

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño y Modelado Virtual de un Transportador de Cadena Telescópico para Cilindros de GLP de 15 kg"

TESIS DE GRADO

Previo a la Obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

Mauricio Antonio Chiang López

GUAYAQUIL – ECUADOR

Año: 2013

AGRADECIMIENTO

Agradezco dios Jehová, a mis padres, a todos mis hermanos, a mis tíos y primos, a mi abuelita, a mi enamorada y a todos aquellos que han colaborado en mi formación especialmente como persona, agradezco al Ing. Federico Camacho por darme la oportunidad para crecer en lo profesional y también la colaboración la por para realización de este trabajo.

DEDICATORIA

A MI PADRE SEGUNDO CHIANG.

A MI MAMÁ ERCILIA LÓPEZ.

A MIS HERMANOS GEOCONDA, GEOVANY, MARYURI, JESSENIA E IRWIN.

A MI TÍA MARCIA JORDÁN W.

A MI PRIMA MARCIA ISABEL G.

A MI ABUELITA TERESA WAGNER

A MI ENAMORADA VERÓNICA ARMIJO.

TRIBUNAL DE GRADUACIÓN

Dr. Kleber Barcia V., Ph.D.
DECANO DE LA FIMCP
PRESIDENTE

Ing. Federico Camacho B.
DIRECTOR

lng. Ernesto Martínez L. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Mauricio Antonio Chiang López

RESUMEN

El trabajo realizado en la presente tesis de grado trata acerca del diseño de un Transportador de Cadena Telescópico que se puede implementar en la industria de envasado de GLP para tanques de acero de 15 kg para mejorar las tareas de carga y descarga en las bahías de recepción y despacho de los cilindros.

Los procesos dentro de la línea de la planta envasadora de GLP se han definido ajustándose a las regulaciones nacionales e internacionales, y la producción del producto para una línea de envasado estándar es de 900 cilindros/hora.

Actualmente, la demanda del GLP se ha incrementado, así como las regulaciones de seguridad dentro de las industrias del país. Por estas razones, y luego de analizados los procesos de envasado y despacho se identificó un proceso crítico dentro de la planta envasadora el cual es la recepción/despacho hacia los camiones. Este proceso, actualmente se realiza de forma manual. Esta recepción/despacho de los cilindros de GLP desde y hacia los camiones puede agilitarse empleando un Transportador Telescópico de Cadena.

El presente diseño se realizó a partir de la necesidad de implementar un Transportador Telescópico de Cadena con una capacidad de 1200 cilindros/hora el mismo que utilizó los principios de básicos de un transportador convencional de cadena dentro de la planta de envasado.

Con respecto al diseño mecánico de esta máquina, se aplicaron cada una de los conocimientos adquiridos de las ramas de la ingeniería mecánica; y, se emplearon diversos software de diseño mecánico para llevar a fin un diseño eficiente haciendo uso de las partes estandarizadas que se encuentran dentro del mercado local. Además, para el diseño se tomó en cuenta que el funcionamiento de este equipo debe de ser de fácil operación y de fácil mantenimiento.

En el primer capítulo, se describe el producto (GLP como gas y el cilindro de acero como recipiente), la planta envasadora y cada una de las máquinas involucradas dentro del proceso de envasado, la justificación de la necesidad, los diferentes organismos reguladores tanto de seguridad industrial y diseño mecánico, los sistemas mecánicos para el transporte de cilindros, los factores de influencia de diseño y al final de este capítulo se culminó con el diseño de forma del transportador telescópico.

En el segundo capítulo se realizó la selección y diseño de todos los componentes del transportador agrupados en sistemas: transportación, telescópico, motriz, tensor, estructural y seguridad. Para este diseño se emplearon los diferentes estándares técnicos como AWS, AISC, AFBMA, IEC, ATEX, etc.

En el tercer capítulo, para el modelado virtual se utilizó el software comercial Inventor ®. Con este software se ejecutó la simulación del funcionamiento de este equipo, además se realizó el análisis de esfuerzos de los componentes mecánicos diseñados.

En el cuarto capítulo, se detallan los costos de implementación del transportador telescópico los cuales abarcan los costos por: fabricación local de partes, importación de elementos; y, se presenta un presupuesto referencial.

Finalmente, en el quinto capítulo se presentan las conclusiones y las recomendaciones que nacen de este diseño.

ÍNDICE GENERAL

RESUM	1EN	II
ÍNDICE	GENERAL	IV
ABREV	TATURAS	VIII
SIMBO	LOGÍA	VIII
ÍNDICE	DE FIGURAS	X
ÍNDICE	DE TABLAS	XIV
ÍNDICE	DE PLANOS	(VII
INTROI	DUCCIÓN	1
CAPÍTU	JLO 1	
1. DIS	SEÑO CONCEPTUAL Y GENERALIDADES	3
1.1	Descripción del gas licuado de petróleo (GLP)	3
1.2	Cilindros de acero para GLP	.12
1.3	Planta de envasado de GLP.	15
1.4	Justificación de la necesidad.	25
1.5	Normas técnicas aplicables.	27
1.6	Sistemas mecánicos para transporte de cilindros	31
1.7	Factores de influencia para diseñar un transportador telescópico	34
1.8	Diseño conceptual del transportador.	43
1.8	.1 Análisis de las alternativas	44
1.8	.2 Selección de la alternativa.	46
1.8	.3 Matriz de decisión	48
1.8	.4 Diseño de forma detallado	48
CAPÍTU	II O 2	
	SEÑO Y SELECCIÓN DETALLADO DEL TRANSPORTADOR	
	CÓPICOCÓPICO	60
	Sistema de transportación	

2.1	.1 Selección de cadena transportación	. 61
2.1	.2 Diseño de las guías de las cadenas	. 77
2.1	.3 Selección de catalinas motrices y conducidas	. 84
2.1	.4 Diseño de los ejes	. 97
2.2	Sistema telescópico	118
2.2	.1 Diseño de ruedas de transportación	118
2.2	.2 Diseño de las guías soportes de la estructura móvil	138
2.2	.4 Diseño del soporte del telescopio	140
2.2	.5 Selección de cadena y catalinas	143
2.2	.6 Diseño guía de la cadena	150
2.3	Sistemas motrices.	165
2.3	.1 Sistema de transmisión de potencia	169
2.3	.2 Selección del motor y reductor principal	171
2.3	.3 Selección del motor y reductor de la estructura telescópica	178
2.3	.4 Selección chumaceras	182
2.4	Sistema del mecanismo tensor	191
2.4	.1 Ajuste de la cadena de transportación	192
2.4	.2 Diseño del bastidor	196
2.5	Sistema estructural	196
2.5	.1. Estructura móvil: Telescopio	198
2.5	.2. Estructura fija: Bastidor	205
2.6	Sistema de seguridad	210
2.6	.1 Selección de los sensores	211
2.6	.2 Diseño de guardas de seguridad	211
CAPÍTI	JLO 3	
3. MC	DELADO VIRTUAL DEL TRANSPORTADOR TELESCÓPICO DE	
CADEN		213
3.1	Representación Gráfica en Tercera Dimensión	
3.2	Animación del funcionamiento del transportador	218

3.3	Análisis de esfuerzos y deformaciones
CAPÍT	ULO 4
4. CC	OSTOS PARA IMPLEMENTACIÓN236
4.1	Fabricación local de partes
4.2	Importación de elementos
4.3	Presupuesto referencial
CAPÍT 5. CO	ULO 5 ONCLUSIONES Y RECOMENDACIONES244
APÉNI	DICES
RIRI I	OGRAFÍA

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

FIMCP Facultad de Ingeniería en Mecánica y Ciencias

ASTM American Society for Testing and Materials

ATEX Atmósferas Explosivas

EN Norma Europea

INEN Instituto Ecuatoriano de Normalización

DNH Dirección Nacional de Hidrocarburos

GLP Gas licuado de petróleo

IEC Comisión de Electrotecnia Internacional

ISO Organización Internacional de Normalización

LRFD Diseño Factor de Carga y Resistencia

NFPA National Fire Protection Association

SAE Society Automotive Engineers

AWS American Welding Society

AISC American Institute of Steel Construction

NET Norma Técnica Ecuatoriana

ASME American Society of Mechanical Engineers

L.T.B Length of The Bore

RBH Reductor Cónico Helicoidal

CAD Diseño Asistido por Computadora

SIMBOLOGÍA

C_p	Tensión de la cadena
w_c	Peso lineal de la cadena
$\boldsymbol{w_m}$	Peso lineal del material
\boldsymbol{L}	Longitud del tramo
μ_c	Coeficiente de rozamiento de superficies
μ_{s2}	Coeficiente de rozamiento modificado
$\boldsymbol{\phi}$	Ángulo de inclinación del tramo
$oldsymbol{ heta}$	Ángulo de cambio de dirección de la tensión
\boldsymbol{g}	Gravedad
f_p	Factor de servicio
f_s	Factor de velocidad
f_n	Factor por número de hileras de cadena
M	Momento flexor
C	Radio de giro
I	Inercia
σ_f	Esfuerzo de flexión
η	Factor de seguridad
D_i	Diámetro interno
D_p	Diámetro de paso
D_e	Diámetro externo
$v_{const.}$	Constante de paso diametral
p	Paso de cadena
$\boldsymbol{P}_{\boldsymbol{D}}$	Paso diametral
T_c	Torque requerido de catalinas motrices
$C_{a,f,s,T,f}$	Factores de corrección de la fatiga
S_e	Resistencia corregid a la fatiga
\boldsymbol{q}	Sensibilidad a la muesca
s_y	Resistencia a la fluencia
S_{ut}	Resistencia a la ruptura
d	Diámetro
d_e	Diámetro equivalente
σ_a	Esfuerzo de amplitud
σ_m	Esfuerzo medio

 P_r Carga radial dinámica equivalente.

 ${\it F}_{mr}$ Fuerza radial aplica

F_{ma} Fuerza axial aplica

X Factor de carga radial

Y Factor de carga axial

 C_r Capacidad dinámica

 f_h Factor de vida L_{10}

 f_n Factor de velocidad

 L_{10} Duración nominal de la vida en horas de

servicio

 $S_{m\acute{a}x.}$ Esfuerzo de Hertz.

 $P_{cm\acute{a}x.}$ Presión de contacto entre dos superficies

 $r_{1,2}$ Radio de curvatura de cilindros

 $v_{1,2}$ Coeficientes de Poisson

 F_r Fuerza de rozamiento

 μ Coeficiente de fricción

 f_a Factor de ajuste

® Símbolo de registro

ÍNDICE DE FIGURAS

Pág.

Figura 1.1	Rombo de seguridad NFPA 704 [3]	7
Figura 1.2	Diamante de fuego para el GLP	11
Figura 1.3	Cilindros formados de dos partes. [1]	14
Figura 1.4	Cilindros formados por tres partes. [1]	14
Figura 1.5	Planta de envasado.	16
Figura 1.6	Flujo de procesos de envasado	18
Figura 1.7	Admisión de cilindros al carrusel de llenado. [7]	22
Figura 1.8 [11]	Sistemas de transportación mediante cadena de transportación	
Figura 1.9	Sistemas de transportación aéreo. [11]	33
Figura 1.10	Sistemas de transportación de rodillos. [11]	33
Figura 1.11	Sistemas telescópicos. [7] [11]	34
Figura 1.12	Cilindro de GLP 15 kg	35
Figura 1.13	Niveles de transportadores de cadena	36
Figura 1.14	Niveles del telescópico con respecto a la plataforma de carga.	37
Figura 1.15	Sistemas a nivel de suelo. [7]	41
Figura 1.16	Sistemas para instalación sobre soportes. [7]	41
Figura 1.17	Alternativa "A" sistema telescópico [7]	45
Figura 1.18	Alternativa "B" sistema telescópico [11]	46
Figura 1.19	Esquema del transportador de cadena telescópico	49
Figura 1.20	Corte AA	49
Figura 2.1	Recorrido de la cadena	62
Figura 2.2	Distancia de transportación asociado a la extensión	63
Figura 2.3	Separación de guías de cadenas	65
Figura 2.4.	Tensiones de una cadena de transportación. [13]	67
Figura 2.5	Layout de transportación de cadena	68

•	Tensión acumulativa de la cadena para la máxima extensión d	
Figura 2.7	Modelo matemático de una viga hiperestáticamente apoyada	78
Figura 2.8	perfil de guía de cadena	79
Figura 2.9	Eelástica de una viga cualquiera	80
Figura 2.10	Arreglo general de guía de cadena	84
Figura 2.11	Tipos de catalinas [13]	88
Figura 2.12	Dimensiones principales de catalinas	88
Figura 2.13	Tipos de cubos [13]	90
Figura 2.14	Paso diametral de catalina de 14 dientes	92
Figura 2.15	Paso diametral de catalina de 10 dientes	92
Figura 2.16	Diente recomendado [13]	94
Figura 2.17	Diagrama de cuerpo libre del eje motriz	99
Figura 2.18	Análisis de fuerzas en el plano "YZ"	100
Figura 2.19	Análisis de fuerzas en el plano "XZ"	101
Figura 2.20	Diagramas de cortante y momento flector plano "YZ"	103
Figura 2.21	Diagramas de cortante y momento flector plano "XZ"	104
Figura 2.22	Diagrama de cuerpo libre del eje conducido crítico	112
Figura 2.23	Análisis de fuerzas en el plano "YZ" conducido	112
Figura 2.24	Análisis de fuerzas en el plano "XZ" conducido	114
Figura 2.25	Diagramas de cortante y momento flector plano 'YZz''	116
Figura 2.26	Diagramas de cortante y momento flector plano "XZ"	117
Figura 2.27	Disposición general del conjunto rueda y eje	119
Figura 2.28	Diagrama de cuerpo libre del eje	120
Figura 2.29	Análisis de fuerzas en el plano "YZ"	121
Figura 2.30	Diagramas de cortante del eje de las ruedas condición 1	122
Figura 2.31	Diagrama de cortante del eje de las ruedas condición 2	123
Figura 2.32	Diagrama de cuerpo libre de la rueda	128
Figura 2.33	Perfil de fluctuaciones de fuerza radial	129
Figura 2.34	Perfil de fluctuaciones de fuerza axial	129

Figura 2.35	Sección de rueda	134
Figura 2.36	Modelos matemáticos de la guía del telescopio	139
Figura 2.37	Disposición general del soporte del telescopio	140
Figura 2.38	Layout de transportación para traslación del telescopio	144
Figura 2.39	Modelo matemático guía de cadena del telescopio	151
Figura 2.40	Perfil de guía de cadena del telescopio	151
Figura 2.41	Diagrama de cortante y momento flector guías del telescopio	152
Figura 2.42	Diagrama de cuerpo libre eje motriz del telescopio	156
Figura 2.43	Análisis de fuerzas en el plano "YZ"	156
Figura 2.44	Análisis de fuerzas en el plano "XZ" telescopio	158
	Diagramas de cortante y momento flector en el plano "YZ"	159
_	Diagramas de cortante y momento flector en el plano "XZ"	160
Figura 2.47	Diagrama de cuerpo libre de la chumacera	183
Figura 2.48	Diagramas de fuerzas de catalina # 3	192
Figura 2.49	Sistema del mecanismo tensor.	196
Figura 2.50	Modelo matemático del telescópico	199
Figura 2.51	Sección del telescópico.	201
Figura 2.52	Modelo de estructura bastidor principal.	206
Figura 2.53	Sección A-A.	207
Figura 2.54	Modelo de estructura bastidor de transmisión de potencia	208
Figura 2.55	Modelo de estructura bastidor de sistemas motrices	209
Figura 2.56	Dimensiones de malla tipo	212
Figura 2.57	Dimensiones de guarda tipo	212
Figura 3.1	Transportador telescópico en 3d	214
Figura 3.2	Vistas principales	215
Figura 3.3	Vista frontal	216
Figura 3.4	Bastidor de transmisión de potencia	217
Figura 3.5	Bastidor de sistemas motrices	217

Figura 3.6	Dimensionamiento de agujeros. [22]	219
Figura 3.7	Inercia equivalente	220
Figura 3.8	Máximo esfuerzo telescopio	221
Figura 3.9	Máximo desplazamiento	221
Figura 3.10	Mínimo esfuerzo telescopio	222
Figura 3.11	Mínimo desplazamiento telescopio	222
Figura 3.12	Diagramas de cuerpo libre	225
Figura 3.13	Esfuerzos de Von Mises máxima carga	226
Figura 3.14	Esfuerzos de Von Mises mínima carga	226
Figura 3.15	Esfuerzos de Von Mises	228
Figura 3.16	Deformación máxima	229
•	Esfuerzo de Von Mises del bastidor principal para el telescopi	
Figura 3.18 recogido	Esfuerzo de Von Mises del bastidor principal para el telescopi	
•	Esfuerzo de Von Mises en las guías del bastidor para bastidor	
Figura 3.20	Resultados en rigidizador máxima carga	233
Figura 3.21	Esfuerzos de Von Mises del bastidor transmisión de potencia	234
Figura 3.23	Máximo desplazamiento bastidor transmisión de potencia	234
Figura 3.24	Esfuerzo de von mises en bastidor sistemas motrices	235
Figura 3.25	Máximo desplazamiento bastidor sistemas motrices	235

ÍNDICE DE TABLAS

	Pág.
Tabla 1 Propiedades físicas del Propano, Butano y GLP	6
Tabla 2 Clasificación de operaciones del proceso de envasado	17
Tabla 3 Capacidades de una máquina de llenado	21
Tabla 4 Criterios de selección y ponderación.	46
Tabla 5 Matriz de decisión	48
Tabla 6 Sistemas del transportador.	50
Tabla 7 Longitudes de tramos de cadena	63
Tabla 8 Datos para el cálculo de la tensión de la cadena del telescopio	70
Tabla 9 Ángulo de agarre debido al cambio de dirección	71
Tabla 10 Condición de factores de servicio fp	73
Tabla 11 Características de la cadena seleccionada	77
Tabla 12 Propiedades de la guía de la cadena	79
Tabla 13 Guía de material requerido para catalinas [13]	86
Tabla 14 Dureza de dientes recomendada para catalinas	95
Tabla 15 Dimensiones del cubo	96
Tabla 16 Datos para el cálculo del factor de seguridad a fatiga del telesco	-
Tabla 17 Descripción del rodamiento y manguito de fijación seleccionado	
Tabla 18 Características de la cadena de traslación del telescopio	150
Tabla 19 Propiedades de la guía de la cadena	152
Tabla 20 Dimensiones del cubo	155
Tabla 21 Planilla de datos motor principal	173
Tabla 22 Planilla de datos del motor del telescopio	180
Tabla 23 Descripción del rodamiento y manguito de fijación seleccionado para ejes 1, 5 y 6	187
Tabla 24 Descripción de chumacera tipo brida seleccionado para ejes 2 y	
Tabla 25 Descripción de unidad extensora para eje 4	188

Tabla 26 Descripción del rodamiento y manguito de fijación seleccionado	
para eje motriz telescopio	190
Tabla 27 Descripción de unidad extensora telescopio	191
Tabla 28 Factores de ajuste para cadenas	195
Tabla 29 Propiedades de la sección del telescopio2	202
Tabla 30 Descripción de elementos del bastidor principal	207
Tabla 31 Descripción de elementos del bastidor de transmisión de potenci	
Tabla 32 Descripción de elementos del bastidor de sistemas motrices	209
Tabla 33 Fuerza y pares de reacción en restricciones (máxima)	221
Tabla 34 Fuerza y pares de reacción en restricciones (mínima)	222
Tabla 35 Datos para el cálculo del factor de seguridad a fatiga del telescop	
Tabla 36 Datos para el cálculo del factor de seguridad a fatiga de las rueda	
Tabla 37 Datos para el cálculo del factor de seguridad a fatiga del cilindro soporte	
Tabla 38 Datos para el cálculo del factor de seguridad a fatiga del cilindro soporte	233
Tabla 39 Costos de fabricación de las partes2	239
Tabla 40 Costos de instalación2	240
Tabla 41 Costos de equipos en fábrica2	241
Tabla 42 Costos de equipos en taller	242
Tabla 43 Presupuesto de fabricación e implementación	243

ÍNDICE DE PLANOS

ESPOL.FIMCP.M.01	PERSPECTIVA SIOMÈMTRICA DE PARTES
ESPOL.FIMCP.M.02	PLATICO TÉCNICO Y SECCIONES
ESPOL.FIMCP.M.03	DESCRPCIÓN GENERAL SISTEMA TELESCÓPIO
ESPOL.FIMCP.M.04	DETALLE DE ESTRUCTURA DEL TELESCOPIO
ESPOL.FIMCP.M.05	BASTIDOR PRINCIPAL DEL TELESCÓPIO
ESPOL.FIMCP.M.06	DESCRIPCIÓN DEL BASTIDOR DE POTENCIA
ESPOL.FIMCP.M.07	BASTIDOR DE SISTEMAS MOTRICES
ESPOL.FIMCP.M.08	CATALINA DEL TELESCÓPIO
ESPOL.FIMCP.M.09	CATALINA DE 14 DIENTES
ESPOL.FIMCP.M.10	CATALINA DE 10 DIENTES
ESPOL.FIMCP.M.11	RUEDA DEL TELESCÓPIO
ESPOL.FIMCP.M.12	BASE DEL SITEMA TENSOR PRINCIPAL
ESPOL.FIMCP.M.13	BASE DEL SITEMA TENSOR DEL TELESCÓPIO
ESPOL.FIMCP.M.14	EJE Y CATALINA DEL SISTEMA TENSOR
ESPOL.FIMCP.M.15	EJE SISTEMA TENSOR DEL TELESCÓPIO
ESPOL.FIMCP.M.16	EJE MOTRIZ CATALINAS CHUMACERAS Y BASES
ESPOL.FIMCP.M.17	EJE CATALINA MOTIZ DEL TELESCÓPIO
ESPOL.FIMCP.M.18	EJE CATALINA CHUMACERAS Y BASES
ESPOL.FIMCP.M.19	EJE CATALINA DENTRO DEL TELESCÓPIO
ESPOL.FIMCP.M.20	PLANO TÍPICO DE BASE DE CHUMACERA
ESPOL.FIMCP.M.21	CHUMACERA SV212
ESPOL.FIMCP.M.22	CHUMACERA SV213
ESPOL.FIMCP.M.23	CHUMACERA SV219
ESPOL.FIMCP.M.24	CHUMACERA SV219SM_UCF212D1_60_D1
ESPOL.FIMCP.M.25	MOTOR PRINCIPAL
ESPOL.FIMCP.M.26	MOTOR DEL TELESCÓPIO
ESPOL.FIMCP.M.27	DETALLE DE ESTRUCTURA DEL TELESCÓPIO
ESPOL.FIMCP.M.28	CONJUNTO DE EJE Y RUEDA DEL TELESCÓPIO
ESPOL.FIMCP.M.29	ALINEADOR DEL TELESCÓPIO
ESPOL FIMCP M 30	CHUMACERA SV219SM_UCF212D1_60_D1

INTRODUCCIÓN

El Gas Licuado de Petróleo (GLP) es una de las fuentes de energía más utilizada en los hogares para la cocción de los alimentos que se consume a diario; además el uso de esta fuente de energía se está promoviendo en el país como combustible para los vehículos de combustión interna. Esta fuente de energía también se la emplea en la industria y en el área agrícola para hornos y sistemas térmicos.

En este país se comercializa este producto de las siguientes formas: presentaciones de gas doméstico (cilindros de 15 kg), tanques móviles (cilindros de 45 kg), y tanques estacionarios de almacenamiento (despacho al granel).

La demanda de esta fuente de energía está en aumento. Por ésta razón las compañías comercializadoras de este producto deben de mejorar sus estructuras productivas y logísticas para garantizar atender a la demanda creciente del producto.

Hoy en día la transportación de cilindros se la hace de manera más automatizada. En las plantas envasadoras los cilindros se transportan dentro de la línea de llenado en sistemas de transportación de cadenas, los cuales se diseñan para efectuar el traslado eficiente y racional del producto desde el

punto de carga hasta el punto de descarga, pasando por varios puntos de procesamientos.

El sistema de carga/descarga de los cilindros se lo puede realizar de dos maneras diferentes: (1) carga de los cilindros en pallets para luego estos cargarlos a las plataformas de los camiones de transportación; y, (2) carga/descarga de los cilindros de manera individual desde y hacia las plataformas de los camiones de transportación. Sin embargo, el sistema de carga/descarga se lo realiza de forma directa desde y hacia las plataformas de los camiones. El procedimiento manual consiste en que el operador traslade un cilindro desde la plataforma del camión hasta la línea de llenado. Este procedimiento no es eficiente debido al tiempo que toma en realizar la operación y debido a que en su traslado se maltratan los cilindros.

Es por esto que con los antecedentes previamente descritos y la demanda del producto en aumento se ve en la necesidad de implementar un sistema mecánico semiautomático el cual permita la carga/descarga de los cilindros directamente desde la plataforma del camión transportador. La solución encontrada para este caso es un sistema de transportación de cadenas del tipo telescópico que permite transportar los cilindros de una manera más eficiente reduciendo los tiempos muertos, el maltrato de los cilindros y sobre todo cumplir con las normas de Seguridad Industrial y Salud ocupacional.

CAPÍTULO 1

1. DISEÑO CONCEPTUAL Y GENERALIDADES

1.1 Descripción del Gas Licuado de Petróleo (GLP).

El Gas licuado de Petróleo (GLP) es una mezcla formada principalmente por hidrocarburos de 3 ó 4 átomos de carbono, que siendo vapores a condiciones ambientales, se presentan en estado líquido por compresión. Definición Norma técnica Ecuatoriana 111. [1]

QUÉ ES EL GAS LICUADO DE PETRÓLEO GLP?

El Gas Licuado de Petróleo (GLP) es un hidrocarburo combustible de elevado rendimiento energético, con gran versatilidad de uso y niveles mínimos de impurezas. Este hidrocarburo al encontrarse en condiciones normales de presión atmosférica y temperatura ambiente se encuentra en fase gaseosa. Además, este hidrocarburo se obtiene del proceso de refinación del petróleo por destilación fraccionada y es un producto derivado del petróleo así como la gasolina, el diesel y otros.

El GLP se divide en varias familias de acuerdo al porcentaje de propano y butano que este contenga. Su almacenamiento solo se da en fase

líquida y se almacena en recipientes como cilindros (bombonas) depósitos como tanques salchichas y esferas.

La variedad de familias de GLP se obtienen de acuerdo al proceso o a la fuente al cual fue sometido el producto o de la cual se extrajo el producto. Las cuatro familias son:

- Propano Comercial (C3H8)
- Propano para aplicaciones especiales
- Butano comercial (C4H10)
- Mezclas de Propano y Butano

El gas propano no contiene azufre, su combustión no libera cenizas ni olores, por lo que es considerado como la fuente de energía más limpia. Para el GLP la mezcla de propano y butano se encuentran a proporción 70% y 30% respectivamente. Por esta razón, se considera al Gas Propano como GLP, ambos componentes tienen inflamabilidad de grado de riesgo 4, que equivale a muy alto. Por esta razón, cuando el GLP se fuga a la atmósfera, este se vaporiza de inmediato mezclándose con el aire del ambiente para formar nubes con gran potencial inflamable y explosivo al encontrar una fuente de ignición.

CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DEL GLP

La tabla 1 enlista las propiedades del Propano, Butano y GLP. Dentro de las características del GLP se tiene en cuenta las siguientes:

- ➤ ALTO PODER CALORÍFICO, su poder calorífico es aproximadamente de 12000 kCal.
- SE PRODUCE EN ESTADO DE VAPOR, pero se licúa con cierta facilidad, mediante compresión y enfriamiento.
- > NO TIENE COLOR, es transparente como el agua.
- NO TIENE OLOR cuando se produce y licúa, pero por motivos de seguridad se le agrega odorizantes como el etyl mercaptano que impregna un mal olor que permite detectarlo cuando se fugue. Sin embargo este odorizante no afecta a las propiedades del combustible.
- > NO ES TÓXICO, solo desplaza el oxígeno, por lo que no es propio para respirarlo mucho tiempo.
- NO ES CORROSIVO, el GLP no es corrosivo ni al cobre o sus aleaciones y no disuelve los cauchos sintéticos, por lo que estos materiales pueden ser usados para construcción de instalaciones. Por lo contrario disuelve las grasas y al caucho natural.
- ➤ ES MUY INFLAMABLE, cuando se escapa y se vaporiza se enciende violentamente con la menor llama o chispa.

- ➤ ES EXCESIVAMENTE FRÍO, por pasar rápidamente del estado líquido a vapor, por lo cual, al contacto con la piel producirá siempre quemaduras de la misma manera que lo hace el fuego.
- ➤ **ES LIMPIO**, cuando se quema debidamente combinado con el aire, no forma hollín, ni deja mal sabor en los alimentos preparados.
- **ES ECONÓMICO**, comparado con otros combustibles.
- ▶ PESO ESPECÍFICO, es más pesado que el aire, por lo que al escaparse el gas, tenderá a ocupar las partes más bajas, como el piso, fosas y pozos que haya en el área. (0.53 a 20°C)
- ➤ ALTA EFICIENCIA DE COMBUSTIÓN cuando a una mezcla de aire gas del 2 al 10%. [2]

TABLA 1
PROPIEDADES FÍSICAS DEL PROPANO, BUTANO Y GLP

Propiedad	Propano	Butano	GLP
Fórmula general	C₃H ₈	C ₄ H ₁₀	
Masa molecular (g/mol)	44	58	50
Aspecto Físico	Gas,	Gas,	Gas,
Punto de ebullición (°C)	-42.1	-0.5	-30
Calor latente de Vaporización	101.7	82.2	95.85
Gravedad específica a 20 °C	0.505	0.58	0.53
Tensión de Vapor a 20°C (Psi)	156.5	31.3	118.9
Temperatura Crítica (°C)	96.8	152	
Presión Crítica (Psi)	597.57	533.54	

La información de esta tabla ha sido recopilada de varias fuentes en la web.

Clasificación de las sustancias de acuerdo al rombo de seguridad NFPA

Todas las sustancias que representen un riesgo contra la salud de las personas y el medio ambiente están clasificadas de acuerdo: a la salud, grado de inflamabilidad, radioactividad y toxicidad. La NFPA es un organismo reconocido alrededor del mundo como la fuente autoritativa principal de conocimientos técnicos, datos y consejos para promover la problemática de protección y prevención contra el fuego. Entre sus códigos, la norma NFPA 704 explica los diamantes de fuego utilizados para comunicar los peligros de los materiales peligrosos.

A continuación en la figura 1.1, se presenta el rombo de seguridad NFPA 704 para determinar el diamante de fuego del GLP.

FIGURA 1.1 ROMBO DE SEGURIDAD NFPA 704 [3]

Descripción de los colores del rombo

Azul/Salud

Nivel de riesgo 4. Sustancias que con una muy corta exposición pueden causar la muerte o un daño permanente, e incluso en caso de atención médica inmediata. Por ejemplo, el cianuro de hidrógeno.

Nivel de riesgo 3. Materiales que bajo corta exposición pueden causar daños temporales o permanentes, aunque se preste atención médica, como el hidróxido de potasio.

Nivel de riesgo 2. Materiales bajo cuya exposición intensa o continua puede sufrirse incapacidad temporal o posibles daños permanentes a menos que se dé tratamiento médico rápido, como el cloroformo o la cafeína.

Nivel de riesgo 1. Materiales que causan irritación, pero solo daños residuales menores aún en ausencia de tratamiento médico. Un ejemplo es la glicerina.

Nivel de riesgo 0. Materiales bajo cuya exposición en condiciones de incendio no existe otro peligro que el del material combustible ordinario, como el cloruro de sodio.

Rojo/Inflamabilidad

Nivel de riesgo 4. Materiales que se vaporizan rápido o completamente a la temperatura a presión atmosférica ambiental, o que se dispersan y se quemen fácilmente en el aire, como el propano. Tienen un punto de inflamabilidad por debajo de 23°C (73°F).

Nivel de riesgo 3. Líquidos y sólidos que pueden encenderse en casi todas las condiciones de temperatura ambiental, como la gasolina. Tienen un punto de inflamabilidad entre 23°C (73°F) y 38°C (100°F).

Nivel de riesgo 2. Materiales que deben calentarse moderadamente o exponerse a temperaturas altas antes de que ocurra la ignición, como el petrodiésel. Su punto de inflamabilidad oscila entre 38°C (100°F) y 93°C (200°F).

Nivel de riesgo 1. Materiales que deben precalentarse antes de que ocurra la ignición, cuyo punto de inflamabilidad es superior a 93°C (200°F).

Nivel de riesgo 0. Materiales que no se queman, como el agua. Expuesto a una temperatura de 815° C (1.500°F) por más de 5 minutos.

Amarillo/Inestabilidad/reactividad

Nivel de riesgo 4. Fácilmente capaz de detonar o descomponerse explosivamente en condiciones de temperatura y presión normales (e.g., nitroglicerina, RDX)

Nivel de riesgo 3. Capaz de detonar o descomponerse explosivamente pero requiere una fuente de ignición, debe ser calentado bajo confinamiento antes de la ignición, reacciona explosivamente con agua o detonará si recibe una descarga eléctrica fuerte (e.g., flúor).

Nivel de riesgo 2. Experimenta cambio químico violento en condiciones de temperatura y presión elevadas, reacciona violentamente con agua o puede formar mezclas explosivas con agua (e.g., fósforo, compuestos del potasio, compuestos del sodio).

Nivel de riesgo 1. Normalmente estable, pero puede llegar a ser inestable en condiciones de temperatura y presión elevadas (e.g., acetileno (ethyne)).

Nivel de riesgo 0. Normalmente estable, incluso bajo exposición al fuego y no es reactivo con agua (e.g., helio).

Blanco/Especial

El espacio blanco puede contener símbolos:

'W' – reacciona con agua de manera inusual o peligrosa, como el cianuro de sodio o el sodio.

'OX' o 'OXY' - oxidante, como el perclorato de potasio.

'COR' - corrosivo: ácido o base fuerte, como el ácido sulfúrico o el hidróxido de potasio. Con las letras 'ACID' se puede indicar "ácido" y con 'ALK', "base".

'BIO' - Riesgo biológico 💮 : por ejemplo, un virus.

'CRYO' - Criogénico.

'Xn' Nocivo presenta riesgos epidemiológicos o de propagación importante.

Sólo **'W'** y **'OX'** se reconocen oficialmente por la norma NFPA 704, pero se usan ocasionalmente símbolos con significados obvios como los señalados.

La expresión **RAAD** es la más importante por la razón A2 en riesgos extremos. [3]

De acuerdo a esto en la figura 1.2 se muestra el diamante de fuego.

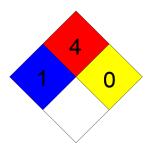


FIGURA 1.2 DIAMANTE DE FUEGO PARA EL GLP

1.2 Cilindros de Acero para GLP.

Estos cilindros son la etapa final del producto. Este es el recipiente que contendrá el GLP para ser trasladado. Es muy importante conocer las características del cilindro. Para comprender acerca de este producto se ha tomado las siguientes definiciones de la norma ecuatoriana NTE INEN 0111:98 Cilindros de acero soldado para gas licuado de petróleo GLP. [1]

Definiciones de las partes.

Cilindro. Es el recipiente diseñado para contener GLP, formado por el cuerpo, el porta válvula, el asa y la base.

Cuerpo del cilindro. El conjunto constituido por dos casquetes, o por dos casquetes y una sección cilíndrica.

Portaválvula. El elemento del cilindro soldado al casquete superior destinado a alojar la válvula.

Asa. Es el elemento del cilindro soldado al casquete que sirve para la protección de la válvula, manipulación del cilindro, identificación y marcado según el numeral 8.1.3 de la norma NTE INEN 0111:98 [1].

Base. El elemento soldado al casquete inferior, con el objeto de mantenerlo en posición vertical y evitar el contacto del cuerpo del cilindro con el piso.

Diámetro del cilindro. El diámetro exterior de los casquetes o de la sección cilíndrica, excluyendo la soldadura.

Eje longitudinal del cilindro. La recta imaginaria que pasa por el centro de los casquetes.

Capacidad nominal del cilindro. La cantidad de agua que en condiciones normales puede contener el cilindro, medida en dm3.

Prueba hidráulica. Llenada del cilindro a presión con un líquido inerte destinada a comprobar la inexistencia de fugas, expansión total a la rotura.

Lote. El conjunto de cilindros de la misma capacidad nominal, fabricados bajo las mismas condiciones de producción, utilizando materia prima procedente de la misma colada.

Unidad de muestreo. El cilindro, tomado al azar del lote de muestreo, destinado a someterse a ensayos correspondientes.

Probeta. El material tomado de la unidad de muestreo preparado para los ensayos correspondientes.

Autoridad de inspección. El o los organismos autorizados para rechazar o aceptar los cilindros destinados al uso dentro del país, en función de los ensayos efectuados de acuerdo a esta norma.

Clasificación de los cilindros de GLP

De acuerdo a su capacidad nominal, los cilindros se clasifican en:

- ✓ Cilindros de 5 kg
- ✓ Cilindros de 10 kg
- ✓ Cilindros de 15 kg
- ✓ Cilindros de 45 kg

Cilindros de 15 kg.

Los cilindros de 15 kg están dentro del grupo de 5, 10 y 15 kilos, estos cilindros deben de contar con dos casquetes con extremos semielipsoidales o toroesferoidales del mismo diámetro exterior unidos entre sí por soldadura circunferencial. Uno de los casquetes deberá tener un borde repujado que permite un traslapo no menor de 5 mm de acuerdo a las figuras 1.3 y 1.4.

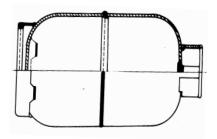


FIGURA 1.3 CILINDROS FORMADOS DE DOS PARTES. [1]

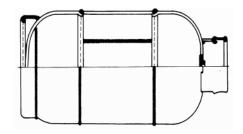


FIGURA 1.4 CILINDROS FORMADOS POR TRES PARTES. [1]

Dimensión y capacidad.

De acuerdo a la norma NET INEN 0111:98, la clasificación por las características de los cilindros de GLP el diámetro exterior del cilindro es de 320^{+5}_{-2} con una capacidad mínima y máxima de agua en (dm3) de 35.7 y 36.5 respectivamente. Donde la capacidad de agua es calculada en base a la densidad de propano: 0.509 kg/dm3 a 15°C. [1]

1.3 Planta de envasado de GLP.

Es la infraestructura física provista de instalaciones y equipos destinados al almacenamiento y envasado de GLP en cilindros. Las envasadoras deben ser autorizadas por la Dirección Nacional de Hidrocarburos DNH. Haciendo un resumen de todos los capítulos se debe tener presente que para cumplir con los reglamentos vigentes se debe de contar con un mínimo de:

- I. Uno o varios tanques estacionarios para GLP;
- II. Una plataforma de llenado con sus respectivos equipos de medición para el envasado de cilindros;
- III. Bombas, compresor, sistema de tubería para el manejo de líquidos y retorno de vapores;
- IV. Un sistema de drenaje y desgasificación de cilindros y disposición de los líquidos;
- V. Un sistema contra incendios.

VI. Y los demás equipos necesarios para realizar, en forma técnica y segura, cada una de las operaciones propias de su naturaleza. [4]

Para conocer la planta de envasado se debe entender como es el proceso de envasado de GLP en cilindros. Para el cual, a continuación se describe el proceso simplificado de envasado.

Para el proceso de envasado de GLP se partirá del producto final el cual será envasado en condiciones reguladas por las normas locales e internacionales para su consumo. De acuerdo a estas condiciones se establece el proceso de envasado a partir de los reservorios de almacenamiento de la planta.

A continuación en la figura 1.5 se muestra el esquema de una planta de envasado donde el proceso de envasado de GLP parte desde el carrusel de llenado hasta las plataformas de carga de camiones:

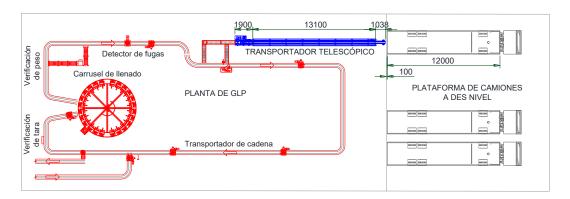


FIGURA 1.5 PLANTA DE ENVASADO.

PROCESO ENVASADO.

El proceso de envasado a partir desde el almacenamiento en tanques empieza con un sistema de bombeo que inyecta el GLP a las tuberías conducidas hacia la planta envasadora. Estas tuberías llegan a las máquinas de llenado ya sean un carrusel o las llenadoras estacionarias. Las actividades que se llevan a cabo para el proceso de envasado de GLP actualmente, se enlistan en la tabla 2. Para estas actividades, los procesos parten desde la descarga del cilindro vacío hasta la carga cilindro lleno dentro del camión de transportación.

TABLA 2
CLASIFICACIÓN DE OPERACIONES DEL PROCESO DE ENVASADO

Manuales	 Descarga de los cilindros. Acomodar cilindros en carritos de transportación. Llevar los cilindros al transportador. Acomodar cilindros en línea envasadora. Clasificar para mantenimiento. Guiar el avance de cilindros vacíos. Recibir cilindros vacíos. Enderezar las asas Colocar empaques Dirigir cilindros llenos al camión transportador Acomodar cilindros en carritos de transportación para llevarlos al camión. Acomodar los cilindros en la carga y apilarlos manualmente
Semiautomáticas	Tabular cilindrosVerificar cilindros llenos
Automáticas	 Llenar cilindros vacíos en carrusel Verificación de tara Control de fuga Colocar sellos

FLUJO DE PROCESOS DE ENVASADO.

En este flujo se han tomado en cuenta las actividades involucradas desde la descarga de cilindros vacíos hasta la carga de cilindros llenos, además se ha nombrado el mantenimiento y se enlistó sus operaciones (Nota: en la figura 1.6 del flujo varios procesos se los ha agrupado). [5]

FIGURA 1.6 FLUJO DE PROCESOS DE ENVASADO.

DESCRIPCIÓN DE LA PLANTA DE ENVASADO

Para describir mejor el proceso de envasado se ha dividido a la planta en dos grandes zonas, las cuales son:

1. Zona de no peligro

2. Zona de peligro

Para el caso de la zona de no peligro todas las operaciones se las realizan en el control central fuera de la zona industrial. En esta zona se llevan operaciones de registro de datos de todo el proceso y control de todos los equipos de forma remota.

Los equipos que intervienen indirectamente en el proceso de llenado para la zona de no peligro son:

- Sistema de ordenadores con software y base de datos para los registros de llenado.
- Sistema de interconexión en red para toda la planta.
- Sistema de registro físico (impresoras).

En la zona de peligro se realizan las operaciones de: descarga de los cilindros, vaciado de restos de GLP en tanque pulmón, inspección de cilindros, mantenimiento si es necesario, prueba hidrostática, envasado de GLP, verificación de peso, sellado y salida del producto al área de despacho y transportación en general. [6]

Los equipos que intervienen directamente con el producto en el proceso de llenado para todas las operaciones son:

Transportadores.

Actuadores neumáticos.

Dispositivos de entrada y salida.

Balanzas de control.

Detectores de fugas.

Lavadora y secador.

Puesto de verificación de Tara.

Transportador para rechazos.

Interfaz de alimentación y datos.

Colocadores de sellos.

Carrusel de llenado o llenadoras

estacionarias.

TRANSPORTADORES

Para hablar de los transportadores de cilindros de GLP se tiene que tener en claro cuál es la etapa en la cual se encuentran transportando. Existen dos etapas para el transporte de cilindro de GLP las cuales se presentan a continuación:

- El transporte de los cilindros dentro de la planta de envasado.
- El transporte de cilindros fuera de la planta de envasado hacia centros de distribución en todo el país.

En esta tesis solo se va a enfocar la transportación dentro de la planta de envasado cuando el cilindro está dentro de la zona de peligro.

Para la etapa de transportación el tipo de transportador adecuado es el transportador de cadena. Estos transportadores son esenciales en toda la línea de envasado ya que son los encargados de transportar el cilindro en todo el proceso desde que entra hasta que sale.

PUESTO DE VERIFICACIÓN DE TARA

Este equipo determinar el peso inicial del cilindro de forma rápida y precisa antes de que entre al carrusel o llenadora estacionaria. [7]

CARRUSELES DE LLENADO DE CILINDROS DE GLP

Los carruseles de llenado de cilindros son equipos de forma circunferencial y de movimiento circular. Estos tienen como función recibir los tanques de GLP vacío y llenarlos a medida de que los cilindros viajan en su periferia. De estos carruseles existen dos conjuntos, los semiautomáticos y los automáticos. Y estos a su vez en tres tipos que se dan de acuerdo a la forma en cómo estos se alimentan. A demás los carruseles son diseñados en diferentes dimensiones, en función de los números de balanzas a emplear (por ejemplo 12, 16, 18, etc.) [6]. La tabla 3 muestra estas capacidades.

TABLA 3
CAPACIDADES DE UNA MÁQUINA DE LLENADO.

Número de balanzas	Capacidad de llenado cilindros/hora
12	600-700
18	900-1050
24	1200-1400
36	1800-2100

LLENADORAS ESTACIONARIAS

Estos equipos están dispuestos a lo largo del transportador de cadena y realizan el llenado en forma semiautomática [7].

El proceso de llenado consiste en la verificación de la tara del cilindro y al valor inicial que resulta se le suma el peso del GLP de acuerdo con el tamaño (15 kg de GLP), luego se llena el envase hasta que la balanza corta automáticamente el flujo una vez completado el peso establecido.

DISPOSITIVOS DE ENTRADA Y SALIDA DE CILINDROS AL CARRUSEL

El proceso de admisión de cilindros al carrusel se lo hace de una manera sincronizada ya sea de forma manual, ó, automática. El proceso automático se hace con pistón o un sistema rotatorio, siendo este último el más eficiente por la continuidad que le da al proceso. En la figura 1.6 se disponen las diferentes maneras de admisión.

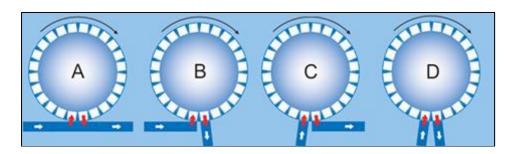


FIGURA 1.7 ADMISIÓN DE CILINDROS AI CARRUSEL DE LLENADO. [7]

C. Entrada radial salida ٧ Α. Entrada salida У tangencial Tangencial В. Entrada salida У D. Entrada y salida radial

tangencial

BALANZAS DE CONTROL DE PESO

Estas balanzas confirma que el peso del cilindro este dentro de los márgenes del peso de despacho. Si el cilindro no está dentro de los márgenes de tolerancia de peso éste es rechazado. [7]

DETECTORES DE FUGAS

Los detectores de fugas se emplean para comprobar que el hermetizado de los cilindros está bien. Los detectores de fugas pueden ser de dos tipos:

- Acústicos.
- Por inmersión en agua jabonosa.

ACTUADORES NEUMÁTICOS

De estos existen: pistones de freno para cilindros, pistones para admisión y expulsión de cilindros al carrusel (estos dispositivos entran en la clasificación de los sistemas de admisión).

LAVADORA Y SECADOR

Dentro del proceso de envasado se encuentra inmersa la limpieza de los cilindros. El sistema de lavado se lo realiza en agua caliente y con

detergente. Este proceso ayuda a la prolongación de la vida útil de los cilindros y además mejora la aceptación del producto hacia los usuarios debido a percepción de un producto limpio como un producto seguro, mejorando a su vez el aumento en ventas. [7]

COLOCADORES DE SELLOS DE SEGURIDAD

La colocación de los sellos se lo puede hacer de forma manual o automática una vez que el cilindro haya cumplido con las condiciones de calidad, cantidad del GLP envasado y las condiciones de seguridad para la circulación del cilindro. [7]

INTERFAZ DE ALIMENTACIÓN Y DATOS

La interfaz de alimentación y datos consiste en un circuito que puede resultar sencillo o complejo según la aplicación que esta tenga. En una planta de envasado de GLP esta interfaz es la encargada de recolectar todos los datos provenientes de cada una de los equipos dentro de la zona de peligro. Todas las señales análogas que ingresan a los transductores son transformadas en digitales para marcar un registro y llevar el control de la planta desde un lugar remoto o desde del control central en la zona de no peligro.

1.4 Justificación de la necesidad.

El conocimiento del proceso de envasado da una clara idea del riesgo al que está expuesto el personal que labora dentro de la planta de envasado, además de las paradas innecesarias que se dan por una mala maniobra del personal. Dentro de la descripción de las actividades de envasado existen actualmente un 65% de las actividades que se realizan de forma manual. Esto indica que son varias las necesidades que se deben de cubrir dentro del proceso de envasado. Además las compañías envasadoras deben de prepararse para en un futuro cubrir estas necesidades debido al incremento de la demanda de cilindros de GLP de 15 kg.

El propósito de esta tesis es: diseñar un mecanismo que permita reducir las actividades manuales, reducir los tiempos muertos que se dan en la línea de envasado por la intervención de la mano del hombre, disminuir el deterioro de los cilindros, aumentar la capacidad de despacho y disminuir los riesgos entre operaciones. Este propósito beneficiará a las empresas envasadoras de GLP aumentando la capacidad de las líneas de envasado. Para este mecanismo solo se emplearán tres personas, actualmente, para llenar un camión se utilizan 6 personas, es gracias a esto que se podrá hacer uso eficiente del personal y se lo tendrá que reubicar.

Dentro de las actividades que se planea cubrir se tiene:

Durante la descarga

- ✓ Descargar manual y acomodar los cilindros en los carritos.
- ✓ Transportar los cilindros en los carritos.
- ✓ Recibir cilindros vacíos y acomodarlos en la línea de envasado.

Durante la carga

- ✓ Acomodar y cargar los cilindros en los carritos.
- ✓ Transportar y guiar cilindros llenos a la plataforma del camión.

Cubrir las actividades anteriormente citadas permitirá disminuir 30 % de las actividades totales dentro del proceso de envasado. Estas actividades se encuentran en las etapas de carga y descarga del producto, por esta razón, el equipo ideal para cubrir estas necesidades tiene que cumplir con los requisitos de transportación que son: trasladar los cilindros, guiar los cilindros de forma segura y aumentar la capacidad de despacho que se ve afectada por los tiempos muertos generados por las actividades anteriormente citadas.

El equipo a diseñar además de cumplir con los requisitos anteriormente mencionados debe de cumplir con lo siguiente:

1. Tiene que ser compacto.

- Debe de ser diseñado a la capacidad de llenado máxima para una línea de envasado automático.
- Deberá ser diseñado para trasladar el producto hasta la plataforma del camión más grande que se despachan en las plantas envasadoras.

De acuerdo a todos los requisitos ya expuestos este equipo debe de ser un transportador del tipo telescópico.

1.5 Normas técnicas aplicables.

Las normas aplicables para los diseños de estos equipos se harán referencia al momento de hablar de leyes y normas respecto al GLP.

Las entidades y normativas que son aplicables para el proceso de envasado de GLP así como para el diseño de los equipos dentro de una planta son las siguientes:

Normas nacionales:

- > INEN (Instituto Ecuatoriano de Normalización)
- > **DNH** (Dirección Nacional de Hidrocarburos)

Y dentro las normas internacionales se tiene:

- > NFPA (National Fire Protection Association)
- > ASME (AMERICAN SOCIETY OF MECHANICAL ENGINEERS)

- > AISC (INSTITUTO AMERICANO DE CONSTRUCCIÓN EN ACERO)
- > AWS (AMERICAN WELDING SOCIETY)
- > ATEX (ATMOSFERAS EXPLOSIVAS)
- > EN (NORMA EUROPEA)

INEN (Instituto Ecuatoriano de Normalización)

Es el organismo oficial de la República del Ecuador para la normalización, la certificación y la metrología.

Misión del INEN

La misión del INEN es promover la cultura de la calidad y el mejoramiento de la competitividad en la sociedad ecuatoriana.

Visión del INEN

La visión es satisfacer la demanda nacional en los campos de la Normalización, Reglamentación Técnica, Procedimientos de Evaluación de la Conformidad, Metrología y Certificación de la Conformidad; que contribuye al mejoramiento de la competitividad, de la salud y seguridad del consumidor, la conservación del medio ambiente y promueve la cultura de la calidad para alcanzar un comercio justo.

Normas INEN citadas.

NTE INEN 0111.98 Cilindros de acero soldados para gas licuado de petróleo GLP. [1]

DNH (Dirección Nacional de Hidrocarburos)

Esta entidad es un organismo técnico-administrativo, parte del Ministerio de Energía y Minas, que controla, fiscaliza y audita las operaciones hidrocarburíferas, siendo el control un servicio que el Estado presta a la colectividad para asegurar el cumplimiento de las disposiciones constitucionales, legales y reglamentarias y verifica que sus derechos no sean vulnerados.

NFPA (NATIONAL FIRE PROTECTION ASSOCIATION)

La NFPA (National Fire Protection Association), una entidad internacional voluntaria creada para promover la protección y prevención contra el fuego, es ampliamente conocida por sus estándares (National Fire Codes), a través de los cuales recomienda prácticas seguras desarrolladas por personal experto en el control de incendios.

NFPA 704. - es el código que explica el "diamante de materiales peligrosos" establecido por la Asociación Nacional de Protección contra el Fuego (National Fire Protection Association). La norma NFPA 704 pretende a través de un rombo seccionado en cuatro partes de diferentes colores, indicar los grados de peligrosidad de la sustancia a clasificar. Esta norma es importante para ayudar a mantener el uso seguro de productos químicos. Se emplea para el almacenamiento, no en el transporte.

ASME (AMERICAN SOCIETY OF MECHANICAL ENGINEERS)

Es la sociedad a nivel mundial que se interesa en diversos ámbitos de la Ingeniería Mecánica. Esta institución tiene por objetivo regular y validar las actividades que se realicen en ese campo.

AISC (INSTITUTO AMERICANO DE CONSTRUCCIÓN EN ACERO)

El Instituto Americano de Construcción en Acero (AISC), fue creada en 1921 para servir a la comunidad de diseño estructural de acero y la industria de la construcción en Estados Unidos.

AWS (AMERICAN WELDING SOCIETY)

La AWS es la Sociedad Americana de Soldadura que ofrece más de 200 normas de soldadura que se utilizan en todo el mundo en incontables industrias. Las normas de la AWS son seguras y obligatorias debido a que son creadas por comités de profesionales de la soldadura voluntarios bajo la autoridad de la American National Standards Institute (ANSI, por sus siglas en inglés) o Instituto Nacional de Normalización Estadounidense. [8]

ATEX (ATMOSFERAS EXPLOSIVAS)

Las directivas ATEX establecen los estándares mínimos para fabricantes y empresarios con respecto a las atmósferas explosivas.

Hay dos directivas europeas con carácter de ley desde julio de 2003 que detallan a los fabricantes y a los usuarios las obligaciones en relación con el diseño y el uso de aparatos en atmósferas peligrosas. [9]

Responsabil	Directiv	Artíc	
Fabricante	94/9/EC	110a	
Empresario	1992/92/	137	

EN (NORMAS EUROPEAS)

Es la normativa que lleva a cabo la normalización de los diferentes organismos independientes, que actúan a escala nacional, europea e internacional. [10]

1.6 Sistemas Mecánicos para Transporte de Cilindros.

Los sistemas que se emplean en una planta de envasado de GLP están de acuerdo a la etapa o área en la cual están los cilindros. Estos sistemas se dividen de la manera siguiente:

- Sistemas de transportación mediante cadena de transportación.
- Sistema de transportación aéreo.
- Sistemas de transportación de rodillos.
- Sistema de transportación telescópico mediante cadena de transportación.

Los sistemas de transportación mediante cadena de transportación.

Estos sistemas se emplean en casi la mayoría de los procesos, ya sean estos en el área de reparación, área de lavado, ó, transportación en la línea de envasado. En la figura 1.8 se presenta a este transportador con la característica de desviación.

FIGURA 1.8 SISTEMAS DE TRANSPORTACIÓN MEDIANTE

CADENA DE TRANSPORTACIÓN. [11]

Los sistemas de transportación aéreos.

