3.07						
4	17+900	18							
5	23+000	10						10	13
5	23+500	9	1.53	3	2.92	3	8	10	13
5	24+000	12							
ϵ	29+000	15	_				11	19	27
6	29+500	24	4.73	3	2.92	8	11	19	27
6	30+000	17							

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA CENTRAL DEL TRAMO "BABAHOYO - MONTALVO"

Grupo	Abscisa	Linea amarilla central	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lu	x ⁻¹ ·m ⁻²)	
1	0+000	13							
1	0+500	21	4.16	3	2.92	7	9	16	23
1	1+000	15							
2	6+000	91							
2	6+300	157	31.60	4.00	2.35	37.18	80	118	155
2	6+600	93] 31.00	4.00	2.00				
2	6+900	129							
3	12+000	132							
3	12+300	110	76.41 4.00	4.00	2.35	89.91	61	151	241
3	12+600	99	70.41	1.00			=202		
3	12+900	264							
4	17+000	160							
4	17+300	98	41.47	4.00	2.35	48.80	73	122	171
4	17+600	154	41.47	4.00					
4	17+900	76							
5	23+000	89		-			-05	0.4	164
5	23+500	56	41.26	3	2.92	70	25	94	164
5	24+000	138							
6	29+000	17					-	12	10
6	29+500	9	4.36	3	2.92	7	5	12	19
6	30+000	10							

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA DERECHA DEL TRAMO "BABAHOYO - MONTALVO"

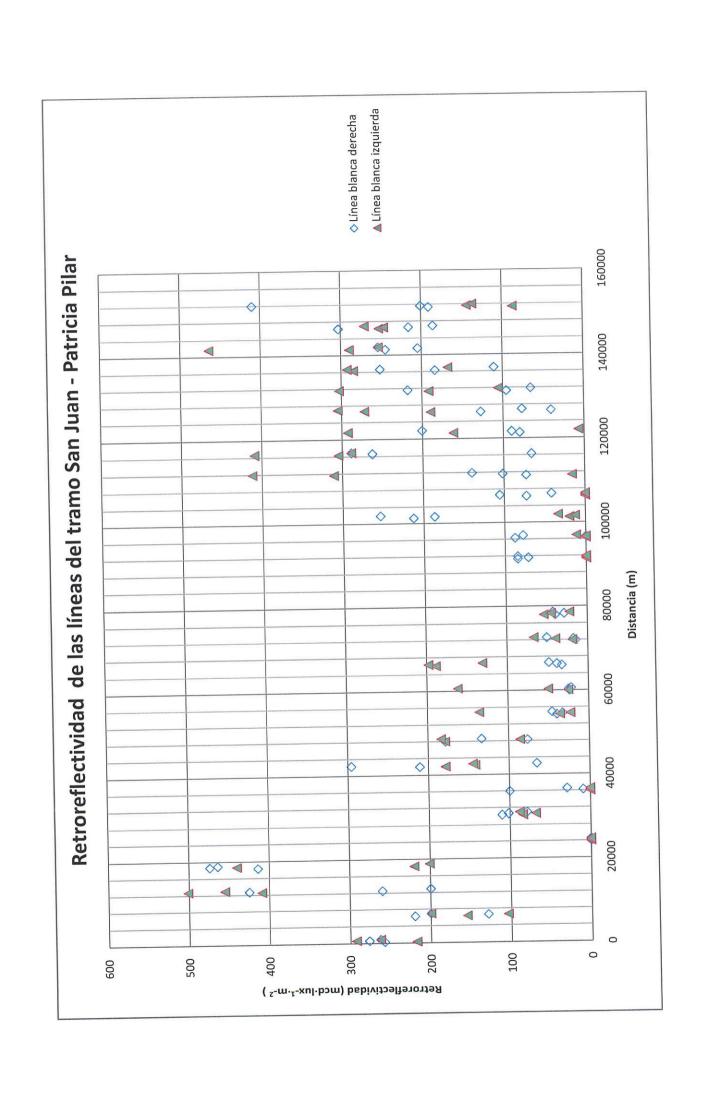
Grupo	Abscisa	Linea blanca Derecha	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		Ü			(mcd·lu	x ⁻¹ ·m ⁻²)	
1	0+000	12					1000	_	
1	0+500	4	6.11	3	2.92	10	0	5	16
1	1+000	0							
2	6+000	6							
2	6+300	6	5.20	4.00	2.35	6.11	3	10	16
2	6+600	17] 3.20	4.00	2.00				
2	6+900	9							
3	12+000	14							
3	12+300	26	7.33	4.00	2.35	8.62	16	25	33
3	12+600	27	,.55	1,100					
3	12+900	31							
4	17+000	19							
4	17+300	14	5.20	4.00	2.35	6.11	6	13	19
4	17+600	7	3.20		10000000				
4	17+900	10							
5	23+000	17						8	21
5	23+500	2	8.14	3	2.92	14	0	8	21
5	24+000	4							
6	29+000	58						31	77
6	29+500	32	27.51	3	2.92	46	0	31	"
(30+000	3							