Estos sistemas son frecuentemente empleados en el área de reparación de cilindros especialmente en el área de pintado, estos sistemas se suelen emplear en las bahías de embarque y desembarque de cilindros de 45 kg. La figura 1.9 se muestra la interface de este transportador, en la parte superior el sistema aéreo y en la parte de abajo el transportador convencional de cadena.

FIGURA 1.9 SISTEMAS DE TRANSPORTACIÓN AÉREO. [11]

Los sistemas de transportación de rodillos.

Estos sistemas se emplean mucho en pequeños tramos y especialmente en los tramos de transición o tramos de desviación. Este sistema se muestra en la figura 1.10.

FIGURA 1.10 SISTEMAS DE TRANSPORTACIÓN DE RODILLOS. [11]

El sistema de transportación telescópico de cadena transportadora.

Estos equipos nacen de una aplicación basada en los principios de transportación de un transportador convencional de cadena, la diferencia radica en que la distancia entre centros de sus catalinas es variable permitiendo que el cilindro sea transportado hasta diferentes puntos a lo largo de la plataforma del camión. La figura 11 muestra dos tipos de sistemas telescópicos.

FIGURA 1.11 SISTEMAS TELESCÓPICOS. [7] [11]

1.7 Factores de influencia para diseñar un transportador telescópico.

Los factores de influencia que intervienen en el diseño del transportador telescópico son los siguientes:

• Producto a transportar.

Hay que tener muy en claro que el producto que se transporta no es solamente los cilindros para GLP sino también el GLP en estado líquido como el GLP en cualquiera de sus estados dentro de la línea de envasado.

• Dimensiones del cilindro.

De acuerdo a las normas INEN las dimensiones el estándar de los cilindros de 15 kg para GLP que circulan en el Ecuador son las que se muestran en la figura 1.12.

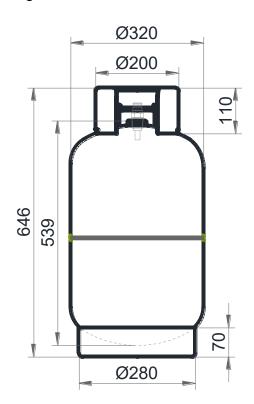


FIGURA 1.12 CILINDRO DE GLP 15 kg.

 Nivel de los transportadores de la línea de envasado con respecto al transportador telescópico.

En la figura 1.13 se presenta a este nivel que está ligado a la infraestructura de todos los transportadores y equipos dentro de la línea de envasado, a continuación se presenta un esquema de los niveles de un transportador típico de cilindros dentro de la línea de envasado.

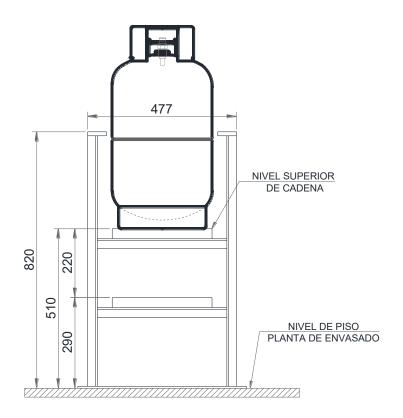


FIGURA 1.13 NIVELES DE TRANSPORTADORES DE CADENA.

De acuerdo a estos estándares, el transportador a diseñarse debe ajustarse a estos niveles para garantizar el flujo de los cilindros. Nivel de la base del transportador con respecto al camión de carga de cilindros.

Este factor involucra la parte anatómica y destreza del operador encargado de acomodar los cilindros, así como la parte móvil del transportador y ancho de la plataforma de carga. Este nivel debe ser el adecuado para hacer posible una buena maniobra de parte del operador en la carga del camión. En la figura 1.14 se muestra cómo el transportador debe de estar ubicado con respecto a la plataforma del camión y el operador para hacer una buena maniobra dentro del proceso de carga y descarga.

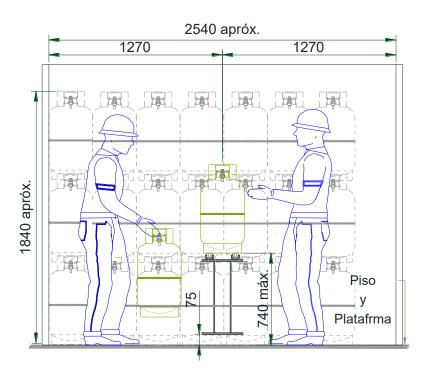


FIGURA 1.14 NIVELES DEL TELESCÓPICO CON RESPECTO

A LA PLATAFORMA DE CARGA.

Capacidad de la línea de envasado.

Para este diseño se considerará la línea de envasado trabajando al máximo de su capacidad, esto quiere decir que se operará de acuerdo a la capacidad del carrusel. Pero si se desea determinar la capacidad de envasado de la línea se debe de analizar todo los puntos de operación que se llevan a cabo con el proceso de control y llenado, determinando los cuellos de botella que reducen la capacidad de llenado de toda la línea.

En esta tesis se diseñará el transportador de cadena para una capacidad máxima de 1 carrusel de 1200 cilindros/hora lo cual da una velocidad lineal del transportador de 0.107 m/s.

Longitud de la plataforma del camión de carga.

Este es un parámetro muy importante para definir la extensión del transportador.

En las plantas de envasado se despachan camiones con plataformas estandarizadas las cuales se enumeran a continuación:

- ➤ Plataformas pequeñas: Largo= 3.5 m apróx. y Ancho=2.34 m.
- ➤ Plataformas medianas: Largo = 6.5 m apróx. y Ancho =2.34 m.
- ➤ Plataformas grandes: Largo =12 m y Ancho =2.34 m.

De acuerdo a estas plataformas se diseñará el transportador telescópico para la plataforma más larga.

- Tipo de motores y servomotores a emplear. (control de chispa).
 - Debido al gran riesgo que se corren en las plantas envasadoras de GLP todos los motores que funcionen dentro de la planta deberán de cumplir con los estándares internacionales. Los requerimientos de seguridad para este tipo de industrias se conocen como "Seguridad Ex" (Ex es la marca que certifica a todos los aparatos diseñados y construidos con las normas) las áreas clasificadas como peligrosas (atmosferas explosivas) son respetadas por las normas europeas.
 - 94/9/EC, de 23 de marzo de 1994, para los "componentes".
 - 1999/92/E C, de 16 de diciembre, 1999, para las "unidades".

Los criterios de clasificación, para áreas peligrosas están dirigidos por las normativas ATEX y también respetados y definidos por la norma EN 60079/10.

Con estas normas se clasifica el área de aplicación para los motores seleccionan estos motores que deben de ser del tipo blindado y aprueba de chispa para asegurar la seguridad de todas las personas en la planta envasadora. [12]

Guías de transportación de cadena.

Las guías de transportación son correas de acero las cuales deben de asegurar que la cadena no se descarrile en todo su recorrido. En estas guías se acomoda una plantilla de plástico duro (UHMW, polietileno de alta densidad) el cual se someterá a desgaste por fricción de la cadena reduciendo la fuerza de fricción que se da entre la cadena y la guía, también reducirá el desgaste de las guías de acero y la cadena.

Número de hileras de cadenas.

El número de cadenas a emplearse serán dos, estas deben de estar simétricamente separadas, y deben de asegurar que el cilindro siempre viaje en forma vertical estable.

Distancia de separación de cadenas.

Esta distancia debe de asegurar que el cilindro se transporte de forma siempre vertical y que este no se atasque en el camino ni en transiciones de un transportador con otro. Para este tipo de transportadores de cadenas se disponen los arreglos en la figura 1.15 y figura 1.16.

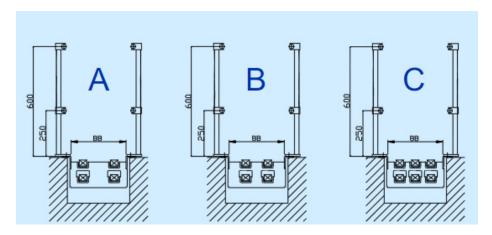


FIGURA 1.15 SISTEMAS A NIVEL DE SUELO. [7]

A.- Sistema I con 2 cadenas cadenas

C.- sistema I con tres

B.- Sistema II con 2 cadenas

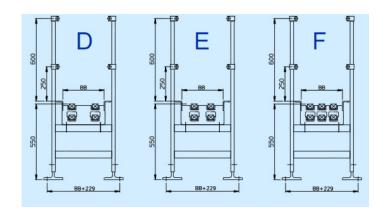


FIGURA 1.16 SISTEMAS PARA INSTALACIÓN SOBRE SOPORTES. [7]

D.- Sistema I con dos cadenas cadenas

F.- Sistema I con 3

E.- Sistema II con 2 cadenas

• Tipo de transportador.

El transportador debe de ser del tipo telescópico el cual permita extender su longitud para llevar el cilindro hasta la plataforma de camión transportador, este a su vez debe de recogerse a medida de que el camión se vaya llenando.

Control de la estática.

Debido al roce que ocurre entre la cadena, el plástico y las guías de la cadena se produce un intercambio electrónico en las superficies, las cuales por su diferente capacidad para retener a los electrones superficiales provocan electricidad estática en el sistema de transportación. Normalmente, la fricción genera más cantidad de electricidad estática que dos materiales en mero contacto ya que entran en juego una mayor presión entre las superficies, la velocidad de desplazamiento de ambas y el calor generado en el proceso. Por esta razón se debe llevar un control de la estática llevando los equipos a tierra para disminuir el riesgo de que ocurra una chispa dentro de la zona de peligro.

• Control de la velocidad y proximidad del transportador.

Este factor es importante para controlar el avance del transportador para que sea de forma rápida y segura para no estrellarse con los cilindros cuando se realice la tarea de carga/descarga de los

mismos. Es esencial implementar un buen sistema de control porque se produce una velocidad relativa entre el movimiento del telescopio y el movimiento de los cilindros.

Arranque de la cadena de transportación.

Aunque esta tesis solo abarca el diseño mecánico del transportador telescópico, es preciso mencionar que el arranque de la cadena de transportación se tendrá que hacer de forma suave para evitar cambios bruscos de las tensiones de las cadenas. Para ello se tendrá que implementar un variador de frecuencia (equipo de electrónico) para controlar la velocidad de la cadena transportadora.

1.8 Diseño Conceptual del Transportador.

Los transportadores telescópicos son muy útiles a la hora de cargar y descargar los productos. Este tipo de transportadores modifican la distancia de entre centros de sus ejes conductor y conducido para llevar o traer el producto desde alguna ubicación dentro de los camiones.

En la industria del GLP, este transportador es útil para la operación de descarga y carga de los cilindros vacíos fácilmente desde los camiones desde el transportador.

Antes de seguir con el diseño conceptual se debe analizar las dos alternativas que se presentaron en el subcapítulo 1.6, en la figura 10 para seleccionar el concepto y la forma de uno de ellos.

1.8.1 Análisis de las Alternativas.

Para el proceso de diseño se proporcionó dos soluciones al problema identificado. Decidir cuál alternativa de la figura 10 (alternativa A y la alternativa B) determinará la idea general del diseño, sus sistemas, sus subsistemas y configuraciones conceptuales que le permiten abarcar con la necesidad identificada. Para poder evaluar y comparar estas alternativas consideradas satisfactorias para la industria se las analizará por separado.

Presentación de la alternativa A.

En esta alternativa el diseño es un sistema compacto, que se extiende en una sola línea centro de transportación que hace posible que un operador controle el cilindro por ambos lados de la máquina. De esta manera es posible usar dos motores, uno para mover la cadena de transportación de los cilindros, y el otro para mover la cadena de transportación del telescopio. Esta alternativa es presentada en la figura 1.17.

FIGURA 1.17 ALTERNATIVA "A" SISTEMA TELESCÓPICO [7].

Presentación de la alternativa B.

En esta alternativa presentada en la figura 1.18 su diseño se compone de dos sistemas de transportación paralelos. El primer sistema transporta los cilindros hasta la bahía de carga, mientras que el segundo sistema se desplaza para introducirse en la plataforma del camión, la transferencia de los cilindros del primer transportador al otro se lo realiza por medio de un desviador. Este sistema crea un área muerta para la necesidad de controlar los cilindros por ambos lados. Para lograr hacer posible este sistema se deberá usar tres motores, uno para mover la cadena de transportación de los cilindros del primer transportador, el segundo

para la cadena de transportación de los cilindros del transportador paralelo, y el tercero para mover la cadena de transportación del transportador móvil.

FIGURA 1.18 ALTERNATIVA "B" SISTEMA TELESCÓPICO [11].

1.8.2 Selección de la Alternativa.

La selección se lleva acabo definiendo los parámetros o criterios de selección. Una vez definido los parámetros se les asigna una ponderación la cuales se presentan en la siguiente tabla:

TABLA 4
CRITERIOS DE SELECCIÓN Y PONDERACIÓN.

Criterio de selección	Ponderación
Facilidad de construcción	25%
Capacidad de operación (maniobrabilidad)	35%
Costos	25%
Facilidad de mantenimiento	15%
TOTAL	100%

La Facilidad de construcción se pondera con 25% porque establece la cantidad de recursos, tiempo y complejidad de elaborar y ensamblar cada componente de la máquina.

La Capacidad de operación es la facilidad y acceso que tiene el operador para maniobrar la máquina y controlar el transporte de los cilindros.

Los Costos refleja la cantidad de materiales, mano de obra, procesos de manufactura y accesorios que conformarán el precio final. Mejores costos de fabricación y operación lograrán una mejor competitividad de la máquina en el mercado.

La Facilidad de mantenimiento se mide por el tiempo invertido en realizar las reparaciones más probables de mantenimiento correctivo o predictivo.

Calificación, para concluir con la selección de la alternativa se calificará del 1 al 10 las ponderaciones, siendo 10 el máximo. Para calificar la ponderación se tomará en cuenta la experiencia del diseñador de acuerdo a su criterio.

La fórmula para evaluar la calificación total es la siguiente:

$$Calificaci\'on = \sum calificaci\'on \ x \% \ ponderado$$

1.8.3 Matriz de decisión.

De acuerdo a los criterios de selección y ponderación se presenta la siguiente matriz de decisión:

TABLA 5

MATRIZ DE DECISIÓN.

Criterio de selección	Ponderación %	Alternativas calif. (_) y Pond. %	
		Α	В
Facilidad de construcción	25	(9) 20%	(9) 20%
Capacidad de operación (maniobrabilidad)	35	(10) 35%	(8) 30%
Costos	25	(10) 20%	(7) 25%
Facilidad de mantenimiento	15	(9) 10%	(8) 10%
Calificación total		8.2	6.75

De acuerdo a los resultados de la matriz de decisiones la **Alternativa** "**A**" es la más conveniente para llevar a cabo el diseño de este transportador. Sus ventajas claras son la Capacidad de operación y Costos. Establecida la alternativa ahora se puede continuar con el diseño de forma.

1.8.4 Diseño de Forma Detallado

Según las características de la **Alternativa** "A" el telescópico trabaja sobre su propia línea centro de transportación, esta es la mejor transferencia de cilindros ya sea en la carga o descarga.

El diseño conceptual para este transportador telescópico está ligado al diseño de conceptual de los transportadores de cadena convencionales que existen en una línea de llenado de GLP así como también a las dimensiones, niveles y referencia de la planta de envasado, dimensiones y niveles de la plataforma del camión con respecto a la planta.

Para comprender este diseño de forma del transportador telescópico se ha dividido a éste por sistemas, las figuras 1.19 y 1.20 presenta al transportador telescópico y sus partes principales.

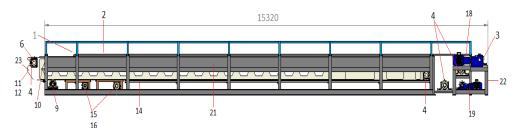
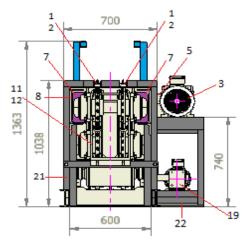



FIGURA 1.19 ESQUEMA DEL TRANSPORTADOR DE CADENA TELESCÓPICO

FIGURA 1.20 CORTE AA

Los ítems numerados en las figuras 1.19 y 1.20 se describen en la tabla 6.

TABLA 6
SISTEMAS DEL TRANSPORTADOR.

Sistema de transportación	Sistemas motrices
 Cadena de transportación Guías de cadenas Catalina motriz Catalinas conducidas Eje motriz y conducido 	17. Sistemas de transmisión de potencia. 18. Motor y reductor principal 19. Motor y reductor del telescopio 20. Rodamientos y chumaceras
Sistema telescópico	Sistema estructural
 6. Estructura telescópica 7. Ruedas para transportación 8. Guías soportes de la estructura móvil 9. Soporte del telescopio 10. Guías de la cadena dentro del telescopio 11. Cabezal móvil 12. Botonera de control 13. Cadena portacable 14. Cadena, catalinas y guía de cadena 	21. Estructura principal (módulos de soporte del transportador). 22. Bastidores de los motores.
Sistema del mecanismo tensor	Sistema de seguridad
15. Chumaceras extensoras 16. Bases de chumaceras	23. Sensores.24. Sistema de puesta a tierra25. Guardas de seguridad

SISTEMA DE TRANSPORTACIÓN

El sistema de transportación telescópico emplea el concepto de transportación de una cadena que se desliza sobre rieles guías y es movido por el eje motriz y conducido con sus respectivas catalinas.

Cadena de transportación

Las cadenas son las encargadas de trasladar a los cilindros, ésta es movida gracias al acople con sus catalinas y es dirigida por las guías de cadena. Esta cadena está sobre plantillas de polietileno de alta densidad que reducen la fricción que existe entre la cadena y la guía reduciendo de esta manera la abrasión y la fuerza necesaria para mantener la cadena en movimiento. Por estos motivos la cadena tiene que ser resistente al desgaste y a las altas tensiones ocasionadas en el arranque de los motores.

Guías de cadenas

Las guías alojan la plantilla de polietileno de alta densidad y ayudan a conducir a la cadena para evitar el descarrilamiento. Estas guías tienen la forma de U y sus dimensiones van acorde al ancho y alto de la cadena incluyendo el espesor de la plantilla.

Catalina motriz

Es la encargada de transmitir todo el movimiento de la cadena de transportación desde el eje motriz, y su tamaño es mayor con respecto a las demás catalinas.

Catalinas conducidas

A diferencia de la catalina motriz, esta catalina se las conoce como catalinas locas, estas no transmiten movimiento por torque alguno pero al igual que la catalina motriz conducen las cadenas por su recorrido.

Eje motriz y conducido de la cadena transportadora

Los ejes tienen que ser capaces de soportar grandes torques debido a la potencia proporcionada y acero que se emplea para su fabricación es generalmente el acero de transmisión.

SISTEMA TELESCÓPICO.

Éste es el sistema, que diferencia al transportador telescópicos de los demás transportadores. Su estructura debe de ser lo suficientemente resisten para evitar la flexión a lo largo del volado que se crea al momento de aumentar la distancia entre el cabezal móvil y el eje motriz.

Estructura telescópica

Esta estructura debe de alojar las guías de cadena tanto en la parte superior como en su parte interna. Ésta estructura se somete a flexión debido a la palanca que se crea entre su soporte y las ruedas. La estructura telescópica está diseñada no solo para soportar la flexión, ésta, está diseñada de manera que permita el mantenimiento de la cadena y las guías que se encuentran dentro, así como también las rutas del cableado eléctrico para su control.

Ruedas para transportación

Las ruedas para el telescopio deben de acoplarse a la cavidad interna de sus guías que son canales de acero cuya superficie interna debe de ser dura para que sea más resistente al desgaste por fricción. La superficie de estas ruedas deberá ser tratada térmicamente, y en el interior de las mismas deberá adecuarse la cavidad para el rodamiento seleccionado.

Guías soportes del telescopio

A diferencia de las guías de las cadenas estas guían las ruedas del telescopio para que no se descarrilen y mantengan su trayectoria.

Soporte del telescopio

Este soporte consta de una base firme y sujeta a la estructura principal del transportador, un tambor de acero donde se asienta el telescopio para hacer palanca al momento de la extensión, dos chumaceras de pie y un eje.

Guías de la cadena dentro del telescopio

Son guías de igual perfil que las externas que se fijan en la parte interna del telescopio.

Cabezal móvil

Este cabezal permite alojar los sensores y la botonera de control.

Este cabezal debe de ser desmontable para permitir el ensamble

del eje conducido de las cadenas.

Botonera de control

Como su nombre lo indica esta botonera aloja los controles de velocidad en adelanto y reversa de la máquina, así como también el botón de emergencia.

Cadena portacable

Las cadenas portacables se emplean en todos aquellos lugares en los que se necesita de forma permanente una guía lineal y móvil de cables y mangueras de distintas ejecuciones.

Las cadenas deben ser reforzadas con fibra de vidrio para permitir que tengan gran resistencia a los movimientos mecánicos como el deslizamiento y a otros tipos de condiciones medioambientales como: resistencia a los combustibles, a las grasas, a los alcoholes, a las acetonas e hidrocarburos.

Cadena, catalinas y guía de cadena del telescopio.

Al igual que en los otros sistemas estas tienen las mismas características a excepción de la cadena, esta cadena no es de transportación sino una cadena de transmisión de movimiento que se acopla mediante un bloque con buje al sistema telescópico.

SISTEMAS MOTRICES

Los sistemas motrices son los encargados de entregar la potencia para el movimiento de toda la máquina, para este diseño se implementaran motores eléctricos trifásicos clasificados por el área donde se usarán (lugares donde se almacenen productos inflamables).

Motor y reductor principal

Este es un motor eléctrico trifásico el cual proporciona la potencia para el movimiento de las cadenas transportadoras. Dentro de las características de este motor la más importante para esta aplicación es que debe de ser un motor blindado aprueba de

chispa el cual garantice según las normativas más exigentes la seguridad de todo el personal que labora dentro de la zona de peligro en la planta de envasado.

Debido a las normativas de seguridad se recomienda: revisar la operación del motor eléctrico en condiciones de operación respecto a sus condiciones nominales. Especialmente parámetros eléctricos: amperaje, voltaje de alimentación, factor de potencia y la temperatura del motor. La temperatura es un factor muy importante, si ésta y el amperaje está fuera de lo normal probablemente exista alguna sobrecarga en el sistema causada por el desnivel de los ejes, desgastes de la plantillas de polietileno y roces con objetos ajenos a la estructura provocando que estos no giren fácilmente y se produzca una mayor demanda de potencia en el motor. A demás hay otro problema que se puede dar que es el templado incorrecto de las cadenas.

Motor y reductor principal

Al igual que el motor principal es un motor eléctrico trifásico el cual proporciona la potencia para el movimiento de la cadena que mueve al telescopio. Posee las mismas características que el motor principal y también esta acoplado a un reductor para luego transmitir un torque capaz de hacer mover a todo el conjunto del

sistema telescópico (ejes, catalinas, cadena y estructura de extensión).

Eje motriz del telescopio

Al igual que el eje motriz principal éste debe soportar grandes torques debido a la potencia proporcionada para el accionamiento de traslado del telescopio.

Chumaceras

La chumacera aloja un rodamiento de bolas, de rodillos o un rodamiento de rodillos cónicos dependiendo de las fuerzas y vida para la cual van a ser expuesta, éstas chumaceras a su vez se fija mediante dos tornillos a una base plana.

SISTEMA ESTRUCTURAL FIJO.

Un sistema estructural es el modelo físico que sirve de marco para los elementos estructurales. Un sistema puede tener a su vez una mezcla de sub-sistemas estructurales. Entre los sistemas estructurales se tienen los siguientes:

- Sistemas de porticados
- Sistemas abovedados
- Sistemas tensados
- Sistemas mixtos

Estructura principal (módulos de soporte del transportador).

La estructura principal es una estructura tipo pórtico debido a que la configuración del transportador es repetitiva, sus pórticos están dispuestos en el mismo sentido y son independiente de su arrostramiento.

Bastidor de los motores.

A pesar de que es una estructura diferente que la estructura principal ésta se debe ajustar a los mismos niveles. Esta estructura alojara a los sistemas motrices y al conjunto de catalina, eje y chumaceras que se encuentren dentro.

SISTEMA DE SEGURIDAD.

Los sistemas de seguridad para estos equipos van desde los sistemas mecánicos hasta los sistemas electrónicos (protección IP55 para atmosferas explosivas de la zona 1) y así mismo los sistemas híbridos. La importancia de todo sistema de seguridad es prevenir los accidentes debido a los riesgos que existen en las zonas donde estos operan.

Los objetivos para los sistemas de seguridad en esta tesis serán la selección de los sensores y diseños de las guardas de seguridad.

Sensores.

Uno de los sensores a instalar en este transportador y de los cuales el único que se va a seleccionar en esta tesis son los detectores de presencia o proximidad. Estos sensores son los comúnmente conocidos como sensores de posición todo o nada que entregan una señal binaria que informa de la existencia o no de un objeto ante el detector. El más elemental de estos sensores es quizás el conocido interruptor final de carrera por contacto mecánico. Para el diseño electrónico deberán considerarse otros sensores y equipos como por ejemplo: encoders y variadores de frecuencia de amperaje para los motores.

Guardas de seguridad

Las guardas de seguridad deberán de colocarse en todo el bastidor del transportador y estas deben ser del tipo modular y fácil de desmontar para cuando se deba de hacer el respectivo mantenimiento.

CAPÍTULO 2

2. DISEÑO Y SELECCIÓN DETALLADO DEL TRANSPORTADOR TELESCÓPICO.

En este capítulo se procede a definir la forma de cada uno de los elementos de la máquina, como son: el cuerpo fijo y el mecanismo móvil del transportador telescópico. Además para este capítulo, hay que tener en cuenta que las dimensiones propuestas y parte del diseño de forma pueden variar una vez que se entre al análisis riguroso de los esfuerzos a los que se somete cada pieza. Y, como es parte del diseño se revisará las colisiones posibles que pueden presentarse en el ensamble con el objetivo de realizar un diseño funcional.

Las modificaciones pueden ocurrir tanto en este capítulo como en el capítulo 3 luego de la representación gráfica en 3D.

2.1 Sistema de transportación

El sistema de transportación telescópico está constituido por: una cadena de transportación, las guías de la cadena, las catalinas y ejes.

Para los transportadores telescópicos, el sistema de transportación es el más importante al momento de definir el diseño de forma debido a los parámetros de dimensión y capacidades. Estos parámetros son muy influyentes para la selección de la cadena porque ésta influirá sobre las demás partes mecánicas del transportador. Las cadenas de transportación en las industrias de GLP se lubrican con un sistema especial acuoso jabonoso que es suministrado por el proveedor de la cadena.

2.1.1 Selección de cadena transportación.

Para el diseño del sistema de transportación es de mucha importancia tener en claro cuál es el tipo de cadena indicado para el producto a transportar, para luego proceder a la selección de la cadena. Este tipo de cadena va a definir los componentes mecánicos y varias dimensiones detalladas del equipo.

PROCESO DE SELECCIÓN.

La selección de cadena de transportación para este equipo lleva involucrado los siguientes parámetros y condiciones de operación:

Tipo de transportador: debido a la aplicación para esta máquina se deberá analizar el movimiento de traslación de los cilindros y el movimiento de traslación del telescopio, en la siguiente figura se representa el recorrido de la cadena y las distancia de transportación asociado a la extensión debido a la plataforma del camión ubicado en las bahías de carga de cilindros.

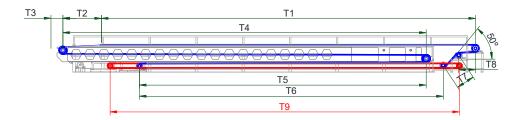


FIGURA 2.1 RECORRIDO DE LA CADENA

En esta figura el color azul corresponde a la cadena de transportación, la cual describe el circuito como se muestra. Las acotaciones desde T1 hasta T8 son las distancias a las cuales se posicionarán las catalinas. Las cotas T3 y T5 son variables de acuerdo a extensión del transportador, es por ello que para el cálculo de la tensión de cadena el valor del T3 es cero cuando el telescopio está recogido y este valor va incrementando hasta 10.13 m que es el valor de su máxima extensión para tener como resultado un volado de 11 m, para T5 su valor empieza en 10.7 m y se reduce hasta 0.57 m cuando el telescopio este totalmente

extendido. La cota T9 y el recorrido de color rojo representan a la cadena de transportación del telescopio.

Las acotaciones se definen en la siguiente tabla.

TABLA 7
LONGITUDES DE TRAMOS DE CADENA

Tramo	Longitud [m]	Tramo	Longitud [m]
1	14.7	5	11
2	1	6	11.9
3	10	7	0.8
4	14	8	0.7

Con estas acotaciones el trasportador se dispondrá como se muestra en la siguiente figura cuando tiene su máxima extensión

FIGURA 2.2 DISTANCIA DE TRANSPORTACIÓN ASOCIADO A LA EXTENSIÓN.

1. Condiciones de operación: las condiciones vienen dadas por el tipo de carga, el medio ambiente donde se trabaja y los periodos de trabajo. Algunas de las condiciones son como por ejemplo el movimiento de los cilindros y condiciones muy estrictas como por

ejemplo atmosferas explosivas donde no debe existir chispa entre el rozamiento de partes móviles como la cadena. Esto es de vital importancia debido a que la zona de trabajo es de alto riesgo porque se puede provocar un incendio.

Al momento de realizar los cálculos de las tensiones se hará uso del Apéndice E para determinar los factores que intervienen en la cadena.

2. Distancia entre centros motriz y catalina conducida en los tramos de carga: este parámetro está muy ligado al tipo de transportador debido a que la distancia se ve afectada por el movimiento de traslación del telescopio, pero hay que tener en claro que esta distancia se ha dividido en tres tramos:

Tramo uno= 14.7 m - Tramo dos= 1 m - Tramo tres= 10 m en su máxima extensión.

Estos tramos corresponden al recorrido de carga del transportador y la distancia máxima entre centros es de 27.8 m.

3. Número de hileras de cadena: de acuerdo a esta aplicación se debe trabajar con dos hileras de cadenas, el cual es apropiado para que los cilindros se trasladen de forma estable. Como parte del producto a transportar es el cilindro de acero, cuyas dimensiones antes expuestas en los factores de influencia se

establece que la distancia entre centros de guías de la cadena será de 190 mm. A continuación un detalle de separación de guías del cilindro y platilla polimérica de deslizamiento.

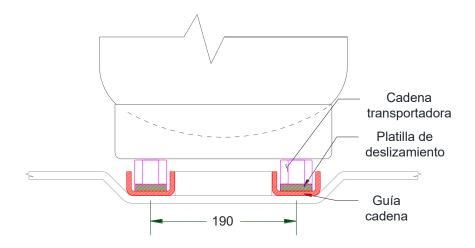


FIGURA 2.3 SEPARACIÓN DE GUÍAS DE CADENAS

4. Descripción del material a transportar: el producto final a transportar son cilindros de acero que contienen 15 kg de GLP, el peso de estos cilindros vacíos es de 14.6 kg dando un total de producto de 29.6 kg cuando estos estén llenos, el diámetro mayor de los cilindros es de 0.32 m.

La carga lineal del producto se la determina de la siguiente manera:

$$Wm = \frac{15 \text{ kg} + 14.6 \text{ kg}}{0.32 \text{ mL}}$$

$$Wm = 92.5 \text{ kg/mL}$$

Este es la carga lineal de los cilindros para la transportación cuando estos están verticales y la carga para cada hileras será 46.25 kg/mL debido a que estas son dos hileras.

5. Capacidad del transportador: para esta capacidad se debe analizar la capacidad de la línea de llenado y la capacidad del personal humano a interactuar con la máquina. Esta capacidad será de 1200 cilindros/hora para el carrusel de envasado, esta capacidad ya fue mencionada en los factores de influencia y la velocidad para la transportación será de 0.107 m/s equivalente a 21.1 ft/min cuyo valor clasifica al transportador telescópico dentro de los transportadores de alimentación (revisar el Apéndice A).

En esta tesis, se diseñará el transportador para operar a la capacidad máxima del carrusel de llenado.

6. Calculo de tensión de prueba de la cadena: de acuerdo con la guía de selección Renold [13] la tensión máxima que se da en la cadena es cuando se combinan cuatro de los parámetros influyentes en el transportador, en la Figura 2.4 se ilustra las tensión para cada tramo en el recorrido de la cadena debido a las diferentes condiciones de funcionamiento en cada uno de los tramos. Esto ocurre donde se producen cambios de dirección o donde las cargas no son constantes.

En un transportador de cadena convencional, en donde la transportación es uniforme y la tensión aumenta teóricamente desde la tensión inicia en el punto A debido al propio peso de la cadena y el coeficiente de rozamiento con la plantilla de deslizamiento cuando este no está cargado hasta un máximo en el punto "d" debido a que éste está soportando todos los cambios de dirección que causan el incremento. Para una mejor apreciación de las cargas aplicadas a una cadena de transportación se ilustrará gráficamente a continuación en la siguiente figura:

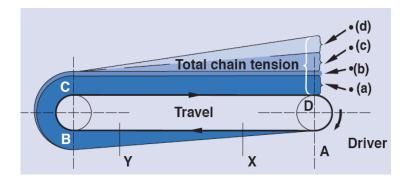


FIGURA 2.4. TENSIONES DE UNA CADENA DE TRANSPORTACIÓN. [13]

Donde la máxima tensión en la cadena (Punto d) está conformada:

a) Tensión debido a las piezas de la cadena y a las partes móviles en el lado de descarga, para este ítem se hará uso de los Apéndices C y D.

- (b) Tensión adicional requerida para hacer girar a las catalinas y al eje de la rueda conducida.
- (c) Tensión debido a las piezas de la cadena y a las partes móviles en el lado cargado. En esta aplicación no es influyente esta tensión (Esto se explicará más adelante cuando se hable del layout de transportación).
- (d) Tensión debido a la carga del material a transportar.Layout de transportación (figura 2.5):

Del Apéndice B se selecciona el modelo de transportación para esta aplicación. La cadena debe de ser una cadena de acero al carbono y el modelo de transportación será de deslizamiento de la cadena con la carga en la parte superior de la misma [13].

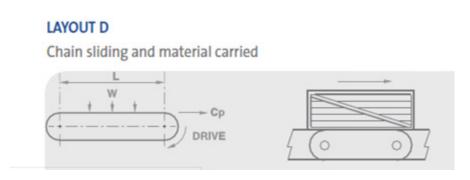


FIGURA 2.5 LAYOUT DE TRANSPORTACIÓN DE CADENA

De acuerdo al layout de ésta aplicación y el recorrido de la cadena en todos sus tramos, las formulas a emplearse serán las siguientes [13]:

- \triangleright Tramos horizontales: Cp a = $[(Wc + Wm)x L x \mu c]x g [N]$
- \triangleright Cambios de direcciones: Cp b = Ta eµc θ [N]
- \triangleright Tramos inclinados: Cp c = [(Wc + Wm)x L x μ s2]x g [N]

Para el cual el factor de rozamiento se ve afectado de acuerdo a la siguiente ecuación μ s2 = (μ c x cos Φ) + sin Φ

Donde las variables son las siguientes:

Cp a.- es la tensión de prueba en el tramo horizontal o vertical a analizar donde "a" corresponde al tramo.

Cp b.- es la tensión de prueba incrementada debido al cambio de dirección, donde "b" corresponde al punto de cambio de dirección.

Cp c.- es la tensión debido a los tramos inclinados, donde "c" corresponde únicamente a los tramos inclinados.

Wc.- peso lineal de la cadena.

Wm.- peso lineal del material a transportar en cada cadena.

L.- longitud del tramo.

μc .- coeficiente dinámico entre las superficies en movimiento.

μs2.- coeficiente de rozamiento modificado por el ángulo de inclinación entre las superficies en movimiento.

- Φ.- ángulo de inclinación del tramo inclinado.
- θ.- ángulo cambio de dirección.
- g.- gravedad= 9.81m/s2

NOTAS:

- Para los tramos, cada cálculo de tensión realizado se deberá sumar al siguiente cálculo de manera progresiva.
- 2.- Solo se deberá multiplicar los valores de incremento debido al cambio de dirección de la cadena por las catalinas y se utilizará este valor en el siguiente cálculo.
- 3.- Para el cálculo preliminar se deberá considerar el peso lineal de la cadena y luego de la selección se deberá chequear el factor de seguridad de la cadena seleccionada.

En las tablas 8 y 9 se enlistan los datos para el cálculo de la tensión de la cadena de transportación de cilindros. Mientras que los resultados del cálculo se muestran en la figura 2.6.

TABLA 8

DATOS PARA EL CÁLCULO DE LA TENSIÓN DE LA

CADENA DEL TELESCOPIO

Peso GLP en cilindro	15 kg
Peso cilindro de acero	14,6 kg
Debido a la plantilla polimérica μ _C	0.15
Debido al tramo inclinado a 1º μ _{s2}	0.167
Densidad cadena W _C estimada	5 kg/m
Peso lineal del producto por 1 cadena	46.25 kg/m
Capacidad del transportador	1200 Clin./h
Velocidad de transportación	0.107 m/s

TABLA 9
ÁNGULO DE AGARRE DEBIDO AL CAMBIO DE DIRECCIÓN

ÁNGULO DE AGARRE				
C1	180°	C4	70°	
C2	180°	C5	30°	
C3	180°	C6	0°	

Nota:

Es importante para los cálculos y en la práctica también saber seleccionar el tipo de plantilla debido a que su propiedad de desgaste y rozamiento permiten reducir la tensión de la cadena y el desgaste por contacto directo acero-acero. Una plantilla de deslizamiento con un coeficiente de rozamiento bajo ayudará a ahorrar costos por mantenimiento y recambio de las partes mecánicas del transportador.

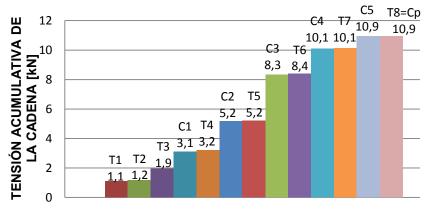


FIGURA 2.6 TENSIÓN ACUMULATIVA DE LA CADENA PARA LA MÁXIMA EXTENSIÓN DEL TELESCOPIO.

72

En esta gráfica se ilustra las diferentes tensiones de la cadena antes y después de cada catalina excepto los tramos T1 y T2 que no se separan del cálculo por una catalina, el máximo valor de la tensión de la cadena es de 10.9 kN. Esta grafica representa el valor de la tensión de prueba en la cadena sin considerar factores

diseño la cual se calcula mediante la siguiente formula.

$$C_{p \text{ dise}\tilde{n}o} = C_p * Fp * Fs * Fn$$
 [14]

de servicio y otros factores que intervienen en la tensión del

Dónde:

 $C_{p \; diseño}$: Tensión de diseño de la cadena (N).

 C_p : Máxima tensión de la cadena (N).

Fp = Factor de servicio.

 F_S = Factor de velocidad.

Fn = Factor por número de hileras de cadena.

Para seleccionar los factores que intervienen en la tensión de diseño se debe identificar previamente cual es el tipo de servicio que ofrece el transportador telescópico y así identificar a que clasificación de cargas pertenece, para ello se hará uso del Apéndice E.

Como la carga de transportación es reversible el transportador se encuentra en el Grupo C de la tabla.

Conociendo ahora cual es el grupo al que pertenece el transportador se hará uso del Apéndice F, donde se determinarán los factores de servicio fp para calcular el factor total Fp. Para este transportador la carga es reversible según, según estas condiciones de trabajo se enlistan en la tabla 10 los factores de servicio, y con la siguiente fórmula se determina Fp:

$$Fp = f_{frecuencia\ de\ choque} * f_{cargas} * f_{condiciones\ atmosfericas} * f_{operación}$$
 [14]

Cada uno los factores están tabulados a continuación:

TABLA 10 CONDICIÓN DE FACTORES DE SERVICIO fp

FACTORES DE SERVICIO)
Frecuencia de choques	1.2
Cargas en la cadena	1.5
Condiciones atmosféricas	1.2
Operación	1

$$Fp = 1.2 * 1.5 * 1.2 * 1$$

 $Fp = 2.16$

Para identificar cual es el factor de velocidad Fs adecuado se necesita saber cual es el número de dientes de la catalina, éste número de catalina puede ser de 12 ó 14 dientes que son

comunes y utilizan en la mayoría de transportadores en la industria del GLP. Para el cálculo se empleará una catalina de 14 dientes.

En el Apéndice G con los valores establecidos de velocidad para el transportador telescópico de 0.16 m/s equivalentes a 31.5 fpm y con una catalina de 14 dientes se establece que para el factor de velocidad se tendrá que interpolar el valor para 31.5 como se procede en el siguiente cálculo:

Para los valoras de Fs de 25 fpm y 50 fpm de una catalina de 14 dientes:

$$Fs_{25} = 0.769 \rightarrow catalina\ de\ 14\ dientes$$
 $Fs_{31.5} = x \rightarrow catalina\ de\ 14\ dientes$
 $Fs_{50} = 0.833 \rightarrow catalina\ de\ 14\ dientes$

$$\frac{0.833 - 0.769}{50 - 25} = \frac{x - 0.769}{31.5 - 25}$$
 $Fs_{31.5} = x = 0.786$

Ahora bien se determinará el último factor asociado al cálculo de la tensión de diseño. De acuerdo a la fórmula de la guía de diseño Webster (referencia [14])

$$Fn = \frac{1.2}{n}$$

Siendo *n* el número de hileras igual 2.

$$Fn = \frac{1.2}{2} = 0.6$$

Con los factores que se tiene, la tensión de diseño es:

$$C_{p \; dise \|o} = 10.9 * 2.16 * 0.786 * 0.6$$

$$C_{p \ dise ilde{n}o} = 11.1 \ kN$$

Según la guía de diseño de cadenas de transportación de Renold (referencia [13]) el factor de seguridad recomendado para las cadenas de transportación es de 8. Con este factor la resistencia última de la cadena será:

Resistencia ultima =
$$11.1 * 8$$

7. Con la tensión máxima determinada se procede a seleccionar la cadena, para ello se debe de establecer el paso de la cadena que mejor se ajuste a esta aplicación y el tipo de cadena de acuerdo al producto según la industria en la que operará y las condiciones de velocidad y características de catalina.

Haciendo uso del Apéndice H

Maximum recommended chain speed (m/sec).

con los valores de 14 dientes de catalina se puede apreciar que para los valores de 12 y 16 dientes de catalina

	Chain Pitch	Number of Teeth					
	mm (in.)	8	10	12	16	20	24
4	50.5 (2")	0.95	1.5	2.2	3.8	5.4	6.5
	63	0.86	1.4	2.0	3.5	4.9	5.9
	76.2 (3")	0.78	1.2	1.8	3.1	4.4	5.3

reflejados en el apéndice las velocidades máximas para estos son

de 2 y 3.5 m/s respectivamente para un paso de 63 mm, esto da indicio que para una catalina de 14 dientes la velocidad está en ese rango el paso será de 63 mm, con estas características de cadena se puede buscar en el mercado una cadena que cumpla con las características de diseño o este en el rango de selección. Cabe recalcar que la velocidad del transportador telescópico será de 0.107 m/s aprox.

- 8. Luego de la selección es recomendable recalcular las tensiones con los nuevos parámetros de la cadena seleccionada para determinar el factor de seguridad para el cual se ha diseñado, además se debe de realizar un balance entre los factores influyentes para cada cadena en el mercado con sus características particulares como:
 - ✓ Índice de desgaste
 - ✓ Precio
 - ✓ Capacidad de carga y condiciones de operación.
 - ✓ Material de la cadena.
- 9. En la tabla 11 se enlistan las características de la cadena de acuerdo al proceso de cálculo obteniendo los siguientes resultados:

TABLA 11
CARACTERÍSTICAS DE LA CADENA SELECCIONADA

Marca WEBSTER modelo C188			
CARACTERÍS	Unidad		
Máxima resistencia	17500 (78034)	lbs (N)	
Paso	2.609 (66.3)	pulg. (mm)	
Alto	1.125 (28.6)	pulg. (mm)	
Ancho	2.063 (52.38)	pulg. (mm)	

2.1.2 Diseño de las Guías de las Cadenas

El concepto principal de este elemento es guiar a la cadena. Pero como la estructura principal de estos transportadores es del tipo pórtico la guía también debe de ser diseñada para resistir los esfuerzos de flexión debido a la separación de los pórticos, estas guías son una para cada hilera de cadena y están soportados encima de los pórticos, debido a que el diseño de forma de la estructura principal de la máquina tiene una separación de pórticos máxima de 2 m, entonces el modelo matemático es el de una viga soportada en varios puntos a lo largo de su longitud con una carga distribuida uniformemente.

Condiciones del diseño de la guía:

- ✓ Viga soportada y sometida a flexión.
- ✓ Carga distribuida uniformemente.
- ✓ La viga debe de alojar la plantilla de deslizamiento.

- ✓ Debe de permitir La sujeción de la plantilla de deslizamiento por medio de un perno de diámetro 9 mm.
- ✓ La plantilla de deslizamiento es de 10 mm de espesor.
- ✓ La cadena de transportación es de 50 mm de ancho.
- ✓ La altura de la cadena es de aproximadamente de 35 mm.
- ✓ La carga del producto en una guía será 46.25 kg/m más el peso de la plantilla polimérica de deslizamiento y de la cadena que es de 5 kg/m.

Con estas condiciones se establece el siguiente modelo matemático:

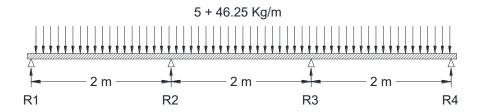


FIGURA 2.7 MODELO MATEMÁTICO DE UNA VIGA HIPERESTÁTICAMENTE APOYADA

Con las características geométricas externas de la cadena y el espesor de la plantilla polimérica de deslizamiento se puede diseñar el siguiente perfil:

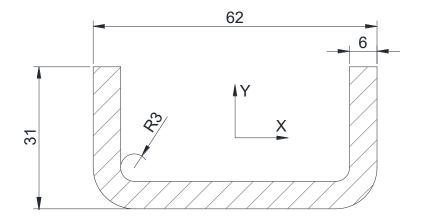


FIGURA 2.8 PERFIL DE GUÍA DE CADENA

Este perfil cuenta con las siguientes características:

TABLA 12
PROPIEDADES DE LA GUÍA DE LA CADENA

Propiedad	Volar	Unidad
Fluencia del ASTM A36:	250	MPa
Área:	641.0973	mm^2
Centro de gravedad:	X: 0.0000 Y: -5.1710	Mm
Momentos de inercia:	X: 71443.0525 Y: 328235.8004	mm ⁴
Radios de giro:	X: 10.5565 Y: 22.6272	Mm

Para el cálculo de las reacciones que se muestran en el modelo se hará uso del método de la *Ecuación de los tres Momentos* [15]. En el modelo matemático de la viga se observan tres claros los cuales se definen:

- Claro uno.- Es el tramo entre la reacción R1 y R2.
- Claro dos.- Es el tramo entre la reacción R2 y R3.
- o Claro tres.- Es el tramo entre la reacción R3 y R4.

Para aplicar este método se empieza aplicando los teoremas de las áreas de momentos, y la forma generalizada de este método es la que se describe a continuación.

$$M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 + \frac{6A_1\overline{a}_1}{L_1} + \frac{6A_2\overline{a}_2}{L_2} = 6EI\left(\frac{h_1}{L_1} + \frac{h_3}{L_2}\right)$$

Esta ecuación expresa una relación general entre los momentos flexores en tres puntos cualesquiera de la viga, razón por la cual se llama ecuación de los tres momentos. Y a partir de un análisis de la viga en la siguiente figura.

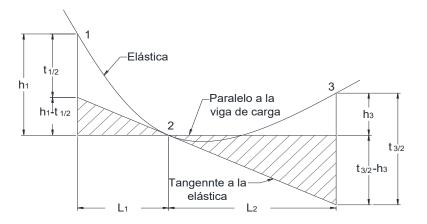


FIGURA 2.9 ELÁSTICA DE UNA VIGA CUALQUIERA

Donde los puntos 1, 2 y 3 están al mismo nivel de la viga deformada, estos puntos representan a los puntos de apoyo en la guía de la cadena y las alturas h_1 y h_3 debido a la deformación tangencial serán cero considerando una viga rígida e igualando las deformaciones tangenciales $t_{1/2}$ y $t_{3/2}$ se tiene como resultado:

$$M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 + \frac{6A_1\bar{a}_1}{L_1} + \frac{6A_2\bar{a}_2}{L_2} = 0$$

Donde los términos $\frac{6A_a\bar{a}_a}{L_a}$ y $\frac{6A_b\bar{a}_b}{L_b}$ se refieren a los momentos flexores que resultan de aplicar las cargas en cada tramo sobre una viga apoyada en sus extremos de la misma longitud. Para ello se hará uso de las expresiones generales presentados en el Apéndice J.

Calculo de los momentos flectores.

Aplicando la ecuación de los tres momentos a los tramos 1 y 2, y luego a los tramos 2 y 3 se tiene:

$$M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 + \frac{6A_1\bar{a}_1}{L_1} + \frac{6A_2\bar{a}_2}{L_2} = 0$$
 (a)

$$M_2L_2 + 2M_3(L_2 + L_3) + M_4L_3 + \frac{6A_2\bar{a}_2}{L_2} + \frac{6A_3\bar{a}_3}{L_3} = 0$$
 (b)

De acuerdo a la definición de los momentos flectores M_1 y M_4 son nulos, por lo que las ecuaciones anteriores forman un sistema de ecuaciones con dos incógnitas siendo estas incógnitas M_2 y M_3 ,

que pueden resolverse si se conocen los valores de $\frac{6A\bar{a}}{L}$ y $\frac{6A\bar{b}}{L}$ para cada tramo correspondiente a las cargas. Empleando las ecuaciones del Apéndice J y siendo las áreas iguales en todos los tramos se calculan los siguientes valores:

$$\frac{6A_1\bar{a}_1}{L_1} = \frac{6A_2\bar{a}_2}{L_2} = \frac{6A_3\bar{a}_3}{L_3} = \frac{wL^3}{4} = \frac{(5+46.25)*9.81*2^3}{4}$$
$$\frac{6A_1\bar{a}_1}{L_1} = \frac{6A_2\bar{a}_2}{L_2} = \frac{6A_3\bar{a}_3}{L_3} = 1005.5 N.m^2$$

Sustituyendo estos valores a las ecuaciones

$$0 + 2M_2(4) + M_3 2 + 1005.5 + 1005.5 = 0$$
 (a)

$$M_2 2 + 2M_3(4) + 0 + 1005.5 + 1005.5 = 0$$
 (b)

Resolviendo el sistema de ecuaciones se tienen lo siguiente:

$$M_2 = -201.1 N.m y M_3 = -201.1 N.m.$$

Paso siguiente verificamos el factor de seguridad estático para el máximo momento flector:

$$\eta = \frac{\sigma_y}{\sigma_f}$$

Donde $\sigma_f = \frac{Mc}{I}$ siendo:

M.- momento felctor.

c.- radio de giro.

I.- inercia.

 σ_f .- esfuerzo de flexión.

$$\sigma_f = \frac{(201.1)(0.01055)}{7.1443x10^{-8}}$$

$$\sigma_f = 29.7 MPa$$

$$\eta = \frac{250}{29.7}$$

$$\eta = 8.4$$

El factor de seguridad de 8.4 que resulta del perfil diseñado da una confiabilidad muy alta. Por esta razón la guía de cadena debe ser este perfil porque permite alojar los adjuntos necesarios para el deslizamiento de la cadena.

Con seguridad que el diseño a fatiga para este elemento pasa el diseño de vida infinita, pero si se quiere demostrar que este diseño pasa, solo se debe corregir la resistencia a la fatiga y emplear el método de Goodman modificada. Este método se describe más adelante en el subcapítulo 2.5.1 del diseño del telescopio.

A continuación en la figura 2.10 se representa el arreglo general de la cadena en la guía de deslizamiento:

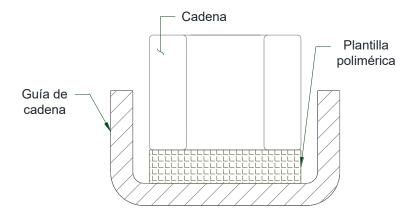


FIGURA 2.10 ARREGLO GENERAL DE GUÍA DE CADENA

2.1.3 Selección de Catalinas Motrices y Conducidas

Antes de empezar la selección de las catalinas es importante tener claramente cuál es la función de estas, muchos fabricantes expresan el concepto de la catalina no solamente como una rueda dentada de cadena que sólo cumple el propósito conducir o ser impulsada por la cadena, sino también sirven para orientar y apoyar la cadena en su trayectoria prevista.

La experiencia del fabricante sugiere que los piñones sean fabricados con un material de buena calidad, por esta razón las piezas fundidas de hierro son adecuadas para la mayoría de las aplicaciones. Para arduas tareas, puede ser necesario el uso de ruedas dentadas de acero que tienen un 0,4% contenido de carbono. Para el servicio extremadamente arduo los flancos de los dientes deben ser endurecidos con un tratamiento térmico.

Hay otros materiales que pueden estar especificados para requisitos particulares. Por ejemplo de acero inoxidable se utiliza en alta temperatura o condiciones corrosivas. [13]

Los fabricantes y proveedores de catalinas piden la siguiente información a la hora de hacer una cotización o un pedido, esta información también forma parte de las condiciones de la guía de selección de catalinas como se enumeran a continuación en los siguientes puntos.

- 1.- Tipo de cadena a emplearse: Las características de la cadena especialmente las geométricas son fundamentales ya que de estas el paso, la configuración interna y externa son puntos claves para la selección de catalinas.
- 2.- Número de dientes de la catalina: Es importante para que la cadena acople perfectamente con las catalinas. En un transportador es conveniente que todas las catalinas sean de las mismas dimensiones, pero en ocasiones los requerimientos de espacios hacen que existan varios tamaños de catalinas. Para todos estas catalinas el número de dientes debe ser aplicable para el acople con la cadena. Además el número de dientes así como la forma del diente definen tres dimensiones de la catalina las cuales son:

- D.i.- Diámetro interior.
- D.P.- Diámetro de paso.
- D.e.- Diámetro exterior.

Estas dimensiones se exponen más adelante en la figura 2.12.

3.- Material: Como lo sugieren los fabricantes en la siguiente tabla.

TABLA 13

GUÍA DE MATERIAL REQUERIDO PARA CATALINAS [13]

Normal Conditions	Moderate Shock Loading	Heavy Shock Loading	Abrasion, No Shock Loading	Abrasion and Heavy Shock Loading
Cast Iron or	Cast Iron or	0.4%	Cast Iron	0.4% Carbon
Fabricated	Fabricated	Carbon		Steel with
Steel	Steel	Steel		hardened teeth

- 4.- Tipo de catalinas: Las catalinas suelen ser de tres tipos principales.
 - A. Catalinas de una sola pieza de acero o hierro fundido.
 - B. Catalinas divididas en dos piezas.
 - C. Catalinas con una lámina de segmentos dentados.

Cada catalina se emplea e acuerdo a las condiciones de mantenimiento y la aplicación del transportador.

Por ejemplo, las catalinas del tipo:

A.- La gran mayoría de las catalinas en uso son de una pieza de hierro fundido o fabricadas de acero, generalmente paralelas o cónicas adaptadas a través del eje. En este caso es necesario retirar el eje completo para poder quitar las catalinas. Si las catalinas y el eje han estado en vigor durante un número de años o el eje está en condiciones hostiles, puede ser más económico sustituir el conjunto completo del eje en lugar de tratar de remplazar solo la catalina del eje existente.

B.- Cuando se utilizan catalinas divididas no es necesario retirar el eje para poder sustituir una catalina. Después de la eliminación de la cadena, la catalina se desmonta y una nueva catalina es montada alrededor del eje. Este tipo de catalina es particularmente útil en un transportador multi-hilera de larga longitud a través de los ejes donde se utilizan.

El uso de esta catalina se justifica por ahorrar los tiempos de mantenimiento al sustituir la catalina.