ANÁLISIS DE RETROREFLECTIVIDAD DE LA SEÑALIZACIÓN HORIZONTAL DEL TRAMO "SAN JUAN – PATRICIA PILAR"

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA DERECHA DEL TRAMO "SAN JUAN - PATRICIA PILAR"

Grupo	Abscisa	Linea blanca	Desviacion estandar	Tamaño de muestra	t (student)	Error	Limite inferior	Media	Limite superior
	41 - 1	Derecha	Estandal	U			(mcd·lux	(⁻¹ ·m ⁻²)	
-	(km)	(mcd·lux ⁻¹ ·m ⁻²) 258							
1	0+300	277	9.85	3	2.92	17	249	266	283
1	0+600		9.85	3	2.0.0				
1	0+900	263							227-237-337-32
2	6+300	220	47.82	3	2.92	81	102	183	264
2	6+600	129	47.82		2.02				
2	6+900	200							
3	12+500	260	116.51	3	2.92	196	99	295	491
3	12+700	425	116.51	3	2.52	130	T-D-1		
3	12+900	200							
4	18+300	414		2	2.02	54	396	451	505
4	18+600	474	32.15	3	2.92	54	330	,,,,,	
4	18+900	464							
5	24+000	0			2.02	0	0	0	0
5	24+300	0	0.00	3	2.92	0	0	0	J
5	24+600	0							
6	30+300	110				27	70	97	124
6	30+600	102	16.09	3	2.92	27	70	37	124
6	30+900	79							
7	36+000	100						46	127
7	36+300	9	47.82	3	2.92	81	0	46	127
7	36+600	29							
8	42+000	211				***************************************	_	101	207
8	42+300	296	116.30	3	2.92	196	0	191	387
8	42+600	66							
9	48+000	179					0.000	200000000	
9	48+300	77	51.12	3	2.92	86	44	130	216
9		134							
10		40							
10		33	6.51	3	2.92	11	29	40	51
10		46	-	100					
11	1007431111111111111111111111111111111111	24							200000
11		25	1.53	3	2.92	3	21	24	26
11		22	-						
12		33							
		39	8.08	3	2.92	14	27	40	54
12		49	-						
12		15	1						
		18	19.97	3	2.92	34	0	28	62
13		51	—	1					
13		40	-						
14		29	7.37	3	2.92	12	25	37	50
14		43	- /.5/			3.77.			
14		85	+						
1!		72	7.51	3	2.92	13	68	81	93
1:		85	→ '.51						
1:		88							
1		0	48.18	3	2.92	81	0	55	137
1		78	- 40.10						
1									
1		213	33.78	3	2.92	57	161	218	275
1		187	35.78	3	2.52]			
1		254		-		+			
1		73		2	2.92	54	20	74	128
	8 106+600	106	32.01	3	2.32	5-		10,00	
1	8 106+900	42							1

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA DERECHA DEL TRAMO "SAN JUAN - PATRICIA PILAR"


Grupo	Abscisa	Linea blanca	Desviacion	Tamaño de	t (student)	Error	Limite inferior	Media	Limite superior
Ciupo		Derecha	estandar	muestra U			(mcd·lu	x ⁻¹ ·m ⁻²)	
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(11100.10		
19	111+300	73	22.50	3	2.92	57	48	105	162
19	111+600	102	33.60)	2.52	3,			
19	111+900	140							
20	116+300	66	121.94	3	2.92	206	0	206	412
20	116+600	263	121.94	3	2.52	200			
20	116+900	289							
21	121+300	80	67.46	2	2.92	113	10	124	237
21	121+600	90	67.16	3	2.52	113	10		
21	121+900	201							
22	126+300	128	40.74	2	2.92	74	8	82	156
22	126+600	41	43./1	43.71 3	2.92	/4		02	
22	126+900	77							
23	131+300	96	00.54	2	2.92	136	0	127	262
23	131+600	218	80.51	3	2.92	130	Ü		HT. 10.000
23	131+900	66							
24	136+300	184	4	2	2.02	119	63	182	301
24		252	70.51	3	2.92	119	05	102	1.1-
24	136+900	111							
25	141+300	245	25.20.0000000	_	2.00	44	191	235	279
25	141+600	205	26.08	3	2.92	44	191	255	2,3
25	141+900	254							
26	146+300	303				102	133	235	337
26	146+600	216	60.77	3	2.92	102	133	233	337
26	146+900	186					-	-	
27	151+300	191				200	F0	267	476
27	151+600	201	123.65	3	2.92	208	59	267	4/6
27	151+900	410							