C.- Catalinas con dientes extraíbles son catalinas con segmentos dentados que particularmente son útiles cuando el desgaste del diente es mucho más rápido que el desgaste de la cadena. Con este tipo de catalina, los segmentos de los dientes pueden ser

remplazados uno a la vez sin tener que desconectar o quitar la cadena de las catalinas, y se justifica su uso por el gasto considerable de tiempo que puede ahorrarse en el mantenimiento.

[13]

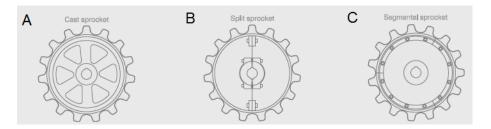


FIGURA 2.11 TIPOS DE CATALINAS [13]

Ahora bien conociendo los tipos de catalinas es necesario conocer las dimensiones principales de ésta.

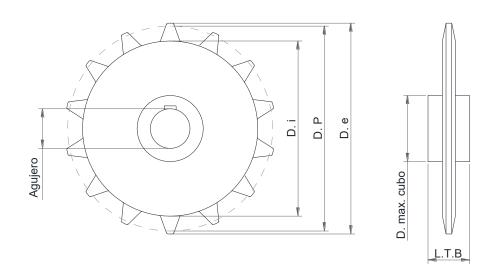


FIGURA 2.12 DIMENSIONES PRINCIPALES DE CATALINAS

Las dimensiones que se muestran en esta figura es explicaran más adelante.

5.- Tipo de cubo: es el núcleo de la rueda dentada. Cada tipo de cubo está diseñado para una necesidad específica. De esta pieza nacen las dimensiones diámetro máximo de cubo y L.T.B (Length of The Bore) que en español se refiere a la longitud de la perforación a través de la rueda dentada. El L.T.B debe ser lo suficientemente largo para permitir transmitir el par de la aplicación, también debe ser lo suficientemente largo para garantizar la estabilidad de la rueda dentada en el eje.

A continuación se presentan los tipos de cubos, y en la figura 2.13 se representa su configuración.

El tipo A no tiene un cubo como parte de la rueda de la catalina.

El tipo B tiene el cubo solo en un lado de la rueda. Este tipo se encuentra generalmente en catalinas pequeñas e intermedias.

El tipo C tiene la misma distancia del cubo en ambos lados de la catalina. El tipo C es el más común y se encuentra generalmente en catalinas de gran tamaño.

El tipo offset C indica un cubo descentrado con respecto a la línea del centro.

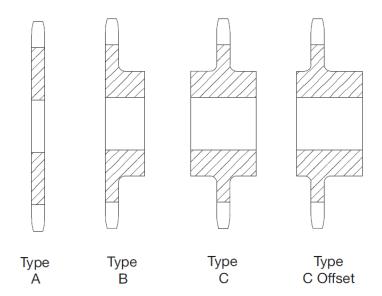


FIGURA 2.13 TIPOS DE CUBOS [13]

Diámetro del cubo es el diámetro exterior del cubo que no puede exceder el círculo de giro de la cadena.

- 6.- Diámetro exacto del eje: Este punto está comprometido al diseño del eje para especificar la dimensión del agujero, además es influyente para las dimensiones del cubo debido a que hay que especificar las tolerancias y tamaño de las chavetas.
- 7.- Dimensiones del cubo: Como ya se especificó en el punto anterior las dimensiones del cubo están comprometidas a las del eje, sus dimensiones serán redefinidas si son necesarias luego del diseño del eje. Además estas medidas son generalmente de fabricación estándar y están restringidas por el diámetro máximo del cubo.

91

Procedimiento de selección.

1.- Como primer paso en la selección de catalinas el diseñador

debe reflejar los datos de la cadena seleccionada, los mismos que

se representan a continuación:

Paso de cadena: 69 mm

Configuración interna entre eslabones (espacio libre): w=21, L=38

y H=31

Radio del eslabón central: 15.5 mm

2.- Determinación del paso diametral. Haciendo uso de la siguiente

expresión PD = p * v.const. [13] se observa que el paso diametral

está ligado a una constante que depende del paso de la cadena.

Donde para esta fórmula:

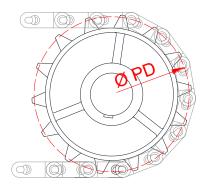
PD.- Paso diametral.

p.- Paso de la cadena

Haciendo uso del Apéndice K para el número de dientes de la

catalina, y del Apéndice L para determinar la constante de paso

diametral, se obtienen los siguientes resultados ilustrados en las


figuras 2.14 y 2.15.

Para 14 dientes el valor de la constante es 4.494 y por tanto PD

es:

$$PD = 69 * 4.494$$

$$PD = 310 mm$$

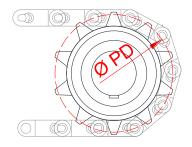


FIGURA 2.14 PASO DIAMETRAL DE CATALINA DE 14 DIENTES

Para 10 dientes el valor de la constante es 3.236 y por eso PD es:

$$PD = 69 * 3.236$$

$$PD = 223.3 \, mm$$

FIGURA 2.15 PASO DIAMETRAL DE CATALINA DE 10 DIENTES

Ahora bien ya se tiene el paso diametral para cada catalina. Los pasos diametrales que se obtuvieron para catalinas de 14 y 10

dientes se lo hizo con el propósito de minimizar las dimensiones de estas para poder ajustar los niveles del transportador telescópico con los niveles de un transportador estándar en la planta de envasado.

Con respecto al material de las catalinas se empleará el recomendado por los fabricantes en la tabla 14, este material para trabajos fuertes es un acero de 0.4% de carbono [13], y para los dientes se debe realizar un endurecido superficial para minimizar el desgaste de los mismos.

Dientes de la catalina:

Para la mayoría de las aplicaciones los dientes de la catalina como molde y sin mecanizar son satisfactorios. Sin embargo dependiendo del tipo de cadena como por ejemplo la conjunción de los dientes con la cadena rodillos, la forma de los dientes facilita una suave acción de transmisión de potencia. La forma de los dientes ya sea fundido o de corte se basa en el diámetro del rodillo de la cadena y del paso para cada cadena específica. Para asegurar una fácil entrada y salida de los dientes a la cadena, estos deben tener un radio en la periferia de sus caras exteriores.

El ancho del diente depende de la geometría internar de los eslabones por el motivo de la separación entre las caras con la

cadena. El fabricante de catalinas recomienda dejar una fuga de 6 a 8 milímetros entre el interior de los eslabones y los dientes de la catalina para asegurar el acople. La figura 2.16 muestra la forma.

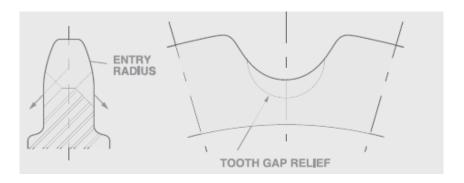


FIGURA 2.16 DIENTE RECOMENDADO [13]

Cuando una aplicación requiere un tamaño de catalina y un número de dientes que no están contenidos dentro de la gama de catalinas estándares entonces la fabricación de las catalinas de acero suministran las catalinas con dientes cortados con soplete. La precisión de las forma del diente es debido a la llama de corte que generalmente mejor que la forma del diente fundido y por lo general lo ha remplazado por no tenerlos en stock. A demás el fabricante recomienda que los dientes deban de contar con un tratamiento térmico para llegar a durezas establecidas, las mismas que se han agrupado a continuación en la tabla 14.

TABLA 14

DUREZA DE DIENTES RECOMENDADA PARA CATALINAS

APLICACIÓN	DUREZA EN LOS DIENTES (RC)
Impulso	Mínimo 35
Transportadores	35 - 40
Elevadores de cemento o clinker	Mínimo 50

Como recomienda el fabricante para esta aplicación se seleccionará un acero de 0.4% de carbono para su fabricación. De este grupo el acero más apropiado para ésta aplicación es el SAE 1045, que se utiliza en la industria para la fabricación de: ejes, tuercas, pernos, arandelas, coronas, ejes de transmisión y catalinas. La dureza de sus dientes será de 40 RC (Rockwell C), dureza escogida por ser la más conservadora de acuerdo a la aplicación de transportadores, el valor recomendado se refleja en la tabla 15.

Dimensiones del cubo:

Para determinar las dimensiones del cubo, este dependerá del diseño del eje que se presenta más adelante en el subcapítulos 2.1.4, donde en este diseño resultó que los diámetros de los ejes conducidos y motriz son de 84 y 85 mm respectivamente. Por efecto de mantenimiento se recomienda que todos los ejes sean

de mismo tamaño así los cubos para las catalinas tendrán el mismo diámetro interno y llevaran la misma chavetera.

Ahora se debe determinar las dimensiones del cubo de las catalinas. Para esto, con el valor del paso diametral de 310 mm (12.2 pulg.), 223.3 mm (8.8 pulg) para catalinas motriz y conducida respectivamente, con el valor del diámetro del eje calculado de 85 mm común para ambos ejes teniendo un diámetro próximo de eje estándar de 3⁷/₁₆ pulg equivalente a 87.3 mm, y con el valor de la tensión de diseño de la cadena de 12525 N (2809 lbs) haciendo referencia del Apéndice M y N referencia [16] dará las dimensiones del cubo. El tipo de cubo que se necesitará para ambas catalinas presenta las siguientes características:

TABLA 15
DIMENSIONES DEL CUBO

DIMENSIONES		
Diámetro externo del cubo	5 ¹ / ₄ pulg. / 133.35 mm	
Diámetro interno del cubo	$37/_{16}$ pulg. / 87.31mm	
Longitud del cubo	$3^{1/2}$ pulg. / 88.9 mm	

Una vez ya determinadas todas las dimensiones necesaria para las catalinas del sistema de transportación se procede a seleccionar una catalina que ya exista en el mercado, o caso

contrario pedir al fabricante una catalina con dichas característica.

Planos de catalinas ESPOL.FIMCP.M.09 y X ESPOL.FIMCP.M.10.

2.1.4 Diseño de los ejes.

Los ejes se utilizan como medio para sostener un determinado elemento de máquina, permitiéndole que gire alrededor suyo. Los árboles o flechas transmiten momentos de rotación. Las cargas que se presentan en los ejes son dos tipos:

Torsión → Transmisión

Flexión → cargas transversales

AL analizar estas cargas en el punto de interés los esfuerzos que resultan son alternantes, y estos se dividen en: esfuerzos de amplitud y esfuerzos medios para los cosos de flexión, torsión y corte. Este estado de esfuerzos crea que el árbol soporte esfuerzos axiales que son alternantes, y por esta razón el análisis que se les realiza es un análisis a fatiga.

En cuanto a la geometría de los ejes, normalmente estos presentan secciones variables con el fin de permitir acoplar los diferentes adjuntos como: engranes, poleas, rodamientos, sensores, etc. Estos cambios de geometría generan las diferentes concentraciones de esfuerzos y las condiciones del ambiente en

que estos operan, haciendo que estos mecanismos se conviertan muchas veces en un mecanismo crítico el cual no debe fallar en el momento de operación ya que puede causar una parada innecesaria de la máquina. Esto motiva que para el diseño de ejes, el material seleccionado por el diseñador minimice las deflexiones y resista las torsiones producida por la transmisión de potencia.

La mayor parte de los ejes de máquinas emplean un acero de transmisión debido a la confiabilidad de resistencia a las cargas, el acero que se empleará para el diseño de los ejes será ASSAB 705 cuyo límite de fluencia y resistencia a la ruptura son Sy= 685 MPa y Sut= 1078 MPa respectivamente.

Análisis a fatiga del eje motriz principal.

Para este análisis se partirá de un diseño preliminar cuya configuración del eje aparece mostrado en la Figura 2.17, el objetivo es diseñar un eje cuyo diámetro se capaz de resistir estas cargas para un factor de seguridad de 3. El libro de Norton capítulo 9 [16] será la referencia para la obtención de diversos factores en el proceso de cálculo.

El código ASME facilitara el procedimiento de cálculo de esfuerzos que supone la carga totalmente alternante y cuyos valores de esfuerzos a flexión medio y torsión alternante sean cero, para el cual el diámetro del eje se define con la siguiente expresión:

$$d = \left\{ \frac{32N_f}{\pi} \left[\left(k_f \frac{M_a}{S_f} \right)^2 + \frac{3}{4} \left(k_{fSm} \frac{T_m}{S_y} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}} [17]$$

De esta expresión los cálculos para M_a y T_m harán uso de la Figura 2.17 donde se representan todas las cargas aplicadas al eje.

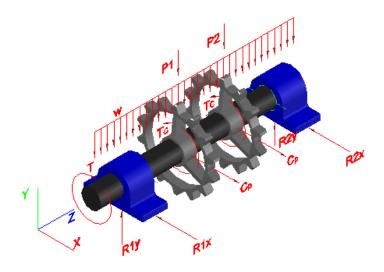


FIGURA 2.17 DIAGRAMA DE CUERPO LIBRE DEL EJE MOTRIZ.

Del diagrama de cuerpo libre se analizan los planos de acción de las cargas independientemente, a continuación se presenta dicho análisis.

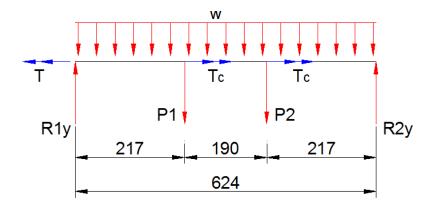


FIGURA 2.18 ANÁLISIS DE FUERZAS EN EL PLANO "YZ".

En el proceso de diseño se estimará un diámetro del eje de 80 mm solo para el cálculo de la masa distribuida, el procedimiento es el siguiente:

$$w = \rho A * 9.81$$

$$w = \frac{\rho \pi d^2}{4} * 9.81$$

$$w = \frac{7850 * \pi (0.08)^2}{4} * 9.81$$

$$w = 387 N/mL$$

Los valores de P1 y P2 son el efecto del peso de las catalinas que tienen 7 kg (69 N).

Con los valores ya obtenidos se procede a la sumatoria de fuerzas en Y:

$$\sum F_y = 0$$

$$R1_y - P1 - P2 + R2_y - wL = 0$$

Donde por simetría las reacciones

$$R1_{\nu} = R2_{\nu}$$

Y el peso de las catalinas es el mismo

$$P1 = P2$$

$$2R1_{y} = 242 + 2P1$$

$$R1_{y} = R2_{y} = \frac{242 + 2 * 7 * 9.81}{2}$$

$$R1_{y} = R2_{y} = 190 N$$

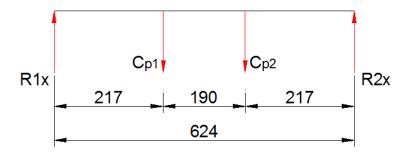


FIGURA 2.19 ANÁLISIS DE FUERZAS EN EL PLANO "XZ".

Con los valores ya obtenidos se procede a la sumatoria de fuerzas en X:

$$\sum F_x = 0$$

$$R1_x - C_{p1} - C_{p2} - R2_x = 0$$

Donde por simetría las reacciones

$$R1_x = R2_x$$

Y las tensiones de la cadena son las mismas para cada hilera

$$C_{p1} = C_{p2} = C_{p \; dise \|o}$$

$$2R1_x = 2C_{p \ dise ilde{n}o}$$
 $R1_x = R2_x = C_{p \ dise ilde{n}o}$ $R1_x = R2_x = 11100 \ N$

Ahora bien con estos resultados se calcula los diagramas de para fuerza cortante y momento flector en el plano "YZ".

Calculo de fuerzas cortantes:

$$V_{Y1} = 190 N$$

$$V_{Y2} = V_1 - w * l_1$$

$$V_{Y2} = 190 - 387 * 0.217 = 106 N$$

$$V_{Y3} = V_{Y2} - P1$$

$$V_{Y3} = 106 - 68.7 = 37.33 N$$

Cálculo de momentos flectores:

$$M'_{Y} = V_{2} * l$$

$$M'_{Y} = 106 * 0.217 = 23 N.m$$

$$M''_{Y} = w * l * \frac{l}{2} + (V_{2} - V_{3}) * l$$

$$M''_{Y} = 387 * 0.624 * \frac{0.624}{2} + (106 - 37.33) * 0.217$$

$$M''_{Y} = 90.25 N.m$$

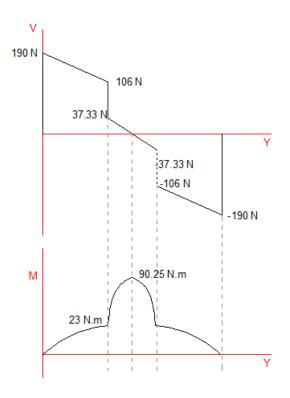


FIGURA 2.20 DIAGRAMAS DE CORTANTE Y MOMENTO FLECTOR PLANO "YZ".

De la misma forma se procede a calcular los valores para los diagramas en el plano "XZ".

Cálculo de fuerzas cortantes:

$$V_{X1} = 11100 N$$

Cálculo de momentos flectores:

$$M'_{X} = V_{X1} * l$$
 $M'_{X} = 11100 * 0.217$
 $M'_{X} = 2409 N.m$

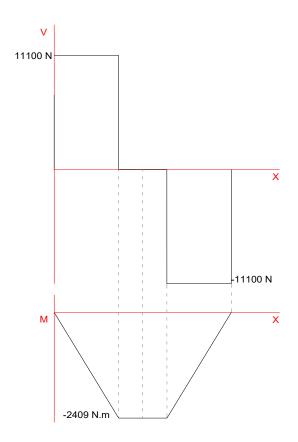


FIGURA 2.21 DIAGRAMAS DE CORTANTE Y MOMENTO
FLECTOR PLANO "XZ".

Luego de tener los diagramas se procede a analizar qué punto está sometido a mayor carga en cada diagrama, luego de identificar este punto crítico se calculará la resultante de estos esfuerzos por la acción en ambos planos.

En el diagrama de momento flector el máximo momento está ubicado en la mitad del eje, de estas componentes resulta:

$$M_a = \sqrt{{M''_Y}^2 + {M'_X}^2}$$

$$M_a = \sqrt{90.25^2 + 2409^2}$$

$$M_a = 2411 \, N.m$$

Mientras que para la torsión que afecta al eje de la Figura 2.18 el análisis es el siguiente:

$$\sum T = 0$$

$$T - T_c - T_c = 0$$

$$T = 2T_c$$

$$T_c = \frac{C_{p \text{ dise\~no}} * PD}{2}$$

Dónde:

 T_c .- Es el torque generado por las catalinas.

 $C_{p\ dise \|o}$.- Tensión de diseño debido a la cadena de transportación.

PD.- Es el paso diametral de la catalina.

$$T_c = \frac{11100 * 0.31}{2}$$

$$T_c = 1720.5 \, N.m$$

Entonces:

$$T = 3441 \, N.m$$

De acuerdo a los elementos que se instalarán en el eje, este se diseñarán con dimensiones de diámetro diferentes con el objetivo de permitir el acople de estos elementos en el montaje y asegurarlos de forma axial.

Para el diseño de forma estos diámetros se dispondrán de la siguiente manera.

Empezando desde el centro entre chumaceras el diámetro del eje será constante permitiendo el montaje de las catalinas por ambos lados, luego se disminuye este diámetro para el acople con las chumaceras.

Para el cambio de sección el radio de la muesca será de 3 mm.

Con estas condiciones de diseño se continúa con el cálculo del diámetro sometido a fatiga. Ahora, el siguiente paso es calcular la resistencia a la fatiga de los aceros y los cálculos de los factores que intervienen en la reducción de la resistencia haciendo uso de las siguientes expresiones:

$$S_e = C_{carga}C_{tama\~no}C_{superficial}C_{temperatura}C_{confiabilidad}S_e,$$
 Donde;

$$S_{e'} = 0.5S_{ut}$$
 $S_{e'} = 0.5 * 1078x10^6$ $S_{e'} = 539 MPa$

Para determinar los factores que utiliza la información del capítulo 6 de Norton.

Como el eje está sometido a flexión el factor de carga es igual uno.

$$C_{carga} = 1$$

Para el factor de tamaño se asumirá el diámetro de 80 mm el mismo que se asumió al inicio para determinar el peso lineal del eje. Si el diámetro del eje resulta mayor al asumido se recalculará con el diámetro obtenido.

$$8 mm \le d \le 250 mm$$

Como el diámetro de 80 mm está dentro del rango la fórmula es:

$$C_{tama\|o} = 1.189d^{-0.097}$$

$$C_{tama\tilde{n}o} = 1.189(80)^{-0.097}$$

$$C_{tama\tilde{n}o} = 0.777$$

Para el factor de superficie se toma el valor directamente de la Apéndice \tilde{N} (a) con un Stu = 1078 MPa (156.3 kpsi) que al interceptarlo con la curva de maquinado se obtiene el factor de superficie.

$$C_{superficie} = 0.70$$

De acuerdo a las condiciones de trabajo el transportador telescópico y al ambiente en que este trabaja no puede operar a temperaturas altas que ocasionen un incendio dentro de la planta de envasado de GLP.

Con esta condición el factor de temperatura para $T \le 405^{\circ} C$ es:

$$C_{temperatura} = 1$$

Por último la confiabilidad con la que se diseña el eje será de 99%, para seleccionar este factor se hará uso del Apéndice Ñ:

$$C_{confiabilidad} = 0.814$$

Ahora bien remplazando los factores se tiene:

$$S_e = C_{carga}C_{tama\~no}C_{superficial}C_{temperatura}C_{confiabilidad}S_{er}$$

$$S_e = 1*0.777*0.70*1*0.814*539$$

$$S_e = 238.63 MPa$$

Como ya se indicó en la geometría del eje este será de diámetro variable, haciendo uso del Apéndice O, los concentradores de esfuerzos en las chaveteras y los cambios de sección emplearán radio de muesca de 3 mm se tiene:

$$\frac{r}{d} = \frac{3}{80} = 0.034$$

$$k_t = 1.85 \text{ y } k_{ts} = 2.37$$

$$K_f = 1 + q(K_t - 1)$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

Con $S_{ut}=156.3\ Kpsi$ se escoge el valor de la raíz de "a" para los aceros.

$$\sqrt{a} = 0.033 \text{ y } r = 3mm \equiv 0.12 \text{ pulg.}$$

$$q = \frac{1}{1 + \frac{0.033}{\sqrt{0.12}}} \rightarrow q = 0.91$$

$$K_f = 1 + 0.91(1.85 - 1)$$
 $K_f = 1.77$
 $K_{fm} = 1 + q(K_{ts} - 1)$
 $K_{fm} = 1 + 0.91(2.37 - 1)$
 $K_{fm} = 2.25$

Se remplazan todos los valores en la ecuación:

$$d_1 = \left\{ \frac{32 * 3}{\pi} \left[\left(1.77 \frac{2411}{238.63 \times 10^6} \right)^2 + \frac{3}{4} \left(2.25 \frac{3441}{685 \times 10^6} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}}$$

$$d_1 = 0.085 \ m \equiv 85 \ mm$$

El diámetro calculado será de 85 mm donde se acoplan las catalinas. Con este diámetro ya se puede establecer el diámetro mayor próximo al diámetro del cubo de la catalina con sus tolerancias.

Si bien el eje consta de otras secciones para los rodamientos, entonces se deberán calcular el diámetro para dichos puntos, esto implica analizar el momento flector para dichos puntos y recalcular los factores de concentración de esfuerzos para remplazarlos en la ecuación.

Al igual que en el procedimiento anterior del Apéndice P, para factor de concentración de esfuerzos a flexión los valores de A y b son:

Suponiendo que d = 60 mm,

$$\frac{D}{d} = \frac{82}{60} = 1.37$$

$$A = 0.99683$$

$$b = -0.25760$$

$$k_t = A\left(\frac{r}{d}\right)^b$$

$$k_t = 0.99683 \left(\frac{3}{60}\right)^{-0.25760}$$

$$k_t = 2.16$$

$$K_f = 1 + 0.91(2.16 - 1)$$

$$K_f = 2.06$$

Para factor de concentración de esfuerzos a torsión los valores de A y b son:

$$A = 0.84983$$

$$b = -0.23203$$

$$k_{ts} = A \left(\frac{r}{d}\right)^{b}$$

$$k_{ts} = 0.84983 \left(\frac{3}{60}\right)^{-0.23203}$$

$$k_{ts} = 1.7$$

$$K_{fm} = 1 + 0.91(1.7 - 1)$$

$$K_{fm} = 1.64$$

Analizando los diagramas de los planos "YZ" y "XZ" para el punto donde se encuentra la chumacera los esfuerzos $M_a=2556\ N.m.$

$$d_2 = \left\{ \frac{32 * 3}{\pi} \left[\left(2.06 \frac{2604}{238.63 \times 10^6} \right)^2 + \frac{3}{4} \left(1.64 \frac{1826}{685 \times 10^6} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}}$$

$$d_2 = 0.085 \ m \equiv 85 \ mm$$

EL diámetro interno del rodamiento del rodamiento debe de ser no menor a 85 mm por ende el eje motriz tendrá la configuración que se muestra en el plano ESPOL.FIMCP.M.16.

Análisis a fatiga del eje conducido crítico.

Para el diseño de este eje se utilizará el mismo criterio de diseño con las mismas formulas del procedimiento ASME. Se realizará el diagrama del cuerpo libre para la catalina conducida sometida a mayores tenciones dentro del sistema de transportación.

El diagrama de cuerpo libre presentará dos tensiones originadas por la cadena tanto para la entra a la catalina así como para la salida desde la catalina hacia la siguiente que es la catalina motriz, el diagrama de cuerpo libre es el que se presenta a continuación:

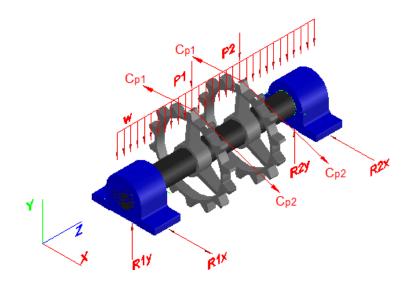


FIGURA 2.22 DIAGRAMA DE CUERPO LIBRE DEL EJE CONDUCIDO CRÍTICO.

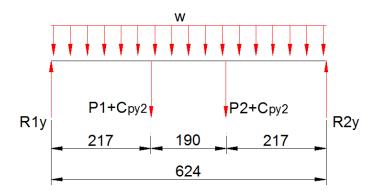


FIGURA 2.23 ANÁLISIS DE FUERZAS EN EL PLANO "YZ" CONDUCIDO.

En el proceso de diseño se estimará un diámetro del eje de 60 mm solo para el cálculo de la masa distribuida, el procedimiento es el siguiente:

$$w = \rho A * 9.81$$

$$w = \frac{\rho \pi d^2}{4} * 9.81$$

$$w = \frac{7850 * \pi (0.06)^2}{4} * 9.81$$

$$w = 217 N/mL$$

Los valores de P1 y P2 de las catalinas será 7 kg (69 N) la misma estimación que en el caso anterior.

Con los valores ya obtenidos se procede a la sumatoria de fuerzas en Y, y las tensiones de la cadena son las mismas para cada hilera:

$$\sum F_y = 0$$

$$R1_y - \left(P1 + C_{p \; dise\~no \; en \; y}\right) - \left(P2 + C_{p \; dise\~no \; en \; y}\right) + R2_y - wL = 0$$

Donde por simetría las reacciones

$$R1_y = R2_y$$

El peso de las catalinas es el mismo y la contribución de la tensión en el sentido de Y a 45° con respecto a la horizontal haciendo que las tensiones de la cadena en la catalina crítica sean $C_{p\,1}$ =11100 N y $C_{p\,2}$ =10285 N:

$$P1 = P2$$

$$2R1_{y} = 135.4 + 2(P1 + C_{p2 \text{ diseño en y}})$$

$$R1_{y} = R2_{y} = \frac{135.4 + 2 * (7 * 9.81 + 10285 * \text{sen50})}{2}$$

$$R1_{y} = R2_{y} = 8015 \text{ N}$$

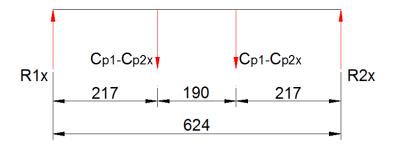


FIGURA 2.24 ANÁLISIS DE FUERZAS EN EL PLANO "XZ" CONDUCIDO.

Con los valores ya obtenidos se procede a la sumatoria de fuerzas en X. La dirección de la fuerza inclinada forma un ángulo de 50° con respecto a la horizontal:

$$\sum F_x = 0$$

$$R1_x - (C_{p\,1} - C_{p2\,dise\bar{n}o\,en\,x}) - (C_{p\,1} - C_{p2\,dise\bar{n}o\,en\,x}) - R2_x = 0$$

Donde por simetría las reacciones

$$R1_{x} = R2_{x}$$

$$2R1_{x} = 2(C_{p1} - C_{p2 \text{ diseño en } x})$$

$$R1_{x} = R2_{x} = (11100 - 10285 * \cos 50)$$

$$R1_{x} = R2_{x} = 4489 \text{ N}$$

Ahora bien con estos resultados se calcula los diagramas de fuerza cortante y momento flector en el plano "YZ".

Calculo de fuerzas cortantes:

$$V_{Y1} = 8015 N$$

$$V_{Y2} = V_{Y1} - w * l_1$$

$$V_{Y2} = 8015 - 217 * 0.217$$

$$V_{Y2} = 7968 N$$

$$V_{Y3} = V_{Y2} - (P1 + C_{p \ diseño \ en \ y})$$

$$V_{Y3} = 7968 - (7 * 9.81 + 10285 * sen50)$$

$$V_{Y3} = 20.56 N$$

Cálculo de momentos flectores:

$$M'_{Y} = V_{y1} * l$$
 $M'_{Y} = 8015 * 0.217$
 $M'_{Y} = 1739 N.m$
 $M''_{Y} = w * l * \frac{l}{2} + (V_{y2} - V_{y3}) * l$
 $M''_{Y} = 217 * 0.624 * \frac{0.624}{2} + (7968 - 20.56) * 0.217$
 $M''_{Y} = 1767 N.m$

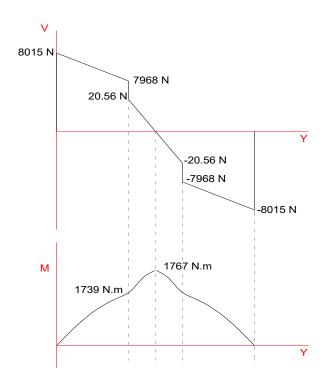


FIGURA 2.25 DIAGRAMAS DE CORTANTE Y MOMENTO FLECTOR PLANO "YZ".

De la misma forma se procede a calcular los valor para los diagramas en el plano "XZ".

Calculo de fuerzas cortantes:

$$V_{X1} = 6611 \, N$$

Cálculo de momentos flectores:

$$M'_{X} = V_{X1} * l$$
 $M'_{X} = 6611 * 0.217$
 $M'_{X} = 1435 N.m$

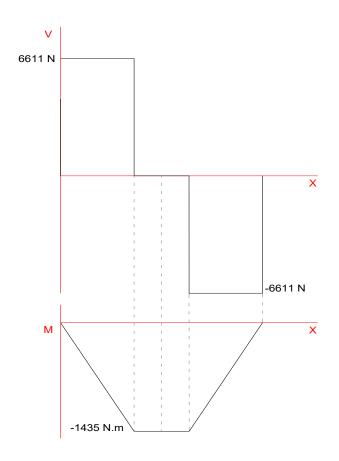


FIGURA 2.26 DIAGRAMAS DE CORTANTE Y MOMENTO FLECTOR PLANO "XZ".

Al igual que en el diseño anterior del punto crítico se calcula las resultantes de estos esfuerzos. Y del diagrama de momento flector el máximo momento está ubicado en la mitad del eje resultando:

$$M_a = \sqrt{M''_Y{}^2 + M'_X{}^2}$$

$$M_a = \sqrt{1767^2 + 1435.4^2}$$

$$M_a = 2277 N.m$$

En este caso teóricamente la torsión es cero porque no existe una resistencia en el eje que le impida que rote como en el caso del eje motriz, pero realmente existe una fricción en el rodamiento que ocasiona torsiones despreciables cuando el rodamiento está bien lubricado. Por esta razón la expresión es la siguiente:

$$d_1 = \left\{ \frac{32 * 3}{\pi} \left(1.77 \frac{2277}{234.33 \times 10^6} \right) \right\}^{\frac{1}{3}}$$
$$d_1 = 0.0807 \ m \equiv 81 \ mm$$

Para este caso se considerará un eje de sección constante con el motivo de no aumentar los concentradores de esfuerzo. Entonces el diámetro interno del rodamiento de la chumacera debe ser no menor a 81 mm por ende estos ejes tendrá la configuración que se muestra en el plano ESPOL.FIMCP.M.18.

2.2 Sistema Telescópico.

El diseño del sistema telescópico permitirá ajustar la distancia entre la brecha que se forma desde la pared del fondo de la plataforma del camión y la línea de transportación para el envasado de cilindros.

2.2.1 Diseño de ruedas de transportación

Para este diseño se utilizará la fuerza más grande de todas las reacciones en los soportes que son obtenidas de la simulación del

telescopio en el capítulo 3.3. El objetivo de estas ruedas es facilitar el traslado del telescopio y a su vez formar la palanca para que este se mantenga estable y horizontal.

Estas ruedas de transportación constan de un eje que está fijo al telescopio y a un rodamiento para cada par de ruedas. El conjunto de las ruedas y rodamientos se acoplan al eje mediante un manguito de fijación, mientras que el eje se fija a la estructura telescópica por medio de una chaveta.

Este diseño también se analiza con el mismo criterio de falla a la fatiga, las reacciones que se transmiten varían de la misma forma que en el telescopio. A continuación en la figura 2.27 se presenta el diseño de forma de este mecanismo.

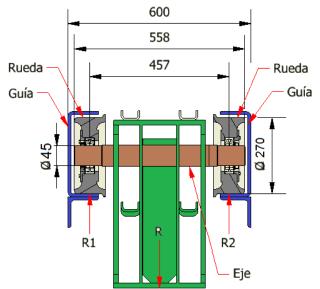


FIGURA 2.27 DISPOSICIÓN GENERAL DEL CONJUNTO RUEDA Y EJE

La fuerza R es la reacción que se transmite desde el telescopio hacia las ruedas. Este elemento se diseñará con la reacción que soporta la mayor carga que es obtenida del diseño final del telescopio en el sub-capítulo 3.3.

Antes de seguir con el dimensionamiento de las ruedas se analizará el tamaño del eje y la selección del rodamiento.

Análisis a fatiga del eje de las ruedas de transportación.

En el diagrama de cuerpo libre de la figura 2.28 se presentará dos reacciones debido al contacto de las ruedas de transportación con la guía del telescopio, una fuerza uniformemente distribuida debido a su propio peso y la reacción R que proveniente del telescopio:

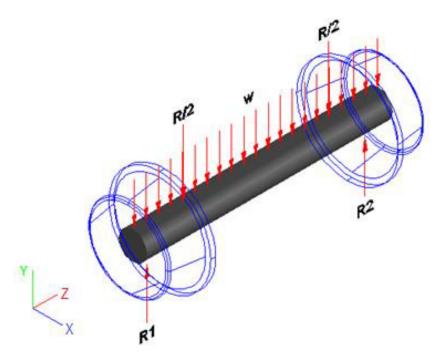


FIGURA 2.28 DIAGRAMA DE CUERPO LIBRE DEL EJE.

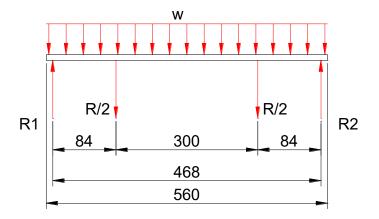


FIGURA 2.29 ANÁLISIS DE FUERZAS EN EL PLANO "YZ".

La modalidad de falla para este eje se presenta debido al corte ya que este eje trabaja más como pasador. Para los cálculos se estimará un diámetro del eje de 60 mm solo para el cálculo de la masa distribuida.

$$w = \frac{\rho \pi d^2}{4} * 9.81$$

$$w = \frac{7850 * \pi (0.06)^2}{4} * 9.81$$

$$w = 218 N/m$$

Del sub-capítulo 3.3.1 análisis del telescopio se identificado, que las ruedas del soporte #2 son las que sufren mayor fuerza. Los valores de R transmitidas por el telescopio serán Rmáx.= 131.8 KN y Rmín.= 10.2 KN.

Realizando la sumatoria de fuerzas en E igual a cero, y considerando que las tensiones ambas cadena son las mismas se tiene:

$$\sum F_y = 0$$

$$R1 - R/2 - R/2 + R2 - wL = 0$$

Donde por simetría las reacciones

$$R1 = R2$$
$$2R1 - R - wL = 0$$

Condición 1 para la máxima reacción

$$2R1_{m\acute{a}x.} = 131800 + 387 * 0.560$$

$$R1_{m\acute{a}x.} = R2_{m\acute{a}x.} = 66 \ kN$$

Condición 2 para la mínima reacción

$$2R1_{min.} = 10200 + 387 * 0.560$$

 $R1_{min.} = R2_{min.} = 5.2 \text{ kN}$

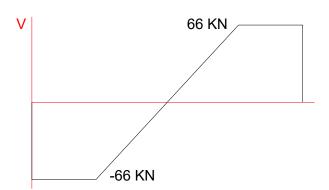


FIGURA 2.30 DIAGRAMAS DE CORTANTE DEL EJE DE LAS RUEDAS CONDICIÓN 1.

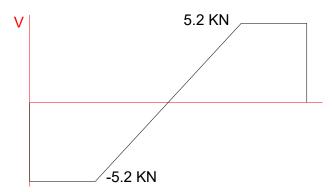


FIGURA 2.31 DIAGRAMA DE CORTANTE DEL EJE DE LAS RUEDAS CONDICIÓN 2.

El máximo esfuerzo se encuentra ubicado en los límites de la sección del telescopio, a 130 mm de los extremos. Para esta condición las fuerzas cortantes medias y de amplitud son:

$$V_a = \frac{V_{m\acute{a}x.} - V_{m\acute{i}n.}}{2} \quad V_m = \frac{V_{m\acute{a}x.} + V_{m\acute{i}n.}}{2}$$

$$V_a = \frac{66 - 5.2}{2} \quad V_m = \frac{66 + 5.2}{2}$$

$$V_a = 30.4 \; kN \quad V_m = 35.6 \; kN$$

A continuación se despeja el diámetro del eje de la expresión de Goodman modificado para falla por cortante.

$$\frac{1}{\eta} = \frac{K_{fm}\sigma_{ms}}{S_{us}} + \frac{K_{f}\sigma_{as}}{S_{n}}$$

Siendo:

$$\sigma_{ms} = \frac{v_m}{\pi d^2/_4}$$
 y $\sigma_{as} = \frac{v_a}{\pi d^2/_4}$

Con estas expresiones la fórmula del diámetro del eje es la siguiente:

$$d = \left\{ \frac{4 * \eta}{\pi} \left(\frac{K_{fm} V_m}{S_{us}} + \frac{K_f V_a}{S_n} \right) \right\}^{\frac{1}{2}}$$

Al igual que en sub-capítulo 2.2.1 el valor la resistencia a la fatiga se calcula de la misma forma.

Se empleará el acero AlSI 4130 cuyo límite de fluencia y resistencia a la ruptura son Sy = 275.8 MPa y Sut = 517.1 MPa respectivamente.

$$S_e' = 0.5(517.1)$$

$$S_e' = 285.6 MPa$$

Para este elemento, los factores que modifican la resistencia a la fatiga siguiendo el procedimiento de la referencia 16 son:

TABLA 16

DATOS PARA EL CÁLCULO DEL FACTOR DE SEGURIDAD A

FATIGA DEL TELESCOPIO

DESCRIPCIÓN	Volar Uı		Uni	nidad	
Acero ASTM A36	S _{ut} = 517 MPa				
ACEIO ASTIVIASO	S _y = 275.8 MPa				
$S_{e}{}'$	285.6 MPa				
$d_e = 0.808\sqrt{hb}$	342.8 mm				
Factores de corrección a la fatiga	Ka	0.68	K _d	1	
	K _b	0.799	K _e	1	
	K _c	0.753	K _{car}	1	

Concentradores de esfuerzos \mathbf{K}_f , \mathbf{K}_{fm} , \mathbf{K}_{ff}

Factor de concentración de esfuerzos por fatiga K_f :

Antes de proceder al cálculo con el Apéndice O el coeficiente K_t asumiendo una chavetera con muesca r= 3 mm y un diámetro de 60 mm el coeficiente es:

$$K_t = 1.8$$

Ahora se hace uso del Apéndice Q para un acero de $S_u=550\ MPa$ y $r=3\ mm\equiv0.118\ pulg$. El índice de sensibilidad a la entalla es q=0.85

$$K_f = 1 + q(K_t - 1)$$
 $K_f = 1 + 0.85(1.18 - 1)$
 $K_f = 1.15$

Factor de concentración de fatiga al esfuerzo medio, \mathbf{K}_{fm} :

Asumiendo un diámetro de 60 mm,

$$\sigma_{m\acute{a}x.s} = \frac{122100}{\frac{\pi 0.06^2}{4}} = 43.18 \, MPa$$

$$1.17|43.18 \, MPa| < 275 \, MPa$$

Como $K_f |S_{m\acute{a}x.}| < S_y$ entonces $K_{fm} = K_f$.

Calculo de la fatiga corregida:

$$S_n = K_a K_b K_c K_d K_e K_{car} S_e'$$

$$S_n = 0.68 * 0.799 * 0.753 * 1 * 1 * 1 * 275$$

$$S_n = 112.5 MPa$$

Introduciendo todos los valores a la formula asumiendo un factor de seguridad $\eta=3$ se tiene:

$$V_a = 30.4 \, kN \quad V_m = 35.6 \, kN$$

$$d = \left\{ \frac{4 * \eta}{\pi} \left(\frac{K_{fm} V_m}{S_{us}} + \frac{K_f V_a}{S_n} \right) \right\}^{\frac{1}{2}}$$

$$d = \left\{ \frac{4 * 3}{\pi} \left(1.15 \frac{35600}{275 \times 10^6} + 1.15 \frac{30400}{112.5 \times 10^6} \right) \right\}^{\frac{1}{2}}$$

$$d = 0.042 \, m \to 42 \, mm$$

De acuerdo al resultado obtenido, este eje debe de ser diseñado con un diámetro no menor que el calculado con el propósito de que resista para una vida infinita. Las características geométricas de este eje se complementan con el rodamiento que se seleccionará a continuación. El plano de este eje será ESPOL.FIMCP.M.27.

Selección de los rodamientos de las ruedas para carga cíclica.

Para la selección de estos rodamientos hay que tener en cuenta que tipo de aplicación y cargas actúan en estos. Para este caso el rodamiento se alojará en una rueda la misma que está sometida a cargas radiales. Pero por seguridad se tomará una pequeña carga axial por corrección al momento de alinear las quías de las ruedas.

El método de selección que se empleará es el recomendado por la referencia [18].

Para la selección del tipo de rodamiento, el Apéndice R clasifica los tipos de rodamiento de acuerdo a la comparación en su desempeño. De este Apéndice, la selección determinó que el tipo de rodamiento adecuado para las ruedas de transportación es el rodamiento de rodillos esféricos, debido a que maneja capacidades de carga radial y axial en los dos sentidos, la velocidad para este rodamiento es moderada, la resistencia a los choques y vibraciones es muy buena, tiene buenas características de desalineamiento de los anillos internos y externos y se fija en la dirección axial, etc. Estas características de este rodamiento lo hacen ideal para esta aplicación.

Las cargas obtenidas de las reacciones que se ejercen en los ejes se transmiten a las ruedas (ver figura 2.32). Debido a que estas reacciones son variables y fluctúan en el orden de 131.8 kN a 10.2 kN para una rueda del soporte crítico, el cálculo de la carga se tendrá que tratar como carga cíclica (Carga sinusoidal fluctuante).

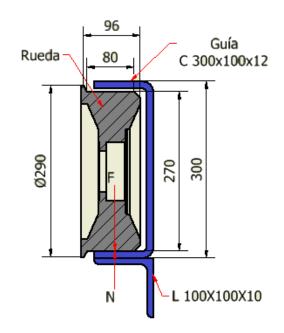
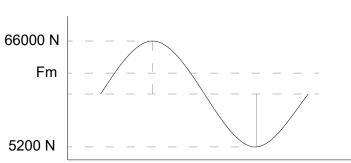


FIGURA 2.32 DIAGRAMA DE CUERPO LIBRE DE LA RUEDA

De donde:

F.- es la fuerza debido a las reacciones de la palanca que es la mitad de la reacción del soporte #2.

N.- Fuerza normal a la superficie de contacto.


Carga Promedio

Las cargas sobre rodamientos usados en máquinas bajo circunstancias normales en muchos casos fluctuarán de acuerdo a periodos fijos de tiempo o planes de operación pre-establecidos. La carga en rodamientos que trabajan sujetos a estas condiciones puede ser transformada a una carga promedio (Fm) esta carga

produce en el rodamiento un efecto en la vida útil como si el rodamiento trabajara bajo una carga de operación constante [18].

Carga sinusoidal fluctuante

La carga promedio Fm, puede ser aproximada por la siguiente ecuación:

 $\mathbf{F}_m = 0.65 \mathbf{F}_{m \acute{\mathbf{a}} x.}$

FIGURA 2.33 PERFIL DE FLUCTUACIONES DE FUERZA
RADIAL

Para la carga axial se considerará un 15% de la carga radial, para corregir cualquier desalineamiento en su trayectoria.

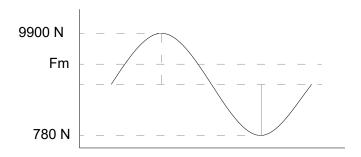


FIGURA 2.34 PERFIL DE FLUCTUACIONES DE FUERZA AXIAL

De acuerdo a los perfiles de fluctuaciones de fuerza, la fuerza media Fm es:

$$F_{m RADIAL} = 0.65(66 - 5.2) + 5.2$$

$$F_{m AXIAL} = 0.65(9.9 - 0.78) + 0.78$$

$$F_{m RADIAL} = 45 kN \text{ y } F_{m AXIAL} = 6.7 kN$$

Carga dinámica equivalente

Cuando las cargas dinámicas radiales y las cargas dinámicas axiales actúan sobre un rodamiento al mismo tiempo la carga hipotética que actúa en el centro del rodamiento y que permite que el rodamiento tenga la misma vida útil como que si estuviera cargado sólo radialmente o sólo axialmente, a esto se lo denomina carga dinámica equivalente. [18]

Para rodamientos radiales, esta carga se expresa como carga radial pura y es llamada carga radial dinámica equivalente. Para rodamientos axiales la misma se expresa como carga axial pura y se denomina carga axial dinámica equivalente.

Calculo de la carga radial dinámica equivalente

La carga radial dinámica equivalente se expresa por medio de la siguiente ecuación:

$$P_r = XF_{mr} + YF_{ma}$$

Donde,

P_r.- Carga radial dinámica equivalente

 F_{mr} .- Fuerza radial aplicada

 F_{ma} .- Fuerza axial aplicada

Factores de carga para Rodamientos de rodillos esféricos

X.- Factor de carga radial X = 1

Y.- Factor de carga axial $Y_1 = 1.68$

Del Apéndice T se determina los valores de X y Y.

$$P_r = 1(45) + 1.68(6.7)$$

 $P_r = 56.3 \, kN$

Capacidad de carga dinámica.

Esta capacidad está dada por la siguiente ecuación:

$$C_r = \frac{f_h}{f_n} P_r$$

Donde,

 C_r .- capacidad básica de carga dinámica requerida

 f_h .- factor de vida de acuerdo L_{10}

 f_n .- factor de velocidad

L₁₀.- Duración nominal de la vida en horas de servicio

En el Apéndice S se recomienda de acuerdo a la aplicación de máquinas en constante uso durante las 8 horas del día. Similares que las escaleras eléctricas y los transportadores en general, para L_{10} se recomienda 4000 h a 12000 h, para el transportador telescópico se trabajara con 5000 h. El cálculo de las rpm promedio a las cuales se mueve el transportador se determina de la siguiente forma:

Como una plataforma se carga con 3 niveles de cilindros y cada nivel se carga con 255 cilindros, entonces ésta plataforma se llena con 765 cilindros. Que para la capacidad de 1200 cilindros/hora significa que una plataforma se llena en aproximadamente 45 minutos pero se considera 55 minutos en total por el descanso intermitente para los operadores. La distancia recorrida por el telescopio para llenar un camión es de 21.2 m ida y vuelta, que en 55 minutos da una velocidad lineal promedio de aproximadamente 0.39 m/min y como las ruedas constan con un radio de rodadura de 135 mm las rpm promedio son de 5.6 rpm. Así mismo del Apéndice U los factores son determinados para la vida y la velocidad, estos resultados se muestran a continuación:

$$f_h = 2.3$$

$$f_n = 1.44$$

Con estos valores, con la fórmula de la capacidad básica de carga dinámica requerida se tiene lo siguiente:

$$C_r = \frac{2.3}{1.44} 56.3 \ kN$$

$$C_r = 90 \ kN$$

Del Apéndice T y V se selecciona el rodamiento acorde al diámetro del eje calculado y el manguito de fijación. Los resultados de la selección para un diámetro de 45 mm del eje se presentan en la siguiente tabla.

TABLA 17
DESCRIPCIÓN DEL RODAMIENTO Y MANGUITO DE
FIJACIÓN SELECCIONADO

RODAMIENTO			
Tipo	Rodillos esféricos "C"		
Cr	102 kN		
Número de rodamiento	21309CK		
Velocidad límite	4400 rpm		
Masa aprox.	2.07 kg		
MANGL	JITO DE FIJACIÓN		
Número de manguito	AH 309		
Masa aprox.	0.109 kg		

Diseño de forma de la rueda de transportación.

Este diseño es básicamente un diseño de forma en el cual se considera el espacio para alojar el rodamiento 21309CK de NTN ya seleccionado, este rodamiento debe de asegurarse a la rueda por medio de una tapa que se acopla a la rueda y se fija con 6 pernos.

Para el diseño debe de considerarse que la superficie de contacto de la rueda con la guía debe de ser tratada térmicamente para aumentar la vida de la misma debido a los efectos de desgaste por fricción y descascaramiento debido a la presión de contacto. Para la lubricación del rodamiento ésta se la realizará por medio del manguito de fijación.

Los esfuerzos al cual se someten a estas ruedas son por contacto, por ello se analizará que este diseño sea capaz de resistir dicho esfuerzo. En la figura 2.32 se presenta el diagrama de cuerpo libre de la rueda, mientras que en la figura 2.35 se ha aislado dicha rueda para comprender mejor cual es la configuración de la misma.

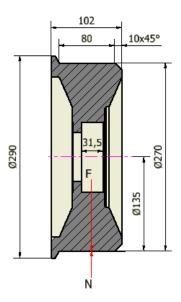


FIGURA 2.35 SECCIÓN DE RUEDA

Las expresiones que determinan los esfuerzos de contacto son las expresiones de Hertz. Los esfuerzos de contacto ocurren en elementos de máquinas cuando se transmiten cargas a través de superficies que presentan contactos puntuales o a lo largo de una línea. Si los elementos fueran totalmente rígidos, las áreas de contacto permanecerían nulas y los esfuerzos que aparecerían serían infinitos. Debido a la elasticidad de los materiales, éstos se deforman bajo la acción de las cargas, produciéndose áreas finitas de contacto. Debido a que estas áreas son muy pequeñas, aparecen grandes esfuerzos. Por lo tanto, a pesar de que los elementos sometidos a esfuerzos de contacto puedan tener suficiente resistencia mecánica de volumen, tienden a fallar en la pequeña zona de contacto, en donde los esfuerzos son mayores.

Existen diversos casos para determinar los esfuerzos de contacto, a continuación se nombraran los casos más generalizados:

- Contacto entre dos elementos esféricos
- Contacto entre dos elementos cilíndricos

El caso de diseño en esta ocasión será el de dos elementos cilíndricos. Como la rueda en esta aplicación se traslada en un elemento plano, a éste elemento se lo trata con un radio definido y al elemento plano como una rueda de radio infinito. Las

expresiones son las siguientes para un contacto acero AISI 4150-ASTM A36:

$$w = 4 \sqrt{\frac{F\left((1 - v_1)^2/E_1 + (1 - v_2)^2/E_2\right)}{\pi b(1/r_1 + 1/r_2)}}$$

$$P_{cm\acute{a}x.} = \frac{4F}{\pi wb}$$

$$S_{cm\acute{a}x.} = 0.304P_{cm\acute{a}x.}$$

Dónde:

 $S_{cm\acute{a}x.}$ - Es el esfuerzo máximo de contacto

 $P_{cm\acute{a}x}$. - Presión máxima de contacto

 $r_{1,2}$.- Radios de los cilindros

 $v_{1,2}$.- Coeficientes de Poisson.

 $E_{1,2}$.- Modulo de resistencia de los materiales involucrados

b.- ancho mínimo de la rueda en contacto.

F.- la fuerza aplicada a la rueda, que en este caso es de 49.3 KN ya que la máxima fuerza se reparte para las dos ruedas.

En este diseño el objetivo es determinar si el ancho de una de las ruedas cumple un factor de seguridad que garantice en la rueda el trabajo seguro. Los materiales a emplear para este elemento serán:

Para la rueda.- acero AISI 4150, módulo de resistencia 282.684 MPa, $E_1=204.773~\mathrm{GPa},\ v_1=0.28~\mathrm{y}$ radio 125 mm.

Para la guía de las ruedas.- acero ASTM A36, el módulo de resistencia 204.773 MPa, $E_2=199.959$ GPa, $v_2=0.3$ y radio infinito.

Con estos datos se calcula el ancho del área de contacto:

$$w = 4 \sqrt{\frac{\frac{49300(^{(1-0.28^2)}/_{204.773x10^9} + ^{(1-0.30^2)}/_{199.959x10^9})}{0.08\pi(^1/_{0.135} + 0)}}$$

$$w = 1.96x10^{-3} m \equiv 1.96 mm$$

$$P_{cm\acute{a}x.} = \frac{4*49300}{\pi*1.96*80}$$

$$P_{cm\acute{a}x.} = 400 MPa$$

$$S_{cm\acute{a}x.} = 0.304*400 MPa$$

$$S_{cm\acute{a}x.} = 121.7 MPa$$

Como se puede observar los esfuerzos de contacto están alrededor de 121.7 MPa, estos esfuerzos serán evaluados y ajustado a las condiciones más cercanas posibles a la realidad en el capítulo 3.3.

Debido a la presión de contacto que se da en las ruedas se recomienda tratar térmicamente estas superficies para darle una mayor dureza. El tratamiento superficial que se emplee para las ruedas debe de alcanzar 321-363 HBr esta dureza recomiendan

los fabricantes de ruedas de acero para rieles. Para conseguir esta dureza se recomienda hacer un tratamiento térmico de bonificado volumétrico [19].

El plano para las ruedas es ESPOL.FIMCP.M.11.

2.2.2 Diseño de las Guías Soportes de la Estructura Móvil

Este elemento se refiere a la guía de conducción de las ruedas del telescopio, en la figura 2.34 se puede apreciar que las guías de las ruedas se componen de un perfil L 100x100x10 y una C intermedia de 300x100x12. Ahora el objetivo para este diseño es confirmar que ésta guía soporte las cargas debido a la extensión del telescopio.

Como condiciones de cálculo para los esfuerzos, a esta guía en primer plano se le ejerce una fuerza en la parte superior interna del perfil cuando el telescópico está totalmente extendido, y como segundo plano se ejerce un esfuerzo menor cuando el telescopio está totalmente recogido y sin carga.

Del análisis de las reacciones en las ruedas realizado en el subcapítulo 3.3 modelado del telescopio, las reacciones que se trasmiten son:

Condición 1.

$$R_2 = -202.4 \, kN$$

Condición 2.