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA IZQUIERDA DEL TRAMO "SAN JUAN - PATRICIA PILAR"

Grupo	Abscisa	Linea blanca	Desviacion	Tamaño de	t (student)	Error	Limite	Media	Limite superior
Grupo	Abscisa	Izquierda	estandar	muestra			inferior (mcd·lux	(⁻¹ ·m ⁻²)	superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)	Resident de la constitución de l	U			(inca ia	111	
1	0+300	218	27.75	2	2.92	64	194	258	322
1	0+600	293	37.75	3	2.92	04	154	250	
1	0+900	263							
2	6+300	155		_	2.02	81	72	153	234
2	6+600	104	48.03	3	2.92	81	/2	133	251
2	6+900	200							
3	12+500	409				70	277	455	533
3	12+700	501	46.00	3	2.92	78	377	455	333
3	12+900	455							
4	18+300	220			00000000		62	287	511
4	18+600	440	132.84	3	2.92	224	63	287	211
4	18+900	201							
5	24+000	0							0
5	24+300	0	0.00	3	2.92	0	0	0	0
5		0							
6		84				5000	SALINA		
6		68	10.58	3	2.92	18	62	80	98
6		88							
7		0							
		0	0.00	3	2.92	0	0	0	0
		0							
		179							
		142	20.55	3	2.92	35	121	155	190
		145			diouseous.				
		179							
		86	55.19	3	2.92	93	57	150	243
9		184	- 33.23	-					
		36							
10			61.83	3	2.92	104	0	65	169
10		23	- 01.83	3	2.52		2595		
1		136							
1		25	72.06		2.92	123	0	79	202
1		50	72.96	3	2.92	125			
1		162							
1	_	189			2.92	61	111	173	234
1		198	36.36	3	2.92	61	111	1,0	
1	2 66+600	131							
1	3 72+000	19			2.02	41	1	42	83
1	3 72+300	40	24.06	3	2.92	41	1 -	72	
	3 72+600	67			-				
1	4 78+000	54	_	9		20	13	40	68
1	4 78+300	45	16.50	3	2.92	28	13	40	00
1	4 78+600	22						-	
1	.5 91+300	0		4	NAME OF THE PARTY				0
	.5 91+600	0	0.00	3	2.92	0	0	0	"
	5 91+900	0						-	
	6 96+300	0			1000004000	1970		4	16
	96+600	0	6.93	3	2.92	12	0	4	16
	16 96+900	12				1			-
	17 101+300	20							
	17 101+600	13	10.69	3	2.92	18	4	22	40
	17 101+900	34	7						
	18 106+300	0							
	18 106+600	0	0.00	3	2.92	0	0	0	0
		0	_	67537		1			
	19 111+300		205.77	3	2.92	347	0	246	593
	19 111+600		— ^{203.77}			86509700			
	19 111+900	412							-

ANALISIS DE LOS DATOS DE RETROREFLECTIVIDAD DE LA SEÑALIZACION HORIZONTAL DE LA LINEA IZQUIERDA DEL TRAMO "SAN JUAN - PATRICIA PILAR"

		Linea blanca	Desviacion	Tamaño de	1 (-1 -d1)	Error	Limite	Media	Limite
Grupo	Abscisa	Izguierda	estandar	muestra	t (student)	EHOI	inferior		superior
	(km)	(mcd·lux ⁻¹ ·m ⁻²)		U			(mcd·lu	x ⁻¹ ·m ⁻²)	
20	116+300	305							
20	116+600	409	65.16	3	2.92	110	224	334	444
20	116+900	289							
21	121+300	162						454	205
21	121+600	293	143.17	3	2.92	241	0	154	395
21	121+900	7							
22	126+300	190			100000000		450	25.6	355
22	126+600	272	59.21	3	2.92	100	156	256	355
22	126+900	305							
23	131+300	192						200	367
23	131+600	303	98.76	3	2.92	167	34	200	307
23	131+900	106							
24	136+300	285					404	240	367
24	136+600	293	69.97	3	2.92	118	131	249	367
24	136+900	168							
25	141+300	290					4.47	336	525
25	141+600	464	112.30	3	2.92	189	147	336	323
25	141+900	254							
26	146+300	253					226	257	278
26	146+600	247	12.49	3	2.92	21	236	25/	2/0
26	146+900	271							
27	151+300	87					70	122	175
27	151+600	144	31.09	3	2.92	52	70	123	1/5
27	151+900	137							