R1

R2

R3

R4

$$R_2 = 14.9 \, kN$$

Los modelos matemáticos para este elemento se presentan a continuación:

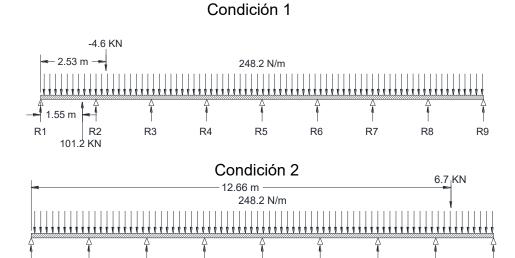


FIGURA 2.36 MODELOS MATEMÁTICOS DE LA GUÍA DEL TELESCOPIO

R5

R6

R7

R8

R9

Estos modelos se analizarán en el subcapítulo 3.3 modelo del bastidor principal, para este análisis se analizará en conjunto todo el bastidor principal y sus columnas, estas guías son de un perfil C 300100x12.

2.2.4 Diseño del Soporte del Telescopio

El soporte del telescopio es el elemento encargado de ser el pívot de la palanca formado cuando el telescopio está en voladizo. El objetivo principal de este diseño, es soportar la carga que ejerce el telescopio a medida que éste se desplaza, también este soporte sirve de guía para el telescopio ya que en sus extremos se diseñarán con un perfil que bordee el telescopio para evitar que éste se descarrile.

La figura 2.37 muestra la forma de este elemento el cual se conforma de:

- ✓ Un eje
- ✓ Un rodillo
- ✓ Dos chumaceras
- ✓ Una base que sostendrá el rodillo.

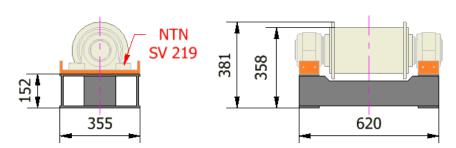


FIGURA 2.37 DISPOSICIÓN GENERAL DEL SOPORTE DEL TELESCOPIO.

Eje, Rodamientos y chumaceras

Por propósitos de mantenimiento, los rodamientos que se

emplearán para el soporte del telescopio serán de la misma

nominación que en el caso de las ruedas del telescopio. Para este

caso estos rodamientos serán contenidos por su propia

chumacera o cajera específica, donde el rodamiento ideal para

este soporte es el rodamiento de Rodillos esféricos tipo "C"

número 22219-BK.

Del Apéndice X se selecciona la chumacera para este rodamiento.

De esta selección resulta:

Manguito de fijación: AHX 319

Chumacera número: SV219

Las cargas que se emplean para seleccionar este rodamiento son

la máxima reacción del telescopio reflejado en el eje del soporte

#1. Esta reacción es de 133 kN reflejada

Bases de chumaceras

Para evitar los esfuerzos que se crean en los soportes de las

chumaceras, se emplean una placa intermedia de espesor 3/8 de

pulgadas con dos topes de placa de 12 mm, tal como se muestra

en el plano ESPOL.FIMCP.M.20 para cualquier chumacera.

141

Esta base permite alojar y desplazar la chumacera para el respectivo alineamiento en el montaje. Durante la fabricación de estos soportes se deberá primero cortar las placas y los topes, luego los topes se soldarán en los extremos de la parte longitudinal del soporte y por último estos soportes deberán ser rectificados hasta dejar la placa base en un espesor de 19 mm con el propósito de eliminar las deformaciones de la placa debido al proceso de corte y de soldadura, una vez terminado esto se perforarán y roscarán los hilos correspondientes a los pernos alineadores M9, los agujeros para colocar los pernos de fijación se harán de acuerdo al perno necesario de la chumacera.

Base soporte

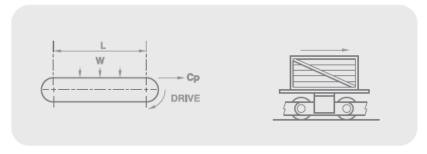
La base última del soporte se la va a fabricar en su totalidad de placa ASTM A36 con un espesor de 10 mm (1/2 pulg.) el diseño de forma es tal como se muestra en el plano ESPOL.FIMCP.M.27.

Rodillo soporte

Para el rodillo soporte a emplearse se ha considerado como primera alternativa un rodillo de 8" cedula 40, al cual se soldarán dos bordes de placa 12.7 mm para evitar el descarrilamiento del telescopio.

Los análisis de esfuerzo y deformación se los realizará en el capítulo 3.3.

2.2.5 Selección de Cadena y Catalinas


EL mecanismo impulsor que mueve el telescopio se compone de una cadena con dos catalinas una motriz y la otra conducida. Un tramo de la cadena se acoplará en la parte inferior trasera del telescopio con el propósito de alar hacia adelante o hacia atrás en las operaciones de carga y descarga de los cilindros de GLP. La selección de la cadena y la catalina deberán ajustarse a las necesidades de carga tanto del peso del telescopio, el peso de la carga, también el peso de la cadena que va a alar al mecanismo telescópico.

Selección de la cadena:

En el sub-capítulo 2.1.1 (selección de la cadena) se realizó un circuito complejo con el layout de transportación D según Renold [13]. Para este ejemplo se empleará una cadena de rodillos que al igual que en la situación 2.1.1 la cadena deberá desplazarse en los dos sentidos (adelanto y reversa), las condiciones de operación serán las mimas.

Para está aplicación la traslación del telescopio se sigue el siguiente layout de transportación:

LAYOUT C Chain rolling and material carried

 $Cp = 9.81 \times \mu_{c} [(2.05 \times Wc \times L) + W] (N)$

FIGURA 2.38 LAYOUT DE TRANSPORTACIÓN PARA TRASLACIÓN DEL TELESCOPIO.

Para este diseño la longitud "L" entre centros de catalinas es de 12 m. De acuerdo a la referencia [13] la máxima tensión de la cadena Cp se expresa en la siguiente fórmula:

$$C_p = 9.81 x \mu_c [(2.05 x W_c x L) + W_m] [N]$$

El número de hileras en esta ocasión será de uno. Esta cadena deberá de soportar toda la tensión al momento de la traslación.

La fuerza que se genere en la cadena no será distribuida al igual que en la situación 2.1.1 en esta ocasión la cadena se acoplará a un adjunto fijado por soldadura debajo del telescopio.

La fuerza que tendrá que vencer la cadena para el movimiento del telescopio será la fuerza de rozamiento que se ejerce en cada uno de los rodamientos. Bajo condiciones normales de operación, los rodamientos antifricción tienen un coeficiente de fricción mucho menor que los cojinetes deslizantes, especialmente en lo que se refiere a la fricción inicial.

Esta fuerza se calcula con el siguiente análisis:

Primero del cálculo de las reacciones de los apoyos del subcapítulo 2.2.1 se extraen las máximas y mínimas reacciones. Con estas reacciones y con los coeficientes de rozamientos de cada rodamiento que se emplea para desplazar el telescopio se calculará la fuerza total de rozamiento "**F**_{tr}", esta fuerza es la fuerza que se transmitirá a la cadena.

$$F_{rt} = F_{r1} + F_{r2} + F_{r3}$$

Donde;

 F_{rt} .- Fuerza total de rozamiento

 F_{r1} .- Fuerza de rozamiento del soporte #1

 F_{r2} .- Fuerza de rozamiento del soporte #2

 F_{r3} .- Fuerza de rozamiento del soporte #3

Y para calcular la fricción o par de fricción para rodamientos se tiene la siguiente ecuación:

$$\mu = \frac{2M}{Pd}$$
 [18]

Donde,

 μ .- Coeficiente de fricción.

M.- Par de fricción, N.mm [kgf.mm]

P.- Carga, N [kgf]

d.- Diámetro interior del rodamiento, mm.

Aunque el coeficiente de fricción dinámica de los rodamientos varía dependiendo del tipo de rodamiento, carga, lubricación, velocidad y otros factores; para condiciones de operación normales, el coeficiente de fricción aproximado para varios tipos de rodamientos, se lista en el Apéndice U.

De esta manera ya identificado el coeficiente de rozamiento para el rodamiento es de 2.25x10⁻³ para un rodamiento de rodillos esféricos. Teniendo de esta manera un par de fricción de:

$$\begin{split} M_1 &= \frac{\mu P_1 d}{2}; \quad M_2 = \frac{\mu P_2 d}{2}; \quad M_3 = \frac{\mu P_3 d}{2} \\ M_1 &= \frac{\left(2.25 \times 10^{-3}\right) (178921)(70)}{2} \\ M_1 &= 14 \text{ KN. mm} \\ M_2 &= \frac{\left(2.25 \times 10^{-3}\right) (146472)(70)}{2} \\ M_2 &= 11.5 \text{ KN. mm} \\ M_3 &= \frac{\left(2.25 \times 10^{-3}\right) (500)(70)}{2} \\ M_3 &= 0.04 \text{ KN. mm} \end{split}$$

Estos pares de fricción se pueden representar por una fuerza y un brazo de palanca, los mismos que serán medidos desde el centro del rodamiento hasta la superficie en contacto de cada elemento rodante que contenga dicho rodamiento. Para el caso de las ruedas esa distancia está definida por el radio medio de la rueda, y para el soporte del telescopio lo define el radio del cilindro soporte teniendo así las siguientes fuerzas:

$$F_r = \frac{M}{R}$$

Donde, R es la distancia desde el centro del rodamiento hasta la superficie en contacto del elemento rodante.

$$F_{r1} = \frac{14 \text{ KN. mm}}{110 \text{ mm}}$$

$$F_{r1} = 127 \text{ N}$$

$$F_{r2} = \frac{11.5 \text{ KN. mm}}{135 \text{ mm}}$$

$$F_{r2} = 85 \text{ N}$$

$$F_{r2} = \frac{0.04 \text{ KN. mm}}{135 \text{ mm}}$$

$$F_{r2} = 0.30 \text{ N}$$

Entonces la fuerza total de fricción es:

$$F_{rt} = 127 + 85 + 0.30$$

 $F_{rt} = 212 \text{ N}$

Ahora bien con los datos de fuerza ya determinados y modificando la ecuación para determinar la tensión de la cadena, la expresión es la siguiente:

$$C_p = 9.81x\mu_c x(2.05xW_c xL) + F_{rt} [N]$$

Considerando un peso de cadena de 2.1 kg/m, un coeficiente μ_c = 0.15 para lubricación regular [13] y con una separación entre catalinas de 12 m se tiene:

$$C_p = 9.81 \times 0.15 \times (2.05 \times 2.1 \times 12) + 212 [N]$$

$$C_p = 288 [N]$$

Así mismo la tensión de diseño se determina de la misma manera que en el caso 2.1.1 considerando los factores que intervienen en la tensión del diseño.

$$C_{p \text{ dise}\tilde{\text{n}}o} = C_p * Fp * Fs * Fn$$

Factor de servicio Fp, según el Apéndice E el transportador se ubica en el en grupo C y al igual que en el diseño 2.1.1 el factor Fp es 2.16.

Factor de velocidad Fs, para determinar este factor se establecerá una catalina de 14 dientes y una velocidad de máxima de avance del telescopio de 1m/s (197 fpm) que solo se da para el desplazamiento inicial sin carga, con el Apéndice G el valor de Fs más cercano a 197 es el de 200 fpm cuyo factor es 1.11.

Factor por numeras de hileras de cadena Fn, para n= 1 cadena.

$$Fn = \frac{1.2}{n} = \frac{1.2}{1} = 1.2$$

Con los factores que se tiene, la tensión de diseño es:

$$C_{p \; dise\~no} = 288 * 2.16 * 1.11 * 1.2$$
 $C_{p \; dise\~no} = 828 \; N$

El factor de seguridad según la referencia [13] es de 8 para la resistencia última de la cadena:

Resistencia ultima =
$$C_{p \text{ dise}\tilde{n}o} * 8$$

Resistencia ultima =
$$828 * 8$$

Resistencia ultima =
$$6624 N$$

Para terminar con este diseño se estable el paso y el tipo de cadena.

Haciendo uso del Apéndice H Maximum recommended chain speed (m/sec).

con los valores de 12 dientes de catalina y un paso de cadena 50.5 mm se observa una velocidad máxima 2.2

Chain Pitch	Number of Teeth					
mm (in.)	8	10	12	16	20	24
50.5 (2")	0.95	1.5	2.2	3.8	5.4	6.5
63	0.86	1.4	2.0	3.5	4.9	5.9
76.2 (3")	0.78	1.2	1.8	3.1	4.4	5.3

m/s, a medida de que el paso aumenta esta velocidad tiende a disminuir. Con estas características de cadena se puede buscar en el mercado una cadena que cumpla con las características de diseño que este en el rango de selección.

Las características de la cadena están en el apéndice Y. De acuerdo al cálculo la característica de la cadena transportadora es:

TABLA 18

CARACTERÍSTICAS DE LA CADENA DE TRASLACIÓN

DEL TELESCOPIO

Marca Rexnord® Chain, modeloC 2062 H ¹⁾			
CARACTERÍSTICA	Unidad		
Máxima resistencia 38100		N	
Paso	38.1	mm	

2.2.6 Diseño guía de la cadena

El criterio de diseño para esta guía de cadena será el mismo concepto empleado en el sub-capítulo 2.1.2 para el diseño de las guía de la cadena transportadora de cilindros. Las guías para la cadena del telescopio se soportarán en los pórticos que están separados cada 2 m, el modelo matemático es el de una viga soportada en varios puntos a lo largo de su longitud con una carga distribuida uniformemente.

Condiciones del diseño de la guía:

- ✓ Viga soportada y sometida a flexión.
- ✓ Carga distribuida uniformemente.
- ✓ La viga debe de alojar la plantilla de deslizamiento.
- ✓ Debe de permitir La sujeción de la plantilla de deslizamiento por medio de un perno de diámetro 9 mm.
- ✓ La plantilla de deslizamiento es de 10 mm de espesor.

- ✓ La cadena de transportación es de 76.45 mm de ancho.
- ✓ La altura de la cadena es de aproximadamente de 41.4 mm.
- ✓ La carga en una guía será de 9.54 kg por metro más el peso lineal de la plantilla polimérica de deslizamiento.

Con estas condiciones se establece el siguiente modelo matemático en la figura 2.39, y en la figura 2.40 su forma.

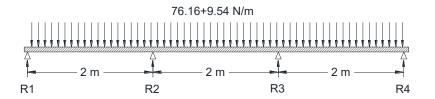


FIGURA 2.39 MODELO MATEMÁTICO GUÍA DE CADENA DEL TELESCOPIO

Para el perfil de la guía de cadena con los requisitos geométricos se ha diseñado es el siguiente perfil, y las propiedades mecánicas se enlistan en la tabla 19.

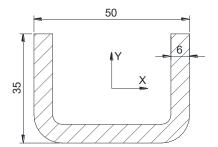


FIGURA 2.40 PERFIL DE GUÍA DE CADENA DEL TELESCOPIO

TABLA 19
PROPIEDADES DE LA GUÍA DE LA CADENA

Propiedad	Volar	Unidad
Fluencia del ASTM A36:	250	MPa
Área:	617	mm ²
Centro de gravedad:	X: 0.0000 Y: -18.6570	mm
Momentos de inercia:	X: 70720.5 Y: 214801.6	mm ⁴
Radios de giro:	X: 11.6184 Y: 18.6570	mm

Empleando el método de la *Ecuación de los tres Momentos* [15] y los resultados de fuerza cortante y momento flector se presentan a continuación.

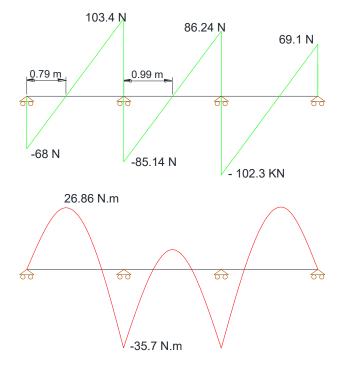


FIGURA 2.41 DIAGRAMA DE CORTANTE Y MOMENTO
FLECTOR GUÍAS DEL TELESCOPIO

Paso siguiente, se verifica el factor de seguridad estático para el máximo momento flector:

$$\eta = \frac{\sigma_y}{\sigma_f}$$

$$\sigma_f = \frac{(35.7)(0.018657)}{0.07072x10^{-7}}$$

$$\sigma_f = 9.42 MPa$$

$$\eta = \frac{250}{9.42}$$

$$\eta = 26$$

Este factor de seguridad es excesivamente elevado para esta aplicación, en este caso la guía está sobre dimensionada pero cumple con los requisitos funcionales para este propósito.

2.2.7 Diseño de catalinas y ejes para traslación del telescopio.

Diseño de las catalinas

Procedimiento.

1.- Datos de la cadena seleccionada Rexnord® Chain No. 7774 ver Apéndice Y:

Paso de cadena: 66.27 mm

Configuración interna entre eslabones (espacio libre): A=76.45,

K=28.7, G=14.22 y F=41.4

Radio del eslabón central: 28.7mm

2.- Determinación del paso diametral.

$$PD = p * v.const.$$

Haciendo uso del Apéndice L para determinar la constante para paso diametral se tiene:

Para 10 dientes el valor de la constante es 3.236 y por tanto PD:

$$PD = 66.27 * 3.236 = 214.5 mm$$

Con respecto al material de las catalinas se empleará el mismo recomendado por los fabricantes en la tabla 13.

Dientes de la catalina:

Para las características de los dientes se empleará el mismo concepto que en el caso de las catalinas de la cadena de transportación para los cilindros de GLP. En el plano de la catalina se especificará las dimensiones de los mismos.

Dimensiones del cubo:

Para determinar las dimensiones del cubo se valdrá del diseño del eje, que se presenta más adelante donde en este diseño resultó que los diámetros de los ejes conducidos y motriz son de 46 mm respectivamente.

Ahora se debe determinar las dimensiones del cubo de las catalinas. Para esto, con el valor del paso diametral de 214.5 mm (8.45 pulg.), para ambos ejes teniendo un diámetro próximo

estándar de 3⁷/₁₆ pulg equivalente a 87.3 mm, y con el valor de la tensión de diseño de la cadena de 2415 N, haciendo referencia del Apéndice M y Apéndice N, el tipo de cubo que se necesita para ambas catalinas presenta las siguientes características en la tabla 20:

TABLA 20
DIMENSIONES DEL CUBO

DIMENSIONES		
Diámetro externo del cubo	3 ³ / ₄ pulg. / 95.25 mm	
Diámetro interno del cubo	$2^{3}/_{16}$ pulg. / 55.56mm	
Longitud del cubo	31/ ₄ pulg. / 82.55 mm	

En el plano ESPOL.FIMCP.M.08 se presentan las dimensiones, propiedades del material de la catalina y dureza del diente.

Análisis a fatiga del eje motriz para el telescopio.

Procedimiento.

Para este análisis la configuración del eje aparece mostrada en la Figura 2.42 el factor de seguridad a fatiga será de 3. Se empleará nuevamente el código ASME para el cálculo de esfuerzos con la siguiente expresión:

$$d = \left\{ \frac{32N_f}{\pi} \left[\left(k_f \frac{M_a}{S_f} \right)^2 + \frac{3}{4} \left(k_{fSm} \frac{T_m}{S_y} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}} [16]$$

De esta expresión los cálculos para M_a y T_m harán uso de la Figura 2.43 y Figura 2.44 donde se representan todas las cargas aplicadas al eje.

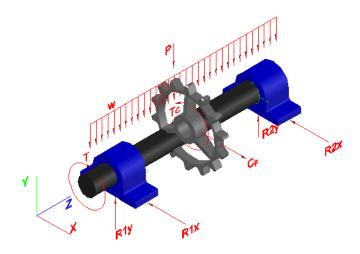


FIGURA 2.42 DIAGRAMA DE CUERPO LIBRE EJE MOTRIZ
DEL TELESCOPIO.

Del diagrama de cuerpo libre se analizan los planos de acción de las cargas independientemente, a continuación se presenta dicho análisis

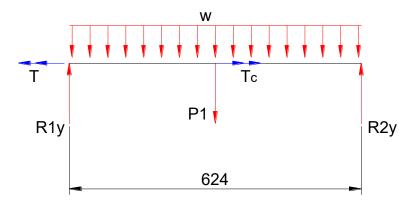


FIGURA 2.43 ANÁLISIS DE FUERZAS EN EL PLANO "YZ".

En el proceso de diseño se estimará un diámetro del eje de 60 mm solo para el cálculo de la masa distribuida, el procedimiento es el siguiente:

$$w = \rho A * 9.81$$

$$w = \frac{\rho \pi d^2}{4} * 9.81$$

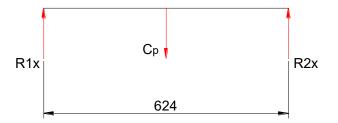
$$w = \frac{7850 * \pi (0.06)^2}{4} * 9.81$$

$$w = 218 N/mL$$

El valor de P es el efecto del peso de la catalina para el cual se asumirá un peso 7 kg (69 N) centrado entre las chumaceras.

Con los valores ya obtenidos se procede a la sumatoria de fuerzas en Y:

$$\sum F_y = 0$$


$$R1_y - P + R2_y - wL = 0$$

Donde por simetría las reacciones

$$R1_y = R2_y$$

$$2R1_y = wL + P$$

$$R1_y = R2_y = \frac{(218 * 0.624) + (7 * 9.81)}{2} = 102.5 N$$

FIGURA 2.44 ANÁLISIS DE FUERZAS EN EL PLANO "XZ" TELESCOPIO.

Cálculos de fuerzas en X:

$$\sum F_{x}=0$$

$$R1_x - C_p - R2_x = 0$$

Donde por simetría las reacciones,

$$R1_x = R2_x$$

Y las tensiones de la cadena son las mismas para cada hilera,

$$C_p = C_{p \text{ dise}\tilde{\mathbf{n}}o}$$

$$2R1_x = 2415$$

$$R1_x = R2_x = 1207.5 N$$

Calculo de los diagramas para fuerza cortante y momento flector en el plano "YZ".

Calculo de fuerzas cortantes:

$$V_{Y1}=102.5\ N$$

$$V_{Y2} = V_1 - w * l_1$$

$$V_{Y2} = 102 - 218 * 0.312 = 34.5 N$$

Cálculo de momentos flectores:

$$M'_{Y} = V_{2} * l$$

$$M'_{Y} = 34.5 * 0.312 + \frac{102.5 * 0.312}{2}$$

$$M'_{Y} = 26.8 N. m$$

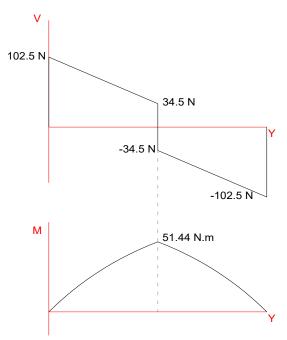
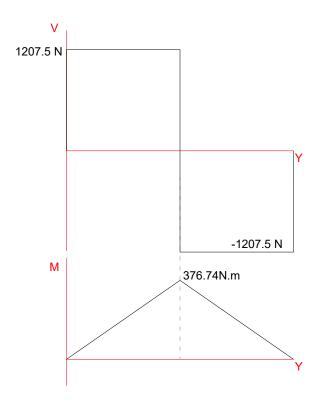


FIGURA 2.45 DIAGRAMAS DE CORTANTE Y MOMENTO FLECTOR EN EL PLANO "YZ" TELESCOPIO.

De la misma forma se procede a calcular los valor para los diagramas en el plano "XZ".


Calculo de fuerzas cortantes:

$$V_{X1} = 1207.5 N$$

Cálculo de momentos flectores:

$$M'_X = V_{X1} * l$$

$$M'_X = 1207.5 * 0.312$$

 $M'_X = 376.74 N.m$

FIGURA 2.46 DIAGRAMAS DE CORTANTE Y MOMENTO FLECTOR EN EL PLANO "XZ" TELESCOPIO.

El punto crítico sometido a mayor carga en cada diagrama es el punto centro del eje, para este punto se calculará las resultantes de estos esfuerzos debido a la acción en los dos planos.

Del diagrama de momento flector, el máximo momento está ubicado en la mitad del eje y de las componentes resulta:

$$M_a = \sqrt{{M''}_Y{}^2 + {M'}_X{}^2}$$

$$M_a = \sqrt{51.44^2 + 376.74^2}$$
$$M_a = 380.24 \, N. \, m$$

Mientras que para la torsión que afecta al eje de la Figura 2.43 el análisis es el siguiente:

$$\sum T = 0$$

$$T - T_c = 0$$

$$T = T_c$$

$$T_c = C_{p \text{ diseño}} * PD$$

$$T_c = 2415 * 0.2145$$

$$T_c = 518.02 \text{ N.m}$$

De acuerdo a los elementos que se instalarán en el eje, este se diseñará con un chavetero para poder ajustar la catalina.

Para el diseño de forma estos diámetros se dispondrán de la siguiente manera.

Empezando en el centro entre chumaceras el diámetro del eje será mayor, luego extendiéndose hacia los lados el diámetro se mantiene constante permitiendo el montaje de las chumaceras por ambos lados.

Para cada cambio de sección el radio de la muesca que se usará será de 3 mm. Con estas condiciones de diseño se continúa con el cálculo del diámetro sometido a fatiga.

Como se empleará el mismo acero para el diseño de ejes del telescopio (Asa 705) la resistencia a la fatiga será la siguiente:

$$S_e = C_{carga}C_{tama\~no}C_{superficial}C_{temperatura}C_{confiabilidad}S_{e},$$

Donde;

$$S_{e'} = 0.5S_{ut}$$
 $S_{e'} = 0.5 * 1078x10^6$ $S_{e'} = 539 MPa$

Para los factores se utiliza la información del capítulo 6 de Norton.

Como el eje está sometido a flexión el factor de carga es uno.

$$C_{carga} = 1$$

Para el factor de tamaño se asumirá el diámetro de 60 mm.

$$mm \le d \le 250 \ mm$$

Como el diámetro de 60 mm está dentro del rango la fórmula es:

$$C_{tama\~no} = 1.189d^{-0.097}$$
 $C_{tama\~no} = 1.189(60)^{-0.097}$
 $C_{tama\~no} = 0.799$

Para el factor de superficie se toma el valor directamente de la ${\sf Ap\'endice}\ {\sf N}$:

$$C_{superficie} = 0.70$$

El factor de temperatura:

$$C_{temperatura} = 1$$

La confiabilidad con la que se diseña el eje será de 99%, para seleccionar este factor se hará uso del Apéndice \tilde{N} :

$$C_{confiabilidad} = 0.814$$

Ahora bien remplazando los factores se tiene:

$$S_e = C_{carga}C_{tama\~no}C_{superficial}C_{temperatura}C_{confiabilidad}S_{er}$$

$$S_e = 1*0.799*0.70*1*0.814*539$$

$$S_e = 234.33 \, MPa$$

Como ya se indicó en la geometría del eje este será de diámetro variable, con el Apéndice P, los concentradores de esfuerzos en los chaveteros y los cambios de sección par un radio de muesca de 3 mm se tiene:

$$\frac{r}{d} = \frac{3}{60} = 0.05$$

$$k_t = 1.75 \text{ y } k_{ts} = 2.25$$

$$K_f = 1 + q(K_t - 1)$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

Con $S_{ut} = 156.3 \, Kpsi$ se escoge el valor de la raíz de "a" para los aceros.

$$\sqrt{a} = 0.033 \text{ y } r = 3mm \equiv 0.12 \text{ pulg.}$$

$$q = \frac{1}{1 + \frac{0.033}{\sqrt{0.12}}} \rightarrow q = 0.91$$

$$K_f = 1 + 0.91(1.75 - 1)$$

 $K_f = 1.68$
 $K_{fm} = 1 + q(K_{ts} - 1)$
 $K_{fm} = 1 + 0.91(2.25 - 1)$
 $K_{fm} = 2.14$

Se Reemplazan todos los valores en la ecuación:

$$d = \left\{ \frac{32 * 3}{\pi} \left[\left(1.68 \frac{380.24}{234.33 \times 10^6} \right)^2 + \frac{3}{4} \left(2.14 \frac{518.02}{685 \times 10^6} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}}$$
$$d = 0.0454 \ m \equiv 45.4 \ mm$$

Con este diámetro a se puede establecer el diámetro mayor próximo al diámetro del cubo de la catalina con sus tolerancias, este diámetro es de 55.7 mm. EL diámetro interno del rodamiento de la chumacera debe de ser no menor a 55.7 mm por ende el eje motriz tendrá la configuración que se muestra en el plano ESPOL.FIMCP.M.15 y ESPOL.FIMCP.M.17.

2.3 Sistemas Motrices.

Para la selección de los motores en la zona de peligro se deberán cumplir las normativas oficiales referentes a riesgos de explosión.

Las Normas relacionadas a la conexión y al uso de aparatos eléctricos en áreas peligrosas deben ser revisadas y tenidas presente en todo momento.

Antes de empezar a la selección de los motores y reductores se debe de definir cuál va a ser el tipo de transmisión de potencia por esta razón este capítulo empieza con la selección de sistema de transmisión de potencia.

Antes de seleccionar los motores y reductores primero se revisará a que zona pertenece el área de envasado de GLP.

Identificación de la zona de envasado de GLP según las normas europeas.

Como ya se mencionó, la selección está relacionada según la clasificación del local (Zona de peligro) y a las características de los materiales inflamables presentes en la unidad de instalación (GLP).

Los requerimientos esenciales "seguridad Ex" para las áreas clasificadas como peligrosas son respetados por las normas europeas.

- 94/9/EC, de 23 de marzo de 1994, para los "componentes".
- 1999/92/E C, de 16 de diciembre, 1999, para las "unidades".

Los criterios de clasificación, para áreas peligrosas están definidos por la norma EN 60 079/10.

Los requerimientos técnicos de la unidad de instalación eléctrica en las áreas clasificadas, están definidos por la norma EN 60079/14.

Dependiendo de las instrucciones técnico légales la elección del tipo de motor debe llevarse en cuenta los siguientes factores:

✓ Tipo de unidad: minas (grupo I), superficie (grupo II).

Como la planta de envasado está en un área abierta y sobre la superficie ésta encaja en el grupo II.

Aparatos Grupo II: Destinados al uso en otros lugares en los que puede haber peligro de formación de atmósferas explosivas.

- a. Categoría 1: Nivel de protección muy alto. Aun fallando un medio de protección, existe otro que sigue manteniendo el nivel de protección.
- b. Categoría 2: Alto nivel de protección.
- c. Categoría 3: Nivel normal de protección.

La categoría para todos los equipos tendrá que ser 1.

✓ Clasificación del local: 0, 1, 2 (para componentes adaptados a las categorías 1, 2, 3).

Para esta clasificación se ha dividido a las atmosferas explosivas en dos clases las cuales se presentan a continuación:

- Clase 1.- Lugares con presencia de gases o vapores inflamables.
- 2. Clase 2.- Lugares con presencia de Polvo Combustible.

En el caso de la planta de GLP se hablará del grupo 1 cuyas zonas se clasifican de la siguiente manera:

- Zona 0: presencia permanente o durante largos periodos de tiempo.
- Zona 1: susceptible de formarse en condiciones normales de trabajo.
- Zona 2: presencia poco probable y por cortos periodos.

168

La planta envasadora reúne las condiciones de la zona 1.

✓ Características de los materiales inflamables presentes como

un gas, vapor o nieblas.

Estas características se presentan en la tabla 1Propiedades físicas

del propano, butano y GLP

✓ Grupo de aplicación: II A, II B, II C.

En función del IEMS (Intersticio Experimental Máximo de

Seguridad) como medida de la sensibilidad a la llama, y de la EMI

(Energía Mínima de Ignición) como una medida de la sensibilidad

al arco eléctrico, el Grupo II se subdivide en Subgrupos:

Subgrupo IIA EMI= 250 μJ IEMS=0,92 mm

Subgrupo IIB EMI= 96 μJ IEMS=0,65 mm

Subgrupo IIC EMI= 20 μJ IEMS=0,35 mm

Clases de temperatura.

T1: 450°C; T2: 300°C; T3 200°C; T4 135°C; T5 100°C; T6 85°C.

Por la probabilidad de que los equipos aporten una fuente de

energía que desencadene la explosión o la Temperatura de auto

ignición (T=435.0 °C) la clase de temperatura debe ser menor o

igual a T2. [9]

2.3.1 Sistema de Transmisión de Potencia.

Definir el sistema de transmisión de potencia es muy importante porque juega un papel en el aspecto económico de la fabricación, piezas de recambio del transportador de cadena y simplicidad del mecanismo para evitar los largos tiempos de reparaciones. Entre los sistemas de transmisión de potencia más comunes se tiene:

- Sistemas de conexión directa del motor reductor al eje motriz.
- Sistemas de transmisión por medio de cadenas.
- Sistemas de transmisión por medio de bandas.

De estos sistemas se empleará el que sea requiera de acuerdo a la selección del reductor. A continuación se hablará de los sistemas un poco sobre estos sistemas para tener una idea de cuándo se aplican.

Sistemas de conexión directa del motor reductor al eje motriz.

Este sistema de transmisión es el más simple porque evita que el sistema falle por medio de la redundancia de los elementos para la reducción de la velocidad, sin embargo es complicado regular la velocidad del transportador cuando la reducción del motor al reductor no se ajusta a los requerimientos de la máquina.

Sistemas de transmisión por medio de cadenas.

Este sistema es usado para transmitir el movimiento de fuerza entre ruedas dentadas. De este modo se permite transmitir el movimiento giratorio entre dos ejes paralelos pudiendo modificar la velocidad pero no el sentido de giro cuando la reducción entre el motor y el reductor no satisfacen los requerimientos de velocidad de la máquina. Este sistema es el más recomendado cuando se desea que la máquina mantenga la relación de velocidad, además estos sistemas son eficientes dependiendo de la cadena que se emplee para la transmisión.

Sistemas de transmisión por medio de bandas.

De aplicación común en la industria, este sistema consta de dos poleas solidarias cada una a un eje y acopladas por medio de una banda; es un sistema muy silencioso, no necesita lubricación y resulta poco costoso de construir, además presenta la característica de que puede ser utilizado como un fusible mecánico. Al igual que las cadenas los sistemas de transmisión por medio de bandas permiten ajustar la velocidad del reductor a la máquina para cumplir con los requerimientos, a pesar de que este sistema es más económico con respecto al sistema de cadenas este no tiene buena relación de velocidad es por esto que para máquinas de alta precisión no es recomendable instalarlos.

[Parte de la información fue recopilada de varias fuentes de la web y complementada con los criterios adquiridos en base a la experiencia].

2.3.2 Selección del Motor y Reductor Principal

SELECCIÓN DEL MOTOR

Para seleccionar el motor primero se debe de calcular la potencia necesaria del mismo y luego se selecciona el motor para las exigencias de atmosferas explosivas.

Para el cálculo de la potencia se empleará la siguiente expresión:

$$P_{motor} = \frac{P_{eje}}{\eta_{motor} * \eta_{reductor}}$$

Calculo de la potencia debido a la transportación " P_{eje} ".

Para saber cuál es la potencia requerida para mover la cadena junto con los cilindros de GLP se empleará la siguiente fórmula:

$$P_{eje} = \frac{C_{p \; dise\~no} * V}{1000} o para \, una \, sola \, cadena$$

Dónde:

 P_{eje} .- Es la potencia requerida en la cadena para mover el producto

 $C_{p\;dise\~no}$.- Tensión de dise $\~no$ de la cadena.

V.- velocidad del transportador cuando carga el producto (esta velocidad es cuando los cilindros que se están cargando están llenos de GLP).

Entonces el valor para la potencia del eje se define

$$P_{eje}=rac{C_{p\;dise\~no}*V}{1000}*2
ightarrow para las dos cadenas$$

$$P_{eje}=rac{12001*0.16}{1000}*2$$

$$P_{eje}=3.84\;\mathit{Kwatt}\equiv 5.15\,\mathit{Hp}$$

La eficiencia del motor que se empleará será de un 85 % y la del reductor está en un 80%, entonces la potencia del motor es:

$$P_{motor} = \frac{3.84}{0.86 * 0.80}$$

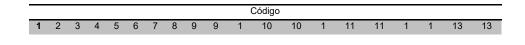
$$P_{motor} = 5.6 \, KW \cong 7.5 \, HP$$

Con estos datos se recurre al catálogo virtual de motores WEG, los resultados de la selección se muestran en la tabla 21.

TABLA 21 PLANILLA DE DATOS MOTOR PRINCIPAL

WED MOTO	OR PARA TELESCOPIO		O	1_1	
		Feci	ha: 23-FEB-2013		
HOJA DE DATOS Motor trifásico de inducción - Rotor de jaula					
Cliente Línea del producto	: ESPOL roducto : A Prueba de Explosión - Standard Efficiency - IE1				
Carcasa Potencia Frecuencia	: 132S : 7,5 HP : 60 Hz				
Polos Rotación nominal Deslizamiento Voltaje nominal	: 4 : 1760 : 2,22 % : 220/380/440 V				
Corriente nominal Corriente de arranque Ip/In	: 20,0/11,6/10,0 A : 154/89,2/77,0 A : 7,7				
Corriente en vacío Par nominal Par de arranque Par máxima	: 11,5/6,66/5,75 A : 29,9 Nm : 210 % : 300 %				
Categoría Clase de aislación Elevación de temperatura	: N : F : 80 K				
Tiempo de rotor bloqueado Factor de servicio Régimen de servicio	: 8 s (caliente) : 1,00 : S1				
Temperatura ambiente Altitud Protección	: -20°C - +40°C : 1000 : IP55				
Masa aproximada Momento de inercia Nivel de ruido	: 75 kg : 0,03489 kgm² : 61 dB(A)				
Delanter Rodamiento 6308 ZZ Intervalo de lubrificación	o Trasero 6207 ZZ 	100% 75%	0,82 0,73	cia Rendimiento (%) 88,0 86,0	
Cantidad de grasa		50%	0,61	83,0	

ÁREA DE APLICACIÓN


Zona I, Grupo IIA / IIB, T4

El plano del sistema telescópico es el plano ESPOL.FIMCP.M.25.

SELECCIÓN DEL REDUCTOR

Para alcanzar el número de revoluciones requerido por la máquina se empleará un Reductor Cónico Helicoidal en Ángulo Recto (RHB) marca DODGE QUANTIS con el propósito de transmitir la potencia y el sentido de transmisión 90 ° con respecto al motor [20].

El método de selección para este tipo de reductores abarca 20 pasos enumerados desde el 1 al 13b tal y como se muestra en el siguiente código.

A continuación se presenta la selección detallada paso a paso para el reductor del motor principal:

Paso 1.- Especificación del tipo de reductor, como el reductor es del tipo RBH este se representa con la letra B.

Paso 2.- Tipo de configuración de acuerdo a la fijación.

B= Foot mounted (fijación de patas)

F= Flange/Shaft mounted (fijación de brida o eje)

Paso 3.- Tamaño del reductor.

El tamaño del reductor se selecciona desde tablas de especificaciones de este catálogo (Apéndice Z), las

especificaciones se basan en la entrada RPM, ratio, y HP equivalentes (Potencia en HP del motor). Los tamaños disponibles son los siguientes:

Para determinar el ratio del reductor se aplica la siguiente fórmula:

$$Ratio = \frac{\varpi_{motor}}{\varpi_{salida}}$$

En este caso la velocidad del motor es 1750 rpm y la velocidad necesaria para la cadena de transportación es de 62 rpm, el Ratio desde el motor hasta la cadena de transportación es de 28.22.

Para determinar la potencia equivalente (potencia del motor) el catálogo sugiere la siguiente fórmula:

HP equivalente = HP necesarias x Factor de servicio
En este caso la potencia para la cadena de transportación es de 5
Hp y el factor de servicio es de 1.5, el factor de servicio para esta aplicación se encuentra disponible en el Apéndice Z.

$$HP$$
 equivalente = 5×1.5
 HP equivalente = $7.5 HP$

Como se puede apreciar la potencia equivalente calculada de acuerdo con el catálogo es de 7.5 HP, esta potencia con coincide

con la calculada para el motor con el otro método. Con estos parámetros se recurre al catálogo. En la selección para el reductor tipo RBH y un motor con frame 132S el tamaño es 8.

Paso 4.- Etapas de reducción para este tipo de tipo solo hay de 3 etapas.

Paso 5.- Configuración de entrada.

C= Clamp Collar L= 3 Piece Coupled

Paso 6.- Tipo de motor.

N= NEMA I=IEC

Paso 7.- Frame del motor. Para este motor el frame es el 132S.

Paso 8.- Ratio.

Como ya se determinó en el paso 3 el ratio entre el motor y la cadena es de 28.22, el catálogo ofrece el ratio de 25.53 para este tipo de reductor. Esto indica que se debe de utilizar un sistema de transmisión de potencia ya sea de banda o de cadena para llegar a la velocidad requerida.

Paso 9.- Posición de montaje.

A1 A2 A3 A4 A5 A6

Paso 9a.- Posición del eje de salida.

A B AB

Este paso no es requerido para unidades montadas en el eje.

Paso 10.- Tipo de diámetro interior de eje de salida

S= Eje solido de extensión

D= Eje solido de doble

H= Orificio

C= Disco reductor de tamaño

T= Casquillo cónico Doble

Paso 10a.- Sistema de dimensión del agujero del eje de salida.

Paso 10b.- Eje de salida/Diámetro del agujero.

Eje Agujero

Pulgada: 1.375-4.750 Pulgada: 1.250 – 4.000 Métrico: 35 – 120 mm Métrico: 30 – 110 mm

Paso 11.- Tipo de brida de salida.

B5 B14

Paso 11a.- Diámetro de la brida de salida.

B4: 120 - 400 mm B14: 120 - 400 mm

Paso 11b.- Posición de la brida de salida.

A B AB

Paso 12.- Posición del brazo del torque.

K= kit de brazo de palanca

Debe de usarse para configuración "BF".

Paso 13.- Unidad de tornillo transportado opcional.

SCS= Tornillo transportador con eje conducido estándar.

SCN= Tornillo transportador sin eje conducido.

Solo para tamaños de 38 – 128

Paso 13a.-Diametro del eje conducido tornillo transportador.

$$1.500 - 3.4375$$
.

Paso 13b.-Adaptador del tornillo transportador.

Para la selección del reductor solo se necesitó realizar hasta el paso 10.

Código en forma de pedido: BB883CI13225.53A6ASM85

Reducción de velocidad del reductor al eje de la catalina.

Como la velocidad de salida del reductor no alcanza a la velocidad requerida, el motor tendrá que trabajar al 90 % de la velocidad nominal para poder alcanzar un máximo de 62 rpm requeridos para la cadena transportadora de cilindros.

2.3.3 Selección del Motor y Reductor de la Estructura Telescópica.

SELECCIÓN DEL MOTOR

Cálculo de la potencia:

$$P_{motor} = \frac{P_{eje}}{\eta_{motor} * \eta_{reductor}}$$

Calculo de la potencia debido a la transportación " P_{eje} ".

Para saber cuál es la potencia requerida para mover la cadena junto con el telescopio se empleará la siguiente fórmula:

$$P_{eje} = rac{C_{p\;dise\~no} * V}{1000}
ightarrow para una sola cadena$$

Dónde:

 P_{eje} .- Es la potencia requerida en la cadena para el telescopio.

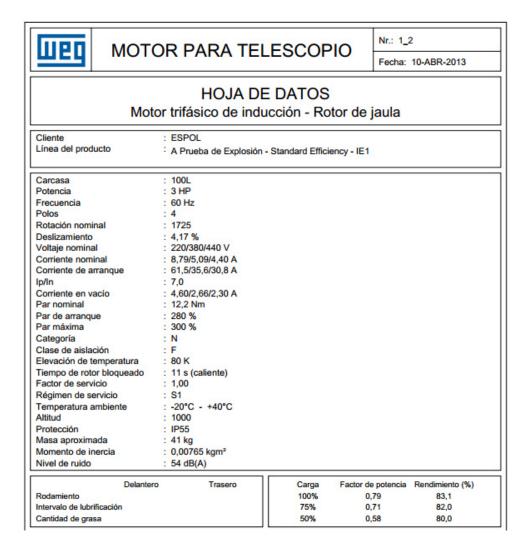
C_{p diseño}.- Tensión de diseño de la cadena del telescopio.

V.- velocidad máxima del telescopio.

$$P_{eje} = \frac{1027 * 1}{1000} * 1$$

$$P_{eje} = 1.027 \, Kwatt \equiv 1.377 \, Hp$$

$$P_{motor} = \frac{P_{eje}}{\eta_{motor} * \eta_{reductor}}$$


La eficiencia del motor que se empleará será de un 85 % y la del reductor está en un 80%, entonces la potencia del motor es:

$$P_{motor} = \frac{1.027}{0.85 * 0.80}$$

$$P_{motor} = 1.51 \, KW \cong 2 \, HP$$

Con estos datos se recurre al catálogo de motores WEG y se selecciona el motor con las características presentadas en la tabla 22.

TABLA 22
PLANILLA DE DATOS DEL MOTOR DEL TELESCOPIO

ÁREA DE APLICACIÓN

Zona I, Grupo IIA / IIB, T4

El plano del sistema telescópico es el plano ESPOL.FIMCP.M.26.

SELECCIÓN DEL REDUCTOR

Al igual que en la selección del reductor anterior para este mecanismo se empleará un Reductor Cónico Helicoidal en Ángulo Recto (RHB) de la misma marca [20].

A continuación se presenta los parámetros modificados para la selección detallada del reductor del motor del telescopio:

Paso 3.- Tamaño del reductor.

$$Ratio = 14.69$$

En este caso la potencia para la cadena del telescopio es de 2 Hp y el factor de servicio es de 1.5, el factor de servicio para esta aplicación se encuentra disponible en este catálogo.

$$HP$$
 equivalente = 2×1.5

$$HP$$
 equivalente = $3 HP$

Para este tipo reductor con un motor de frame 100 el tamaño es 68.

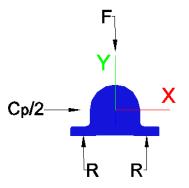
Paso 7.- Frame del motor. Para este motor el frame es el 100L.

Paso 8.- Ratio.

En este caso el catálogo ofrece un ratio de 27.55 lo cual entrega una rapidez de 64 rpm razón por la cual es necesario implementar un sistema de catalina y cadena de transmisión de potencia para reducir esta velocidad hasta 12.8 rpm, que es la velocidad

necesaria para la cumplir con los requerimientos de la máquina.

Código en forma de pedido: BB683CI100M27.55A6ACM56


2.3.4 Selección Chumaceras.

Selección de chumaceras.

Para este caso el rodamiento se alojará en sus correspondientes chumaceras y estarán sometidas cargas radiales. El método de selección a emplearserá el recomendado por la referencia [18].

El tipo de rodamiento apropiado a usar se lo determina del Apéndice R. Las fuerzas partirán de un mínimo hasta un máximo de acuerdo a la posición del telescopio, este dato se obtiene de las reacciones en el eje crítico, el peso del rodamiento y la máxima tensión de la cadena.

A continuación se presenta un diagrama de cuerpo libre en general para todos los casos de los rodamientos a seleccionar:

FIGURA 2.47 DIAGRAMA DE CUERPO LIBRE DE LA CHUMACERA

De donde las fuerzas que actúan se explican a continuación:

F.- es el peso de la chumacera más el rodamiento más la carga del eje.

Cp/2.- es la fuerza que recibe la chumacera debido a la tensión d la cadena.

Con estos datos se calculará la resultante de las fuerzas radiales que se transmite al rodamiento.

Para el cálculo de las fuerzas en el rodamiento se utilizará nuevamente el método de selección propuesto por la referencia [18].

Selección de los rodamientos y chumaceras para impulsión de la cadena transportadora de cilindros.

Calculo de la fuerza radial máxima.

$$F_{m\,radial} = \sqrt{(F)^2 + F_{m\,Cp}^2}$$

Carga Promedio (Fm).

Como ya se explicó en la sección 2.2.1 (selección del rodamiento de las ruedas del telescopio) esta carga produce en el rodamiento un efecto en la vida útil igual como si el rodamiento trabajase bajo una carga de operación constante [18].

Carga sinusoidal fluctuante

$$F_m = 0.65F_{m\acute{a}x}.$$

$$F_m = 0.65(11100)$$

$$F_m = 7220 N$$

$$F_{m \, radial} = \sqrt{(190)^2 + (7220)^2}$$

$$F_{m \, radial} = 7.23 \, kN$$

Carga dinámica equivalente

Para calcular esta carga se considerará un 15% de la carga radial como carga axial con el propósito de asegurar al rodamiento por cualquier carga externa axial no considerada. Esta carga será 7.23*0.15=1.1~kN.

El tipo de rodamiento a utilizar para todos los rodamientos es el rodamiento de cilindros esféricos, para ello se hará uso del Apéndice R.

Calculo de la carga radial dinámica equivalente

La carga radial dinámica equivalente se expresa por medio de la siguiente ecuación:

$$P_r = XF_{mr} + YF_{ma}$$

Empleando el del Apéndice T, para rodamientos de rodillos esféricos los valores "X "y "Y" son:

X.- Factor de carga radial. X = 1

Y.- Factor de carga axial. $Y_1 = 2.35$

$$P_r = 1(7.23) + 2.86(1.1)$$

 $P_r = 10.38 \, kN$

Capacidad de carga dinámica.

La capacidad de carga dinámica está dada por la siguiente ecuación:

$$C_r = \frac{f_h}{f_n} P_r$$

Donde,

 C_r .- capacidad básica de carga dinámica requerida

 f_h .- factor de vida de acuerdo L_{10}

 f_n .- factor de velocidad

L₁₀.- Duración nominal de la vida en horas de servicio

En el Apéndice S para 8 horas en esta aplicación se recomienda una hora de servicio L_{10} entre 4000 h a12000 h, para la cadena de transportación se trabajará con 12000 h. La velocidad promedio a la cual se mueven las cadenas de transportación de cilindro es de 62 rpm.

Con el Apéndice U los factores de vida y velocidad determinados son:

$$f_h = 2.6$$

$$f_n = 0.83$$

La capacidad básica de carga dinámica requerida es la siguiente:

$$C_r = \frac{2.6}{0.83} 10.83 \text{ kN}$$

$$C_r = 34 \text{ kN}$$

Del Apéndice R, T y V se selecciona el rodamiento acorde al diámetro del eje calculado y el manguito de fijación. Para un diámetro de 60 mm de eje en los extremos. Los rodamientos, chumaceras y manguitos de fijación se presentan en las siguientes tablas.

TABLA 23

DESCRIPCIÓN DEL RODAMIENTO Y MANGUITO DE FIJACIÓN SELECCIONADO PARA EJES 1, 5 Y 6.

RODAMIENTO			
Tipo	Rodillos esféricos "C"		
Cr	177 kN		
Número de rodamiento	LH-22213EK		
Velocidad límite	3800 rpm		
Masa aprox.	0.515 kg		
MANGUITO DE FIJACIÓN			
Código	AH 313		
CHUMACERA DE PIE			
Código	V213		

Realizando el mismo cálculo para chumaceras tipo brida con las fuerzas para los ejes 2 y 3 la capacidad básica de carga dinámica dio como resultado el siguiente conjunto de chumacera.

TABLA 24

DESCRIPCIÓN DE CHUMACERA TIPO BRIDA

SELECCIONADO PARA EJES 2 Y 3.

CHUMACERA TIPO BRIDA		
Código	CM-UCFS308D1	
Rodamiento	UC308D1	
Cr	40.5 kN	
Masa	3.6 kg	

Por último para la selección del conjunto de chumacera tensor con las fuerzas para el eje # 4 los resultados fueron los siguientes.

TABLA 25
DESCRIPCIÓN DE UNIDAD EXTENSORA
PARA EJE 4.

UNIDAD EXTENSORA TIPO M CON TORNILLO DE FIJACIÓN Y PRISIONERO			
Código	UCM212-50		
Rodamiento	UC212D1		
Cr	52.5 kN		
Perno M18	Carga Max. 19.6 kN		
Desplazamiento	500 mm		
Largo de unidad	920 mm		
Peso	28 kg		

Ver Apéndice X para unidad extensora tipo M con tornillo de fijación prisionero.

Selección de los rodamientos y chumaceras para impulsión del telescopio.

Calculo de la fuerza radial máxima.

$$F_{m \, radial} = \sqrt{(F * 1.5)^2 + F_{m \, Cp}^2}$$

Carga sinusoidal fluctuante

$$F_m = 0.65F_{m\acute{a}x.}$$

$$F_m = 0.65(2415 \text{ N})$$

$$F_m = 1570 \text{ N}$$

$$F_{m \, radial} = \sqrt{(102.5 * 1.5)^2 + (1570)^2}$$

$$F_{m,radial} = 1.6 KN$$

Carga dinámica equivalente

Para calcular esta carga se considerará un 15% de la carga radial como carga axial no considerada. Esta carga será $1.6*0.15=0.24\,KN$.

Del Apéndice T se selecciona el rodamiento autoalineable de bolas.

Calculo de la carga radial dinámica equivalente

Los factores considerados para este rodamiento son:

$$X = 1 \text{ y } Y_1 = 2.8$$

$$P_r = 1(1.6) + 2.8(0.24)$$

$$P_r = 2.27 \text{ KN}$$

Capacidad de carga dinámica.

En el Apéndice Q para 8 horas en esta aplicación L_{10} será de 12000 h ya definido en la selección anterior. La velocidad promedio a la cual se mueve la cadena de transportación del telescopio es de 560 rpm

Con el Apéndice S se determina los factores de vida y velocidad determinados son:

$$f_h = 3.1$$

$$f_n = 0.39$$

La capacidad básica de carga dinámica requerida es la siguiente:

$$C_r = \frac{f_h}{f_n} P_r$$

$$C_r = \frac{3.1}{0.39} 2.27 KN$$

$$C_r = 18 KN$$

Del Apéndice T, V y X se selecciona el rodamiento acorde al diámetro del eje calculado y el manguito de fijación. Para un diámetro de 55.7 mm del eje. Las chumaceras se presentan en la siguiente tabla.

TABLA 26

DESCRIPCIÓN DEL RODAMIENTO Y MANGUITO DE
FIJACIÓN SELECCIONADO PARA EJE MOTRIZ TELESCOPIO

RODAMIENTO			
Tipo	Rodillos esféricos "C"		
Cr	57.5 KN		
Número de	1312SK		
Velocidad límite	4500 rpm		
Masa aprox.	1.415 kg		
MANGUITO DE FIJACIÓN			
Código	H2312X		
CHUMACERA			
Código	SV212		

Las chumaceras extensoras para este el mecanismo tensor del subcapítulo 2.4.1 para el eje # 2 del telescopio (eje conducido).

TABLA 27
DESCRIPCIÓN DE UNIDAD EXTENSORA TELESCOPIO.

UNIDAD EXTENSORA TIPO M CON TORNILLO DE FIJACIÓN Y PRISIONERO			
Código	UCM211-50		
Rodamiento	UC211D1		
Cr	43.5 KN		
Perno M18	Carga Max. 19.6 KN		
Desplazamiento	500 mm		
Largo de	910 mm		
Peso	25 kg		

Ver Apéndice X para unidad extensora tipo M con tornillo de fijación prisionero.

2.4 Sistema del mecanismo tensor

El sistema del mecanismo tensor es el encargado de mantener la cadena tensa antes, durante y después del arranque. En este mecanismo se aloja un conjunto de eje, chumaceras extensoras y catalinas, los cuales se encargan de guiar a la cadena. Este mecanismo es compuesto por:

- ✓ Bastidor
- ✓ Chumaceras extensoras
- ✓ Conjuntos de ejes y catalinas.

Para este diseño se debe de tener en cuenta que para tensar la cadena solo se lo hace cuando está vacía, ya que una vez cargada en ésta se ejerce una fuerza muy grande que ocasiona que para mover el tornillo de potencia se necesite ejercer un torque muy grande el cual una persona no lo puede realizar con sus propias manos. Las tensiones para el eje # 4 cuando está sin carga son las tratables para el cálculo de la tensión de este mecanismo. Las tensiones cuando el mecanismo está a plena carga sirven para evaluar si la chumacera soporta dicha carga.

2.4.1 Ajuste de la cadena de transportación.

Resistencia para chumaceras extensoras cadena de trasportación.

En de la figura 2.48 se presenta el diagrama de cuerpo libre del conjunto eje y catalina, de esta figura se determina el valor de la carga T_t que debe vencer el tornillo de potencia:

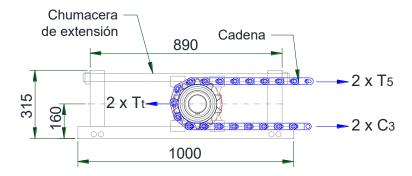


FIGURA 2.48 DIAGRAMAS DE FUERZAS DE CATALINA # 3.

En esta figura se aprecia que los valores están multiplicados por dos, esto es debido a que existen dos cadenas y también para el diseño se empleará dos chumaceras extensoras UCM316-50 simétricamente separadas.

Realizando la sumatoria de cuero libre se tiene que:

$$\sum Fx = 0$$

$$T_t - (T_5 + C_3) = 0$$

$$T_t = (749 + 1200) = 1949 N$$

Esta es la fuerza que se ejerce en el tornillo cuando el transportador está descargado. Para calcular el torque necesario la chumacera extensora UCM212-50 cuenta con un perno M18.

Coeficiente de fricción cinético μ_t y μ_c recomendable entre el tornillo y la tuerca es de 0.15 aplicado para malos acabados o movimiento muy lento y frecuente con lubricación indiferente o superficie recién maquinada. Paso para ésta tuerca l =1.25 mm, diámetro de paso d_P = 15.45 mm:

$$T_{tornillo} = \frac{T_C d_P}{2} \left[\frac{\pi \mu_t d_P + l * cos \emptyset_n}{\pi d_P cos \emptyset_n - \mu_t l} \right]$$

$$T_{tornillo} = \frac{1949 * 0.01545}{2} \left[\frac{\pi * 0.15 * 0.01545 + 1.25 * cos 30}{\pi * 0.01545 * cos 30 - 0.15 * 1.25} \right]$$

$$T_{tornillo} = 760 N.m$$

Ahora para determinar si el tornillo de potencia cumple con la condición de autoblocante se debe de cumplir con la siguiente expresión:

$$\mu_t \ge \frac{1}{\pi d_p} \cos \alpha$$

Siendo $d_p=15.45$ y $\theta=30$ para una rosca cuadrada.

$$0.15 \ge 0.022$$

De acuerdo a la expresión se cumple que el tornillo es autoblocante.

Resistencia para chumaceras extensoras cadena del telescopio.

Realizado el procedimiento anterior para chumaceras extensoras UCM211-50 los resultados son los siguientes:

$$T_t = 677 N$$

$$T_{tornillo} = 264 N.m$$

Ajuste para cadena de transportación

Ahora para determinar el ajuste la referencia [13] brinda la expresión para determinar cuántos milímetros se debe ajustar:

$$Ajuste = \frac{L * f_A}{p}$$

Donde,

Ajuste.- el Ajuste está en mm.

L.- Distancia entre centros de catalina. 14 m.

 f_A .- Factor de ajuste. De acuerdo a la tabla 28 con $C_P = 12296 \ N$.

p.- paso de la cadena.

TABLA 28
FACTORES DE AJUSTE PARA CADENAS

BS		ISO		
Chain Series	Factor	Chain Series	Factor	
13-20kN	0.406	M40	0.76	
27-33kN	0.508	MC56	0.71	
54-67kN	0.762	M80	1.02	
107-134kN	1.016	MC112	0.97	
160-200kN	1.016	M160	1.32	
267kN	1.270	MC224	1.28	
400kN	1.270	M315	1.68	
		M450	1.80	
		M630	2.03	

CONVEYOR CHAIN CATALOGUE, RENOLD. [13]

Con estas condiciones el ajuste es el siguiente:

$$Ajuste = \frac{14000 * 0.406}{66}$$

$$Ajuste = 86 mm$$

Ajuste para cadena del telescopio

El resultado del ajuste para esta cadena es:

$$Ajuste = \frac{13500 * 0.406}{52.324}$$

$$Ajuste = 105 mm$$

2.4.2 Diseño del bastidor

En este subcapítulo solo se abarcará hasta el diseño de forma el mismo que tendrá que permitir alojar las chumaceras y a su vez permitir el desplazamiento de las mismas para realizar el correspondiente templado. Los esfuerzos para esta estructura se lo analizará en el subcapítulo 3.3 Análisis de esfuerzos y deformaciones.

La figura 2.51 muestra el diseño de forma de este mecanismo.

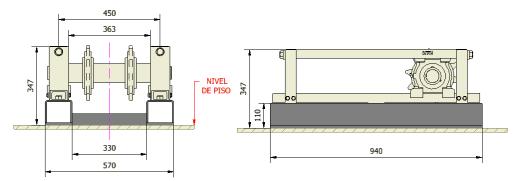


FIGURA 2.49 SISTEMA DEL MECANISMO TENSOR.

Los planos correspondientes al tensor de cada sistema son: ESPOL.FIMCP.M.12 y ESPOL.FIMCP.M.13.

2.5 Sistema estructural

Todos los sistemas anteriormente diseñados deben de ser soportados y sujetados en una estructura, a esta estructura se la conoce como el bastidor de la máquina. Para realizar el diseño se hará uso del programa computacional Autodesk Inventor Frame Generator. En este

capítulo, solo se realizará el diseño de forma inicial para ubicar todos los equipos de los diseños anteriores como una tentativa para el diseño final. El diseño final se lo realizará en el capítulo # 3 sub capítulo 3.3 Análisis de esfuerzos y deformaciones.

DISEÑO DEL BASTIDOR

La finalidad del diseño del bastidor principal del transportador telescópico en el sistema de transportación, es establecer cuáles van a ser las dimensiones de ancho, alturas y longitudes del transportador, para estringir así un poco más al diseño en sí de los otros sistemas. Debido a que los siguientes diseños de los otros sistemas dependerán de su geometría y perfilaría razonable se debe de considerar el permitir el acoplamiento de varios elementos así como:

- ✓ Conjunto de ejes, catalinas y chumaceras que se acoplen.
- ✓ Guías de cadenas a sostener.
- ✓ Ancho del bastidor debido a los cilindros de GLP. Haciendo referencia a sus dimensiones para la perfecta transportación se establecerá un ancho apropiado.
- ✓ Sistema del telescópico, que se restringe por el ancho del bastidor.
- ✓ Bases adecuadas para permitir el acople del sistema tensor.
- ✓ Bases adecuadas para acoplar los bastidores de los motores.
- ✓ Base adecuada para permitir el soporte del telescópico.

Como se puede apreciar en los elementos ya mencionados el diseño del bastidor tiene muchas entradas. Para llevar a cabo este diseño se debe de considerar el espacio y asumir ciertas cargas de trabajo para poder tener un indicio de la carga que va a soportar cada pórtico que se va a emplear de acuerdo al diseño de forma que se planteó en el capítulo uno.

Analizando los soportes de los pórticos se puede apreciar que estos están sometidos a tensión en ciertos casos, y a compresión en otros. En el sub – capítulo 2.2.1 del diseño de la estructura telescópica se determinar la carga del telescópico que ejerce sobre el bastidor.

2.5.1. Estructura móvil: Telescopio.

El propósito de esta estructura es moverse hacia fuera o hacia adentro en la línea de transportación, el objetivo es modificar la longitud del transportador manteniendo un flujo continuo de los cilindros de GLP. Al momento de modificar la palanca se produce un estado de esfuerzos fluctuantes debido a que la carga aumenta o disminuye.

Para el diseño de esta estructura se empleará el modelo matemático de una viga continua en voladizo apoyada en dos puntos formando una palanca. En este caso las cargas de esta estructura disponen del siguiente esquema.

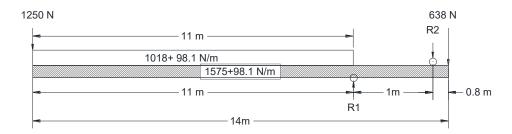


FIGURA 2.50 MODELO MATEMÁTICO DEL TELESCÓPICO.

En la figura 2.50 las reacciones que se presentan se determinan a partir del análisis estático en los apoyos de la viga.

El esquema anterior se hace referencia a la viga y la carga distribuida, teniendo así las reacciones R1 y R2 siendo estas los apoyos en: (1) rueda uno del soporte del telescopio, y, (2) rueda dos de transportación respectivamente.

Los valores de las cargas fueron establecidos de la siguiente forma:

Peso lineal del cilindro =
$$\frac{30}{0.32}$$
 = 93.7 $\frac{Kg}{m}$

Peso linieal de la cadena =
$$5 \frac{Kg}{m}$$

Peso lineal de la carga superior = $93.75 + 5 + 5 = 103.75 \frac{Kg}{m}$

Peso lineal de la carga superior =
$$1018 \frac{N}{m}$$

Peso lineal de cadena en 2 hileras =
$$(5+5) * 9.81 = 98.1 \frac{N}{m}$$

Peso lineal =
$$Ax\rho_{acero}$$

Peso lineal =
$$20.452x10^{-3} * 7850 = 160.5 \frac{Kg}{m} \rightarrow 1575 \frac{N}{m}$$

También se tienen cargas puntuales en los extremos debido al conjunto de catalinas chumaceras y ejes, siendo estas:

Carga en el cabezal = 127 Kg
$$ightarrow$$
 1250 N

Carga enla cola = 76.5 Kg $ightarrow$ 750 N

Para este diseño la forma de esta estructura tiene como vital importancia la sección de la viga en la cual se adjuntarán:

- ✓ El cabezal.
- ✓ Topes para el límite de su carrera.
- ✓ Las ruedas de transportación.
- ✓ Las guías de cadenas tanto en el en la parte superior externa como en toda la parte interior.
- ✓ También se considera una catalina en la cola para lo cual se tendrá que alojar los rodamientos y chumaceras.
- ✓ Una conexión en la parte posterior externa inferior donde se anclará la cadena del movimiento de la estructura telescópica para sacar y meter el telescopio.

A demás toda la parte inferior externa a excepción de los últimos 2 metros en la cola de la estructura debe de estar lisa y plana con el objetivo de que por ahí se apoye con el soporte #1 para hacer la

palanca a medida de que el transportador varíe su longitud. La figura 2.51 muestra la forma de ésta estructura.

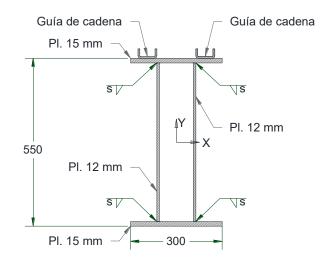


FIGURA 2.51 SECCIÓN DEL TELESCÓPICO.

Las dimensiones presentadas cumplen con la recomendación Norma AISC la cual establece: "Vigas y Trabes que soporten pisos o techos sean dimensionadas con la consideración debida a las deflexiones producidas por las consideraciones de carga del diseño". Adicionalmente indica que la deflexión máxima por cargas vivas de servicio se limita a L/360 [21]. También sugiere como una guía las siguientes limitaciones para los peraltes de las vigas:

λ Para arcos completamente esforzados:

 $d \ge L / 20$

Dónde:

L: Luz libre

d: Peralte de la viga

Con estas condiciones este perfil cuenta con las características mecánicas enlistadas en la tabla 29.

TABLA 29
PROPIEDADES DE LA SECCIÓN DEL TELESCOPIO

Propiedad	Volar	Unidad
Fluencia del ASTM A36:	250	MPa
Área:	17888	mm^2
Centro de gravedad:	X: 150 Y: 275	mm
Momentos de inercia:	X: 8699016423 Y: 1018810023	mm ⁴
Radios de giro:	X: 220.5 Y: 75.5	mm

Para este diseño la sección presente es adecuada, porque permite el paso de la cadena por los costados de las alas de la estructura y permite el acople de los otros adjuntos ya mencionados. Ahora solo queda confirmar si esta sección de estructura es capaz de soportar la carga para la cual va a ser sometida.

Cálculos estáticos.

De acuerdo al modelo de la figura 2.50 la estructura se encuentra en estabilidad estática gracias a los momentos que se producen por los soportes.

Cálculos de los momentos.

$$\sum M = 0$$

$$M_I = M_D$$

$$M_I = 1750 * 11 + (1575 + 1018 + 98.1 + 98.1) * 11 * 5.5$$

$$M_I = 187997 \ N.m$$

$$M_D = (1575 + 98.1) * 3 * 1.5 + 750 * 3 + 2.2 * R_2$$

$$187997 = 9779 + 2.2 * R_2$$

$$R_2 = 81008 \ N$$

$$R_1 = \frac{M_I}{5.5} + \frac{M_D}{1.5}$$

$$R_1 = \frac{187997}{5.5} + \frac{187997}{1.5}$$

$$R_1 = 159513 \ N$$

Con estos valores se calcula el esfuerzo que soporta la viga diseñada en el punto crítico (soporte #1):

$$\sigma_{R} = \frac{Mc}{I}$$

$$\sigma_{R} = \frac{187997 * 0.2205}{967.415 \times 10^{-6}}$$

$$\sigma_{R} = 42.85 MPa$$

Para un análisis estático la estructura cumple con dicha condición.

Ahora se evaluará la deflexión que tiene el telescopio haciendo uso de las ecuaciones de la referencia [15] (tabla 30 para vigas cargadas 14, pag. 208) para evaluar el tramo en volado de 11 m. EL modelo actual se lo dividirá en dos partes, una con carga distribuida y simplemente apoyada en los extremos y la otra con carga distribuida empotrada y en voladizo.

Deflexión en el telescopio:

Por la carga puntual en el extremo,

$$\delta_1 = \frac{PL^3}{3EI}$$
 [15]

Por la carga distribuida en todo el tramo extremo,

$$\delta_2 = \frac{wL^4}{8EI} \quad [15]$$

La suma de estas dos deflexiones representará la deflexión total del telescopio en el cabezal.

$$\delta_{TOTAL} = \frac{PL^3}{3EI} + \frac{wL^4}{8EI}$$

$$\delta_{TOTAL} = \frac{1750 * 11^3}{3EI} + \frac{(1575 + 1018 + 98.1 + 98.1)11^4}{8EI}$$

$$\delta_{TOTAL} = \frac{1.24X10^6}{EI}$$

$$\delta_{TOTAL} = \frac{1.24X10^6}{(200X10^9)(967.415\times10^{-6})}$$

$$\delta_{TOTAL} = 0.0304 m \equiv 30.4 mm$$

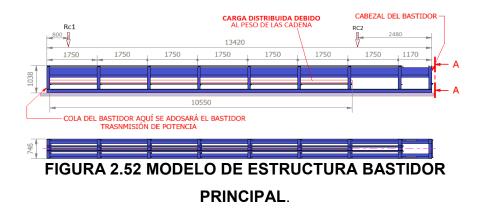
Como se observar, la viga soporta el máximo esfuerzo y ésta se desviará tangencialmente 30.4 mm hacia bajo, de acuerdo a las recomendaciones de la norma AISIC la deflexión máxima que debe ocurrir bajo estas condiciones debe ser L/360 30.6 mm para 11 m. Esta desviación es aceptable para el telescopio. Por cuestiones de fabricación se tendrá que considerar los rigidizadores entre cada alma de la viga. Para conservar esta condición se modelará la viga y se alivianará las almas. Antes de continuar con los diseños posteriores en el Capítulo 3.3 se redefinirá el diseño final considerando los alvéolos para alivianar la estructura y se considerará las rigidizadores entre almas.

Las dimensiones finales del telescopio se representan en el plano ESPOL.FIMCP.M.03 y ESPOL.FIMCP.M.04.

2.5.2. Estructura fija: Bastidor.

El sistema estructural fijo se ha dividido en tres partes con el objetivo de separar los equipos según su función. Los tres bastidores que componen la estructura fija son:

- 1. Bastidor principal.
- 2. Bastidor de transmisión de potencia.
- 3. Bastidor de sistemas motrices.


En este subcapítulo se describirá: (1) la forma de los bastidores que se presentan en las figuras 2.53 a la 2.55, y, (2) el modelo matemático. En el capítulo 3.3 los modelos serán evaluados.

Para los tres bastidores, los perfiles que se utilizaron son:

Bastidor principal.

IPE 140; UPN 100; L 100X10; L50X4; C50x4; Guía de cadena principal; Guía de cadena del telescopio, Perfil plegado C280x100x10.

Con estos materiales se tiene el siguiente modelo de bastidor.

Todos los pórticos están separado 1.75 m, estos pórticos se sueldan a las bases de IPE 140

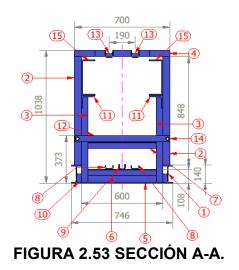


TABLA 30
DESCRIPCIÓN DE ELEMENTOS DEL BASTIDOR PRINCIPAL.

DESCRIPCIÓN DE ELEMENTOS					
ITEM	PERFIL ITEM PERFIL				
1	IPE 140	8	Guía de cadena principal		
2	UPN 100	9	Guía de cadena telescopio		
3	UPN 100	10	L 100x10		
4	UPN 100	11	L 100x10		
5	Plt. 100x10	12	C 50x4		
6	L 50x4	13	Guía de cadena principal		
7	L 50x4	14	Perno dia. 14x85 mm		
15 Guía C 300x100x10					

En la figura 2.52 se muestran las cargas Rc1 y Rc2, la carga Rc1 es cuando el telescopio está recogido y la Rc2 es cuando está totalmente extendido. Las cargas distribuidas de las cadenas van como siguen: ítem 8 y 13 (8 kg/m), ítem 9 (3kg/m), mientras que en el ítem 7 se soportan las mismas cargas de los ítem 8 y 13.

Las dimensiones finales del bastidor principal del telescopio se representan en el plano ESPOL.FIMCP.M.05.

> Bastidor de transmisión de potencia.

UPN 100; L50X4; C50x4; Guía de cadena principal; Guía de cadena del telescopio, Perfil plegado C280x100x10.

Con estos materiales se tiene el siguiente modelo de bastidor.

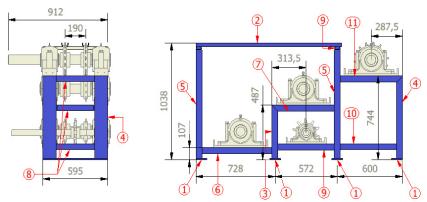


FIGURA 2.54 MODELO DE ESTRUCTURA BASTIDOR DE TRANSMISIÓN DE POTENCIA.

TABLA 31

DESCRIPCIÓN DE ELEMENTOS DEL BASTIDOR DE

TRANSMISIÓN DE POTENCIA.

DESCRIPCIÓN DE ELEMENTOS						
ITEM	ITEM PERFIL ITEM PERFIL ITEM PERFIL					
1	Plt. 100x10	5	UPN 100	9	UPN 100	
2	C 62x31x6.3	6	UPN 100	10	UPN 100	
3	UPN 100	7	UPN 100	11	UPN 100	
4	UPN 100	8	T. 50X50X4			

Las dimensiones finales del bastidor de transmisión de potencia se representan en el plano ESPOL.FIMCP.M.06.

Bastidor de sistemas motrices.

UPN 100; L50X4; C50x4; Guía de cadena principal; Guía de cadena del telescopio, Perfil plegado C280x100x10.

Con estos materiales se tiene el siguiente modelo de bastidor.



FIGURA 2.55 MODELO DE ESTRUCTURA BASTIDOR DE SISTEMAS MOTRICES.

TABLA 32
DESCRIPCIÓN DE ELEMENTOS DEL BASTIDOR DE
SISTEMAS MOTRICES

DESCRIPCIÓN POR NÚMERO						
ITEM PERFIL ITEM PERFIL						
1	Plancha 8 mm	5	UPN 100			
2	L 50X6	6	UPN 100			
3	UPN 100	7	UPN 100			

4 UPN 100 8 Plt. 100x10

Las dimensiones finales del bastidor de los sistemas motrices se representan en el plano ESPOL.FIMCP.M.07.

Ya establecidos todos los modelos de los bastidores se los plantean en Autodesk Inventor con Frame Generator para realizar el análisis estructural. (Análisis estructural capítulo 3.3)

2.6 Sistema de Seguridad.

Este capítulo involucra todos los sistemas de seguridad que son implementados para que el operador y el personal que labora dentro de la planta de envasado no se vean afectados en caso de accidente.

Los sistemas de seguridad a implementar son los sistemas pasivos y los sistemas activos.

Los sistemas pasivos son aquellos que actúan una vez que el accidente ocurre. Dentro de este sistema si implementarán 5 botones de STOP (parada de emergencia, este dispositivo es parte del diseño eléctrico y automatización).

Los sistemas activos son aquellos que actúan antes durante y después de que ocurra el accidente. Estos dispositivos alertan o restringen el acceso a áreas de peligro. Dentro de este sistema se implementarán las guardas de seguridad. Existen ciertos dispositivos como los sensores de proximidad que son considerados como parte del sistema de seguridad activa.

En este capítulo se seleccionara los sistemas de seguridad en el caso del sensor, y se diseñará las guardas.

2.6.1 Selección de los Sensores.

En este capítulo se seleccionará el sensor de proximidad. Este dispositivo electrónico debe de seleccionarse de acuerdo al grado de protección para atmosferas explosivas.

Al igual que en los sistemas motrices estos sensores deben de tener protección para trabajar en la siguiente área: Zona I, Grupo IIA / IIB, T4

2.6.2 Diseño de Guardas de Seguridad.

Este diseño solo busca restringir el paso de objetos y de personas para que no entren en las áreas donde se deslizan las cadenas. Su diseño consiste en imponer una malla elaborada con alambre galvanizado regular que forma celdas o eslabones entrelazados.

Adicionalmente está malla se enmarcará con L 25x4 y se realizarán las perforaciones para un perno M8.

Las dimensiones estándares de este tipo de malla es cómo se muestra en la siguiente figura 2.56.

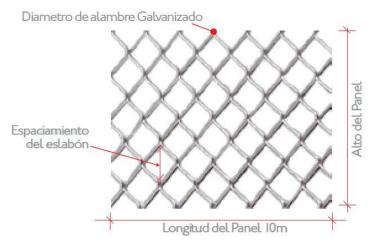


FIGURA 2.56 DIMENSIONES DE MALLA TIPO

Espaciamiento del eslabón: 50 mm.

Diámetro del alambre galvanizado: 3.3 mm.

Longitud del panel 10 m.

Ancho del panel 1 m.

Las dimensiones de una guarda tipo es como se muestra a continuación.

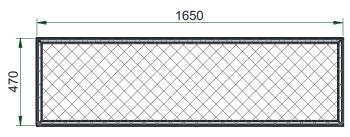


FIGURA 2.57 DIMENSIONES DE GUARDA TIPO

CAPÍTULO 3

3. MODELADO VIRTUAL DEL TRANSPORTADOR TELESCÓPICO DE CADENA.

El modelado virtual representa la importancia de la herramienta computacional ya que sin ella sería más complejo visualizar, evaluar y llevar a cabo un diseño antes de su construcción. A nivel mundial existen muchas herramientas computacionales que ayudan a los ingenieros a llevar a cabo un modelo virtualmente.

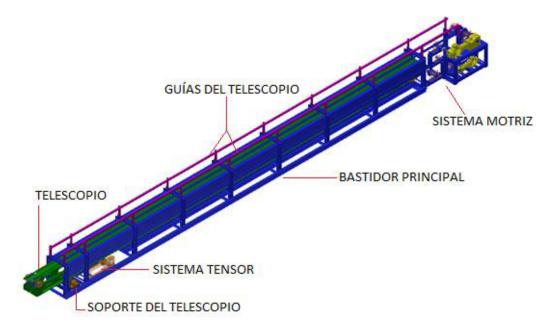
En esta tesis se hará uso del programa Autodesk Inventor ® para la representación gráfica en 3D y 2D de todas las partes del transportador con gran precisión. Autodesk Inventor es un programa computacional tipo CAD (Diseño Asistido por Computadora) utilizado en la industria para el diseño mecánico.

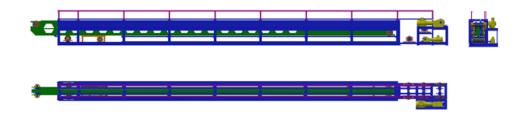
Este software permite llevar el diseño de las piezas más simple hasta un conjunto complejo desde 3D y representarlas con facilidad al modelo 2D, una de las bondades que también brinda Autodesk Inventor es realizar la animación de objetos en movimiento y modelar la resistencia que ofrecen un elemento mecánico al ser sometido a fuerzas externas. La creación de prototipos digitales con Inventor contribuye a que las

compañías puedan diseñar mejores productos, reducir los costos de desarrollo y llegar al mercado más rápido.

3.1 Representación Gráfica en Tercera Dimensión.

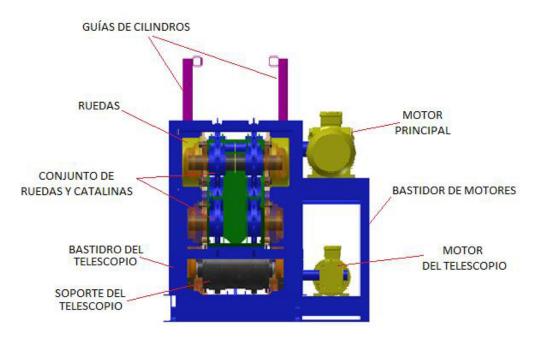
Haciendo uso de los elementos diseñados en el capítulo #2 se realiza la presentación gráfica. En las siguientes figuras se puede visualizar el transportador desde su forma más general una vez ya ensamblado, hasta ciertos detalles de los sistemas que lo componen.




FIGURA 3.1 TRANSPORTADOR TELESCÓPICO EN 3D

En la figura 3.1 se ilustra el Transportador Telescópico de Cadena con todas sus partes. Al transportador telescópico se lo alimentará con cilindros que entrarán por la cola. Estos cilindros se transportan encima de la cadena, para el control del trayecto de los cilindros estos se guiarán con las guías ubicadas en la parte superior. Para aumentar la

longitud del transportador el telescopio se desplazará hasta alcanzar una distancia de 11 m de volado, este telescopio se introduce en el camión para llevar los cilindros hasta lo más cerca posible del fondo.


El sistema soporte hará la palanca para que el telescopio pueda estar de formar estable cuando este se extienda.

El sistema tensor ajustará las cadenas, este sistema se compone de chumaceras extensoras las cuales tienen una distancia entre si la misma que permite que el telescopio se desplace libremente sin colisionar con las chumaceras.

FIGURA 3.2 VISTAS PRINCIPALES

La figura 3.2 presenta los equipos de una forma más técnica, como se puede observar, el telescopio cuando está recogido deja una parte a fuera del bastidor de un metro de distancia. El sistema motriz del transportador está ubicado a un costado del telescopio, esto se lo puede ver en la vista de planta. En este sistema se encuentran los dos motores y reductores en el mismo bastidor. La transmisión será de forma directa al eje motriz en ambos casos.

FIGURA 3.3 VISTA FRONTAL

En la figura 3.3 se describen ciertos equipos visibles que incorporan al transportador. Como se puede observar los dos motores se encuentran en el mismo bastidor y están conectados directamente en los ejes de transmisión. La intención de esta figura es mostrar que el transportador no colisiona con nada en todo su trayecto.

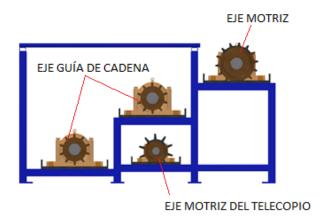


FIGURA 3.4 BASTIDOR DE TRANSMISIÓN DE POTENCIA

En la figura 3.4 es visible los conjuntos de ejes que incorporan al bastidor de transmisión de potencia.

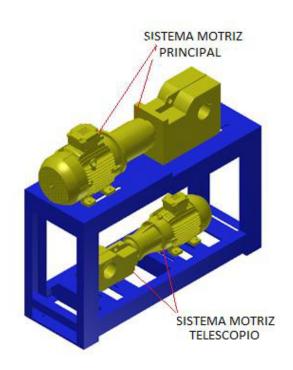


FIGURA 3.5 BASTIDOR DE SISTEMAS MOTRICES

En esta figura se muestra claramente los motores que se disponen, los motores están en sentido contrario, el motor más grande es el principal.

3.2 Animación del Funcionamiento del Transportador.

Para la realización de este subcapítulo se empleó la herramienta de animación de Autodesk Inventor 2013 versión estudiantil, esta parte de animación se explica por medio de un video la secuencia que podría seguir el montaje de las partes.

3.3 Análisis de Esfuerzos y Deformaciones.

En este subcapítulo se realizará la comparación de los resultados obtenidos manualmente así como los resultados obtenidos por medio de la simulación de Autodesk Inventor.

A continuación se presentan las simulaciones de las partes más influyentes en este diseño, los cuales son:

- ✓ Análisis y comparación de resultados del telescopio.
- ✓ Análisis y comparación de resultados de la rueda de transportación.
- ✓ Análisis de esfuerzos cilindro soporte #1.
- ✓ Análisis de estructura bastidor principal.
- ✓ Análisis de estructura bastidor de transmisión de potencia.
- ✓ Análisis de estructura bastidor de sistemas motrices.

✓ Análisis de estructura bastidor de transmisión de potencia

Modelado del telescopio.

Para este modelado se presenta todos los resultados tanto para el caso de máximos y mínimos esfuerzos. Con estos resultados se analizará la condición de fatiga a la cual se somete este elemento.

En el capítulo de diseño del telescopio 2.2.1 se diseñó el perfil con el peralte recomendado por la AISC, los resultados de la deflexión satisfacen la norma pero no se consideró la masa de los rigidizadores de la viga cajón. En este análisis virtual se analizará el mismo perfil, pero la estructura será alivianada con unos alveolos en el alma de la viga. Las consideraciones para dichos alveolos han sido tomadas de la página web del centro de construcción brasileño.

FIGURA 3.6 DIMENSIONAMIENTO DE AGUJEROS. [22]

Debido a que las vigas son agujereadas la inercia de esta se ve afectada, por esta razón antes de hacer el modelado virtual del

telescopio se establece una sección equivalente para determinar la inercia equivalente debido al efecto de los agujeros. El concepto de sección equivalente consiste en considerar una sección sin agujeros, suponiendo un espesor de alma menor en toda la banda ocupada por dichos alveolos, distribuyendo el acero disponible en esa banda de forma homogénea. El momento de inercia es mayor que el de la sección aligerada pero algo menor que el de la sección llena.

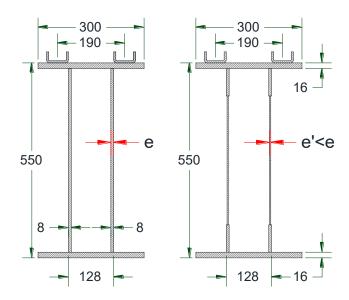


FIGURA 3.7 INERCIA EQUIVALENTE.

Hacer esta equivalencia es necesario de cara al cálculo de esfuerzos, ya que será el momento de inercia de esa sección. Esta inercia equivalente también se utiliza para el cálculo de la flecha. El alveolo que se utilizó es el detalle C del plano ESPOL.FIMCP.M.04 2/2.

Con estas condiciones se determinan el parámetro mecánico en Autocad 2013 versión estudiantil [25] y con los resultados se podrá personalizar el perfil estructural en el Autodesk inventor [26].

Las condiciones anteriormente mencionadas se registran los siguientes resultados para la máxima carga:

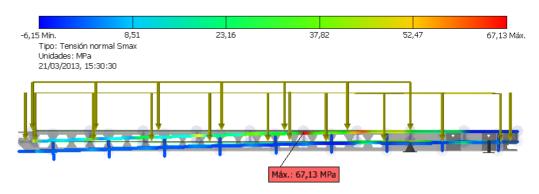


FIGURA 3.8 MÁXIMO ESFUERZO TELESCOPIO

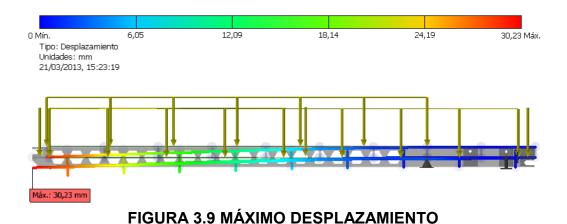


TABLA 33
FUERZA Y PARES DE REACCIÓN EN RESTRICCIONES
(MÁXIMA)

Nombre de la restricción		cción	Pares de reacción		
Nombre de la restricción	Magnitud	Componentes (Fx,Fy,Fz)	Magnitud	Componentes (Mx,My,Mz)	
		26,275 N		0,000 N mm	
Soporte #1	Soporte #1 131792,301 N	131792,299 N	0,000 N mm	0,000 N mm	
		0,000 N		-0,000 N mm	
		-26,275 N		72946208,038 N mm	
Soporte #2 98477,167 N	98477,167 N	-98477,164 N	72946231,254 N mm	-58198,855 N mm	
	-0,000 N		-2,075 N mm		

Para la condición de mínima carga el telescopio esta desplazado y recogido totalmente, los resultados siguientes:

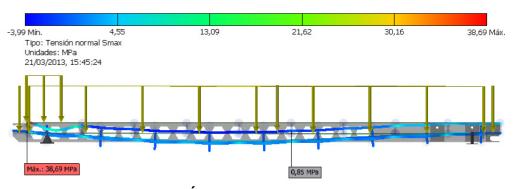


FIGURA 3.10 MÍNIMO ESFUERZO TELESCOPIO

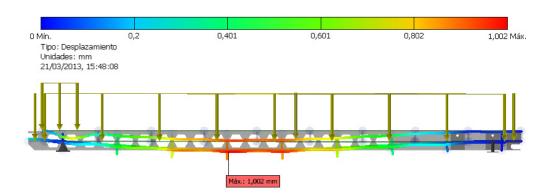


FIGURA 3.11 MÍNIMO DESPLAZAMIENTO TELESCOPIO

TABLA 34
FUERZA Y PARES DE REACCIÓN EN RESTRICCIONES
(MÍNIMA)

Nombre de la restricción		acción	Pares de reacción		
Nombre de la restricción	Magnitud	Componentes (Fx,Fy,Fz)	Magnitud	Componentes (Mx,My,Mz)	
		0,005 N		0,000 N mm	
Soporte #1	Soporte #1 10171,835 N	10171,835 N	0,000 N mm	0,000 N mm	
		-0,000 N		-0,000 N mm	
		-0,005 N		-25674382,887 N mm	
Soporte #2 13351,300 N	13351,300 N	25674382,887 N mm	-54,356 N mm		
	0,000 N		16,734 N mm		

Para hacer un análisis de resistencia a la fatiga se emplean los siguientes datos.

TABLA 35

DATOS PARA EL CÁLCULO DEL FACTOR DE SEGURIDAD A

FATIGA DEL TELESCOPIO

DESCRIPCIÓN	Volar Unidad			dad	
Acero ASTM A36	S _{ut} = 550 MPa				
Acero ASTIVI A30	S _v = 250 MPa				
$S_{e}{}'$	275 MPa				
$d_e = 0.808\sqrt{hb}$	342.8 mm				
Contours do	K _a	0.65	K_d	1	
Factores de corrección a la fatiga	K_b	0.6	K _e	1	
Correction a la latiga	K _c	0.753	K _{car}	1	

Cálculos correspondientes para la condición a fatiga:

$$S_n = K_a K_b K_c K_d K_e K_{car} S_e'$$

Para este caso el factor K_c es 1 debido a que se van a utilizar los esfuerzos de Von Mises. El resto de los factores se conservan iguales.

$$S_{ns} = 0.65 * 0.6 * 0.753 * 1 * 1 * 1 * 275$$

 $S_{ns} = 80.75 MPa$

Cálculo de los esfuerzos medio y alternante:

$$\sigma_m = \frac{67.13 + 0.85}{2} = 34 \, MPa$$

$$\sigma_a = \frac{67.13 - 0.85}{2} = 33 MPa$$

Haciendo uso del Apéndice O para determinar k_{fm} y k_f :

$$\frac{r}{d} = \frac{0}{600} = 0$$

Como no existe variación en los límites de la sección

$$\frac{D}{d} = 1 \rightarrow k_t = 2$$

$$K_f = 1 + q(K_t - 1)$$

q=0 de acuerdo con el Apéndice Q $\,
ightarrow\,\mathit{K_{f}}=1\,\mathit{y}\,\mathit{K_{fm}}=1$

$$\frac{1}{\eta} = \frac{k_{fm}S_m}{S_u} + \frac{k_fS_a}{S_n}$$
$$\frac{1}{\eta} = \frac{1*34}{550} + \frac{1*33}{80.75}$$

$$\eta = 2.12$$

∴ De acuerdo a los resultados mostrados para la deflexión y el factor de seguridad a la fatiga, ésta estructura es apta para el diseño del telescopio.

Modelado de la rueda de transportación.

En este modelo la rueda se ve afectada por la reacción que se transmite del telescopio a los rodamientos y luego a la rueda. La carga que se aplica en el centro de la rueda se trata como una carga distribuida en 25 mm que es el ancho del rodamiento, luego ésta entra en la rueda provocando una presión de contacto grande entre la superficie externa de la rueda y la guía. Para este análisis se presenta

todos los resultados tanto para el caso de máximos y mínimos esfuerzos. Con estos resultados se analizará la condición de fatiga a la cual se somete este elemento. En la figura 3.12 se muestran los diagramas de los cuerpo libres de la ruedas, para las condiciones de máxima carga y mínima carga. Las cargas expuestas nacen de los resultados del análisis estructural.

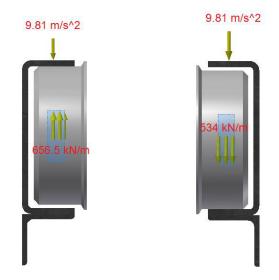


FIGURA 3.12 DIAGRAMAS DE CUERPO LIBRE

Los diagramas que se muestran están de acuerdo a los resultados de selección del rodamiento y del análisis del telescopio. EL diagrama de la izquierda representa la condición de máxima carga, mientras que el de la derecha es el de mínima carga, nótese que la posición de la rueda es diferente debido a que cuando el telescopio está en su máxima extensión éste tiende a girar y su reacción para este caso está dirigida hacia arriba. Los resultados se muestran en las figuras 3.13 y 3.14.

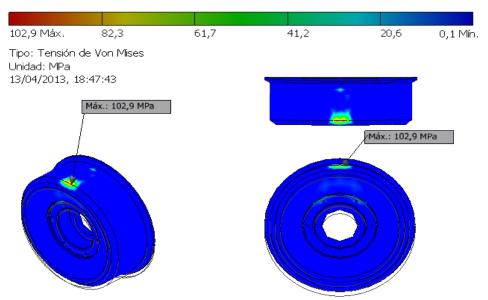


FIGURA 3.13 ESFUERZOS DE VON MISES MÁXIMA CARGA

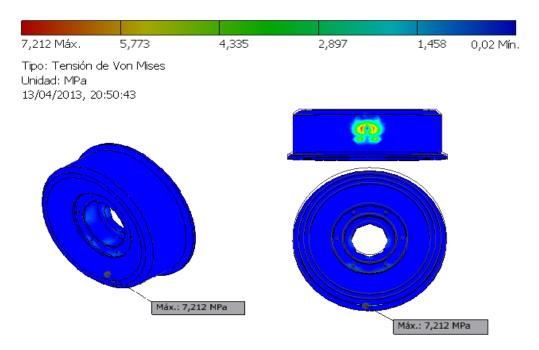


FIGURA 3.14 ESFUERZOS DE VON MISES MÍNIMA CARGA

TABLA 36

DATOS PARA EL CÁLCULO DEL FACTOR DE SEGURIDAD A

FATIGA DE LAS RUEDAS

DESCRIPCIÓN	Volar Unidad			dad	
Acoro ACTM A26	S _{ut} = 386 MPa				
Acero ASTM A36	S _v = 282.7 MPa				
$S_e{'}$	193 MPa				
$d_e = 0.808\sqrt{hb}$	270 mm				
Factores de corrección a la fatiga	Ka	0.69	K_d	1	
	K _b	0.69	K _e	1	
oon coolon a la latiga	K _c	1	K _{car}	1	

Cálculos correspondientes para la condición a fatiga:

$$S_n = K_a K_b K_c K_d K_e K_{car} S_e'$$

Para este caso el factor K_c es 1 debido a que se van a utilizar los esfuerzos de Von Mises. El resto de los factores se conservan iguales.

$$S_n = 0.69 * 0.69 * 1 * 1 * 1 * 1 * 193$$

 $S_n = 92 MPa$

Calculo de los esfuerzos medio y alternante:

$$\sigma_m = \frac{102.9 + 7.21}{2} = 55 MPa$$

$$\sigma_a = \frac{102.9 - 7.21}{2} = 47.85 MPa$$

Introduciendo los valores para verificar el factor de seguridad se tiene:

$$\frac{1}{\eta} = \frac{S_m}{S_{ut}} + \frac{S_a}{S_n}$$

$$\frac{1}{\eta} = \frac{55}{386} + \frac{47.85}{92}$$

$$\eta = 1.5$$

Como se observa en ambos casos existe la presencia de puntos de concentración de esfuerzo debido al aplastamiento de la rueda y la deformación causada en los bordes.

Modelado de cilindro soporte #1.

Para el modelado de este cilindro se utilizará el resultado de la reacción del soporte #1. Los resultados son los de la figura 3.15 y 3.16.

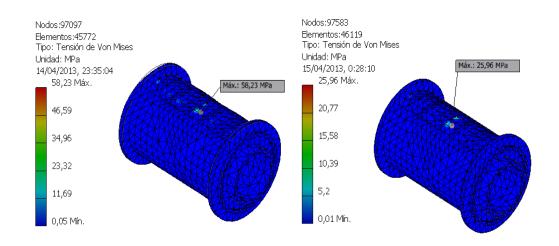


FIGURA 3.15 ESFUERZOS DE VON MISES

A la izquierda se muestra los resultados para la máxima carga, mientras que para la derecha se muestran los resultados de mínima carga.

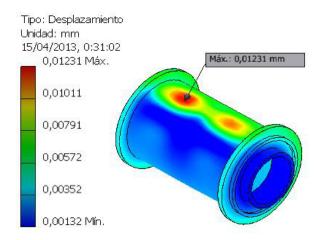


FIGURA 3.16 DEFORMACIÓN MÁXIMA

TABLA 37

DATOS PARA EL CÁLCULO DEL FACTOR DE SEGURIDAD A

FATIGA DEL CILINDRO SOPORTE

DESCRIPCIÓN	Volar			dad	
Acero ASTM A36	S _{ut} = 413.7 MPa				
ACEIO ASTIVIASO	S _ν = 241.3 MPa				
$S_{e}{}'$	206.85 MPa				
$d_e = 0.808\sqrt{hb}$	204 mm				
Contours do	Ka	0.69	K _d	1	
Factores de corrección a la fatiga	K _b	0.71	K _e	1	
correccion a la latiga	K _c	1	K _{car}	1	

Cálculos correspondientes para la condición a fatiga:

$$S_n = K_a K_b K_c K_d K_e K_{car} S_e'$$

Para este caso el factor K_c es 1 debido a que se van a utilizar los esfuerzos de Von Mises. El resto de los factores se conservan iguales.

$$S_{ns} = 0.69 * 0.71 * 1 * 1 * 1 * 1 * 206.85$$

 $S_{ns} = 101.3 MPa$

Cálculo de los esfuerzos medio y alternante:

$$\sigma_m = \frac{47.62 + 3.71}{2} = 25.67 MPa$$

$$\sigma_a = \frac{47.62 - 3.71}{2} = 22 MPa$$

Introduciendo los valores para verificar el factor de velocidad se tiene:

$$\frac{1}{\eta} = \frac{25.67}{413.7} + \frac{22}{101.3}$$
$$\eta = 3.58$$

Modelado del bastidor principal.

Como ya se explicó en el subcapítulo 2.5.2 el modelado para bastidores abarcará dos análisis debido a que las condiciones de carga las define la extensión del telescopio.

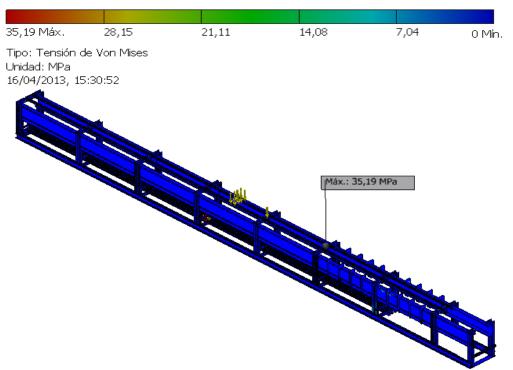


FIGURA 3.17 ESFUERZO DE VON MISES DEL BASTIDOR PRINCIPAL PARA EL TELESCOPIO EXTENDIDO

En la figura 3.17 el máximo esfuerzo de Von Mises se ubica en las guías superiores de la cadena principal.

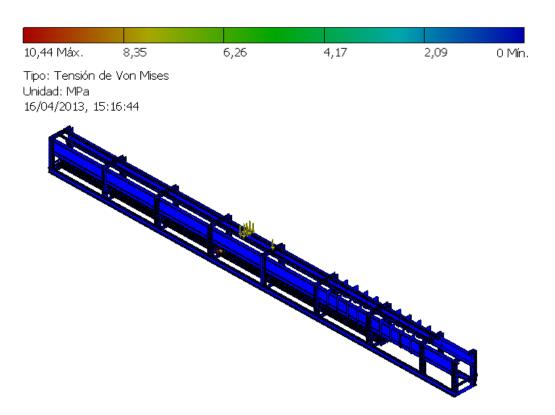


FIGURA 3.18 ESFUERZO DE VON MISES DEL BASTIDOR PRINCIPAL PARA EL TELESCOPIO RECOGIDO

De modelo de la figura 3.17, al ocultar todos los elementos a excepción de una de las guías de las ruedas se puede visualizar que el esfuerzo de Von Mises en una de las guías es de 31.19 MPa,

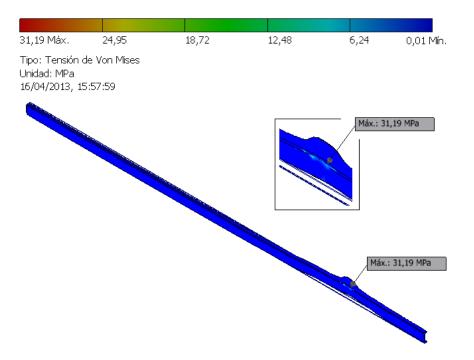


FIGURA 3.19 ESFUERZO DE VON MISES EN LAS
GUÍAS DEL BASTIDOR PARA BASTIDOR EXTENDIDO

En ésta figura se presenta a magnificación x0.5 para visualizar la deformación de la guía, además se aprecia que la guía está sometida a un esfuerzo de 31.19 MPa, gracias a los rigidizadores que transmiten el esfuerzo al perfil L 100x100x10 que se encuentra debajo de la guía. Los resultados para el desplazamiento del material y deformación equivalente para la parte crítica son de 0.08 mm y 1.406x10⁻⁴.

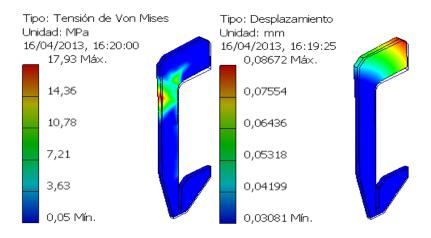


FIGURA 3.20 RESULTADOS EN RIGIDIZADOR MÁXIMA CARGA

TABLA 38

DATOS PARA EL CÁLCULO DEL FACTOR DE SEGURIDAD A

FATIGA DEL CILINDRO SOPORTE

DESCRIPCIÓN	Volar Unidad					
Acero ASTM A36	S _{ut} = 550 MPa					
ACEIO ASTIVI ASO	S _y = 250 MPa					
$S_{e}{}'$	275 MPa					
$d_e = 0.808\sqrt{hb}$	57 mm					
Contained do	Ka	0.65	K_d	1		
Factores de corrección a la fatiga	K _b	0.80	K _e	1		
Correction a la latiga	K _c	0.753	K _{car}	1		

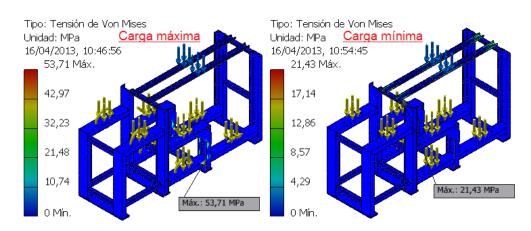
Cálculos correspondientes para la condición a fatiga de la guía:

$$S_n = K_a K_b K_c K_d K_e K_{car} S_e'$$

$$S_n = 0.65 * 0.80 * 0.753 * 1 * 1 * 1 * 275$$

$$S_n = 108 MPa$$

Calculo de los esfuerzos medio y alternante:


$$\sigma_m = \frac{31.19 + 3}{2} = 17 MPa$$

$$\sigma_a = \frac{31.19 - 3}{2} = 14 MPa$$

Introduciendo los valores para verificar el factor de velocidad se tiene:

$$\frac{1}{\eta} = \frac{17}{550} + \frac{14}{108}$$
$$\eta = 6.2$$

Modelado del bastidor de transmisión de potencia.

FIGURA 3.21 ESFUERZOS DE VON MISES DEL BASTIDOR TRANSMISIÓN DE POTENCIA

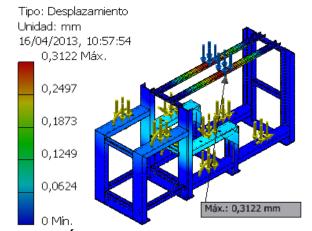


FIGURA 3.22 MÁXIMO DESPLAZAMIENTO BASTIDOR
TRANSMISIÓN DE POTENCIA

Modelado del bastidor de sistemas motrices.

Para este modelo se consideró los de torques de arranque de los motores y la masa de los motores.

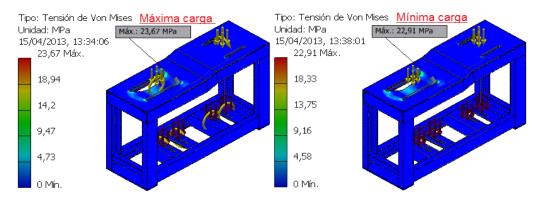


FIGURA 3.23 ESFUERZO DE VON MISES EN BASTIDOR SISTEMAS MOTRICES

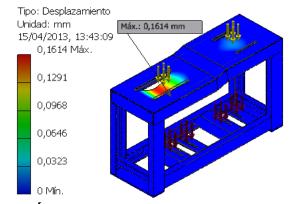


FIGURA 3.24 MÁXIMO DESPLAZAMIENTO BASTIDOR
SISTEMAS MOTRICES

Como se observan los esfuerzos que ocurren en el bastidor de transmisión de potencia y en el bastidor de sistemas motrices son menores que en el caso del bastidor principal, por ello estas estructuras son aptas para soportar el trabajo al cual se someterán.

CAPÍTULO 4

4. COSTOS PARA IMPLEMENTACIÓN

En este capítulo se presenta un análisis detallado de los costos, tanto de las partes de fabricación local y la importación de elementos que componen al transportador, además se realizará un presupuesto de los costos de implementación. Como primer objetivo en este capítulo es dar a conocer el monto de inversión para los costos locales y de importación. Para dicha realización se mostrará los formatos de análisis de costos los mismos que se compone de:

Para el formato de análisis de costos de los materiales.

Descripción del material.
 Costos unitarios.

Cantidad.Subtotal.

Unidad
Total

Para el formato de análisis de mano de obra.								
Cantidad.	Subtotal.							
➤ Unidad.	➤ Total.							
Costos unitarios de fabricación.								
Para el análisis de costos de los elementos	importados se ha dividido							
en dos formatos, los cuales son:								
Costos de equipos en fábrica.								
Descripción de los	> Flete.							
elementos.	Seguro.							
➤ Cantidad.	Subtotal (CIF).							
Costos unitarios (FOB).	➤ Total (CIF).							
Costos de equipos en taller.								
Descripción de los	> FODINFA.							
elementos.	Gastos locales.							
➤ Peso.	Subtotal.							
➤ CIF.	➤ Total.							
> ARANCEL								

Para el formato de análisis de implementación.

Cantidad.Subtotal.

Unidad.
Total.

Costos unitarios de implementación.

Una vez obtenido todos los costos para la realización de este proyecto, el segundo objetivo en este capítulo será realizar un análisis económico comparativo entre el transportador de fabricación nacional y un transportador telescópico importado de similares características, de este análisis se mostrará la ventaja de adquirir un equipo nacional versus uno importado.

4.1 Fabricación Local de Partes

Para la fabricación de las partes, hay recalcar que este análisis muestra la inversión del material útil para la fabricación del transportador telescópico sin considerar el desperdicio que pueda ser generado por los métodos de fabricación.

Los costos de fabricación local se desglosan en:

- Costos de fabricación de las partes.
- Costos de instalación de equipos.
- Arranque y pruebas previas.

Costos de fabricación de las partes.

Estos costos incluirán todos los costos de: procesos de fabricación, sandblasting, soldadura, materia prima y transportación. Estos costos se detallan en la tabla 39.

Costos de instalación de equipos.

Estos costos hacen referencia a la masa de los equipos a instalarse y a la masa de las partes de fabricación. Actual mente en el mercado su precio unitario esta alrededor del 35% del costos del precio unitario de fabricación. Este costo se calcula con la siguiente fórmula:

C.Instalación = (masa f. de partes + masa equeipos) * precio unitario

TABLA 39

COSTOS DE FABRICACIÓN DE LAS PARTES

DESCRIPCIÓN	CANT. [kg]	Precio unit. (USD/kg)	Sub. total USD
Bastidor principal	3280	3.5	11480
Telescopio	2106	3.5	7371
Bastidor de transmisión de potencia	202	3.5	707
Bastidor de motores	136	3.5	476
Ruedas de transportación	94	10	940
Base soporte #1	32	3.5	112
Cilindro soporte #1	24	3	72
Ejes en general	245	5	1225
Bases de tensores	94	3.5	329
Soportes de chumaceras	88	3.5	308
Guías de cilindros	198	3.5	693
Total peso de fabricación [kg]:	6499	Total \$:	23713

TABLA 40						
COSTOS DE INSTALACIÓN						
DESCRIPCIÓN	CANT. [kg]	Precio unit. (USD/kg)	Sub. total USD			
Fabricación de las partes	6499	1.1	7149			
Equipos importados	452	1.1	497			
		Total \$:	7646			

El peso de los equipos importados se describe más adelante en la importación.