ANEXO C APU DE SEÑALIZACIÓN VERTICAL

HOJA 1 DE 4

ANALISIS DE PRECIOS UNITARIOS

CODIGO

UNIDAD: U

RUBRO: DETALLE:

SEÑALES VERTICALES REDUZCA VELOCIDAD AHORA R4-4B (90X120)

M.- EQUIPOS

M EQUIPOS	· · · · · · · · · · · · · · · · · · ·	740174	COSTO HORA	DENDMISHTO	совто
DESCRIPCION	CANTIDAD	TARIFA		1,250	3,750
cortadora de metal	1,00	3,00	3,000	1,250	3,750
computadora+ software de diseño	1,00	3,00	3,000	- 1	
plotter de corte	0,20	5,00	1,000	1,250	1,250
Vehiculo liviano para transporte 2 ton	0,01	8,00	0,080	1,250	0,100
Herramientas menores	0,01	2,00	0,020	1,250	0,030
camion 5 ton	0,20	10,00	2,000	1,250	2,500
Rodillo para aplicación de pelicula a presion	0,01	3,00	0,030	1,250	0,040
				0 11-1-124	44.400
N MANO DE OBRA				Subtotal M	11,420
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA		COSTO
Soldador	1,00	3,57	3,570	1,250	4,460
ayudante de soldador	1,00	3,18	3,180	1,250	3,980
Disenador grafico	1,00	3,57	3,570	1,250	4,460
Supervisor	1,00	3,58	3,580	1,250	4,480
Peon	1,00	3,18	3,180	1,250	3,980
Maestro	1,00	3,39	3,390	1	4,240
Chofer	2,00	4,62	9,240	1,250	11,550
Tecnico aplicador	1,00	3,57	3,570	1,250	4,460
•					-
O MATERIALES				Subtotal N	41,610
DESCRIPCION		UNIDAD	CANTIDAD	PRECIO UNIT.	costo
Tubo redondo de 50 x 2 mm		ML	6,00	I .	65,630
Placha de aluminio de 2mm (90x120)		M2	1,08	39,06	42,190
Pernos y luercas galvanizadas		GL	1,00	4,69	4,690
Papel ingenieria Prismatica (tipo I)		M2	1,08	45,77	49,430
Pelicula electrocorte		M2	1,08	39,06	1
Hormigon Fc=210 kg/cm2		M3	0,16	218,75	35,000
acero		kg	0,94	1,95	1,840
				1	-
				<u> </u>	-
P TRANSPORTE				Subtotal O	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
		i			
			ŀ		
					1
		<u> </u>		Out 4-1-15	
			N 454 - 121 - 12	Subtotal F	294,000
		OS DIRECTOS	X = (M+N+O	+P) 18 % X	52,920
	YUTILIDADES	5,880			
	ECTOS	352,800			
	L DEL RUBRO	\$ 352,800			
	VALOR OFER	TADO			\$ 55E,00

NOTA: Estos precios no incluyen IVA

Guayaquil, 21 de Abril 2015

Sr.	Félix	Valdez

HOJA 2 DE 4

ANALISIS DE PRECIOS UNITARIOS

CODIGO

UNIDAD: U

RUBRO:

DETALLE: SEÑALES CRUCE PEATONAL ZONA POBLADA P6-1B (76X75)