4.2 Importación de Elementos

Para calcular el costo de los elementos o equipos importados hay que considerar el costo en fábrica (precio FOB) a este precio se sumarán las tarifas por transportación y seguro, la suma de estos precios se conoce como valor CIF, con este valor se calculará la tarifa de aduana el cual es un tanto por ciento del valor CIF. Además los valores del FODINFA se tomarán aplicando 10% del valor CIF, finalmente para los gastos locales por transportación y otros se ha estimado un valor de 0.02 dólares/kg

TABLA 41 COSTOS DE EQUIPOS EN FÁBRICA								
DESCRIPCIÓN	SEGURO	SUB. TOTAL (CIF)						
Reductor DODGE BB883CI13225.53A6AHM85	170	1	\$ 1500	\$ 40	\$ 30	\$ 1570		
Reductor DODGE BB883CI13225.53A6ASM55	35	1	\$ 850	\$ 40	\$ 17	\$ 907		
Motor principal 7.5 HP	75	1	\$ 800	\$ 12	\$ 16	\$ 828		
Motor del telescopio	44	1	\$ 500	\$ 7	\$ 10	\$ 517		
Variador de frecuencia principal	-	1	\$ 700	\$ 5	\$ 5	\$ 710		
Variador de frecuencia del telescopio	-	1	\$ 500	\$ 5	\$ 5	\$ 510		
Kit completo: chumacera tipo brida CM-UKF218D1	44	4	\$ 650	\$ 10	\$ 13	\$ 673		
Kit completo: chumacera de pie SV219	32	2	\$ 700	\$ 10	\$ 10	\$ 810		
Kit completo: chumacera de pie SV213	64	4	\$ 1333	\$ 25	\$ 40	\$ 1368		
Kit completo: chumacera de pie SV212	28	2	\$ 400	\$ 10	\$8	\$ 433		
Kit completo: chumacera extensora UCM211-50	50	2	\$ 580	\$ 10	\$ 12	\$ 602		
Kit completo: chumacera extensora UCM212-50	60	2	\$ 600	\$ 20	\$ 12	\$ 632		
Sensor de reflexión difusa	-	1	\$ 170	\$ 5	\$ 5	\$ 180		
Cadena 120 m	600	1	\$ 1800	\$120	\$ 36	\$ 1956		
Cadena Rexnord C2082 30 m	103	1	\$ 300	\$21	\$ 6	\$ 327		
	TC	TAL (CIF):	\$ 12023					

TABLA 42 COSTOS DE EQUIPOS EN TALLER										
DESCRIPCIÓN	Peso kg	CIF	ARANCEL		GASTOS LOCALES	SUB. TOTAL				
Reductor DODGE BB883CI13225.53A6AHM85	170	\$ 1570	\$ 314	\$ 78.5	\$ 3.4	\$ 1884				
Reductor DODGE BB883CI13225.53A6ASM55	35	\$ 907	\$ 182	\$ 45.4	\$ 0.7	\$ 1089				
Motor principal 7.5 HP	75	\$ 828	\$ 166	\$ 41.4	\$ 1.5	\$ 994				
Motor del telescopio	44	\$ 517	\$ 103	\$ 25.9	\$ 0.9	\$ 620				
Variador de frecuencia principal	-	\$ 710	\$142	\$35.5	\$ 2.5	\$ 888				
Variador de frecuencia del telescopio	-	\$ 510	\$102	\$25.5	\$ 2.5	\$ 640				
Kit completo: chumacera tipo brida CM-UKF218D1	44	\$ 673	\$ 135	\$ 33.7	\$ 0.9	\$ 843				
Kit completo: chumacera de pie S619	32	\$ 810	\$ 162	\$ 103.3	\$ 2.9	\$ 1078				
Kit completo: chumacera de pie SV213	64	\$ 1368	\$ 274	\$ 21.7	\$ 0.6	\$ 1664				
Kit completo: chumacera de pie S612	28	\$ 433	\$ 87	\$ 103.3	\$ 2.9	\$ 626				
Kit completo: chumacera extensora UCM211-50	50	\$ 602	\$ 120	\$ 30.1	\$ 1.0	\$ 753				
Kit completo: chumacera extensora UCM212-50	60	\$ 632	\$ 127	\$ 31.6	\$ 1.2	\$ 792				
Sensor de reflexión difusa	-	\$ 180	\$ 36	\$ 9	\$ 2	\$ 227				
Cadena 120 m	600	\$1956	\$ 391	\$ 98	\$ 12	\$ 2457				
Cadena Rexnord C2082 30 m	103	\$ 327	\$ 66	\$ 16	\$ 2	\$ 411				
	TOTAL: \$ 14966									

4.3 Presupuesto referencial.

TABLA 43 PRESUPUESTO DE FABRICACIÓN E IMPLEMENTACIÓN						
DESCRIPCIÓN	SUB. TOTAL					
COSTOS DE FABRICACIÓN DE LAS PARTES	23713					
COSTOS DE EQUIPOS EN TALLER	14966					
COSTOS DE INSTALACIÓN DE EQUIPOS	7646					
COSTOS DE DISEÑO MECÁNICO	7000					
COSTOS DE DISEÑO ELECTRICO,						
AUTOMATIZACIÓN Y EQUIPOS ELÉCTRICOS	9000					
COSTOS ARRANQUE Y PRUEBAS	2000					
TOTAL	\$ 64325					

Como se puede apreciar en este presupuesto referencial este equipo se puede implementar con un monto aproximado de **USD 64325** para una extensión de 11 metros. Comparando este valor con la oferta **Ex Works USD 67000** de una máquina extranjera de similares características se evidencia una ventaja debido a sus precios, claro que la oferta extranjera es para una máquina de 12 metros pero su precio ya aquí en el país aumenta debido a los aranceles, la movilización, montaje y arranque a un incremento del 30% aproximadamente, esto se traduce a un precio de **USD 90450**.

CAPÍTULO 5

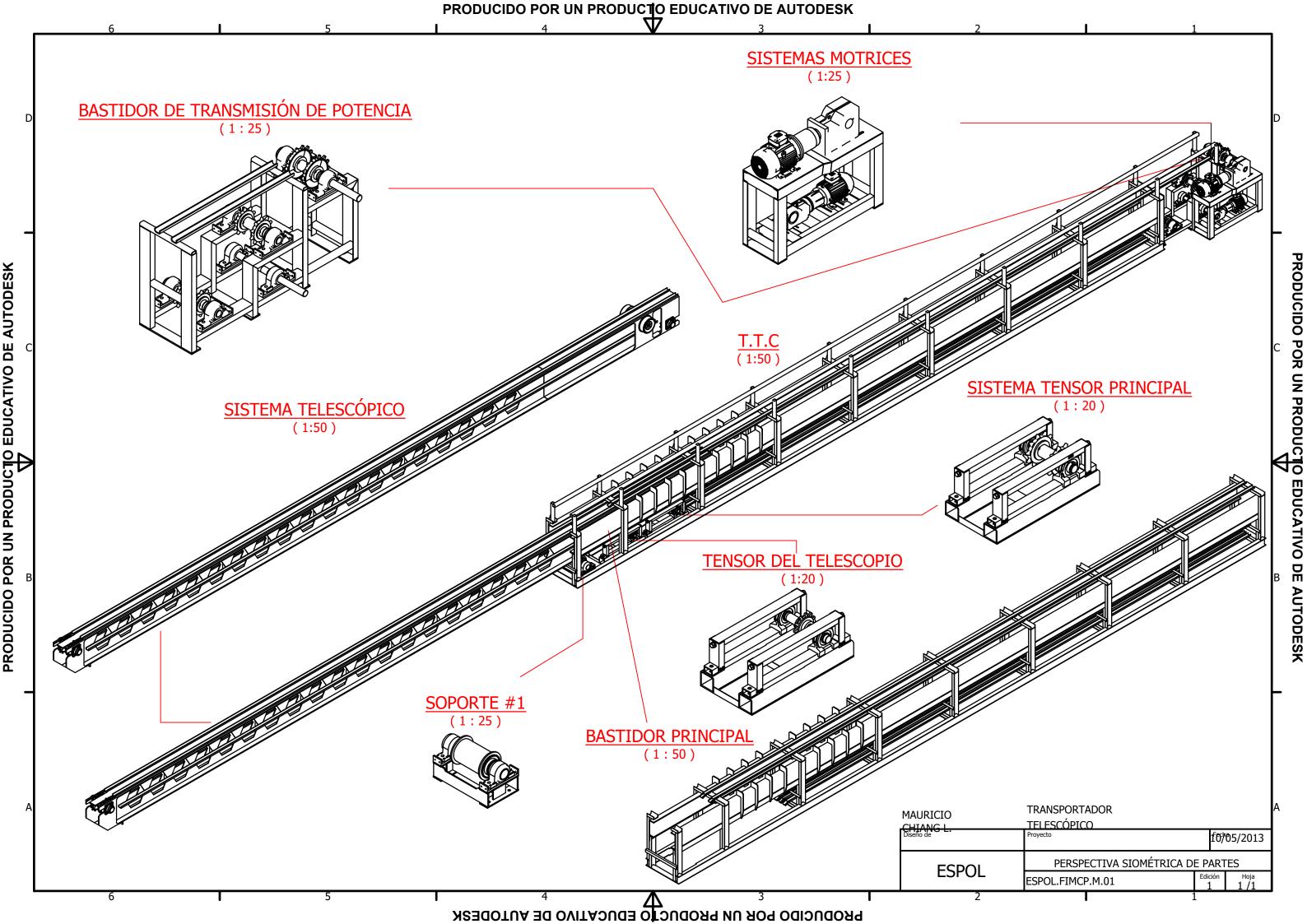
5. CONCLUSIONES Y RECOMENDACIONES

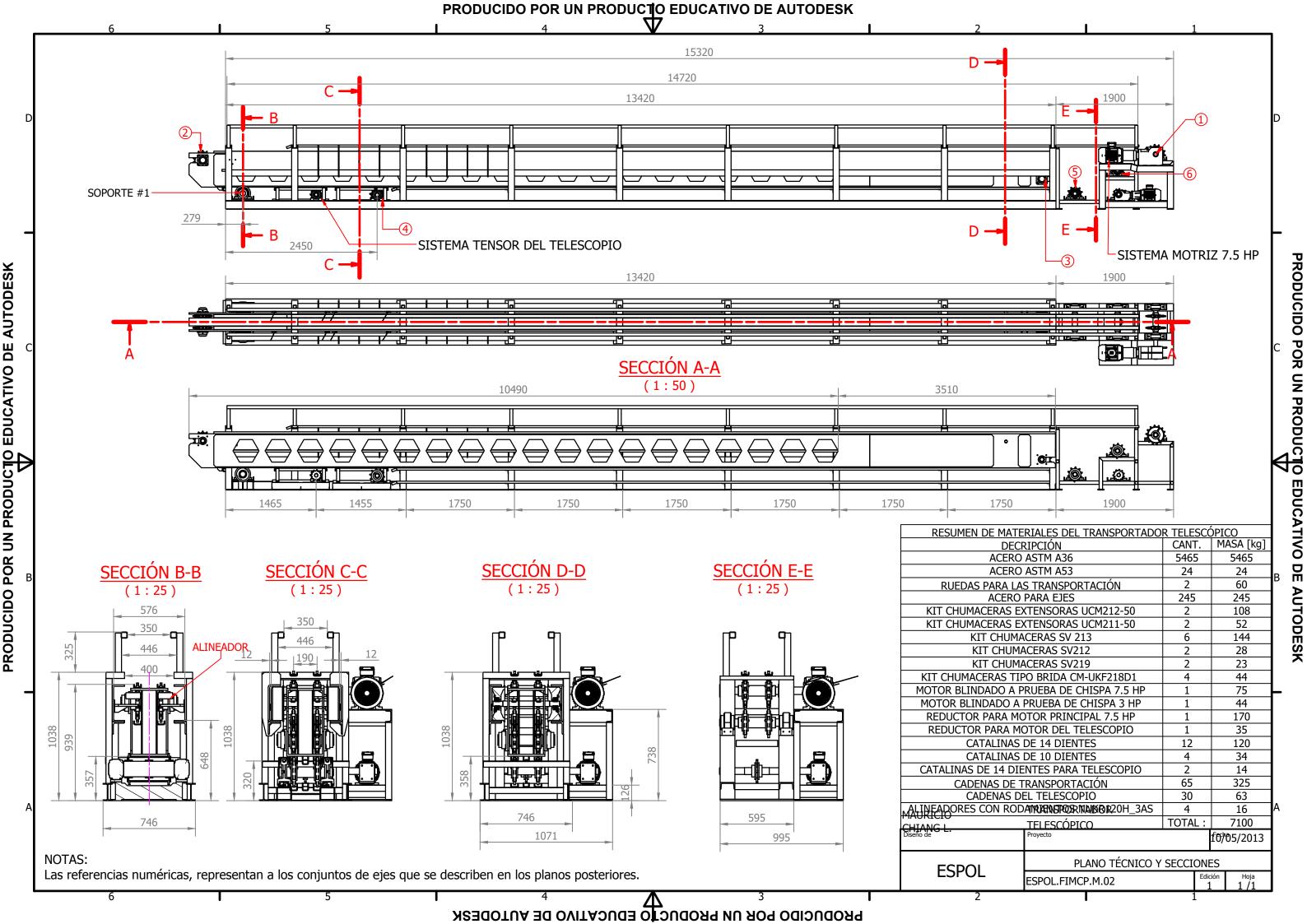
CONCLUSIONES

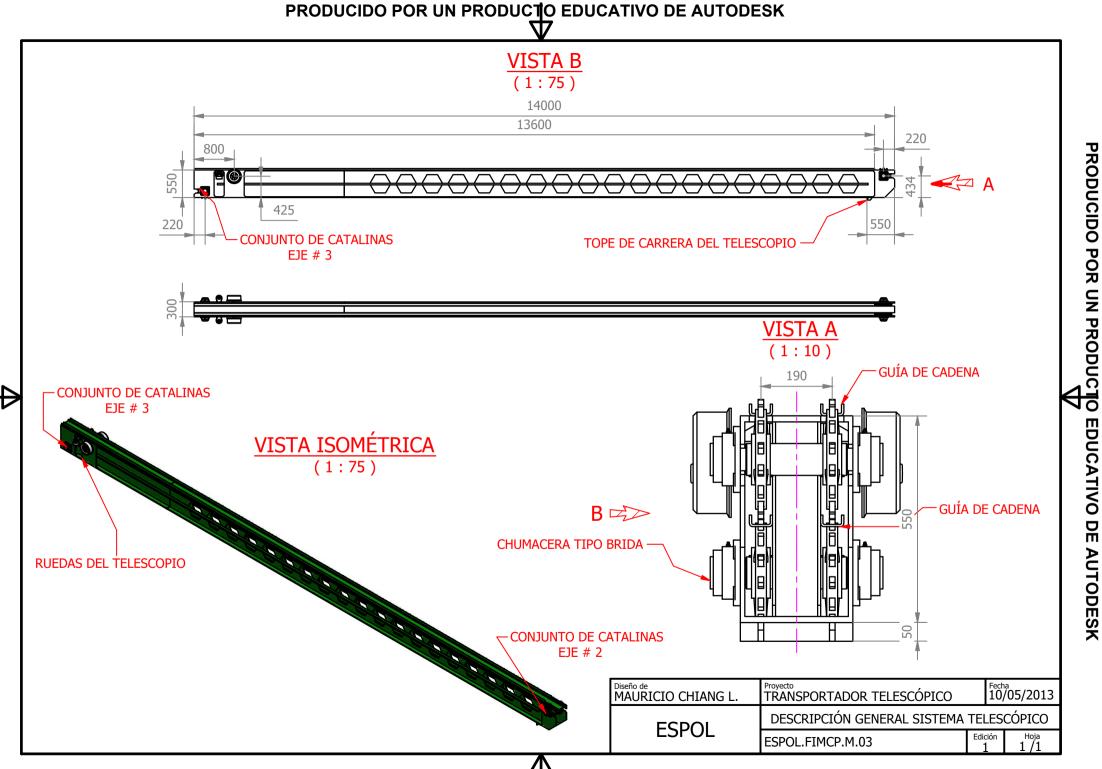
Los beneficios de implementar un transportador telescópico son evidentes a la hora de equilibrar las funciones y los riesgos que están inmersos con una operación de carga manual vs. las funciones que suple el transportador telescópico. Los beneficios no solo ayudan a la empresa a: disminuir los tiempos muertos, incrementar la capacidad de despacho al granel, evitar que los cilindros se deterioren por la transportación manual, y adicionalmente el beneficio va más allá porque ayuda a disminuir los riesgos por una mala maniobra de los operadores cuando estos descargan los cilindros de forma manual, esto se traduce en una mejora en la Seguridad Industrial y Salud Ocupacional.

- ➤ La ventaja de precios de la máquina construida localmente versus la máquina importada es del 29%, siendo más económico construir ésta máquina localmente. Adicionalmente que el desarrollo de la ingeniería y la fabricación local de ese tipo de máquinas se ve impulsada.
- Producto a transportar. En primer lugar se analizó el GLP, que por su densidad y por tener un grado de inflamabilidad elevado, permite que se generen concentraciones esporádicas del mismo. Por tal motivo, para evitar la formación de una chispa, todos los equipos que se implementan (electrónicos y mecánicos), en una planta de envasado, tienen que satisfacer las normativas ATEX para la Zona I, Grupo IIA / IIB, T4. Dichas normas pertenecen a la clasificación de zona de las plantas de envasado de GLP, adicional a esto se debe llevar a tierra los diferentes componentes del transportador.
- Para el diseño conceptual, previamente se debe elegir entre los dos tipos de transportadores telescópicos y se seleccionar la alternativa de diseño compacto que se extiende en una sola línea centro de transportación (alternativa "A"). Las ventajas claras de esta alternativa, son el costo de fabricación y capacidad de operación, las cuales son evidentes con respecto al otro transportador (alternativa "B"). En la

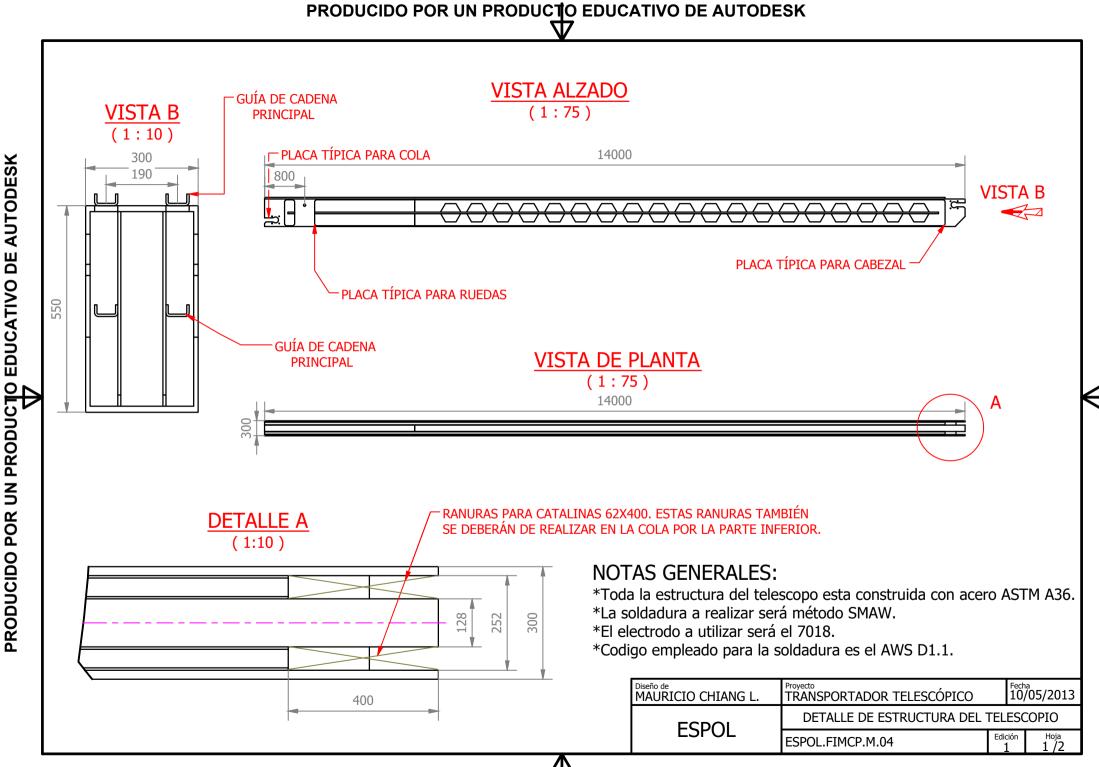
- segunda alternativa, se emplean dos trasportadores paralelos para realizar el mismo propósito.
- Como existen industrias de envasado, en las cuales las estructuras operacionales de recepción y despacho se realizan en la misma bahía, esta aplicación hace que las operaciones del transportador telescópico sea para carga y descarga, para ello se seleccionó la cadena WEBSTER C188, que cumple con las condiciones de resistencia y además puede transportar los cilindros en ambas direcciones.
 - ➤ Para realizar el diseño del telescopio fue de mucha importancia conocer ciertos puntos claves de la normativa AISC. En especial las recomendaciones de la deflexión, que siendo esta de 30 mm, se encuentra dentro de norma. Debido a que el telescopio tiene la forma de una viga cajón tipo I, ésta se construye con rigidizadores entre las almas de la viga y cómo la deflexión de la viga está en el límite de la recomendación AISC esta se tuvo que alivianar para seguir cumpliendo con dicha normativa. Una deflexión excesiva puede provocar un mal funcionamiento de la máquina y también puede ocasionar que los cilindros se deslicen.
 - ➤ El acero que se empleó para fabricar el transportador es en su mayoría acero ASTM A36, luego para los ejes y para alas ruedas se

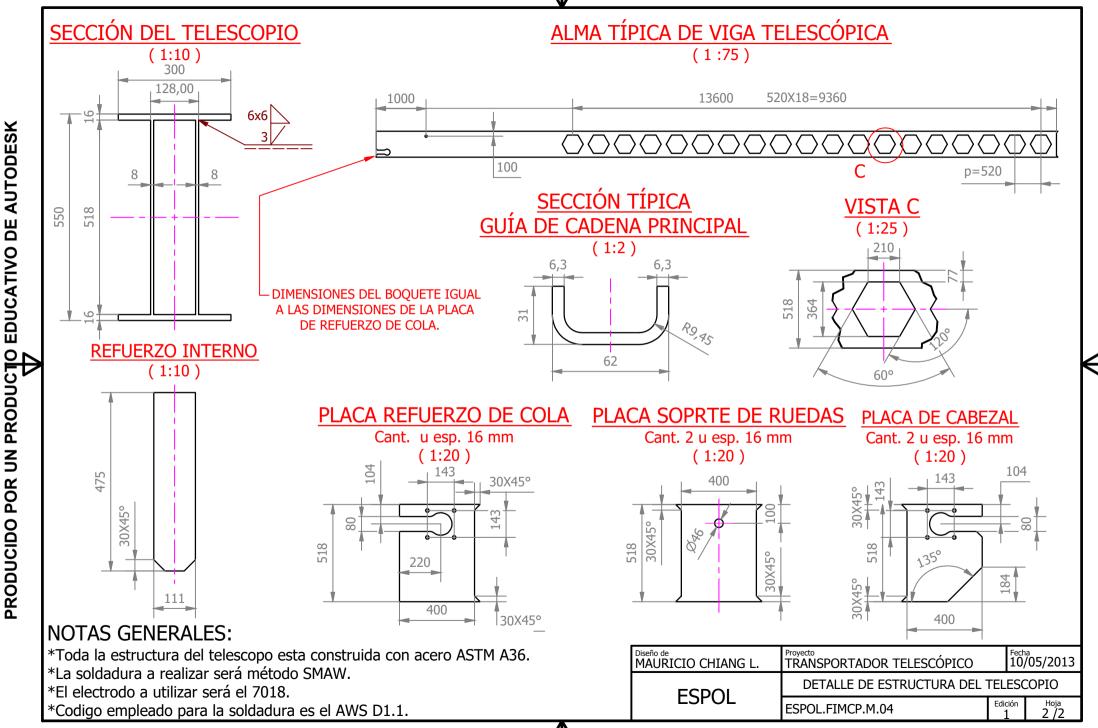

- empleó el acero AISI 4130 debido a la gran resistencia que son sometidos estos elementos.
- ➤ Es de vital interés disminuir el desgaste y la fricción, implementando una plantilla de polímero de alta densidad resistente al desgaste con coeficiente de rozamiento 0.15, de esta manera se ayuda a disminuir la tensión de la cadena transportadora.
- Debido a que el transportador telescópico es un dispositivo semiautomático este se debe de ajustar no solamente al producto, sino también a las capacidades físicas de los operadores. Ya que no se puede tener un flujo continuo de cilindros, los motores que se implemente deberán de ser especiales no solo porque están dentro de una atmosfera explosiva sino también porque estos tendrán que variar la velocidad o tendrán que hacer paradas y arranques esporádicos debido al agotamiento o relevo de los operadores para seguir cargando o descargando los cilindros.

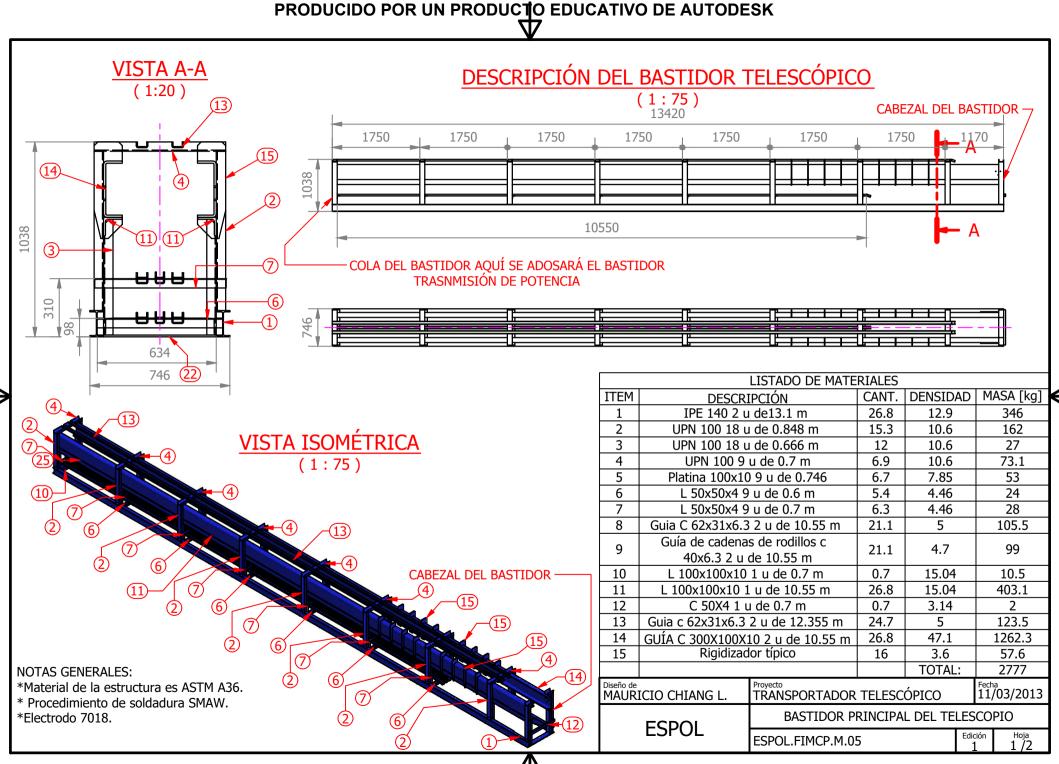

RECOMENDACIONES


Este equipo es diseñado para su fácil instalación, por ello se debe contemplar en la ingeniería civil que los niveles y desniveles de un transportador convencional y un transportador telescópico estén acorde para la implementación en una planta nueva.

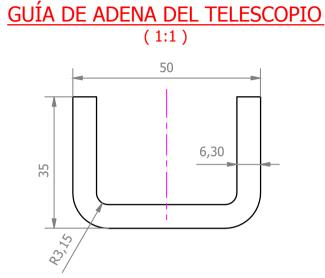
- Para transferir los cilindros de un transportador a otro se puede implementar un desviador curvo para empujar o guiar los cilindros hacia el transportador de cadena telescópico.
- En plantas existentes, la interfaz del transportador de la línea de envasado tendrá que hacerse con un transportador inclinado que haga posible llevar los cilindros de un nivel a otro. También se tendrá que replantear el nivel de las plataformas de carga de los camiones para llevar a estos hasta el requerimiento de desniveles de acuerdo a la figura 1.13.

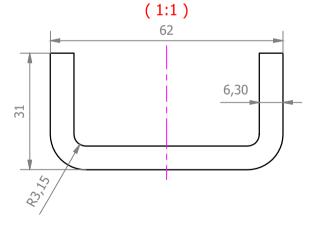

PLANOS

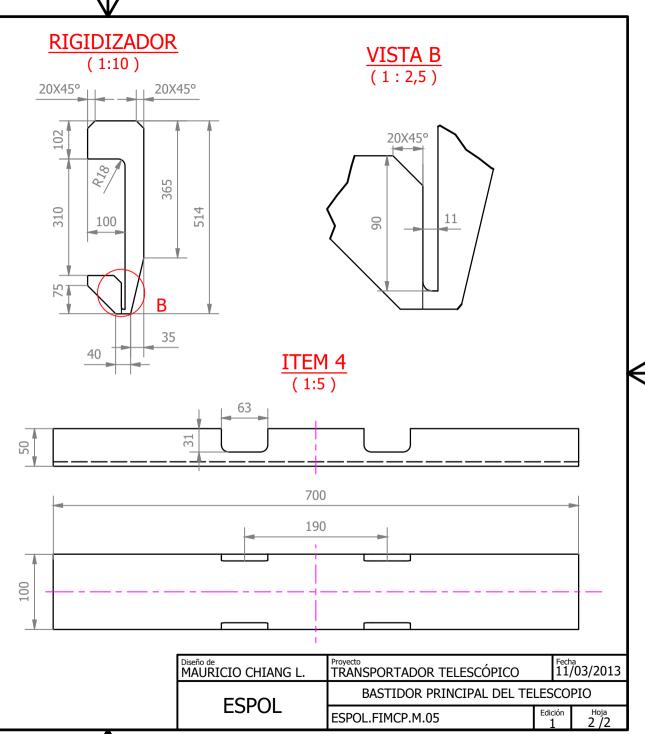




PRODUCIDO POR UN PRODUC \mathbf{T} O EDUCATIVO DE AUTODESK


РКОВИСТВО РОВ ИМ РКОВИСТО ЕВИСАТІЛО ВЕ АИТОВЕЗК \sqrt{V}


PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK


PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

GUÍA DE CADENA DE PRINCIPAL

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK $\sqrt{}$

LISTADO DE MATERIALES Total [kg] DESCRIPCIÓN Cantidad Densidad DESCRIPCIÓN GENERAL DEL BASTIDOR Platina ASTM A36 100x10 mm 1.19 9,42 11.21 EN EMSAMBLE CON LOS EJES Y CATALINAS (1:25) Tubo 50x50x4 2.89 5.45 15.76 1.19 4.20 5.00 Tubo 50x30x4 2.68 4.97 13.30 Guía de cadena C 62x31x6.3 Conjunto de eje para 1 62.65 62.65 779 sistema moil telescopio Conjunto de eje sistema motriz 1 141 141.00 principal Conjunto de eje 5 y 6 114 228.00 2 313,5 TOTAL [kg] 476.92 (5) VISTA ISOMÉTRICA 1038 10 % (1:25)**-**(4) (4) 600 728 572 288 190 ÁRBOL DE TRANSMISIÓN **TELESCOPIO** TIPO DE PERFIL BASTIDOR DE TRANSMISIÓN DE POTENCIA ITEM DESCRIPCIÓN ITEM DESCRIPCIÓN Plt. 100x10 UPN 100 C 62x31x6.3 8 T. 50X50X4 Diseño de MAURICIO CHIANG L. Proyecto TRANSPORTADOR TELESCÓPICO Fecha 10/05/2013 **NOTAS GENERALES:** UPN 100 UPN 100 9 *Material de la estructura es ASTM A36. UPN 100 10 UPN 100 4 DESCRIPCIÓN DEL BASTIDOR DE POTENCIA * Procedimiento de soldadura SMAW. **ESPOL** UPN 100 UPN 100 11 *Electrodo 7018. Edición ESPOL.FIMCP.M.06 **UPN 100** 12 Plt. 100.6

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

PRODUCIDO POR UN PRODUCTIO EDUCATIVO DE AUTODESK

PRODUCIDO POR UN PRODUC \mathbf{T} O EDUCATIVO DE AUTODESK

ITEM

738

709

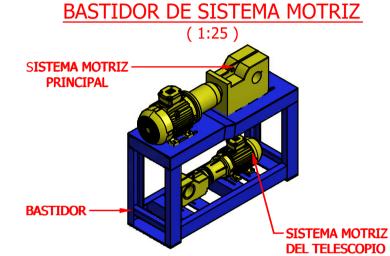
			400
	TIPO DE	PERF	[L
I	DESCRIPCIÓN	ITEM	DESCRIPCIÓN
	Plancha 8 mm	6	UPN 100
	TUBO 50X50X4	7	UPN 100
	UPN 100	8	Plt. 100x10
	UPN 100	9	L 100X100X10
	UPN 100		

NOTAS GENERALES:

CONJUNTO DE SISTEMAS MOTRICES (1:25)

738

1200


1200

584

520

- *Material de la estructura es ASTM A36.
- * Procedimiento de soldadura SMAW.
- *Electrodo 7018.

	DESCRIPCIÓN		Cantidad	Densidad	Tota	al [kg]	
	Platina ASTM A36 100x10 mm		0.8	7.85	6	5.30	
	Platina ASTM A36 8 m	nm	0.48	62.8	3(0.15	
	UPN 100		8.50	10.6	9	0.10	
_	L 50X4		1.6	3.14	5	5.02	
NOTAS GENERALES:				TOTAL [kg]	13	1.50	
 *Material de la estructura es ASTM A36. * Procedimiento de soldadura SMAW. 	Diseño de MAURICIO CHIANG L.	Proyecto TRANS	Proyecto TRANSPORTADOR TELESCÓPICO		Fecha 10/05/2013		
*Electrodo 7018.	ESPOL		BASTIDOR I	DE SISTEMAS MO	OTRICE	S	
	LSPUL	ESPOL	.FIMCP.M.07		Edición 1	Hoja 1 /1	
lack							
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK							

PRODUCIDO POR UN PRODUC**T**O

EDUCATIVO DE AUTODESK

	LISTADO DE MATERIALES						
DESCRIPCIÓN		Cantidad	Densidad	Tot	al [kg]		
Platina ASTM A36 100x1	.0 mm	0.8	7.85	(5.30		
Platina ASTM A36 8 r	nm	0.48	62.8	3	0.15		
UPN 100	UPN 100		10.6	9	0.10		
L 50X4	L 50X4		3.14		5.02		
			TOTAL [kg]	13	31.50		
Diseño de MAURICIO CHIANG L.	Proyecto TRANS	Proyecto TRANSPORTADOR TELESCÓPICO Fe					
ESPOL		BASTIDOR I	DE SISTEMAS MO	OTRICE	S		
LSPUL	ESPOL	.FIMCP.M.07		Edición	Hoja 1 /1		

520 584

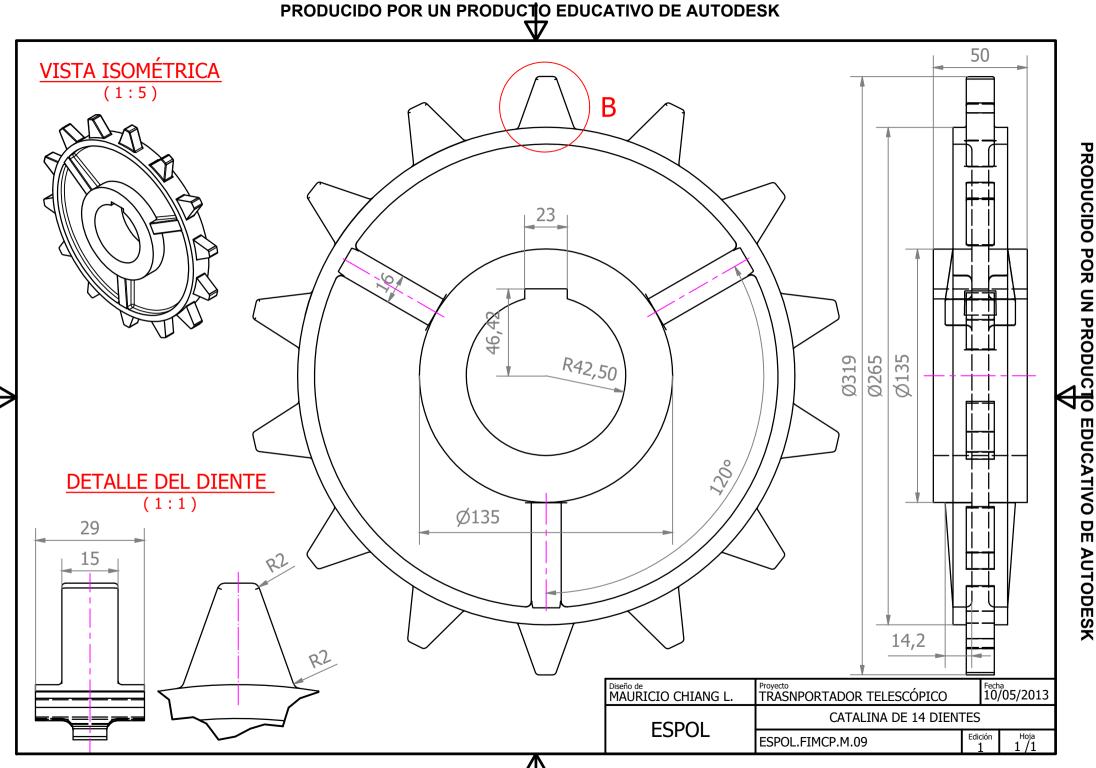
126

CATALINA DEL TELESCOPIO

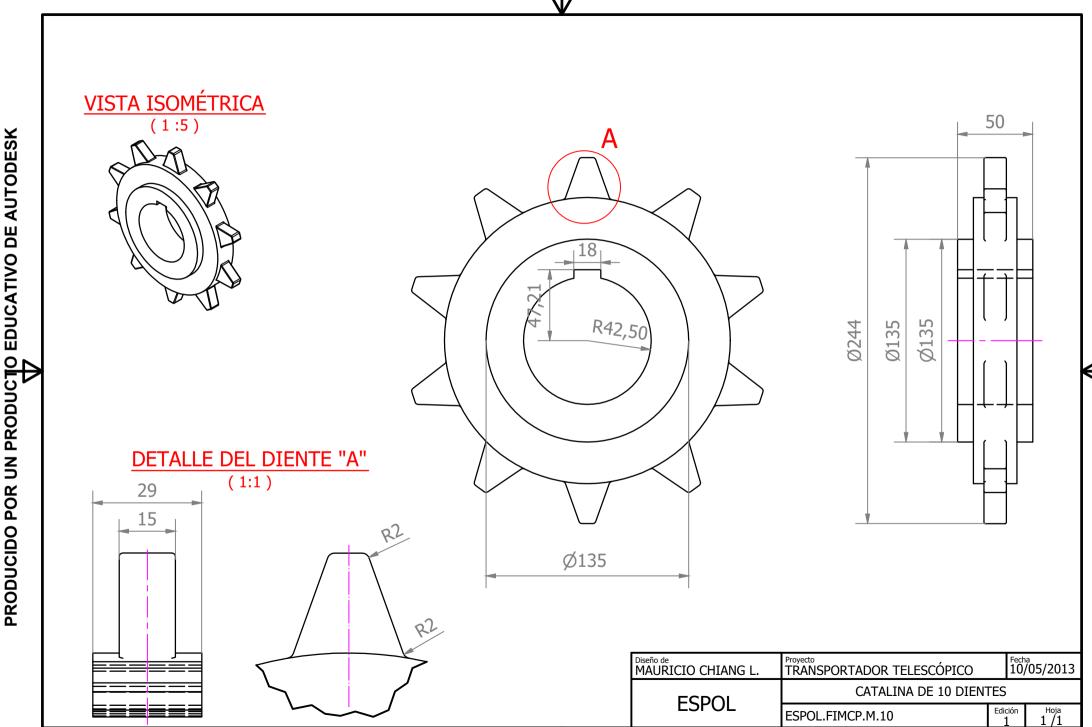
Hoja 1 /1

Edición **1**

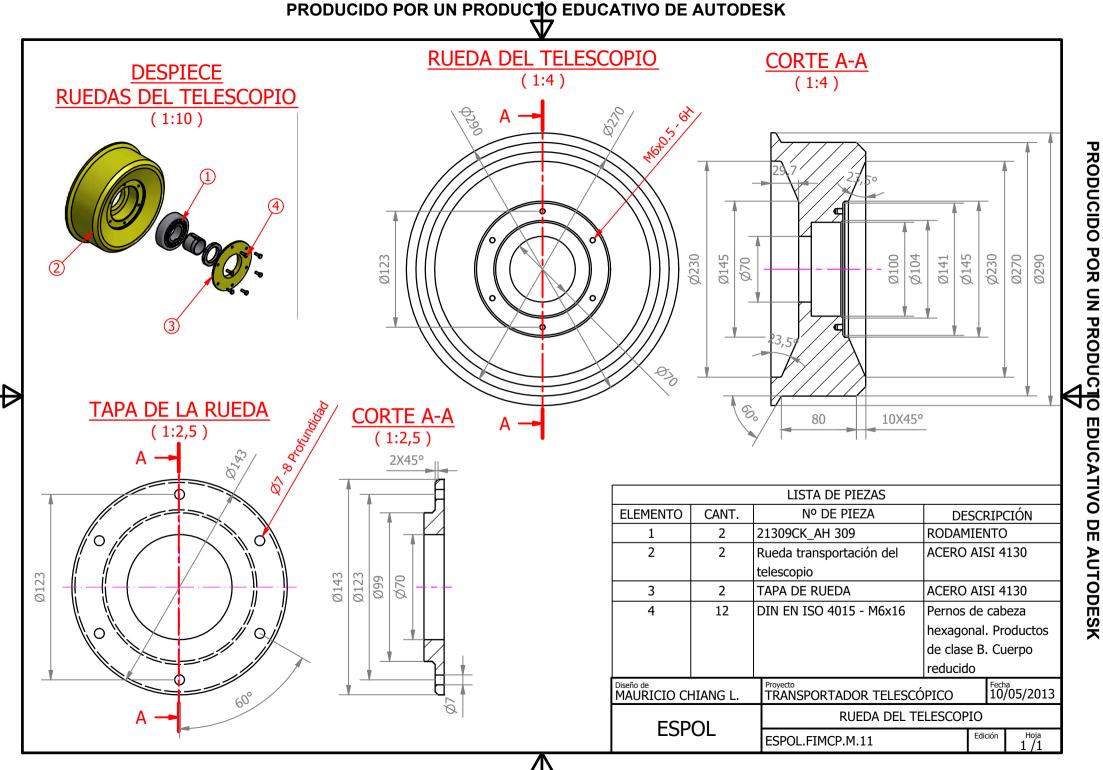
82,55


34

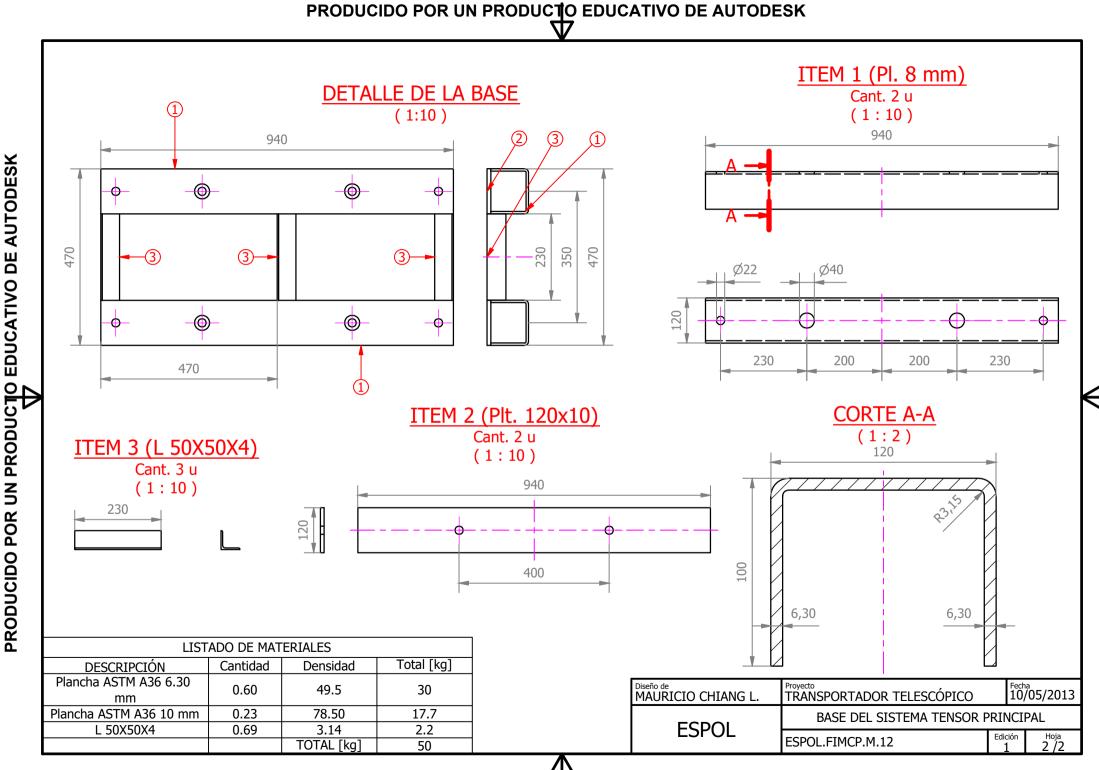
CATALINA DEL TELESCOPIO


ESPOL.FIMCP.M.08

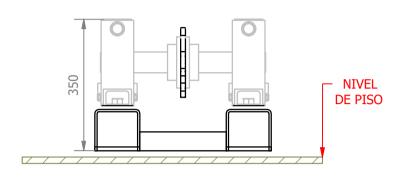
PRODUCIDO POR UN PRODUC \mathbf{T} O EDUCATIVO DE AUTODESK

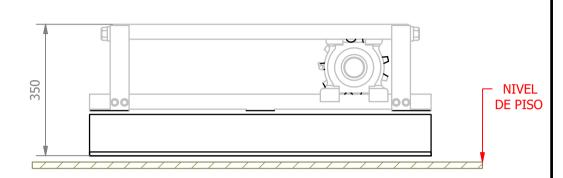

ESPOL

PRODUCIDO POR UN PRODUC \mathbf{T} O EDUCATIVO DE AUTODESK

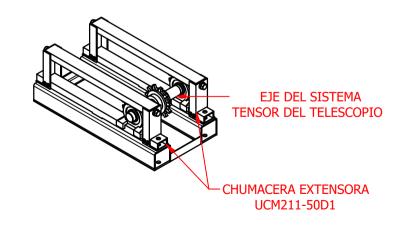


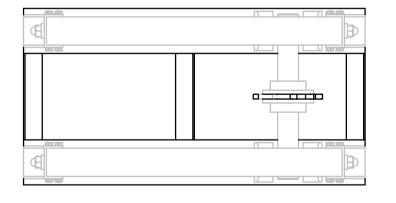
PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK


PRODUCIDO POR UN PRODUC \mathbf{T} O EDUCATIVO DE AUTODESK



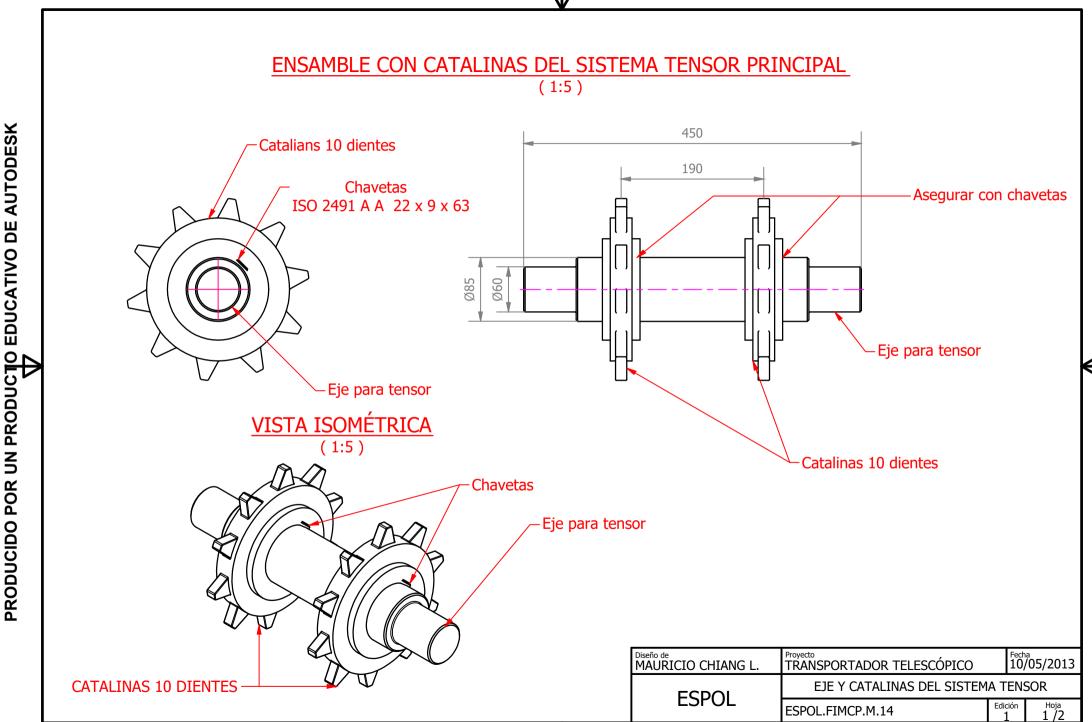
PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

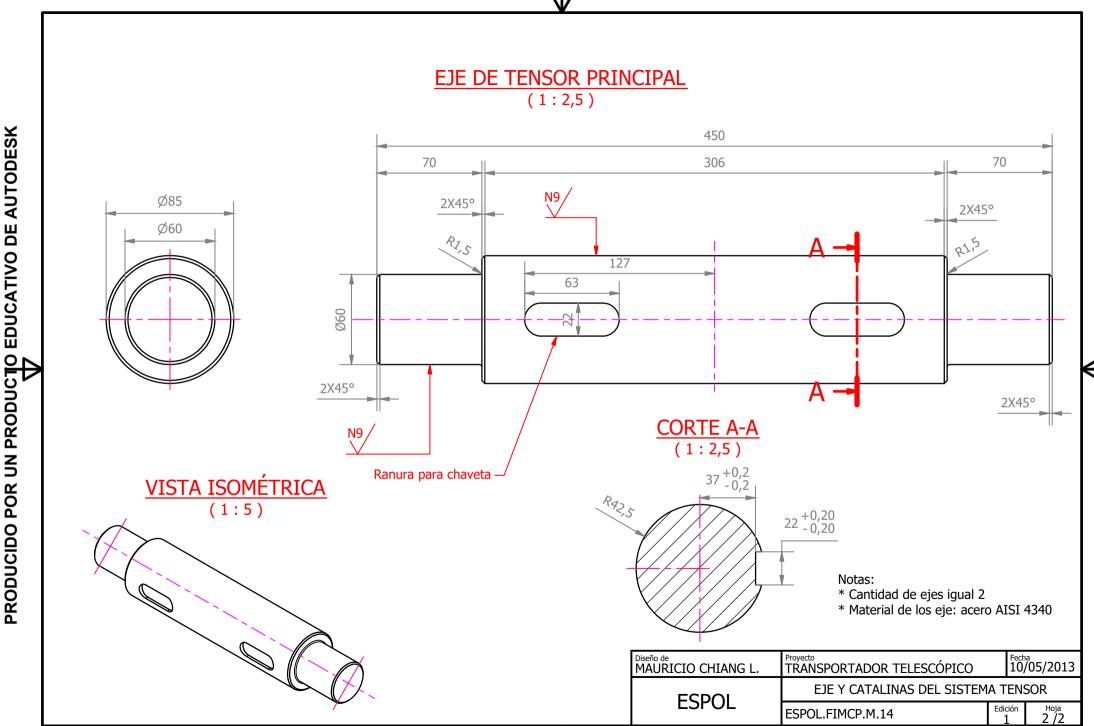

<u>DISPOSICIÓN GENERAL TENSOR DEL TELESCOPIO</u> (1:10)

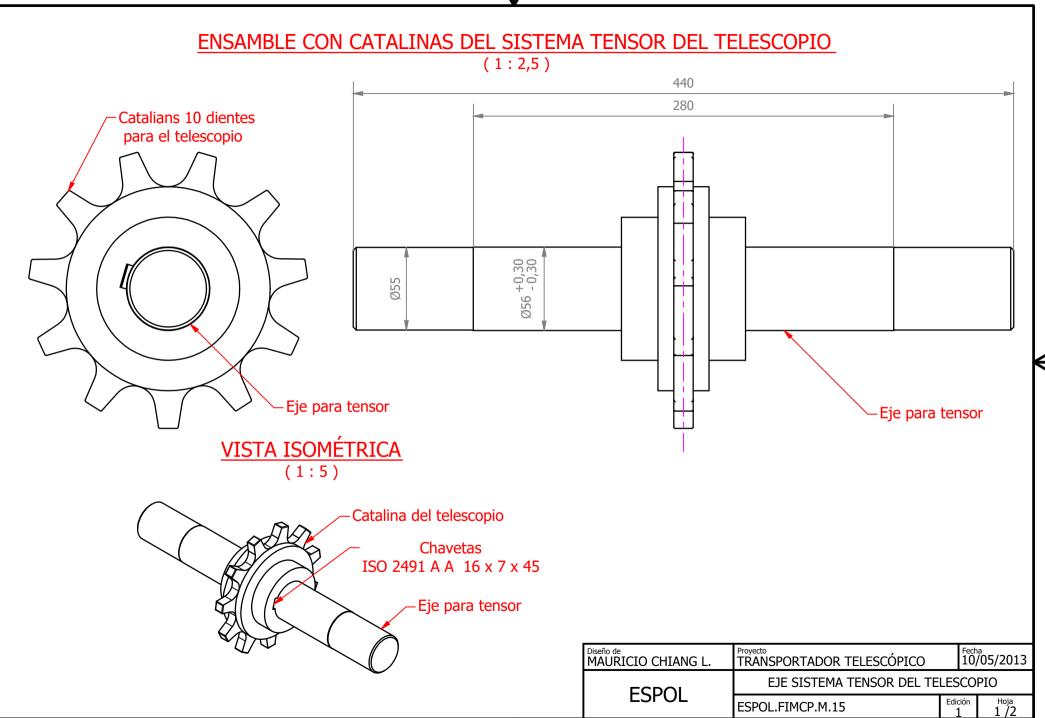


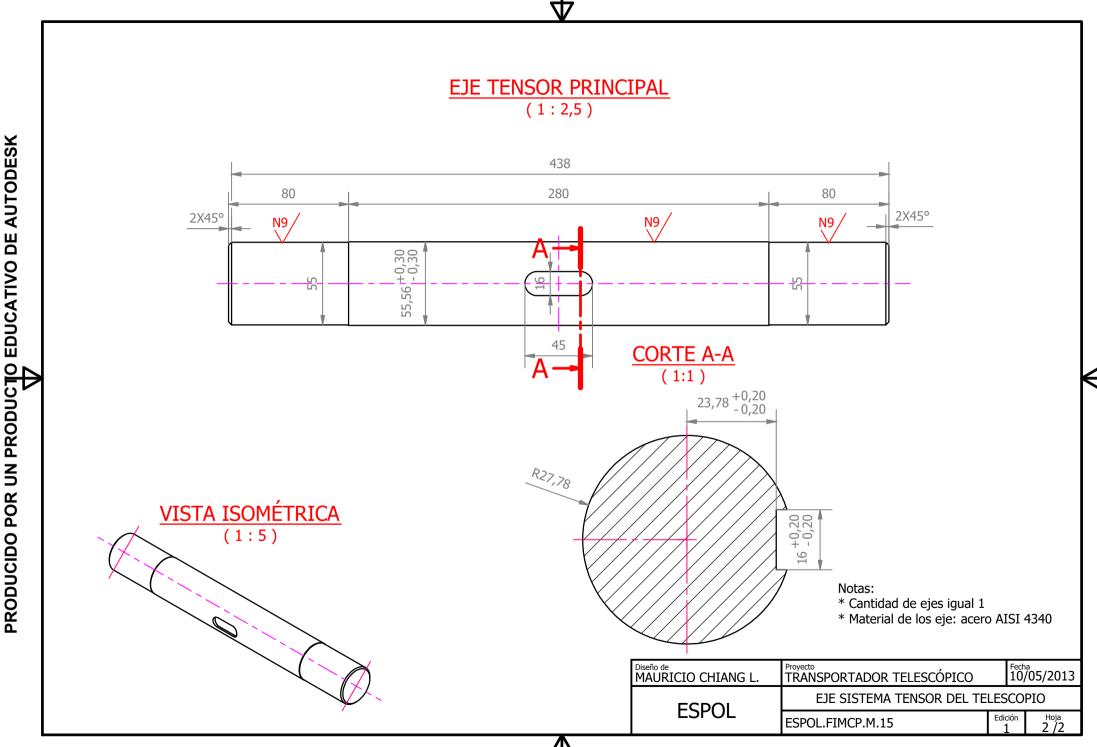
PERPECTIVA ISOMÉTRICA (1:20)