88	EOH	IPOS

M EQUIPOS								
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA		COSTO			
cortadora de metal	1,00	3,00	3,000	1,5000	4,500			
computadora+ software de diseño	1,00	3,00	3,000	1,5000	4,500			
platter de corte	0,20	5,00	1,000	1,5000	1,500			
Vehiculo liviano para transporte 2 ton	0,01	8,00	0,080	1,5000	0,120			
Herramientas menores	0,01	2,00	0,020	1,5000	0,030			
camion 5 ton	0,20	10,00	2,000	1,5000	3,000			
Rodillo para aplicación de pelicula a presion	0,01	3,00	0,030	1,5000	0,050			
N MANO DE OBRA Subtotal M								
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	costo			
Soldador	1,00	3,57	3,570	1,5000	5,360			
ayudante de soldador	1,00	3,18	3,180	1,5000	4,770			
Disenador grafico	1,00	3,57	3,570	1,5000	5,360			
Supervisor	1,00	3,58	3,580	1,5000	5,370			
Peon	1,00	3,18	3,180	1,5000	4,770			
Maestro	1,00	3,39	3,390	1,5000	5,090			
Chofer	2,00	4,62	9,240	1,5000	13,860			
Tecnico aplicador	1,00	3,57	3,570	1,5000	5,360			
					-			
Q MATERIALES Subtotal N								
DESCRIPCION		UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO			
Tubo redondo de 50 x 2 mm		ML	3,00	8,75	26,250			
Placha de alumínio de 2mm (75x75)		M2	0,56	31,25	17,580			
Pernos y tuercas galvanizadas		GL.	1,00					
Papel ingenieria Prismatica (tipo I)		M2	0,56	1	20,590			
Pelicula electrocorte		M2	0,56		17,580			
Hormigan Fc=210 kg/cm2		МЗ	0,08	175,00	, ·			
acero		kg	0,47	1,56	0,730			
					-			
P TRANSPORTE		<u> </u>		Subtotal O	100,480			
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
				Subtotal F				
	TOTAL COST	OS DIRECTOS	X = (M+N+O+	P)	164,120			
	INDIRECTOS	Y UTILIDADES		18 % X	29,542			
OTROS INDIRECTOS 2 % X					3,282 196,944			
COSTO TOTAL DEL RUBRO								
	VALOR OFER	TADO			\$ 196,9			

NOTA: Estos precios no incluyen IVA

Guayaquil, 21 de Abril 2012

Sr. Félix Valdez

HOJA 3 DE 4

ANALISIS DE PRECIOS UNITARIOS

CODIGO

RUBRO:

UNIDAD: U

SEÑALES VERTICALES APROX. BTA Y BTA P6-5B (75X75) DETALLE:

M EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA		RENDIMIENTO	COSTO
cortadora de metal	1,00	3,00	3,000	1,5000	4,500
computadora+ software de diseño	1,00	3,00	3,000	1,5000	4,500
plotter de corte	0,20	5,00	1,000	1,5000	1,500
Vehiculo liviano para transporte 2 ton	0,01	8,00	0,080	1,5000	0,120
Herramientas menores	0,01	2,00	0,020	1,5000	0,030
camion 5 ton	0,20	10,00	2,000	1,5000	3,000
Rodillo para aplicación de pelicula a presion	0,01	3,00	0,030	1,5000	0,050
N MANO DE OBRA		1		Subtotal M	13,700
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
Soldador	1,00	3,57	3,570	1,5000	5,360
ayudante de soldador	1,00	3,18	3,180	1,5000	4,770
Disenador grafico	1,00	3,57	3,570	1,5000	5,360
Supervisor	1,00	3,58	3,580	1,5000	5,370
Peon	1,00	3,18	3,180	1,5000	4,770
Maestro	1,00	3,39	3,390	1,5000	5,090
Chofer	2,00	4,62	9,240	1,5000	13,860
Tecnico aplicador	1,00	3,57	3,570	1,5000	5,360
O MATERIALES		L		Subtotal N	49,940
DESCRIPCION		UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
Tubo redondo de 50 x 2 mm		ML	3,00	8,75	26,250
Placha de aluminio de 2mm (75x75)		M2	0,56	31,25	17,580
Pernos y tuercas galvanizadas		GL	1,00	3,75	3,750
Papel ingenieria Prismatica (tipo I)		M2	0,56	36,61	20,590
Pelicula electrocorte		M2	0,56	31,25	17,580
Hormigon Fc=210 kg/cm2		M3	0,08	175,00	14,000
acero		kg	0,47	7 1,56	0,730
					-
P TRANSPORTE				Subtotal O	100,480
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			1		

	Subtotal F				
TOTAL COSTOS DIRECTOS	X = (M+N+O+P)	164,120			
INDIRECTOS Y UTILIDADES	18 % X	29,542			
OTROS INDIRECTOS	2 % X	3,282			
COSTO TOTAL DEL RUBRO		196,944			
VALOR OFERTADO		\$ 196,94			

NOTA: Estos precios no incluyen IVA

Guayaquil, 21 de Abril 2012

Sr. Félix Valdez

HOJA 4 DE4

ANALISIS DE PRECIOS UNITARIOS

CODIGO

RUBRO:

UNIDAD: U

SEÑALES VERTICALES PARADERO BUS (45X60) DETALLE:

 FOL	HOC	10

M EQUIPUS	1	=	OCOTO HODA	DENDUMENTO	COSTO			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA		COSTO			
cortadora de metal	1,00	3,00	3,000	2,0000	6,000			
computadora+ software de diseño	1,00	3,00	3,000	2,0000	6,000			
plotter de corte	0,20	5,00	1,000	2,0000	2,000			
Vehiculo liviano para transporte 2 ton	0,01	8,00	0,080	2,0000	0,160			
Herramientas menores	0,01	2,00	0,020	2,0000	0,040			
camion 5 ton	0,20	10,00	2,000	2,0000	4,000			
Rodillo para aplicación de pelicula a presion	0,01	3,00	0,030	2,0000	0,060			
N MANO DE OBRA Subtotal M								
DESCRIPCION	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO			
Soldador	1,00	3,57	3,570	2,0000	7,140			
ayudante de soldador	1,00	3,18	3,180	2,0000	6,360			
Disenador grafico	1,00	3,57	3,570	2,0000	7,140			
Supervisor	1,00	3,58	3,580	2,0000	7,160			
Peon	1,00	3,18	3,180	2,0000	6,360			
Maestro	1,00	3,39	3,390	2,0000	6,780			
Chofer	2,00	4,62	9,240	2,0000	18,480			
	1,00	3,57	3,570		7,140			
Tecnico aplicador	1,00] 0,5,	0,010					
O MATERIALES Subtotal N								
DESCRIPCION		UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO			
Tuba redondo de 50 x 2 mm		ML.	3,00	8,75	26,250			
Placha de aluminio de 2mm (45x60)		M2	0,27	31,25	8,440			
Pernos y tuercas galvanizadas		GL	1,00	3,75	3,750			
Papel ingenieria Prismatica (tipo I)		M2	0,27	36,61	9,890			
Pelicula electrocorte		M2	0,27	31,25	8,440			
Hormigon Fc=210 kg/cm2		мз	0,08	175,00	14,000			
acero		kg	0,47	1,56	0,730			
10000					-			
					-			
P TRANSPORTE	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Subtotal O	71,500			
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
		1			1			
		<u> </u>	Subtotal P					
	TOTAL COSTO	S DIRECTOS	X = (M+N+O+		156,320			
INDIRECTOS YUTILIDADES 18 % X								
		28,138 3,126						
		CTOS						
	OTROS INDIRE			2%X	187,584			