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

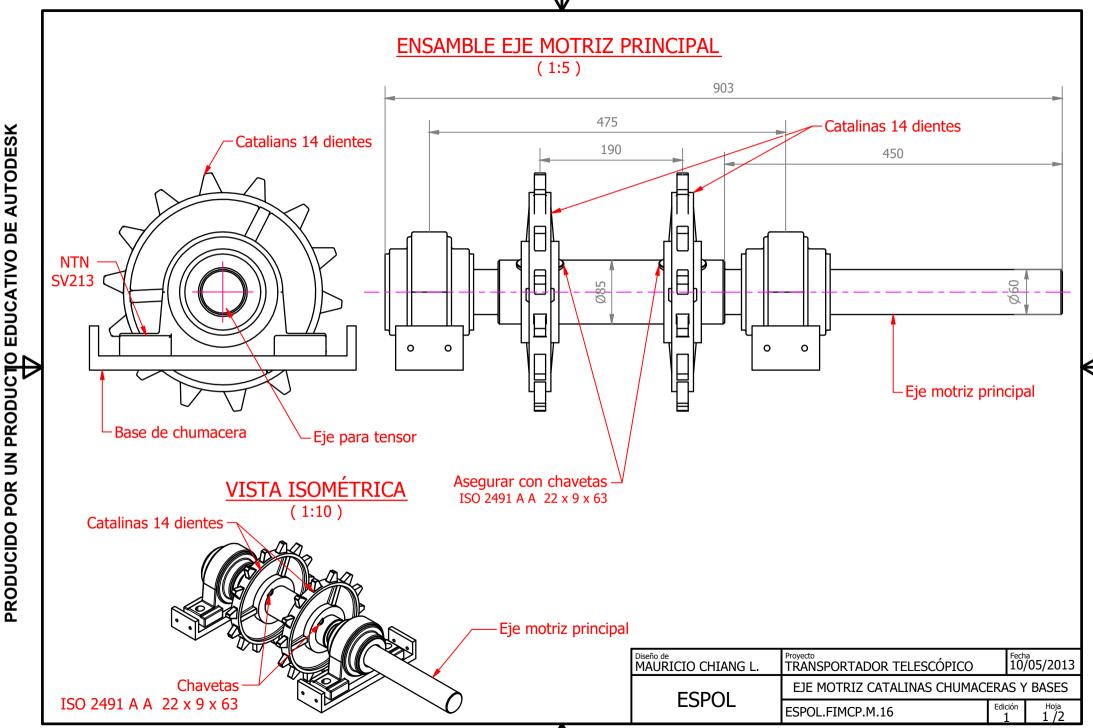


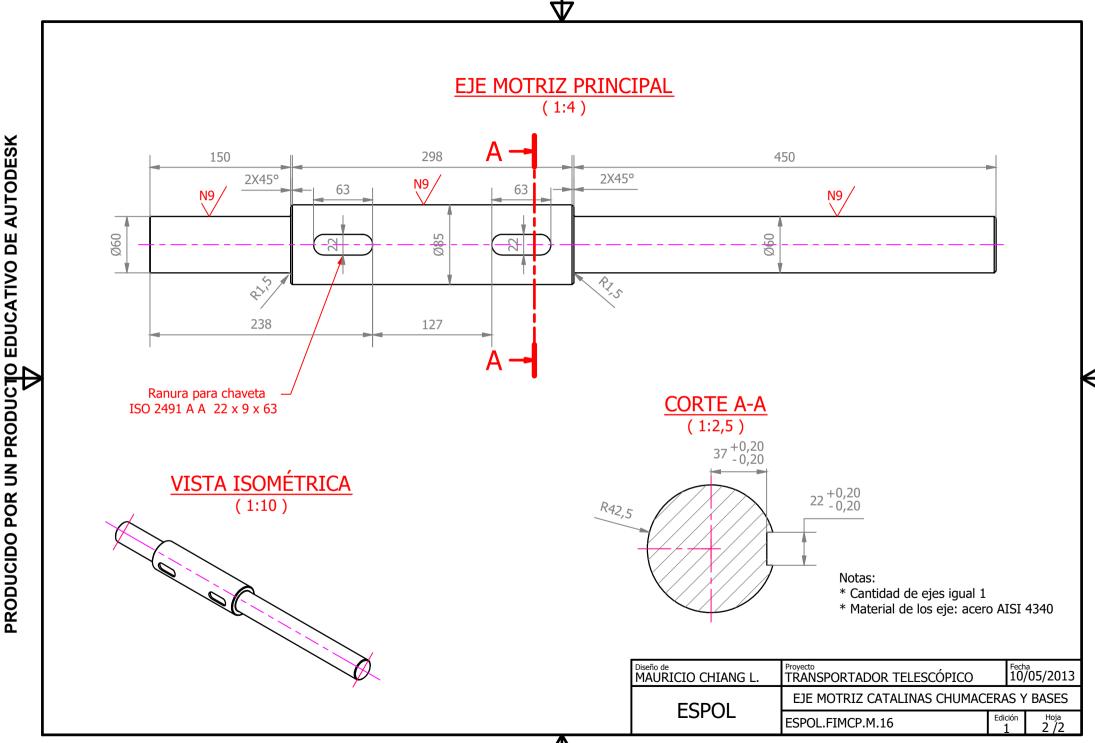


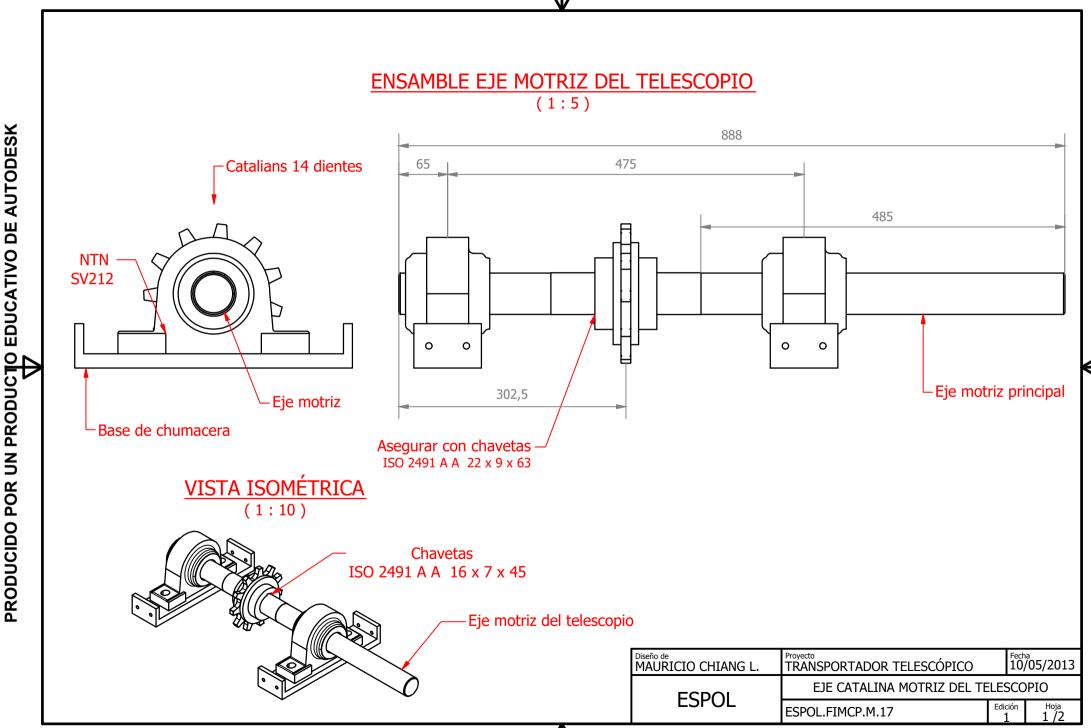

Diseño de MAURICIO CHIANG L.	Proyecto TRANSPORTADOR TELESCÓPICO	Fech 10,	05/2013
ECDOI	BASE DEL SISTEMA TENSOR DEL	TELES	COPIO
ESPUL	ESPOL FIMCP M 13	Edición	Hoja

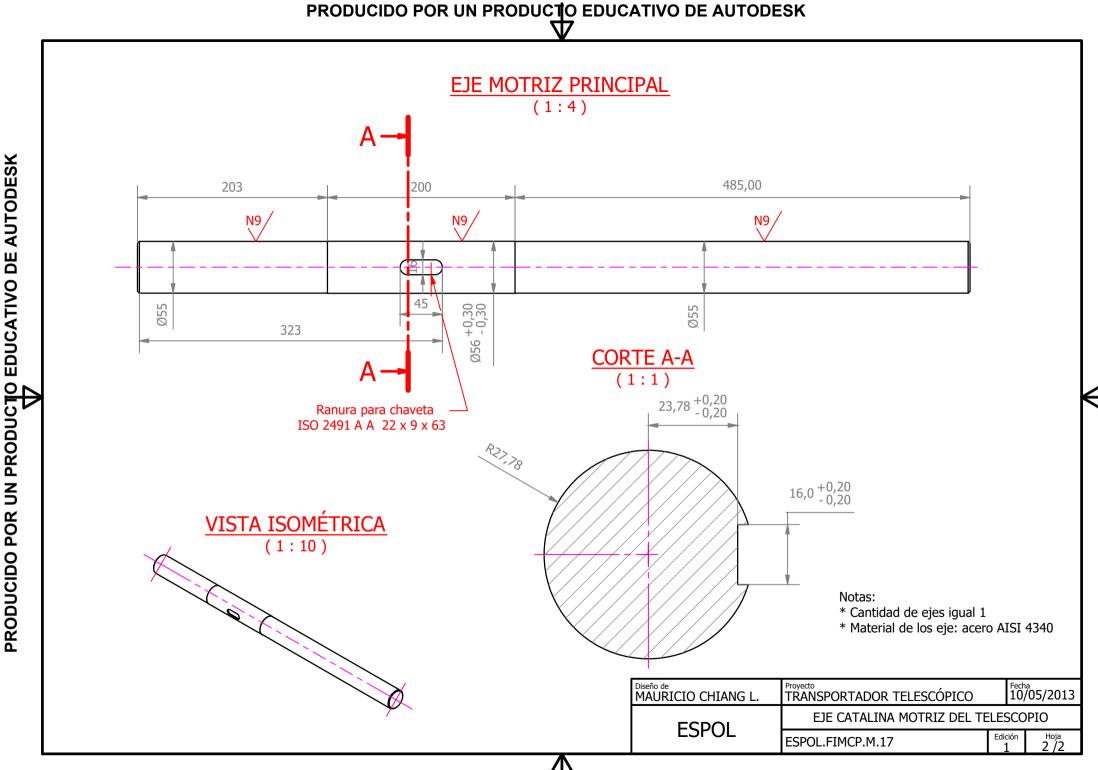

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

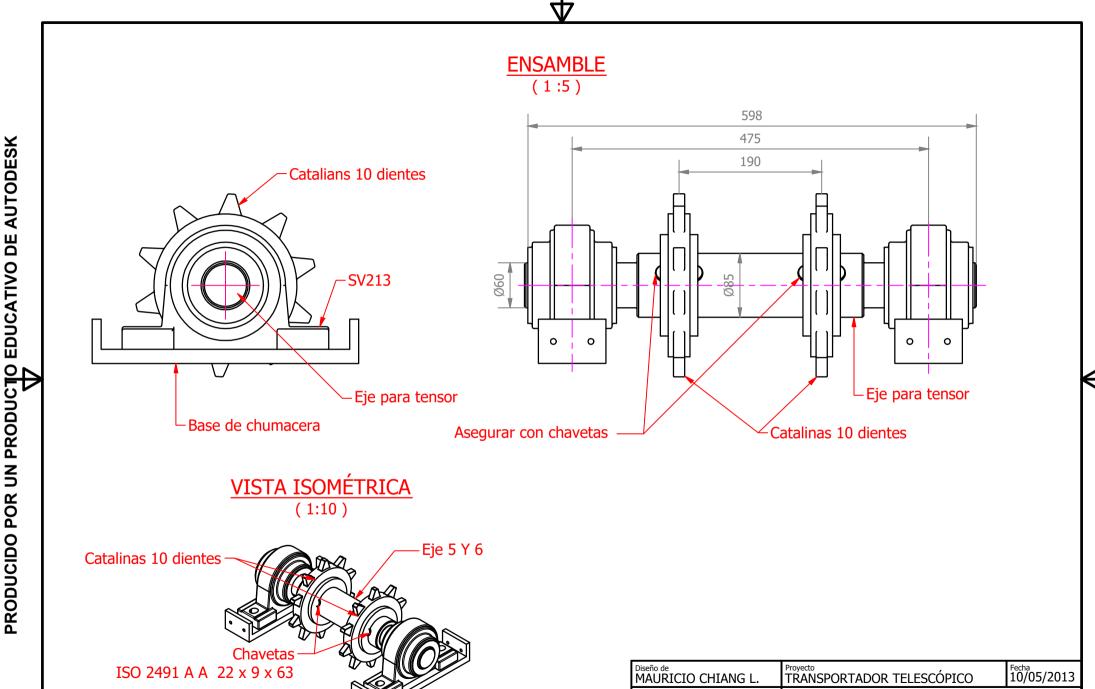




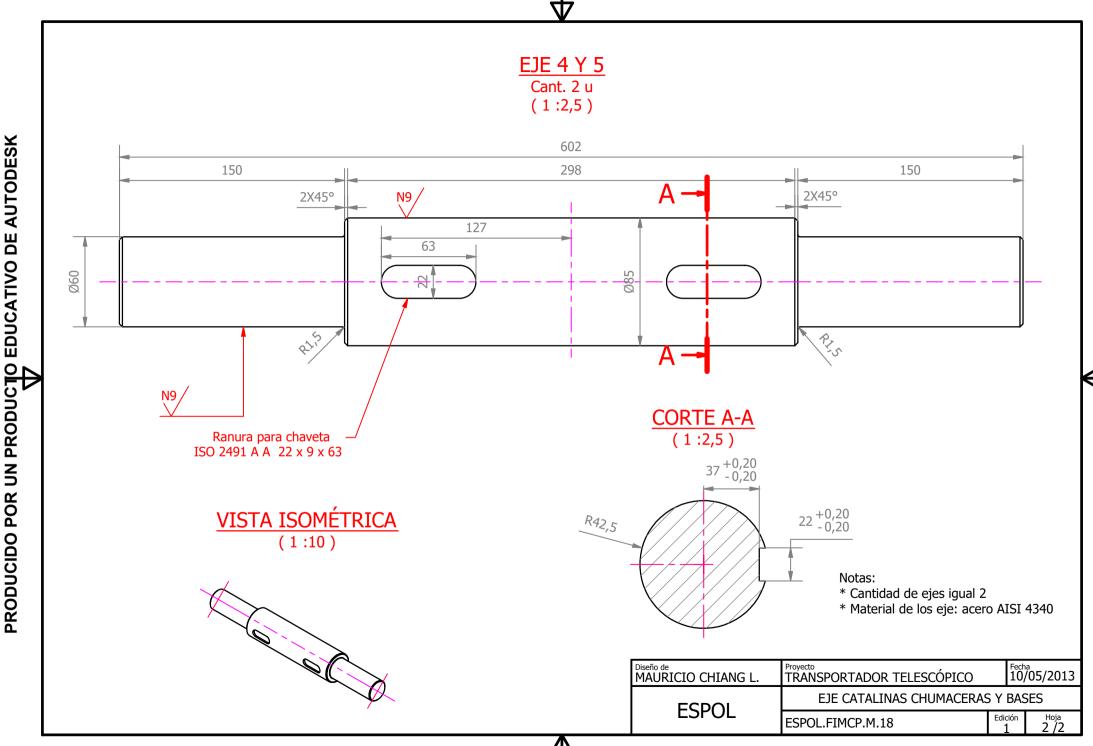



PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK



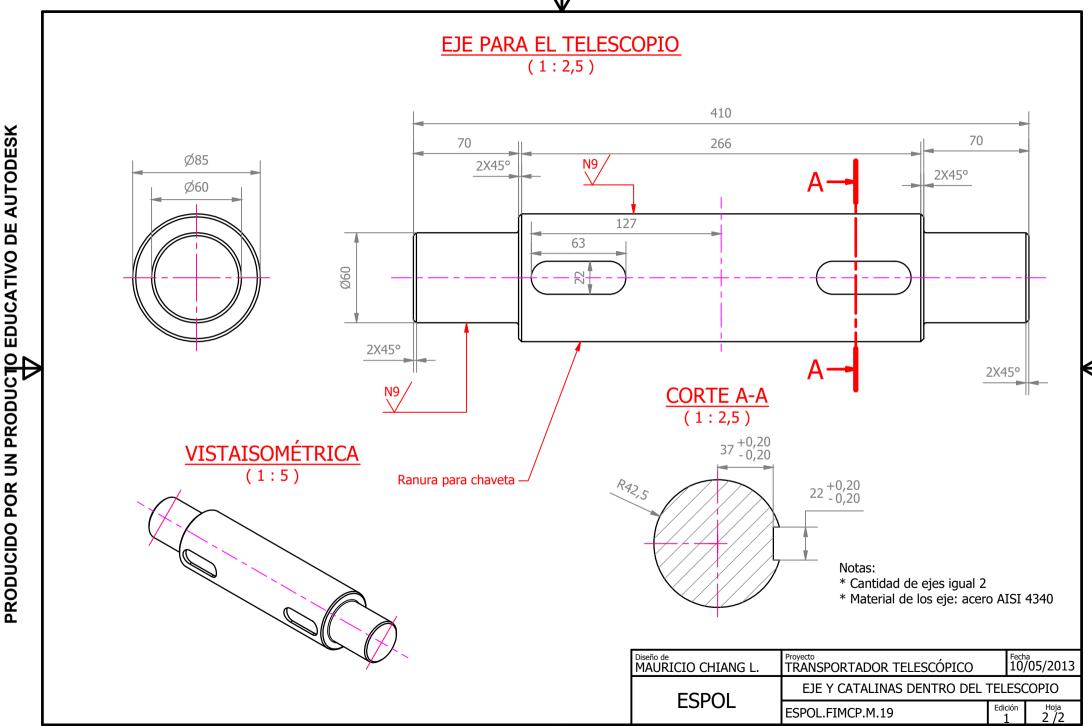
Hoja 1 /2

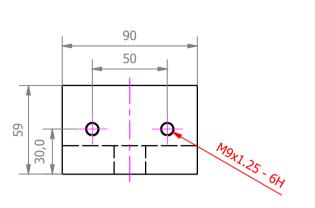

Edición **1**

EJE CATALINAS CHUMACERAS Y BASES

ESPOL.FIMCP.M.18

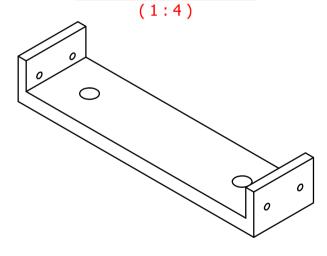
ESPOL

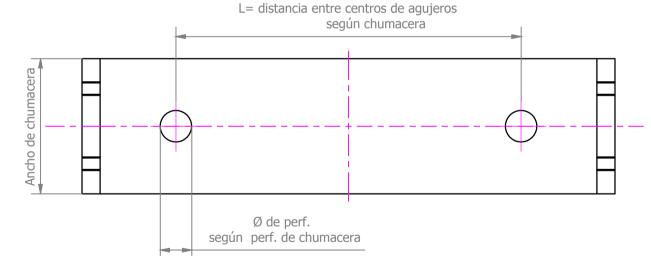



PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

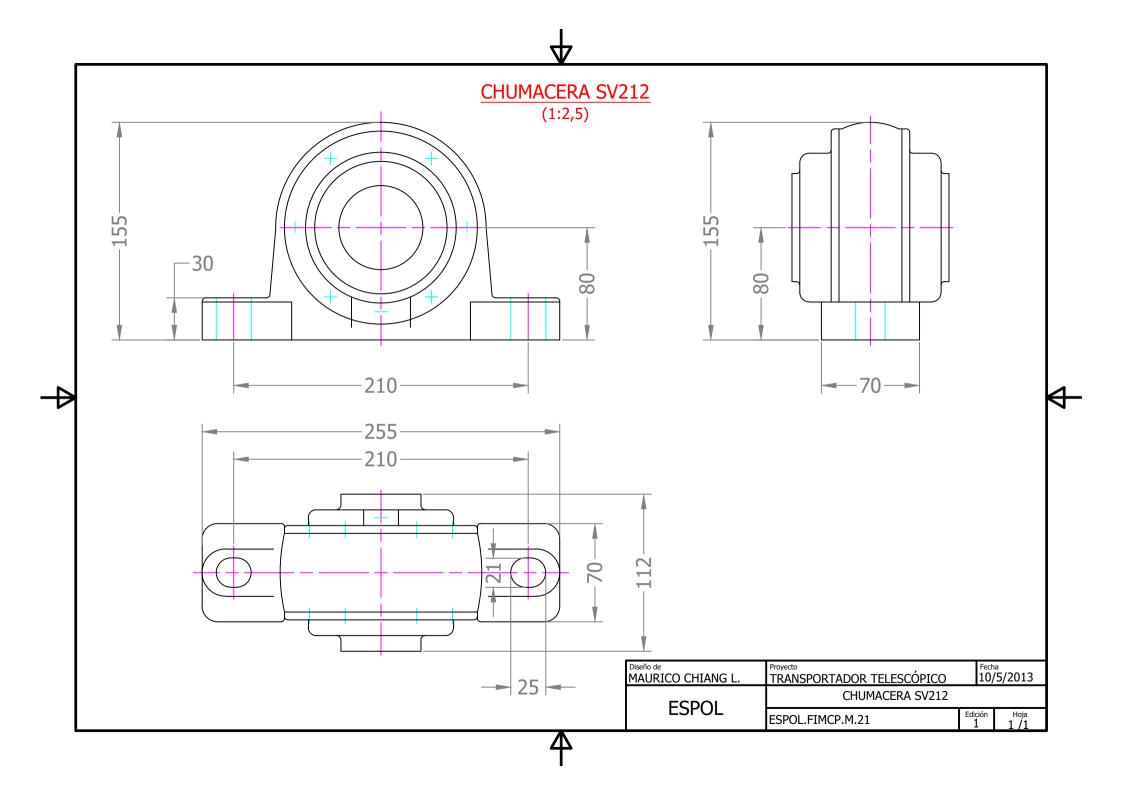
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK **ENSAMBLE CON CATALINAS** Cant. 2 u (1:4)410 Catalians 14 dientes 190 Chavetas ISO 2491 A A 22 x 9 x 63 Asegurar con chavetas 09Ø 085 Eje para tensor -Eje para tensor VISTA ISOMÉTRICA (1:5)Catalinas 10 dientes Eje para tensor Diseño de MAURICIO CHIANG L. Proyecto TRANSPORTADOR TELESCÓPICO Fecha 10/05/2013 Chavetas EJE Y CATALINAS DENTRO DEL TELESCOPIO **ESPOL** Hoja 1 /2 ESPOL.FIMCP.M.19

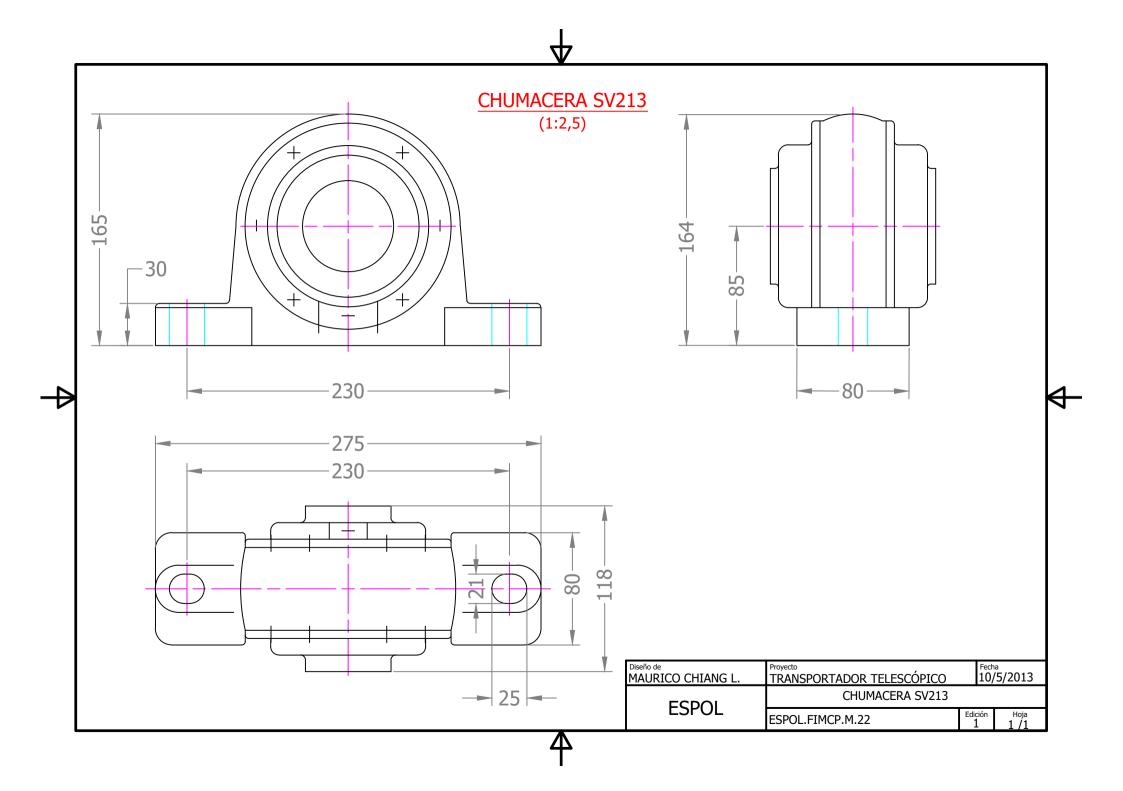
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

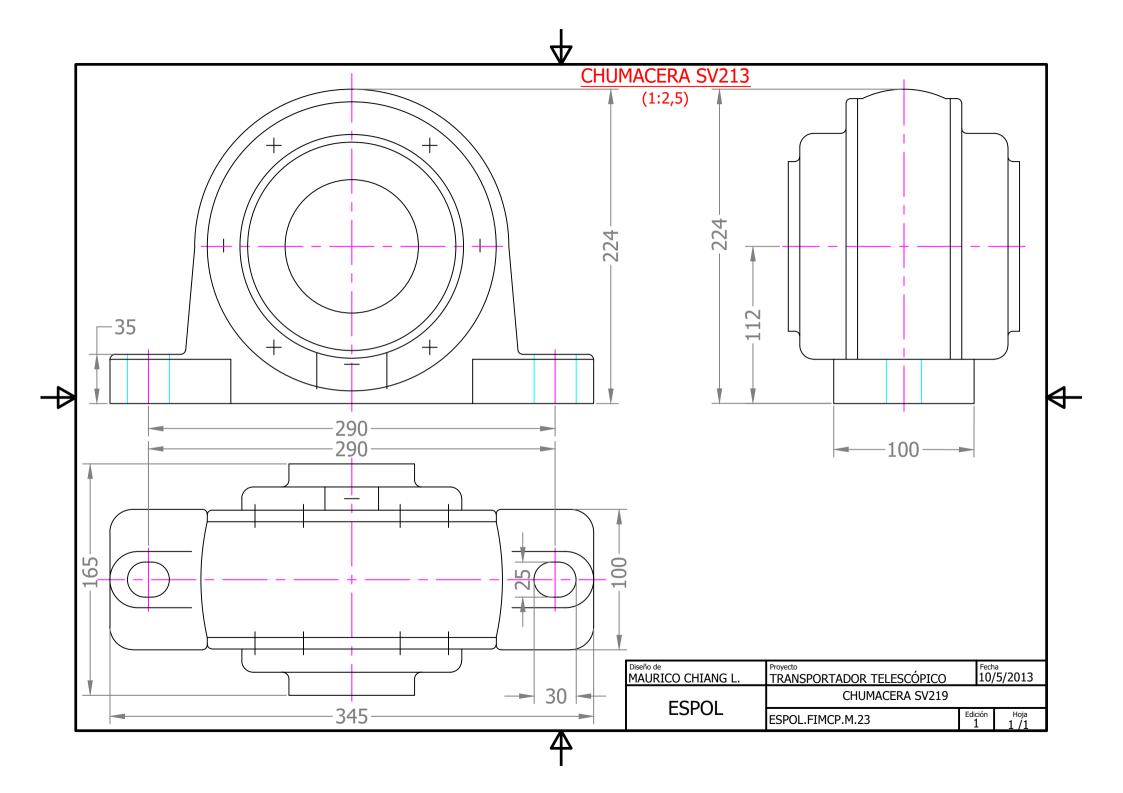

PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

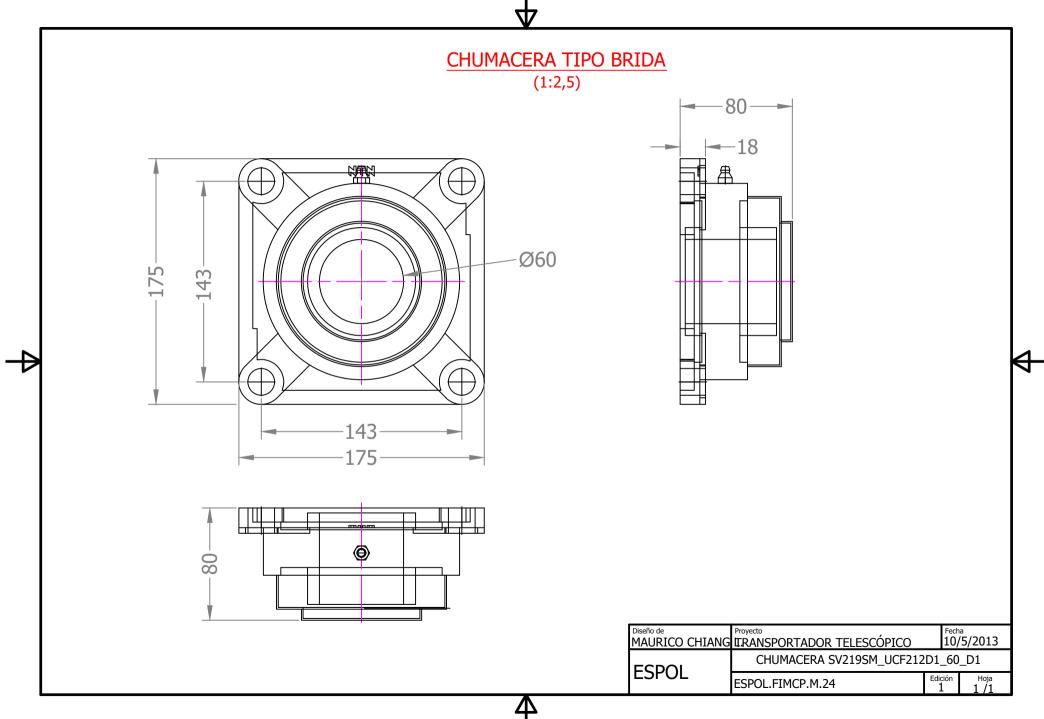


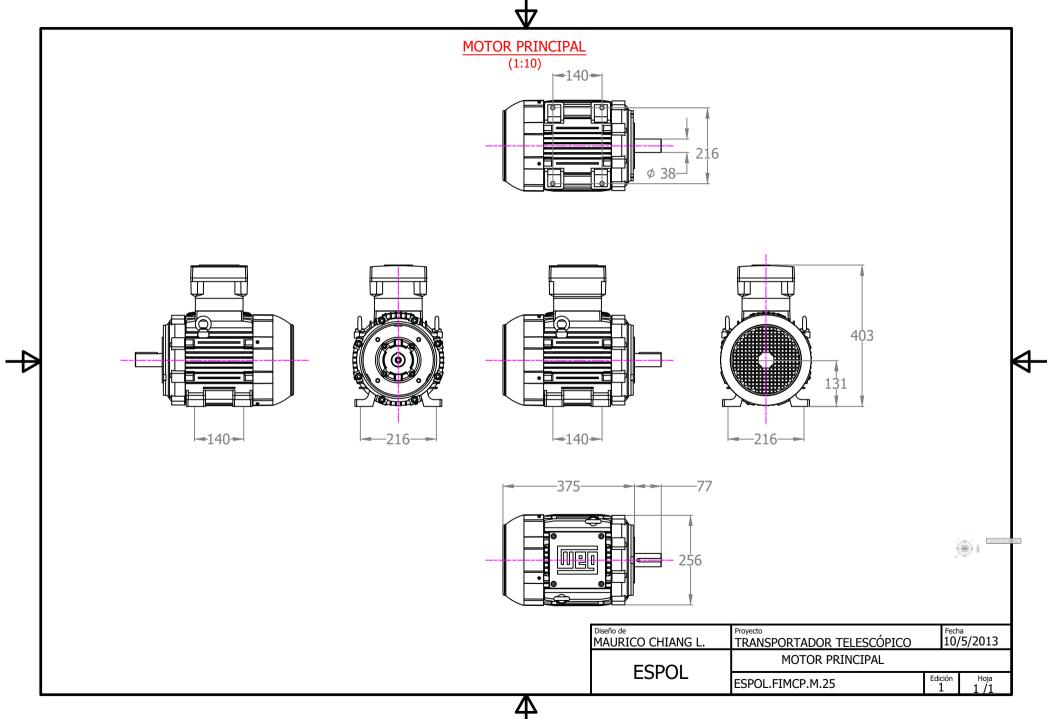
VISTA ISOMÉTRICA

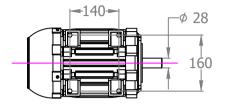


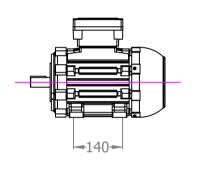

NOTAS GENERALES:

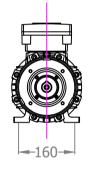

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

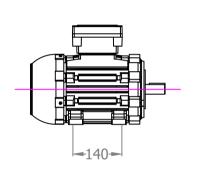

- st La placa base es de 22 mm, y las laterales son de 12 mm.
- *Una vez que se suelden las placas, se perforen y machuelen los agujeros M9, se deberá rectificar la placa base por la parte
- superior e inferior hasta llegar a dejarla placa en 19 mm.
- *Material de la base es ASTM A36.
- * Perno alineadores M9 de cabeza hexagonal.
- * Procedimiento de soldadura SMAW.
- *Electrodo 6011.

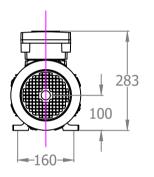

Diseño de MAURICIO CHIANG L. Proyecto TRANSPORTADOR TELESCÓPICO PLANO TÍPICO DE BASE DE CHUMACERAS ESPOL.FIMCP.M.20 Edición Hoja 1 / 1

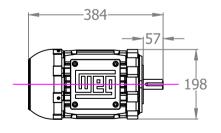


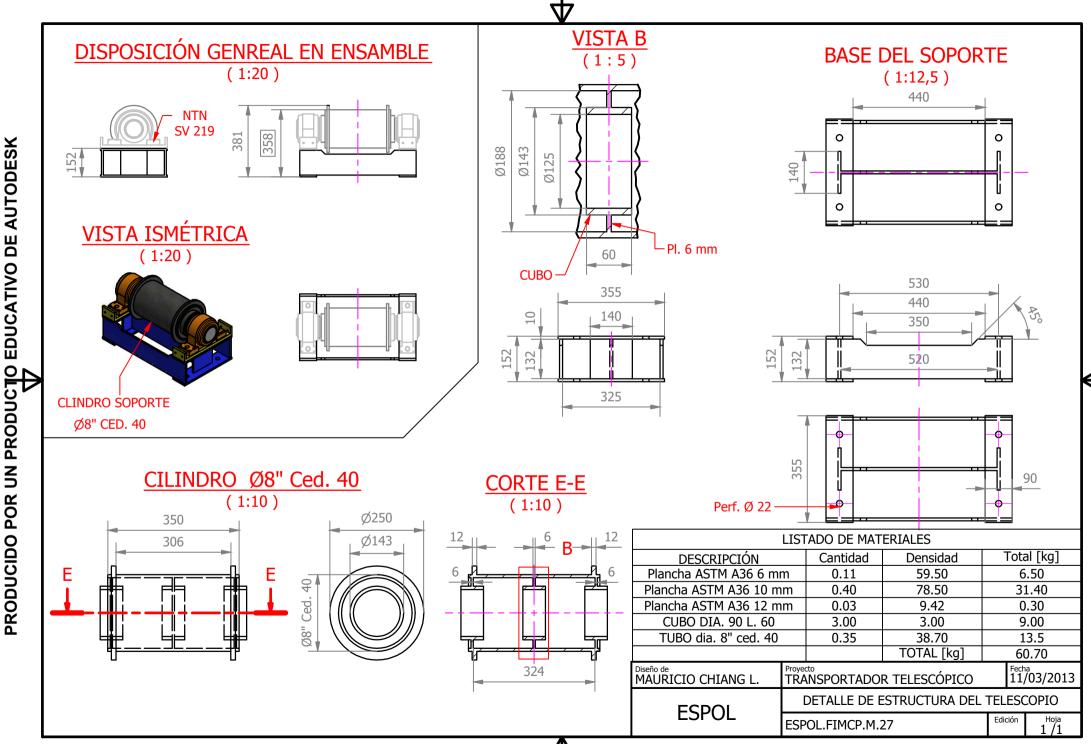


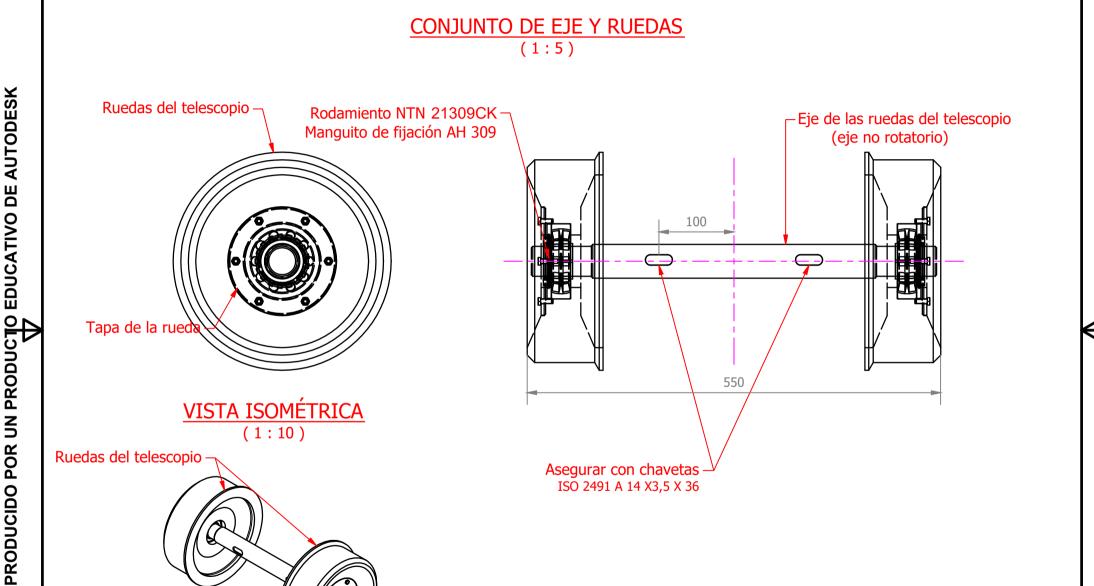











Diseño de MAURICO CHIANG L.	Proyecto TRANSPORTADOR TELESCÓPICO	Fech 10,	'5/2013
FSPOL	MOTOR DEL TELESCÓPICO)	
LSPUL	ESPOL.FIMCP.M.26	Edición 1	Hoja 1 /1

PRODUCIDO POR UN PRODUC \mathbf{I} O EDUCATIVO DE AUTODESK

Fecha 10/05/2013

Edición **1**

Diseño de MAURICIO CHIANG L.

ESPOL

Proyecto TRANSPORTADOR TELESCÓPICO

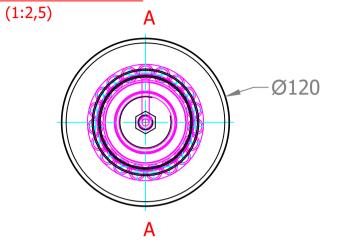
ESPOL.FIMCP.M.28

CONJUNTO DE EJE Y RUEDAS DEL TELESCOPIO

Hoja 1 /1

Edición

ESPOL.FIMCP.M.29


PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

RODAMIENTO ALINEADOR

φ 150 φ 150

50

CORTE A-A

(1:2,5)

NOTAS: Rodamiento NTN NUKR120H_3AS

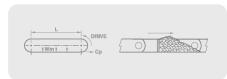
APÉNDICES

APENDICE A

VELOCIDADES TIPICAS PARA TRANSPORTADORES DE CADENA

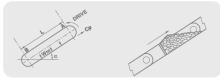
		Chain	Sliding				Chain	Rolling				
	Mat Slid			erial ried		Material Sliding			Material Carried		Material Carried	Typical
Chain Conveyors and Elevators	Horiz.	Incl.	Horiz.	Incl.	Horiz.	Incl.	Horiz. and Incl.	Horiz.	Incl.	Horiz. and Incl.	Vertical	Speed Ft. Per Minute
Apron Feeder	-	-	х	х	-	-	-	х	х	х	-	10/50
Apron Conveyor	-	-	х	х	-	-	-	х	х	х	-	50/100
ENDURO-FLITE® Conveyor	-	-	х	х	-	-	-	х	х	х	-	50/100
Drag Conveyor	Х	Х	-	-	-	-	-	-	-	-	-	50/100
Flight Conveyor	х	х	-	-	х	х	х	-	-	-	-	50/100
Slat Conveyor	-	-	х	х	-	-	-	х	х	х	-	50/150
Centrifugal Discharge Bucket Elevator	-	-	-	-	-	-	-	-	-	-	х	225/300
Continuous Bucket Elevator	-	-	-	-	-	-	-	-	-	-	х	125
Super Capacity Bucket Elevator	-	-	-	-	-	-	-	-	-	-	х	100/125

Material sliding conveyors push, drag or scrape material in a trough and are generally used for nonabrasive, smaller materials.


Material carried conveyors have the entire weight of the material supported or carried by the chain and are generally used for large, bulky and abrasive materials.

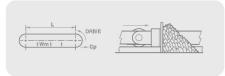
APENDICE B

GUÍA DE DISEÑO LAYOUT DE TRANSPORTACIÓN


Chain and material sliding

 $Cp = 9.81 \times L [(2.05 \times Wc \times \mu_c) + (Wm \times \mu_m)] + X (N)$ $K = \frac{Cp \times V}{1000} (kW)$

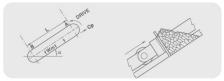
LAYOUT E


Chain and material sliding

$$\begin{split} P_B &= 9.81 \times Wc \times L \times H_{S1} \left(N \right) \\ Cp &= 9.81 \times L \left[\left(Wc \times H_{S2} \right) + \left(Wm \times H_{Sm} \right) \right] + PB + X \ \left(N \right) \\ K &= \frac{Cp \times V}{1000} \ \left(kW \right) \end{split}$$

LAYOUT B

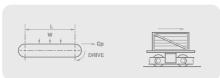
Chain rolling and material sliding



 $Cp = 9.81 \times L [(2.05 \times Wc \times \mu_c) + (Wm \times \mu_m)] + X (N)$

$$K = \frac{Cp \times V}{1000} \quad (kW)$$

LAYOUT F


Chain rolling and material sliding

$$\begin{split} P_{B} &= 9.81 \times Wc \times L \times \mu_{51} \text{ (N)} \\ Cp &= 9.81 \times L \left[\left(Wc \times \mu_{52} \right) + \left(Wm \times \mu_{5m} \right) \right] + PB + X \text{ (N)} \\ K &= \frac{Cp \times V}{1000} \text{ (kW)} \end{split}$$

LAYOUT C

Chain rolling and material carried

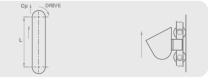
 $Cp = 9.81 \times \mu_c [(2.05 \times Wc \times L) + W] (N)$ $K = \frac{Cp \times V}{1000} (kW)$

LAYOUT G

Chain rolling and material carried

$$\begin{split} P_B &= 9.81 \times Wc \times L \times \mu_{51} \text{ (N)} \\ Cp &= 9.81 \times \mu_{52} \text{ [(Wc \times L) + W] + PB (N)} \\ K &= \underbrace{Cp \times V}_{1000} \text{ (kW)} \end{split}$$

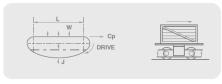
LAYOUT D


Chain sliding and material carried

$$Cp = 9.81 \times \mu_c [(2.05 \times Wc \times L) + W] (N)$$

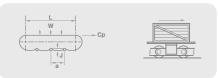
 $K = \frac{Cp \times V}{1000} (kW)$

Vertical elevato


LAYOUT H

 $Cp = 9.81 \underbrace{[(wb \times L) + (Wc \times L) + (L \times Vb \times p)] + Df (N)}_{S}$ $K = \underbrace{[(9.81(^{1}/_{S} \times Vb \times p)) + Df] \times V}_{3.000}$ (kW)

LAYOUT J


Chain rolling, material carried. Return strand unsupported.

$$\begin{split} & \text{Cp} = 9.81 \left[1.05 \left(\frac{12 \times \text{Wc}}{8 \times \text{J}} + \left(\text{Wc x J} \right) \right) + \left(\mu_{\text{C}} \times \text{Wc x L} \right) + \left(\mu_{\text{C}} \times \text{W} \right) \right] \text{ (N)} \\ & \text{K} = 9.81 \left[0.05 \left(\frac{12 \times \text{Wc}}{8 \times \text{J}} + \left(\text{Wc x J} \right) \right) + \left(\mu_{\text{C}} \times \text{Wc x L} \right) + \left(\mu_{\text{C}} \times \text{W} \right) \right] \frac{\text{x \underline{V}}}{1000} \end{split}$$

LAYOUT K

Chain rolling, material carried. Return strand on idlers.

$$\begin{split} & \text{Cp} = 9.81 \; \big[1.05 \; \underline{x} \, \underline{L} \, \Big(\frac{a^2 \; x \; W_C}{8 \; x \; J} + \big(W_C \; x \; J \big) \big) + \big(\mu_C \; x \; W_C \; x \; L \big) + \big(\; \mu_C \; x \; W \big) \big] \; \; \text{(N)} \\ & \text{K} = 9.81 \; \big[0.05 \; \underline{x} \, \underline{L} \, \Big(\frac{a^2 \; x \; W_C}{8 \; x \; J} + \big(W_C \; x \; J \big) \big) + \big(\mu_C \; x \; W_C \; x \; L \big) + \big(\; \mu_C \; x \; W \big) \big] \; \underline{x} \, \underline{V} \; \big(k W \big) \\ & 1000 \end{split}$$

CONVEYOR CHAIN CATALOGUE, RENOLD. [13]

APENDICE C
PESOS TÍPICO DE CADENA

Appli	ication		Range of Weight
Conveyor Type	Chain Loading	Chain Type	of Chain Per Ft. Lbs.
	Light	400 Class Pintle	2.0/8.0
Chain Sliding	Light to Moderate	H Class Mill	2.5/10.0
and	Moderate -	700 Class Pintle	4.5/7.0
Material	Moderate	Combination	2.0/16.0
Carried	Moderate	Hardened Steel Bushed	5.0/25.0
	to Heavy	Steel Bushed Roller	4.0/30.0
Chain Sliding	Light to Moderate	H Class Mill	2.5/10.0
and	Moderate -	Combination	2.0/16.0
Material	to Heavy	H Type Drag	8.0/20.0
Sliding	to neavy	Combination Type Drag	10.0/20.0
Chain	All Loading	Steel Bushed Roller	4.0/30.0
Rolling	Light -	400 Class Pintle	2.0/8.0
and	Ligit	Combination	2.0/16.0
Material Carried	Light to Moderate	Combination	2.0/16.0
		700 Class Pintle	4.5/7.0
Vertical	Moderate	Combination	2.0/16.0
or		Hardened Steel Bushed	5.0/25.0
Inclined	Madamir	Combination	2.0/16.0
Bucket Elevators	Moderate to Heavy	Hardened Steel Bushed	5.0/25.0
Elevators	toriousy	Steel Bushed Roller	4.0/30.0

CATALOGO WEBSTER CHAIN DATA. [14]

APENDICE D

FACTOR DE FRICCIÓN PARA DESLIZAMIENTO DE CADENAS

	Coeff	icient
Materials	Dry	Lubricated
Chain on Steel	0.33	0.20
Chain on Cast Iron or Steel	0.50	-
Chain on Hardwood	0.35	0.25
Chain on UHMW Polyethylene	0.25	0.15

APENDICE E

CLASIFICACION DE TRANSPORTADORES

DE ACUERDO A LA CARGA APLICADA

Group A Uniform or Steady Load	Group B Moderate Shock Load	Group C Heavy Shock Load
Conveyors - Uniformly loaded or fed (apron, assembly, belt, flight, oven, screw) Machines - All types with uniform nonreversing loads	Conveyors - Heavy-duty and not uniformly loaded (apron, assembly, belt, bucket, flight, oven, screw) Machines - All types with moderate shock and nonreversing loads	Drag Conveyors Log Haul Conveyors Machines - All types with severe impact shock loads or speed variations and
Screens - Rotary (uniformly fed), traveling water intake Sewage Disposal Equipment - Inside service (uniformly fed)	Screens - Rotary (stone or gravel) Elevators - All types	reversing service Metal Mills - Draw bench Mills - (rotary type) ball, cement kilns, rod mills, tumbling mills

CATALOGO WEBSTER CHAIN DATA. [14]

APENDICE F

FACTORES DE SERVICIO DE CADENAS

	ions Affecting Chain ife Expectancy	Service Factors (f _p)
Frequency of Shock	Infrequent Shock	i
Frequency of Shock	Frequent Shock	1.2
	A. Uniform or Steady Load	1
Character of Chain Loading	B. Moderate Shock Load	1.2
	C. Heavy Shock Load	1.5
	Relatively Clean and Moderate Temperature	1
Atmospheric Conditions	Moderately Dirty and Moderate Temperature	1.2
	Exposed to Weather, Very Dirty, Abrasive, Mildly Corrosive and Reasonably High Temperatures	1.4
Daily Operating Bange	8-10 Hours	1
Daily Operating Range	10-24 Hours	1.2

For definitions of Frequent or Infrequent Shock refer to page A-9. For definitions of chain loading refer to page A-9, or Table 8. The composite service factor (f_p) is equal to the product of the service factors (f_p) , see the chain selection example on page A-14.

APENDICE G
FACTORES DE VELOCIDAD PARA CEDENAS DE ACERO

No. of									F	eet Pei	Minu	te								
Spkt. Teeth	10	25	50	75	100	125	150	175	200	225	250	275	300	400	500	600	700	800	900	1000
6	.917	1.09	1.37	1.68	2.00	2.40	2.91	3.57	4.41	5.65	7.35	10.6	16.7	-	-	-	-	-	-	-
7	.855	.971	1.13	1.27	1.44	1.61	1.81	2.04	2.29	2.60	2.96	3.42	3.95	8.62	-	-	-	-	-	-
8	.813	.909	1.04	1.16	1.26	1.37	1.49	1.63	1.76	1.93	2.10	2.29	2.48	3.62	6.21	-	-	-	-	-
9	.794	.870	.980	1.07	1.17	1.26	1.36	1.45	1.55	1.65	1.76	1.88	2.00	2.56	2.94	4.29	6.09	9.90	-	-
10	.775	.840	.943	1.02	1.09	1.16	1.24	1.31	1.37	1.45	1.53	1.61	1.68	2.03	2.41	2.81	3.31	3.82	4.48	5.37
11	.758	.820	.901	.971	1.03	1.09	1.15	1.22	1.28	1.34	1.40	1.46	1.52	1.78	2.05	2.33	2.63	2.96	3.37	3.82
12	.741	.787	.862	.926	.990	1.05	1.10	1.16	1.21	1.26	1.32	1.37	1.42	1.63	1.84	2.05	2.26	2.51	2.77	3.05
14	.735	.769	.833	.885	.935	.980	1.02	1.07	1.11	1.15	1.19	1.24	1.28	1.47	1.61	1.78	1.94	2.10	2.29	2.48
16	.725	.763	.813	.855	.893	.935	.971	1.01	1.05	1.08	1.12	1.16	1.19	1.34	1.48	1.63	1.77	1.93	2.09	2.28
18	.719	.752	.800	.833	.877	.909	.943	.980	1.01	1.04	1.08	1.11	1.14	1.27	1.40	1.53	1.67	1.80	1.95	2.11
20	.717	.746	.787	.826	.855	.893	.917	.952	.980	1.01	1.04	1.07	1.10	1.22	1.34	1.45	1.57	1.69	1.82	1.96
24	.714	.735	.769	.800	.820	.847	.877	.901	.935	.962	.980	1.01	1.04	1.15	1.26	1.37	1.48	1.56	1.71	1.84

APENDICE H

VELOCIDADES MAXIMAS RECOMENDADAS PARA CADENAS, DE

ACUERDO AL PASO Y AL NÚMERO DE DIENTES EN LA CATALINA.

Maximum recommended chain speed (m/sec).

Chain Pitch		esi ne	Number	of Teeth	981 ga	esti .
mm (in.)	8	10	12	16	20	24
50.5 (2")	0.95	1.5	2.2	3.8	5.4	6.5
63	0.86	1.4	2.0	3.5	4.9	5.9
76.2 (3")	0.78	1.2	1.8	3.1	4.4	5.3
80	0.77	1.2	1.7	3.1	4.3	5.3
101.6 (4")	0.68	1.1	1.5	2.7	3.8	4.6
127 (5")	0.61	0.96	1.4	2.4	3.4	4.1
152.4 (6")	0.55	0.86	1.2	2.2	3.1	3.7
160	0.53	0.83	1.2	2.1	3.0	3.6
203.2 (8")	0.47	0.73	1.1	1.9	2.7	3.2
228.6 (9")	0.45	0.70	1.0	1.8	2.5	3.0
254 (10")	0.42	0.65	0.96	1.7	2.4	2.9
304.8 (12")	0.39	0.61	0.88	1.6	2.2	2.6
315	0.38	0.60	0.87	1.5	2.2	2.6

CONVEYOR CHAIN CATALOGUE, RENOLD. [13]

APENDICE J $\mbox{VALORES DE LOS TÉRMINOS } \frac{6A\bar{a}}{L} \mbox{ y } \frac{6A\bar{b}}{L}$

CASO	TIPO DE CARGA	$6A\bar{a}$	6A ¯ b
N_0 .	SOBRE LA VIGA	\overline{L}	L
1	a b	$\frac{Pa}{L}(L^2-a^2)$	$\frac{Pb}{L}(L^2-b^2)$
2	w N/m	$\frac{wL^3}{4} = \frac{WL^2}{4}$	$\frac{wL^3}{4} = \frac{WL^2}{4}$
3	w N/m	$\frac{8}{60}WL^3 = \frac{8}{30}WL^2$	$\frac{8}{60}wL^3 = \frac{8}{30}WL^2$
4	w N/m	$\frac{8}{60}wL^3 = \frac{8}{30}WL^2$	$\frac{8}{60}wL^3 = \frac{8}{30}WL^2$
5	w N/m	$\frac{w}{4L}[b^2(2L^2-b^2)-a^2(2L^2-a^2)]$	$\frac{w}{4L}[d^2(2L^2-d^2)-c^2(2L^2-c^2)]$
6	w N/m	$\frac{5}{32}wL^3 = \frac{5}{16}WL^2$	$\frac{5}{32}wL^3 = \frac{5}{16}WL^2$
7	a M b	$-\frac{M}{L}(3\alpha^2-L^2)$	$+\frac{M}{L}(3b^2-L^2)$

RESISTENCIA DE LOS MATERIALES, PYTEL Y SINGER CUARTA EDICIÓN. [15]

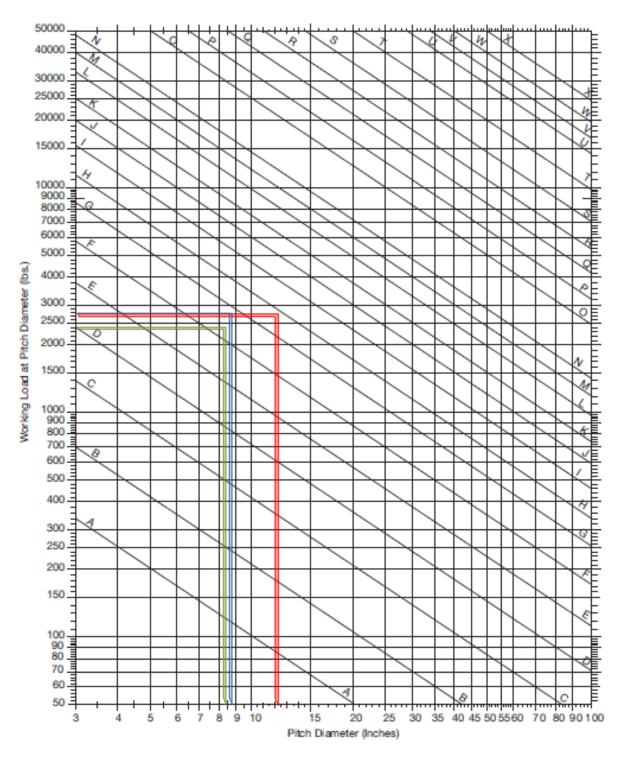
APENDICE K VALORES RECOMENDADOS PARA EL NÚMERO DE DIENTES DE LA CATALINA SEGÚN LA APLICACIÓN.