NOTA: Estos precios no incluyen IVA

Guayaquil, 21 de Abril del 2015

Sr. Félix Valdez

					8119/ 0223399623
	ANALISIS DE P		RIOS		
	pavimento (Pintura)	a = 15 cm			
NIDAD m.		,		T T	
		TARIFA	costo	RENDIMIENTO (m	COSTO
	CANTIDAD	(USD/dia)	HORARIO	lineales x dia)	(USD/ml)
A:- EQUIPOS		(000/010)	(USD/hora)	11104100 X 414)	
anjadora para senalizacion					
topropulsada (en camión, camioneta o		ii	40.75	4000 000	0,019
ictor)	1	150,00	18,75	1000,000	
anjadora manual no autopropulsada	1 1	25,00	3,13	1000,000	0,00;
arrion mediano de min 2,5 Ton, par					5.00
astecimiento	1	50,00	6,25	1000,000	0,000
amioneta o camión para supervisión	1	41,67	5,21	1000,000	0,00
opladora de allo desempeño de 2HP	1	3,33	0,42	1000,000	0.00
	1 1	50,00	6,25	1000,000	0,00
scoba autopropulsada de 76 HP				······································	
					0,00
ERRAMIENTA MENOR	51:				
					0,04
SUBTOTAL EQUIPOS					0,04
B:- MANO DE OBRA	CANTIDAD	JORNAL/HO RA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
perador franjadora para senalización					
utopropulsada (en camión, camioneta o		1	.	4000 000	0,00
actor)	11	40,909	5,114	1000,000	0,0
perador franjadora manual no				4000 000	0,0
utopropulsada	1	34,091	4,261	1000,000	0,0
hofer camion mediano de min 2,5 Ton, par			,	1000,000	0,0
bastecimiento	11	37,500	4,688	1000,000	G,V
upervisor con licencia para camioneta o			7.070	4000 000	0,0
amión para supervisión	1	61,364	7,670	1000,000	0,0
				1000,000	0,0
perario para sopladora y otras actividades	1	30,682	3,835	1000,000	0,0
perario para escoba autopropulsada de 76				1000,000	0,0
IP	11	30,682	3,835	1000,000	0,0
Operarios para abastecimiento y seguridad		1		1000.000	0,0
bandereros)	3	30,682	11,506	1000,000	0,0
	l				
SUBTOTAL MANO DE	OBRA 9,00	0			0,0
		UNIDAD	CANTIDAD (gal /		costo
C:- MATERIALES		UNIDAD	m lineal)	(USD/galon)	
C:- MATENIALLS					<u> </u>
			<u> </u>		7
		1 0.1	2016		0.3
Pintura de tráfico en base agua (ACRÍLICA)		Galon	0,015	26,000	
Pintura de tráfico en base agua (ACRÍLICA)		Galon KG	0,015; 0,06	26,000	
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA)				26,000	
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend)		KG		26,000	0,1
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES		KG	0,06i	2 28,000	0,
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES		KG		26,000	0.
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE		KG	0,06i	2 28,000	0,
Pintura de tráfico en base agua (ACRÍLICA) dicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales		UNIDAD Flate	0,06i	2 28,000 2 1,68	O,4
intura de tráfico en base agua (ACRÍLICA) dicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales lospedaje personal		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0,4 COSTO
intura de tráfico en base agua (ACRÍLICA) dicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales lospedaje personal		UNIDAD Flate	0,06i	2 28,000 1,68 1,88 TARIFA	0,4 COSTO
Pintura de tráfico en base agua (ACRÍLICA) Alicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0,4 COSTO
intura de tráfico en base agua (ACRÍLICA) dicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales lospedaje personal		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0,4 COSTO
intura de tráfico en base agua (ACRÍLICA) dicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales lospedaje personal		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0, 0, COSTO
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0,4 COSTO
Pintura de tráfico en base agua (ACRÍLICA) Alicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0, 0, COSTO
intura de tráfico en base agua (ACRÍLICA) dicroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales lospedaje personal		UNIDAD Fiele dia	CANTIDAD	2 28,000 1,68 1,88 TARIFA	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal Alimentación personal		UNIDAD Flete dia tres comidas	0,06i CANTIDAD 9,000 9,000	2 28,000 1,68 1,88 TARIFA	0,4 COSTO
intura de tráfico en base agua (ACRÍLICA) ficroesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales fospedaje personal		UNIDAD Flate dia tres comidas	0,06i CANTIDAD 9,000 9,000	2 28,000 1,68 1,88 TARIFA	0, 0,4 COSTO
SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal Alimentación personal		UNIDAD Flete dia tres comidas	0,06i CANTIDAD 9,000 9,000	TARIFA 0 15,000 0 15,000	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal Alimentación personal	INDIRECTO	UNIDAD Flete dia tres comidas TO DIRECTO S Y UTILIDADE	0,06i CANTIDAD 9,000 9,000	TARIFA 0 15,000 0 15,000 21,879	0,4 COSTO 0,0 0,0
Pintura de tráfico en base agua (ACRÍLICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal Alimentación personal	INDIRECTO: OTROS PRE	UNIDAD Flete dia tres comidas TO DIRECTO S Y UTILIDADE	0,06i CANTIDAD 9,000 9,000	TARIFA 0 15,000 0 15,000 21,879	0,4 COSTO 0,0 0,0 0,0 0,0 0,0 0,0
Pintura de tráfico en base agua (ACRILICA) Microesferas Swarco Tipo P (tipo 2 blend) SUBTOTAL DE MATERIALES D:- TRANSPORTE Transporte Materiales Hospedaje personal Alimentación personal	INDIRECTO: OTROS PRE	UNIDAD Flete dia tres comidas TO DIRECTO S Y UTILIDADE	0,06i CANTIDAD 9,000 9,000	TARIFA 0 15,000 0 15,000 21,879	0,4 COSTO 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0

recripcion Marcas de nav	rimento (Pintura)	PRECIOS UNI a = 10 cm	IARIOS		
ESCRIPCION Marcas de pav NIDAD m.	inicito (i inicita)				
A:- EQUIPOS	CANTIDAD	TARIFA (USD/dia)	COSTO HORARIO (USD/hora)	RENDIMIENTO (m lineales x dia)	COSTO (USD/ml)
anjadora para senalizacion					
topropulsada (en camión, mioneta o tractor)	1	150,00	18,75	1,000,00	0,019
anjadora manual no	4	25,00	3,13	1,900,00	0,003
ntopropulsada amion mediano de min 2,5 Ton, par	1				
pastecimiento amioneta o camión para	1	50,00	6,25	1.000,00	0,006
pervisión	1	41,67	5,21	1.000,00	0,005
opiadora de alto desempeño de HP	1	3,33	0,42	1.000,00	0,000
scoba autopropulsada de 75 HP	1	50,00	6,25	1,000,00	0,006
ERRAMIENTA MENOR	51	1			0,00
					0.04
SUBTOTAL EQUIPOS		1			0,04
B:- MÄNO DE OBRA	CANTIDAD	JORNAL/HO RA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
perador franjadora para					
eñalizacion autopropulsada (en amión, camioneta o tractor)	t	40,909	5,114	1.000,00	0,00
Dperador franjadora manual no rutopropulsada	1	34,091	4,261	1.000,00	0,00
Chofer camion mediano de min 2,5			7	4.000.00	0,00
Con, par abastecimiento	11	37,500	4,688	1.000,00	0,00
Supervisor con licencia para			7.070	1.000,00	0,00
camioneta o camión para supervisión Operario para sopladora y otras	11	61,364	7,670		
actividades	1	30,682	3,835	1,000,00	0,00
Operario para escoba autopropulsada de 76 HP	1	30,682	3,835	1.000,00	0,00
Operarios para abastecimiento y			44 505	1,000,00	0,0
seguridad (bandereros)	3	30,682	11,506	1.000,00	0,0
					"
SUBTOTAL MANO DE O	BRA	9			0,04
		UNIDAD	CANTIDAD (gal m lineal)	PRECIO UNITARIO (USD/galon)	соѕто
C:- MATERIALES Pintura de tráfico en base agua			<u> </u>		
(ACRÍLICA)		Gafon	0,010	26,000	0,2
Microesferas Swarco Tipo P (tipo 2 blend)		кв	0,04	0 1,68	0,0
Oktio/		<u> </u>			
				T	0,3
SUBTOTAL DE MATERIALES		<u> </u>	1	1	1
		UNIDAD	CANTIDAD	TARIFA	соѕто
D:- TRANSPORTE		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Transporte Maleriales		Flete dia	9,000	15,000	0.0
Hospedaje personal Allmentación personal		tres comidas	9,000		0,0
					_
					1
SUBTOTAL DE TRANSPORTE		(413141414141414141414141414141414141414			0,
V00101141011111111111111111111111111111		TO DIRECTO	<u> </u>	~ ~ ~ ~	0,!
		S Y UTILIDADE	s	21,879	% O,
- h - n - u - h - n - n - n - n - n - n - n - n - n	OTROS PRI	ECIOS TAL DEL RUBR	0		0,
Quito, Septiembre 2014	VALOR SIN				0

Bibliografías

- 1. ASTHO, t. A. (2012). Standar Specification for White and Yellow Reflective Thermoplastic Striping Material (Solid From). *Designation: M 249-12*. United States.
- 2. ASTM 7585, I. (2010). Standard Practice for Evaluating Retroreflective Pavement Markings Using Portable Hand-Operated Instruments1. *Designation: D7585*. United States.
- 3. ASTM D4956, I. (30 de Marzo de 2011). Especificación de estándar para recubrimiento retroreflectivo para control de tráfico. *D4956 11a* . United States.
- 4. Barreno, K. (2014). Dispositivo de seguridad vial RTE 4. Quito.
- 5. Calderon, J. I. (2011). Equipos de medición de efectividad de las señales víales para auditria de seguridad vial.
- 6. Darío Babić, M. Š. (2013). Analysis of Road Markings Retroreflection Measurement on Croatian State Roads.
- 7. E808, A. (2011). Annual Book of ASTM Standards, Vol 06.01. EE.UU.
- 8. Federal highway administration. (November de 2007). Methods maintaining traffic sign retroreflectivity. *Publication No. FHWA-HRT-08-026 NO*. EE.UU.
- 9. Frédéric Boily, M. T. (2014). *Guide sur la rétroréflexion du marquag e routier* (*Principes et évaluation*). Québec: Gouvernement du Québec.
- 10. Guanghua Zhang, M. J. (2009). THE IMPACT OF BEAD DENSITY ON PAINT PAVEMENT MARKING RETROREFLECTIVITY. *North Carolina State University*.
- 11. Hollingsworth, J. D. (2012). *UNDERSTANDING THE IMPACT OF BEAD TYPE ON PAINT ANDTHERMOPLASTIC PAVEMENT MARKINGS.* Ohio.
- 12. MOPC. (2010). Guía para el Proyecto y Especificaciones Técnicas Generales de Señalización. Paraguay.
- 13. MTOP. (2014). Proyecto de Manual de Uso de Retroreflectómetro.

- 14. MTOP. *Vías de la Provincia de los Ríos*. Ministerio de Transporte y Obras Pública, Babahoyo.
- 15. Paul J. Carlson, P. P. (2014). *Selecting a traffic sign retroreflectivity assessment method.* Texas.
- 16. Stdrive del Ecuador S.A. (Mayo de 2013). Medicion de Reflectividad. Quito.
- 17. Vectra Francia. (2015). *ECODYN mlpc® Visibilité des marquages*. Obtenido de http://vectrafrance.com/materials-and-solutions/road-surfacetesting/ecodyn-mlpcR-signing-visibility?L=6