Ap plicatio n	N	ormal range o	of
Slat, Bar, Steel Apron, Wire Mesh or similar Conveyors Tray, Soft Fruit and similar elevators Cask, Package and similar elevators Swing tray elevators Ore feed conveyors Scraper conveyors Box scraper conveyors		8-12 8-12 8-12 16-24 6-8 8-12 8-16	
Bucket elevators Spaced Bucket High speed; vertical (one or two chains) Medium speed; inclined (one or two chains) Slow speed; vertical (two chains) Continuous Bucket Medium speed; vertical or inclined	Norma of Head 14 14 12	I minimum nu teeth in sproc Boot 11 11	Deflector 9
(one or two chains) Slow speed; vertical or inclined (two chains) Gravity Bucket Conveyor/Elevator	8 8 Driver 12	8 8 Top Corner 12	Follower 8

CONVEYOR CHAIN CATALOGUE, RENOLD. [13]

APENDICE L

VALORES DE LAS CONSTANTES PARA PASO DIAMETRAL SEGÚN EL


NÚMERO DE DIENTES DE LA CATALINA

No. of teeth	Unit pitch circle diameter	No. of teeth	Unit pitch circle diameter	No. of teeth	Unit pitch circle diameter
6	2.000	21	6.709	36	11.474
7	2.305	22	7.027	37	11.792
8	2.613	23	7.344	38	12.110
9	2.924	24	7.661	39	12.428
10	3.236	25	7.979	40	12.746
11	3.549	26	8.296	41	13.063
12	3.864	27	8.614	42	13.382
13	4.179	28	8.931	43	13.700
14	4.494	29	9.249	44	14.018
15	4.810	30	9.567	45	14.336
16	5.126	31	9.885	46	14.654
17	5.442	32	10.202	47	14.972
18	5.759	33	10.520	48	15.290
19	6.076	34	10.838	49	15.608
20	6.392	35	11.156	50	15.926

CONVEYOR CHAIN CATALOGUE, RENOLD. [13]

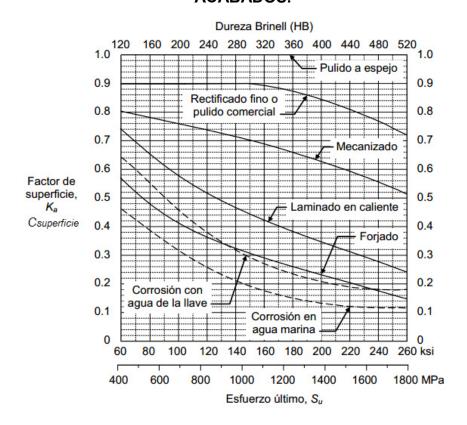
APENDICE M

Tabla de selector rápido

Sprocket Technical Section. TSUBAKI. [26]

APENDICE N

FACTORES SUPERFICIALES PARA DIFERENTES ACABADOS


											Stan	dard	Hub	Diam	eters	for S	Steel	Spm	ckets											
																ound														
Bore of Wheel	y Size	Screw Size	A B C D E F G H I J K L M N O P Q R S T U									200,000	000'009	720,000	850,000	1,000,000	1,250,000	Minimum Hubs	Or Loose of Set-											
o au	. Key	St.	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	ಹ	Log Log
8	क्षं	8										Di	ame	ter of	Keys	seate	d Hut	bs											Dia	2
15/6 17/6 17/6 15/6 27/6 27/6 27/6 37/6 37/6 37/6 37/6 37/6 37/6 47/6 47/6 47/6 47/6 47/6 47/6 47/6 4	14 14 14 14 15 16 16 11 11 11 11 11 11 11 11 11 11 11	% % % % % % % % % % % % % % % % % % %	1¾ 2 2¾ 3 3 3¼ 4¼ 4¼ 4% 5¼	1¾ 2 2¼ 2¾ 3 3¼ 4¼ 4¼ 4¾ 5¼		trans	3 3¼ 3½ 4 4¼ 4½ 4¾ 5½ 6 6½ 6½	ull tor	4% 5 5% 6 6% 7% 8	4¼ 4½ 4¾ 5 5½ 6 6½ 7¼ 8 9	4½ 5 5½ 5½ 6¼ 6¼ 7¼ 8 9 9½	5 5½ 5½ 5¾ 6¼ 6¾ 7¼ 8 9 9½	5¾ 6	5¾ 6 6% 7 7½ 8 9 9½ 10 11 11½	6 6% 7 7% 8 9 9% 10 11 11% 12	11½ 12	10 10½ 11½ 12 12½ 13	9½ 10 10½ 11½ 12	8½ 9½ 10 10½ 11½ 12 12½ 13	9½ 10 10½ 11½ 12 13 13½	10 10½ 11½ 12½ 13	11 12 12½ 13	12 12½ 13 13½ 14	12½ 13 13½	13½ 14	14 14½	15		1¾ 2 2½ 3 3¼ 4¼ 4¾ 4½ 4¾ 5¼ 6 6½ 7¼ 8 9 9½ 10 11 11½ 13 13½ 13½	Length is determined same as for Kev-seated Sprockets
Th	engtl roug Bore	jh	11/4	*1½	1%	2	2½	2%	3¼	3½	4	41/4	4½	5	5¼	5½	6	6½	7	14½ 7¾		91/2	10			15½ 11½			14½	_

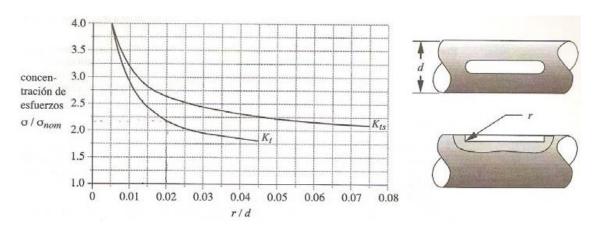
^{*}Hubs on one side only.

Sprocket Technical Section. TSUBAKI. [26]

APENDICE Ñ

FACTORES SUPERFICIALES PARA EL ACERO EN DIFERENTES ACABADOS.

Pueden aplicarse a otros metales dúctiles, pero como valores aproximados.


FACTORES DE CONFIABILIDAD

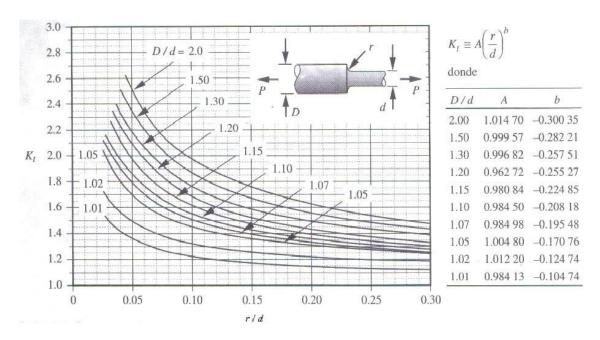
Factores de confiabilidad $S_d=0.08\mu$	
Confiabilidad %	$C_{confiabilidad}$
50	1.000
90	0.897
99	0.814
99.9	0.753
99.99	0.702
99.999	0.659

DISEÑO DE MAQUINAS, R. NORTON. [16]

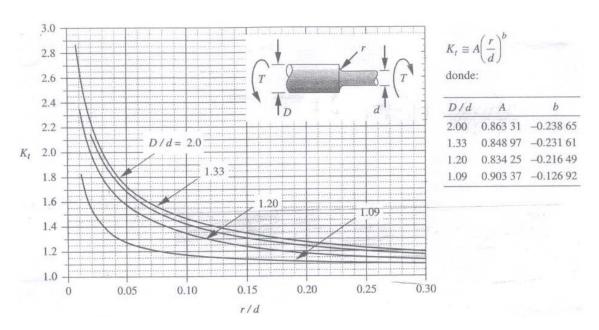
APENDICE O

FACTOR DE CONCENTRACIÓN DE ESFUERZOS PARA MUESCAS

CONSTANTE DE NEUBER PARA ACEROS

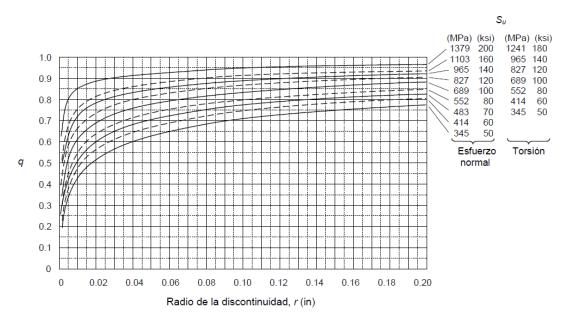

	S_u	\sqrt{a}								
	Ju	Carga axia	ıl y flexión	Tor	sión					
(ksi)	(MPa)	(in ^{0.5})	(mm ^{0.5})	(in ^{0.5})	(mm ^{0.5})					
50	345	0.130	0.66	0.093	0.47					
55	380	0.118	0.59	0.087	0.44					
60	415	0.108	0.54	0.080	0.40					
70	485	0.093	0.47	0.070	0.35					
80	550	0.080	0.40	0.062	0.31					
90	620	0.070	0.35	0.055	0.28					
100	690	0.062	0.31	0.049	0.25					
110	760	0.055	0.28	0.044	0.22					
120	825	0.049	0.25	0.039	0.20					
130	895	0.044	0.22	0.035	0.18					
140	965	0.039	0.20	0.031	0.16					
160	1100	0.031	0.16	0.024	0.12					
180	1240	0.024	0.12	0.018	0.09					
200	1380	0.018	0.09	0.013	0.07					
220	1515	0.013	0.07	0.009	0.05					
240	1655	0.009	0.05							

Nota: los valores de la constante de Neuber para torsión equivalen a los de esfuerzos normales, cuando se toma un valor de S_u que sea 20 ksi (138 MPa) mayor que el del material.


DISEÑO DE MAQUINAS, R. NORTON. [16]

APENDICE P

FACTOR DE CONCENTRACION DE ESFUERZO PARA EJE A FLEXION



FACTOR DE CONCENTRACION DE ESFUERZO PARA EJE A TORSION

DISEÑO DE MAQUINAS, R. NORTON. [16]

APENDICE Q $\label{eq:policy} \mbox{INDICE DE SENSIBILIDAD A LA ENTALLA, } \mbox{''} \mbox{$q^{\prime\prime}$ PARA ACEROS }$

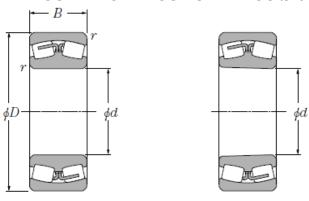
DISEÑO DE MAQUINAS, R. NORTON. [16]

APENDICE R

TIPOS DE RODAMIENTOS Y COMPARACIÓN DE SU DESEMPEÑO

Tipos de rodamier	ntos rígio	mientos dos de olas	Rodamientos de bolas a contacto angular	Rodamientos de doble hilera de bolas a contacto angular	Rodamientos de bolas a contacto angular apareados	Rodamientos autoalineables de bolas	Rodamientos de rodillos cilíndricos	Rodamientos de rodillos cilíndricos de una sola pestaña	Rodamientos de rodillos cilíndricos de doble pestaña	Rodamientos de doble hilera de rodillos cilíndricos	Rodamientos de agujas
Características					MA			日日			
Capacidad de mane	jo										
de carga		4	4	A	A	*	4	A	A	*	A
Carga rad	dial	-	4	4 -	4 -	4-		-	4		
Carga axial											
Alta velocidad [●]		***	***	**	***	**	***	***	***	***	***
Alta precisión rotaci		1 00 00	ተ	_ተ	***		***	☆☆	☆	***	
Bajo ruido/vibrac		***	***		☆		☆	☆	☆	☆	☆
Bajo torque fricci	onal ☆☆	***	ት ተ ተ		**	☆	☆			, ,,,,, ,	
Alta rigidez Resistencia a los,	•			**	☆☆	<u> </u>	**	**	☆☆	***	**
choques/vibracion Desalineamiento permi para anillos int./ext.			;	☆		*	☆☆	**	☆☆	**	☆☆
para anillos int./ext. Fijo en la dirección			0	0	Para arregios	☆☆☆ ©	¥	0	Ô		
Movible en la dirección			0	0	DB y DF Para arregios	0	0	0	9	0	<u></u>
Anillos interior/exterior sepa	-			O	OB DB	0	0	0	0	0	0
Diámetro interior có en el anillo interior						0	0			0	
Comentarios			Para arreglos apareados				Tipo NU, N	Tipo NJ, NF	Tipo NUP, NP, NH	Tipo NNU, NN	Tipo NA
Página de refere	ncia E	3-5	B-43	B-74	B-43	B-79	B-91	B-91	B-91	B-116	E-2
	odillos ónicos				ontaco ang	cilíndrico	s esféri	Págin refere	encia	acterístic	as
1.	1	1	-			•	4	<u> </u>	Carg	Carg	a Radial
***	☆	**	\$	7	ት ተ ተ	☆	*	A-6	66 Alta	velocida	d ^o
***			☆	7	ተቱቱ			A-3	31 Alta p	recisión re	otacional ⁹
			☆				3		Bajo	ruido/vik	oracion •
							5	A-6	Bajo	torque f	riccional ⁶
ሴ	ስ ተ ተ	**	*	7	ት	ተ ተ ተ	**	\ \ A-!		rigidez ⁰	
☆☆ ☆:	ሴ ሴ	ተ ተ ተ	*	7	t	ተተተ	**	¼ A-	18 Resis	stencia a l ues/vibrac	os, ⁰
☆		**	*	7	t	*	**	λ A-	79 Desal	ineamiento nillos int./ex	permitido ¹⁰
☆ ○		0	0	()	0	0	Α-			ión axial ^e
0		0	0					Α-	13 Movib	le en la dire	cción axial
0 0			0)	0	0				or separables
		0	1710,0					A-7	79 Diám en el	etro interi anillo inte	or cónico ⁶ rior
Para arregios apareados						Incluye rodamientos axiales de agui	as		Com	entarios	
		B-2		-269	B-269	,		69	Pági		

CATÁLOGO RODAMIENTOS DE BOLAS Y DE RODILLOS. [18]


APENDICE S APLICACIONES EN MAQUINARIAS Y VIDA REQUERIDA

Clasificación	Aplicacio	nes en maquinarias y v	Aplicaciones en maquinarias y vida requerida (referencia) $L_{ m 10h}$	ia) Lioh	×10³h
del servicio	~4	4~12	12~30	30~60	~09
Máquinas usadas por periodos cortos q utilizadas sólo ocasionalmente.	 Aplicaciones domésticas Herramientas de mano eléctricas 	Maquinaria agrícolaEquipos de oficina			
Utilización durante periodos cortos e intermitentemente, pero con requerimientos de alta confiabilidad.	Equipos médicosInstrumentos de medición	 Motores de acondicionadores de aire residenciales Equipos de construcc. Elevadores Grúas 	 Grúas (Poleas) 		
Máquinas que no se usan constantemente, pero se utilizan por períodos largos.	AutomóbilesVehículos de dos ruedas	Motores pequeños Buses/camiones Transmisiones de engranes en general Maquinas madereras	 Husillos de máquinas Motores industriales Trituradores Cribas vibratorias 	Transmisiones de engranes principales Máquinas de caucho/plástico Rodillos de calandrias Máquinas de impresión	
Máquinas en constante uso durante las 8 horas del día.		LaminadoresEscaleras eléctricasTransportadoresCentrífugas	Ejes de vehículos ferroviarios Accondicionadores de aire Motores grandes Centrifugas	Ejes de locomotoras Motores de tracción Elevadores mineros Volantes a presión	 Máquinas de fabricación de papel Equipos de propulsión para barcos
24 horas de operación continua, no interrumpible.					 Equipos de abastecimiento de agua Bombas de drenaje/ ventiladores para minería Equipos para generación de potencia

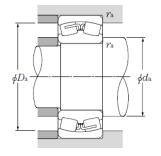
CATÁLOGO RODAMIENTOS DE BOLAS Y DE RODILLOS. [18]

APENDICE T

RODAMIENTOS DE RODILLOS ESFERICOS Ø 31 - Ø 75

Diámetro interior cilíndrico

Diámetro interior cónico


				cilinario	0			conico			
Dim	ensiones		es	dinámica	estática	ásica de carg dinámica	estática		les límites ¹		eros de ⁴⁾ mientos
	mm	1		ki	VI.	kg)T	r.p).m.	diámetro interior	diámetro ²⁾ interior
d	D	B	$T_{s \min}^{(3)}$	C_r	C_{cr}	C_{τ}	C_{ar}	grasa	aceite	cilíndrico	cónico
25	52	18	1	36.5	36	3 750	3 650	8 500	11 000	22205C	22205CK
30	62	20	1	49	49	5 000	5 000	7 500	9 500	22206C	22206CK
35	72	23	1.1	69.5	71	7 050	7 200	6 500	8 500	22207C	22207CK
	80	23	1.1	79	88.5	8 050	9 000	6 000	7 600	LH-22208C	LH-22208CK
40	90	23	1.5	88	90	8 950	9 150	4 900	6 400	21308C	21308CK
40	90	33	1.5	121	128	12 300	13 000	4 500	5 900	22308C	22308CK
	85	23	1.1	82.5	95	8 400	9 700	5 300	6 800	LH-22209C	LH-22209CK
45	100	25	1.5	102	106	10 400	10 800	4 400	5 700	21309C	21309CK
	100	36	1.5	148	167	15 100	17 000	4 100	5 300	22309C	22309CK
	90	23	1.1	86	102	8 750	10 400	4 900	6 300	LH-22210C	LH-22210CK
50	110	27	2	118	127	12 000	12 900	4 000	5 200	21310C	21310CK
	110	40	2	186	212	19 000	21 600	3 700	4 800	22310C	22310CK
	100	25	1.5	118	144	12 000	14 700	4 400	5 800	LH-22211E	LH-22211EK
	100	25	1.5	93.5	110	9 500	11 200	4 500	5 800	LH-22211B	LH-22211BK
55	120	29	2	145	163	14 800	16 600	3 700	4 800	21311	21311K
	120	43	2	204	234	20 800	23 900	3 400	4 400	22311B	22311BK
	110	28	1.5	150	182	15 300	18 500	4 000	5 300	LH-22212E	LH-22212EK
	110	28	1.5	115	147	11 700	15 000	4 100	5 300	LH-22212B	LH-22212BK
60	130	31	2.1	167	191	17 100	19 500	3 400	4 400	21312	21312K
	130	46	2.1	238	273	24 300	27 800	3 100	4 000	22312B	22312BK
	120	31	1.5	177	217	18 000	22 200	3 800	5 000	LH-22213E	LH-22213EK
	120	31	1.5	143	179	14 600	18 300	3 900		LH-22213B	LH-22213BK
65	140	33	2.1	194	228	19 800	23 200	3 100	4 000	21313	21313K
	140	48	2.1	265	320	27 100	32 500	2 800	3 700	22313B	22313BK
	125	31	1.5	184	232	18 700	23 600	3 400	4 600	LH-22214E	LH-22214EK
	125	31	1.5	154	201	15 700	20 500	3 500		LH-22214B	LH-22214BK
70	150	35	2.1	220	262	22 400	26 800	2 900	3 800	21314	21314K
	150	51	2.1	325	380	33 000	39 000	2 700	3 500	22314B	22314BK

RODAMIENTOS DE RODILLOS ESFERICOS Ø 75 - Ø 95

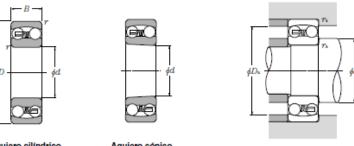
Dim	ensiones mm		96	dinámica		ásica de carg dinámica k	estática	Velocidad r.p.			eros de ⁴⁾ mientos
d	D	B	$r_{ m amin}^{(3)}$	C_{τ}	Cur	C_{τ}	Cor	grasa	aceite	diámetro interior cilíndrico	diámetro ²⁾ interior cónico
75	130	31	1.5	166	223	16 900	22 800	3 200	4 200	LH-22215B	LH-22215BK
	160	37	2.1	239	287	24 300	29 300	2 700	3 500	21315	21315K
	160	55	2.1	330	410	33 500	42 000	2 500	3 200	22315B	22315BK
80	140	33	2	213	277	21 700	28 200	3 000	4 000	LH-22216E	LH-22216EK
	140	33	2	179	239	18 300	24 400	3 100	4 000	LH-22216B	LH-22216BK
	170	39	2.1	260	315	26 500	32 000	2 500	3 300	21316	21316K
	170	58	2.1	385	470	39 500	48 000	2 300	3 000	22316B	22316BK
85	150	36	2	251	320	25 600	33 000	2 800	3 800	LH-22217E	LH-22217EK
	150	36	2	206	272	21 000	27 800	2 900	3 800	LH-22217B	LH-22217BK
	180	41	3	289	355	29 500	36 000	2 400	3 100	21317	21317K
	180	60	3	415	510	42 500	52 000	2 200	2 900	22317B	22317BK
90	160	40	2	292	385	29 800	39 500	2 600	3 500	LH-22218E	LH-22218EK
	160	40	2	256	345	26 200	35 000	2 700	3 500	LH-22218B	LH-22218BK
	160	52.4	2	315	455	32 500	46 500	2 200	2 800	23218B	23218BK
	190	43	3	320	400	32 500	40 500	2 300	3 000	21318	21318K
	190	64	3	480	590	49 000	60 000	2 100	2 700	22318B	22318BK
95	170	43	2.1	294	390	30 000	39 500	2 500	3 300	22219B	22219BK
	200	45	3	335	420	34 000	43 000	2 100	2 700	21319	21319K
	200	67	3	500	615	51 000	63 000	1 900	2 500	22319B	22319BK

- 1) Este valor es alcanzado con jaulas maquinadas y jaulas de resina moldeada; para jaulas prensadas sólo es admisible el 75% de este valor.
- 2) La letra "K" indica rodamientos que tienen diámetro interior cónico con una razón de conicidad de 1:12.
- 3) Dimensión mínima permitida para el chaflán r. Números de rodamientos con el prefijo LH indican rodamientos de la serie LH.

COEFICIENTES DE RODILLOS ESFERICOS Ø 31 - Ø 92

Carga radial equivalente del rodamiento dinámica

 $P_r = XF_r + YF_a$


$\frac{Fa}{Fr}$	≦ e	$\frac{Fa}{Fr}$	>e
X	Y	X	Y
1	Y_1	0.67	Y_2

estática $P_{or}=F_r+Y_oF_a$ Para los valores de e, Y_2 y Y_o observar la tabla debajo.

Dir	mensione	s de homb	oros y filet	es	Constante		actores o arga axi		Masa	(aprox.)
da		mm	D _s	Tu			агуа алк	31	kg diámetro interior	diámetro interior
min	max	min	max	max	в	Y_1	Y_2	Y _o	cilíndrico	cónico
31	_	_	46	1	0.35	1.92	2.86	1.88	0.186	0.182
36	_	_	56	1	0.33	2.07	3.09	2.03	0.287	0.282
42	_	_	65	1	0.32	2.09	3.11	2.04	0.446	0.437
47 48.5 48.5	=	_	73 81.5 81.5	1 1.5 1.5	0.29 0.26 0.38	2.35 2.55 1.76	3.50 3.80 2.62	2.30 2.50 1.72	0.526 0.705 0.974	0.515 0.694 0.951
52 53.5 53.5	=	=	78 91.5 91.5	1 1.5 1.5	0.27 0.26 0.36	2.50 2.60 1.86	3.72 3.87 2.77	2.44 2.54 1.82	0.584 0.927 1.33	0.572 0.912 1.3
57 60 60	=	=	83 100 100	1 2 2	0.25 0.26 0.37	2.69 2.64 1.80	4.01 3.93 2.69	2.63 2.58 1.76	0.63 1.21 1.79	0.616 1.19 1.75
63.5 63.5 65 65	67 — —	89.5 — — —	91.5 91.5 110 110	1.5 1.5 2 2	0.24 0.28 0.25 0.40	2.83 2.42 2.69 1.68	4.21 3.61 4.01 2.50	2.76 2.37 2.63 1.64	0.808 0.85 1.71 2.3	0.79 0.832 1.69 2.25
68.5 68.5 72 72	72 — — —	98 — — —	101.5 101.5 118 118	1.5 1.5 2 2	0.25 0.27 0.25 0.42	2.75 2.49 2.69 1.62	4.09 3.71 4.00 2.42	2.69 2.44 2.63 1.59	1.09 1.15 2.1 2.9	1.07 1.13 2.07 2.83
73.5 73.5 77 77	78.5 — — —	107 — — —	111.5 111.5 128 128	1.5 1.5 2 2	0.25 0.28 0.25 0.38	2.71 2.42 2.69 1.79	4.04 3.60 4.00 2.67	2.65 2.37 2.63 1.75	1.43 1.5 2.55 3.45	1.4 1.47 2.51 3.37
78.5 78.5 82 82	83.5 — — —	112.5 — — —	116.5 116.5 138 138	1.5 1.5 2 2	0.24 0.26 0.25 0.37	2.86 2.55 2.69 1.81	4.25 3.80 4.00 2.70	2.79 2.50 2.63 1.77	1.51 1.55 3.18 4.22	1.47 1.52 3.14 4.12

Nota: Nosotros podemos fabricar bajo pedido, rodamientos con ranura y agujeros de lubricación en el anillo exterior. Estos rodamientos se identifican agregando el sufijo "D1" al final del número principal del rodamiento. (Ejemplo: 22214BD1)

RODAMIENTOS DE RODILLOS ESFERICOS Ø 75 - Ø 90

Agujero cilíndrico

Agujero cónico

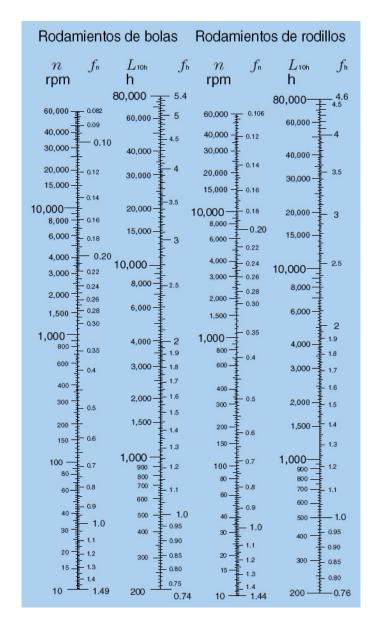
Di	mension	es princ	cipales			ásica de ca		Velocidad	des límites		ros de		ensione	
		mm		dinámica	estática kN	dinámica k	estatica. gf	r.p	.m.	rodam diámetro	diámetro ²⁾	hom	bros y fi mm	iletes
d	D	B	7xmin ¹⁾	C_{r}	C_{or}	C_{τ}	C_{or}	grasa	aceite	interior cilindrico	interior cónico	d₃ min	D _x max	T _{XI} max
40	80 80 90 90	18 23 23 33	1.1 1.1 1.5 1.5	19.3 22.4 29.8 45.5	6.50 7.35 9.70 13.5	1 970 2 290 3 050 4 650	665 750 990 1 380	7 500 7 500 6 700 6 300	9 000 9 000 8 500 8 000	1208S 2208S 1308S 2308S	1208SK 2208SK 1308SK 2308SK	46.5 46.5 48.0 48.0	73.5 73.5 82.0 82.0	1 1.5 1.5
45	85	19	1.1	22.0	7.35	2 240	750	7 100	8 500	1209S	1209SK	51.5	78.5	1
	85	23	1.1	23.3	8.15	2 380	830	7 100	8 500	2209S	2209SK	51.5	78.5	1
	100	25	1.5	38.5	12.7	3 900	1 300	6 000	7 500	1309S	1309SK	53.0	92.0	1.5
	100	36	1.5	55.0	16.7	5 600	1 700	5 600	7 100	2309S	2309SK	53.0	92.0	1.5
50	90	20	1.1	22.8	8.10	2 330	830	6 300	8 000	1210S	1210SK	56.5	83.5	1
	90	23	1.1	23.3	8.45	2 380	865	6 300	8 000	2210S	2210SK	56.5	83.5	1
	110	27	2	43.5	14.1	4 450	1 440	5 600	6 700	1310S	1310SK	59.0	101	2
	110	40	2	65.0	20.2	6 650	2 060	5 000	6 300	2310S	2310SK	59.0	101	2
55	100	21	1.5	26.9	10.0	2 750	1 020	6 000	7 100	1211S	1211SK	63.0	92.0	1.5
	100	25	1.5	26.7	9.90	2 720	1 010	6 000	7 100	2211S	2211SK	63.0	92.0	1.5
	120	29	2	51.5	17.9	5 250	1 820	5 000	6 300	1311S	1311SK	64.0	111	2
	120	43	2	76.5	24.0	7 800	2 450	4 800	6 000	2311S	2311SK	64.0	111	2
60	110	22	1.5	30.5	11.5	3 100	1 180	5 300	6 300	1212S	1212SK	68.0	102	1.5
	110	28	1.5	34.0	12.6	3 500	1 290	5 300	6 300	2212S	2212SK	68.0	102	1.5
	130	31	2.1	57.5	20.8	5 900	2 130	4 500	5 600	1312S	1312SK	71.0	119	2
	130	46	2.1	88.5	28.3	9 000	2 880	4 300	5 300	2312S	2312SK	71.0	119	2
65	120	23	1.5	31.0	12.5	3 150	1 280	4 800	6 000	1213S	1213SK	73.0	112	1.5
	120	31	1.5	43.5	16.4	4 450	1 670	4 800	6 000	2213S	2213SK	73.0	112	1.5
	140	33	2.1	62.5	22.9	6 350	2 330	4 300	5 300	1313S	1313SK	76.0	129	2
	140	48	2.1	97.0	32.5	9 900	3 300	3 800	4 800	2313S	2313SK	76.0	129	2
70	125 125 150 150	24 31 35 51	1.5 1.5 2.1 2.1	35.0 44.0 75.0 111	13.8 17.1 27.7 37.5	3 550 4 500 7 650 11 300	1 410 1 740 2 830 3 850	4 800 4 500 4 000 3 600	5 600 5 600 5 000 4 500	1214S 2214S 1314S 2314S	_ _ _	78.0 78.0 81.0 81.0	117 117 139 139	1.5 1.5 2 2
75	130	25	1.5	39.0	15.7	4 000	1 600	4 300	5 300	1215S	1215SK	83.0	122	1.5
	130	31	1.5	44.5	17.8	4 550	1 820	4 300	5 300	2215S	2215SK	83.0	122	1.5
	160	37	2.1	80.0	30.0	8 150	3 050	3 800	4 500	1315S	1315SK	86.0	149	2
	160	55	2.1	125	43.0	12 700	4 400	3 400	4 300	2315S	2315SK	86.0	149	2
80	140	26	2	40.0	17.0	4 100	1 730	4 000	5 000	1216S	1216SK	89	131	2
	140	33	2	49.0	19.9	5 000	2 030	4 000	5 000	2216S	2216SK	89	131	2
	170	39	2.1	89.0	33.0	9 100	3 400	3 600	4 300	1316S	1316SK	91	159	2
	170	58	2.1	130	45.0	13 200	4 600	3 200	4 000	2316S	2316SK	91	159	2
85	150	28	2	49.5	20.8	5 050	2 120	3 800	4 500	1217S	1217SK	94	141	2
	150	36	2	58.5	23.6	5 950	2 400	3 800	4 800	2217S	2217SK	94	141	2
	180	41	3	98.5	38.0	10 000	3 850	3 400	4 000	1317S	1317SK	98	167	2.5
	180	60	3	142	51.5	14 500	5 250	3 000	3 800	2317S	2317SK	98	167	2.5
90	160	30	2	57.5	23.5	5 850	2 400	3 600	4 300	1218S	1218SK	99	151	2
	160	40	2	70.5	28.7	7 200	2 930	3 600	4 300	2218S	2218SK	99	151	2
	190	43	3	117	44.5	12 000	4 550	3 200	3 800	1318S	1318SK	103	177	2.5
	190	64	3	154	57.5	15 700	5 850	2 800	3 600	2318S	2318SK	103	177	2.5

COEFICIENTES PARA RODAMIENTOS

AUTOALINEABLES DE BOLA Ø 31 - Ø 48.5

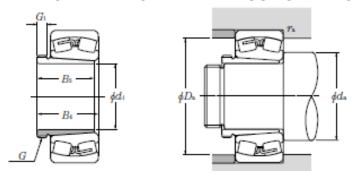
Carga radial equivalente del rodamiento dinámica

$P_{r}=2$	$P_{\rm r}=XF_{\rm r}+YF_{\rm a}$											
$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_a}{F_r} > e$										
X	Y	$X \mid Y$										
1	Y_1	0.65	Y_2									


estática

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$

Para los valores de e, Y_1 , Y_2 y Y_0 ver la tabla debajo.


Constante	Factor	es de carga	axial	Masa
				kg
е	Y_1	Y_2	Y_{\circ}	(aprox.)
0.16	3.9	6.0	4.1	1.73
0.25	2.5	3.9	2.7	1.97
0.22	2.9	4.5	3.1	4.31
0.39	1.6	2.5	1.7	5.54
0.17	3.7	5.7	3.8	2.09
0.25	2.5	3.9	2.6	2.48
0.21	2.9	4.6	3.1	5.13
0.37	1.7	2.6	1.8	6.56
0.17	3.8	5.8	3.9	2.55
0.27	2.4	3.7	2.5	3.13
0.22	2.8	4.3	2.9	5.94
0.38	1.7	2.6	1.7	7.76
0.17	3.7	5.8	3.9	3.21
0.27	2.4	3.7	2.5	3.87
0.23	2.8	4.3	2.9	6.84
0.38	1.7	2.6	1.8	9.01
0.17	3.6	5.6	3.8	3.82
0.27	2.4	3.7	2.5	4.53
0.24	2.7	4.1	2.8	8.46
0.38	1.7	2.6	1.8	11.6
0.18	3.6	5.5	3.7	4.52
0.28	2.3	3.5	2.4	5.64
0.23	2.7	4.2	2.9	10.0
0.38	1.7	2.6	1.7	14.4
0.18	3.7	5.7	3.9	5.33
0.28	2.2	3.5	2.3	6.64
0.22	2.8	4.4	3.0	12.0
0.37	1.7	2.6	1.8	17.4

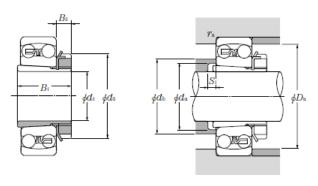
APENDICE U
FACTOR DE VIDA Y FACTOR DE VELOCIDAD

APENDICE V

MANGUITOS DE DESMONTAJE Ø 35 - Ø 80 PARA RODAMIENTO DE CILINDROS ESFERICOS

*	Dimensiones principales mm				Números de rodamientos	Dimensiones de hombros y filetes					Masa ³⁾	Número ⁴⁾ de la tuerca
	rosca ¹⁾	m				d		mm E).	Tax	kg	adecuada
d_1	G	B_3	G_1	$B\epsilon^{(2)}$		min	max	min	max	max	(aprox.)	
35	M45 × 1.5 M45 × 1.5 M45 × 1.5	29 29 40	6 6 7	32 32 43	LH-22208CK ; AH 308 21308CK ; AH 308 22308CK ; AH 2308	47 48.5 48.5	1		73 81.5 81.5	1 1.5 1.5	0.09 0.09 0.128	AN09 AN09 AN09
40	$\begin{array}{l} \text{M50} \times \text{1.5} \\ \text{M50} \times \text{1.5} \\ \text{M50} \times \text{1.5} \end{array}$	31 31 44	6 6 7	34 34 47	LH-22209CK ; AH 309 21309CK ; AH 309 22309CK ; AH 2309	52 53.5 53.5			78 91.5 91.5	1 1.5 1.5	0.109 0.109 0.164	AN10 AN10 AN10
45	M55 × 2 M55 × 2 M55 × 2	35 35 50	7 7 9	38 38 53	LH-22210CK ; AHX 310 21310CK ; AHX 310 22310CK ; AHX 2310	57 60 60		=	83 100 100	1 2 2	0.137 0.137 0.209	AN11 AN11 AN11
50	M60 × 2 M60 × 2 M60 × 2 M60 × 2	37 37 37 54	7 7 7 10	40 40 40 57	LH-22211EK; AHX 311 LH-22211BK; AHX 311 21311K ; AHX 311 22311BK; AHX 2311	63.5 63.5 65 65	67 — —	89.5 — —	91.5 91.5 110 110	1.5 1.5 2 2	0.161 0.161 0.161 0.253	AN12 AN12 AN12 AN12
55	M65 × 2 M65 × 2 M65 × 2 M65 × 2	40 40 40 58	8 8 8 11	43 43 43 61	LH-22212EK ;AHX 312 LH-22212BK ;AHX 312 21312K ;AHX 312 22312BK ;AHX 2312	68.5 68.5 72 72	72 — —	98 — —	101.5 101.5 118 118	1.5 1.5 2 2	0.189 0.189 0.189 0.297	AN13 AN13 AN13 AN13
60	M75 × 2 M75 × 2 M75 × 2 M75 × 2	42 42 42 61	8 8 8 12	45 45 45 64	LH-22213EK ;AH 313 LH-22213BK ;AH 313 21313K ;AH 313 22313BK ;AH 2313	73.5 73.5 77 77	78.5 — —	107 — —	111.5 111.5 128 128	1.5 1.5 2 2	0.253 0.253 0.253 0.395	AN15 AN15 AN15 AN15
65	M80 × 2 M80 × 2 M80 × 2 M80 × 2	43 43 43 64	8 8 8 12	47 47 47 68	LH-22214EK ; AH 314 LH-22214BK ; AH 314 21314K ; AH 314 22314BK ; AHX 2314	78.5 78.5 82 82	83.5 — — —	112.5 — — —	116.5 116.5 138 138	1.5 1.5 2 2	0.28 0.28 0.28 0.466	AN16 AN16 AN16 AN16
70	M85 × 2 M85 × 2 M85 × 2 M85 × 2	45 45 45 68	8 8 8 12	49 49 49 72	LH-22215EK ; AH 315 LH-22215BK ; AH 315 21315K ; AH 315 22315BK ; AHX 2315	83.5 83.5 87 87	89 — —	117.5 — — —	121.5 121.5 148 148	1.5 1.5 2 2	0.313 0.313 0.313 0.534	AN17 AN17 AN17 AN17
75	M90 × 2 M90 × 2 M90 × 2 M90 × 2	48 48 48 71	8 8 8 12	52 52 52 75	LH-22216EK;AH 316 LH-22216BK;AH 316 21316K ;AH 316 22316BK;AHX 2316	90 90 92 92	94.5 — — —	125.5 — — —	130 130 158 158	2 2 2 2	0.365 0.365 0.365 0.597	AN18 AN18 AN18 AN18
80	M95 × 2 M95 × 2 M95 × 2 M95 × 2	52 52 52 74	9 9 9 13	56 56 56 78	LH-22217EK; AHX 317 LH-22217BK; AHX 317 21317K ; AHX 317 22317BK; AHX 2317	95 95 99	100.5 — —	135 — —	140 140 166 166	2 2 2.5 2.5	0.429 0.429 0.429 0.67	AN19 AN19 AN19 AN19

MANGUITOS DE DESMONTAJE Ø 45 - Ø 80 PARA RODAMIENTO DE CILINDROS ESFERICOS


	Dimensiones principales			8	Números de rodamientos	D	imensiones	de hon	nbros y fil	letes	Masa ³⁾	Número ⁴ de la
		nm						mm			kg	tuerca adecuada
d:	rosca ¹⁾ G	B_2	G_1	$B_4^{(2)}$		min	d _a	min	D _x	7°ax max	(aprox.)	
	-	***		***					***************************************		(aprox.)	
	M100 × 2	53	9	57	LH-22218EK; AHX 318	100	107.5	144	150	2	0.461	AN20
	M100 × 2	53	9	57	LH-22218BK; AHX 318	100	_	_	150	2	0.461	AN20
85		63	10	67	23218BK;AHX 3218	100	_	_	150	2	0.576	AN20
	M100 × 2	53	9	57	21318K ;AHX 318	104	_	_	176	2.5	0.461	AN20
	M100 × 2	79	14	83	22318BK; AHX 2318	104	_	_	176	2.5	0.779	AN20
	M105 × 2	57	10	61	22219BK;AHX 319	107	_	_	158	2	0.532	AN21
90	M105 × 2	57	10	61	21319K ; AHX 319	109	_	_	186	2.5	0.532	AN21
	M105 × 2	85	16	89	22319BK; AHX 2319	109	_	_	186	2.5	0.886	AN21
	M110 × 2	59	10	63	22220BK;AHX 320	112	_	_	168	2	0.582	AN22
95	M110 × 2	73	11	77	23220BK; AHX 3220	112	_	_	168	2	0.767	AN22
95	M110 × 2	59	10	63	21320K ; AHX 320	114	_	_	201	2.5	0.582	AN22
	M110 × 2	90	16	94	22320BK; AHX 2320	114	_	_	201	2.5	0.998	AN22
	M120 × 2	68	11	72	23122BK ; AHX 3122	120	_	_	170	2	0.76	AN24
	M115 × 2	82	13	91	24122BK30; AH 24122	120	_	_	170	2	0.73	AN23
10	M120 × 2	68	11	72	22222BK ; AHX 3122	122	_	_	188	2	0.76	AN24
10	M125 × 2	82	11	86	23222BK ; AHX 3222	122	_	_	188	2	1.04	AN25
	M120 × 2	63	12	67	21322K ; AHX 322	124	_	_	226	2.5	0.663	AN24
	M125 × 2	98	16	102	22322BK ; AHX 2322	124	_	_	226	2.5	1.35	AN25
	M130 × 2	60	13	64	23024BK ; AHX 3024	130	_	_	170	2	0.75	AN26
11	M125 × 2	73	13	82	24024BK30; AH 24024	130	_	_	170	2	0.65	AN25
	M125 × 2	73	13	82	24024CK30; AH 24024	130	_	_	170	2	0.65	AN25
	M130 × 2	75	12	79	23124BK ; AHX 3124	130	_	_	190	2	0.95	AN26

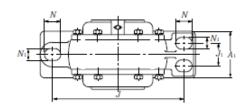
Indica la masa del manguito.

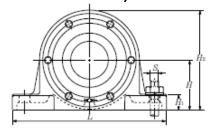
Nota: 1. Por favor refiérase a las páginas B-236 a B-239 para las dimensiones de los rodamientos, sus capacidades básicas de carga y masas.

- 2. Por favor refiérase a las páginas C-2 a C-10 y C-12 a C-14 para las dimensiones de las tuercas y arandelas de los manguitos.
- 3. Los manguitos de fijación con el sufijo "X" significan manguitos con ranura más angosta, y usan arandelas con pestaña interior recta.

MANGUITOS DE DESMONTAJE Ø 85 - Ø 100 PARA RODAMIENTO DE CILINDROS ESFERICOS

[Dimensio	nes principa	lles	Números de rodamientos		Dimension	es de homb	oros y filetes	3	Masa ¹⁾
		mm		de rodamientos			mm			kg
	D.		T)		d_a	$d_{ extsf{b}}$	S_1	$D_{\rm a}$	$r_{\rm as}$, i
d_1	B ₁	d_2	B ₂		min	max	min	max	max	(aprox.)
50	45 45	75 75	12 12	2211SK;H311X 1311SK;H311X	60 60	69 73	11 6	91.5 110	1.5 2	0.345 0.345
50	45 59	75 75	12	2311SK; H2311X	61	73 71	6	110	2	0.345
	39	75	12	2311010,1123117	01	/ 1		110		0.42
	38	80	13	1212SK;H 212X	64	76	5	101.5	1.5	0.346
	47	80	13	2212SK;H 312X	65	75	9	101.5	1.5	0.394
55	47	80	13	1312SK; H 312X	65	79	5	118	2	0.394
	62	80	13	2312SK; H2312X	66	77	5	118	2	0.481
	40	85	14	1213SK;H 213X	70	83	5	111.5	1.5	0.401
	50	85	14	2213SK;H 313X	70	81	8	111.5	1.5	0.458
60	50	85	14	1313SK;H 313X	70	85	5	128	2	0.458
	65	85	14	2313SK; H2313X	72	84	5	128	2	0.557
	40	00	45	404E0K-II 04EV	00	93		101.5	4.5	0.707
	43 55	98 98	15 15	1215SK;H 215X	80 80	93	5 12	121.5 121.5	1.5 1.5	0.707 0.831
65	55 55	98 98	15	2215SK;H 315X 1315SK;H 315X	80	93 97	5	148	2	0.831
	73	98	15	2315SK; H2315X	82	96	5	148	2	1.05
				20100K,H2010X				140		1.00
	46	105	17	1216SK;H 216X	85	100	5	130	2	0.882
70	59	105	17	2216SK; H 316X	86	98	12	130	2	1.03
70	59	105	17	1316SK; H316X	86	103	5	158	2	1.03
	78	105	17	2316SK; H2316X	87	103	5	158	2	1.28
	50	110	18	1217SK;H 217X	90	106	6	140	2	1.02
75	63	110	18	2217SK;H 317X	91	104	12	140	2	1.18
15	63	110	18	1317SK; H 317X	91	110	6	166	2.5	1.18
	82	110	18	2317SK; H2317X	94	110	6	166	2.5	1.45
	52	120	18	1218SK;H 218X	95	111	6	150	2	1.19
	65	120	18	2218SK;H 318X	96	112	10	150	2	1.37
80	65	120	18	1318SK;H 318X	96	116	6	176	2.5	1.37
	86	120	18	2318SK;H2318X	99	117	6	176	2.5	1.69
85	68	125	19	1319SK;H 319X	102	123	7	186	2.5	1.56
05	90	125	19	2319SK; H2319X	105	123	7	186	2.5	1.92
	58	130	20	1220SK;H 220X	106	125	7	168	2	1.49
00	71	130	20	2220SK;H 320X	107	123	8	168	2	1.69
90	71	130	20	1320SK;H 320X	107	130	7	201	2.5	1.69
	97	130	20	2320SK; H2320X	110	129	7	201	2.5	2.15
	63	145	21	1222SK; H 222X	116	138	7	188	2	1.93
	77	145	21	2222SK;H 322X	117	137	6	188	2	2.18
100	77	145	21	1322SK;H 322X	117	150	9	226	2.5	2.18
	105	145	21	2322SK;H2322X	121	142	7	226	2.5	2.74


APENDICE W


COEFICIENTES DE FRICCIÓN PARA RODAMIENTOS (REFERENCIA)

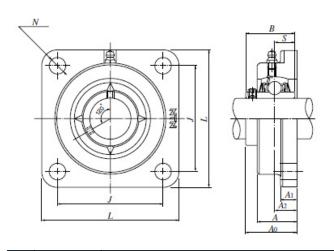
Tipo de rodamiento	Coefíciente $\mu \times 10^{-3}$
Rodamientos rígidos de bolas	1.0~1.5
Rodamientos de bolas a contacto angular	1.2~1.8
Rodamientos oscilantes de bolas	0.8~1.2
Rodamientos de rodillos cilíndricos	1.0~1.5
Rodamientos de agujas	2.0~3.0
Rodamientos de rodillos cónicos	1.7~2.5
Rodamientos de rodillos esféricos	2.0~2.5
Rodamientos axiales de bolas	1.0~1.5
Rodamientos axiales de rodillos	2.0~3.0

APENDICE X

CHUMACERAS (PLUMBER BLOCKS)

d1 25~110mm

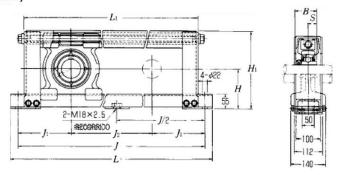
Shaft dia. Bearing BAS code 9				Abutment and fillet dimensions												
S	haft di	a.		BAS c	ode 0	Nominal	number		,	Abutme	ent an	d fillet	dime	nsions		
d	mm d2	d₃	numbers	main body	cover	Self-aligning ball bearings	spherical roller bearings	D	Н	J	J_1	mm Nı	N	L	Α	Αι
25	20	30	SV205	V052	052C	1205 2205	Ξ	52	45	130	-	16	20	165	73	46
30	25	35	SV206	V062	062C	1206 2206	_	62	50	150	-	16	20	185	80	52
35	30	45	SV207	V072	072C	1207 2207	=	72	56	150		16	20	185	85	52
40	35	50	SV208	V080	080C	1208 2208	22208C	80	60	170	-	16	20	205	95	60
45	40	55	SV209	V085	085C	1209 2209	22209C	85	63	170	-	16	23	205	98	60
50	45	60	SV210	V090	090C	1210 2210	22210C	90	67	170	-	16	23	205	100	60
55	50	65	SV211	V100	100C	1211 2211	22211B 22211E	100	71	210	_	16	23	255	106	70
60	55	70	SV212	V110	110C	1212 2212	22212B 22212E	110	80	210	-	21	25	255	112	70
65	60	75	SV213	V120	120C	1213 2213	22213B 22213E	120	85	230	-	21	25	275	118	80
70	60	80	SV214	V125	125C	1214 2214	22214B 22214E	125	90	230	_	21	25	280	118	80
75	65	85	SV215	V130	130C	1215 2215	22215B 22215E	130	90	230	_	21	25	280	118	80
80	70	90	SV216	V140	140C	1216 2216	22216B 22216E	140	100	260	-	25	30	315	136	90
85	75	95	SV217	V150	150C	1217 2217	22217B 22217E	150	100	260	-	25	30	315	140	90
90	80	100	SV218	V160	160C	1218 2218	22218B 23218B 23218E	160	112	290	_	25	30	345	150	100
95	85	110	SV219	V170	170C	1219 2219	 22219B	170	112	290	_	25	30	345	165	100
100	90	115	SV220	V180	180C	1220 2220	22220B 23220B	180	125	320	56	23	32	380	170	110
110	100	125	SV222	V200	200C	1222 2222	22222B 23222B	200	132	350	60	23	32	410	190	120


CATÁLOGO 2500/E PLUMMER BLOCKS. [18]

CHUMACERA TIPO BRIDA

Square Flange Unit; UCFG2 series

Cylindrical bore with set screw



Bore dia.	Dad awarbas		1 1		undan	y dimen	sions	mm			Nominal bolt	Insert bearing	Basic dynamic	Basic static	Housing	Mass kg
mm	Part number	L	J	A2	A 1	A	N	A_0	В	S	dia.	number	kN Cr	rated load kN Cor	part number	(Ref.)
12	UCFG201D1											UC201D1				0.7
15	UCFG202D1	86	64	15	11	25.5		33.3	31	12.7		UC202D1	12.8	6.65	FG204D1	0.7
17	UCFG203D1	86	64	15	- 11	20.0	12	33.3	31	12.7	M10	UC203D1	12.0	0.00	FG204D1	0.6
20	UCFG204D1						12		· //		MIO	UC204D1				0.6
25	UCFG205D1	95	70	16	13	27		35.7	34	14.3		UC205D1	14.0	7.85	FG205D1	0.8
30	UCFG206D1	108	83	18	2	31		40.2	38.1	15.9		UC206D1	19.5	11.3	FG206D1	1.0
35	UCFG207D1	117	92	19	15	34	14	44.4	42.9	17.5	M12	UC207D1	25.7	15.3	FG207D1	1.4
40	UCFG208D1	130	102	21	2	36		51.2	49.2			UC208D1	29.1	17.8	FG208D1	1.8
45	UCFG209D1	137	105	20	16	38	16	52.2	49.2	19	M14	UC209D1	32.5	20.4	FG209D1	2.2
50	UCFG210D1	143	111	22	9	40		54.6	51.6			UC210D1	35.0	23.2	FG210D1	2.4
55	UCFG211D1	162	130	25	18	43		58.4	55.6	22.2		UC211D1	43.5	29.2	FG211D1	3.6
60	UCFG212D1	175	143	29	0	48		68.7	65.1	25.4		UC212D1	52.5	36.0	FG212D1	4.4
65	UCFG213D1	187	149	30		50	19	69.7	65.1	25.4	M16	UC213D1	57.5	40.0	FG213D1	5.5
70	UCFG214D1	193	152	31	22	54		75.4	74.6	30.2		UC214D1	62.0	44.0	FG214D1	6.1
75	UCFG215D1	200	159	34	22	56		78.5	77.8	33.3		UC215D1	66.0	49.5	FG215D1	6.9
80	UCFG216D1	208	165	34		58		83.3	82.6	33.3		UC216D1	72.5	53.0	FG216D1	8.1
85	UCFG217D1	220	175	36	24	63	23	87.6	85.7	34.1	M20	UC217D1	83.5	64.0	FG217D1	9.3
90	UCFG218D1	235	187	40	24	68		96.3	96	39.7		UC218D1	96.0	71.5	FG218D1	11

UNIDAD EXTENSORA TIPO M CON TORNILLO DE FIJACIÓN PRISIONERO

UCM3 NTN

Unidad extensora tipo M Tipo con tornillo de fijación (Prisionero)

Diámetro del eje	Número ¹⁾ de la chumacera			Di	me na	iones	nomin	ales			Tamaño del pemo	Carga ^a máx.reco- mendada	Número del rodamiento	bá de d	acidad aica carga	Peso de la chu- macera
mm		Н	L	J	J:	mm Lı	J1	Hi	В	S		N			N estática Cor	kg
	UCM208-50	97	870	810	500	760	155	190	49.2	19	M18	5 190	UC208D1	29 100	17 800	20
	UCM208-60	97	970	910	600	860	155	190	49.2	19	M18	5 190	UC208D1	29 100	17 800	22
40	U CM 208-70	97 1			700	960	155	190	49.2	19	M18	5 190	UC208D1		17 800	23
	UCM208-80		170 1			1 060	155	190	49.2	19	M18	5 190	UC208D1		17 800	24
	UCM208-90	97 1	270 1	210	900	1 160	155	190	49.2	19	M18	5 190	UC208D1	29 100	17 800	30
	UCM209-50	102	880	820	500	770	160	200	49.2	19	M18	5 880	UC209D1	32 500	20 400	21
100703	UCM209-60	102	980	920	600	870	160	200	49.2	19	M18	5 880	UC209D1	32 500	20 400	23
45	U CM 209-70	102 1	080 1	020	700	970	160	200	49.2	19	M18	5 880	UC209D1	32 500	20 400	24
	UCM209-80		180 1			1 070	160	200	49.2	19	M18	5 880	UC209D1	32 500	20 400	30
	UCM209-90	102 1	280 1	220	900	1 170	160	200	49.2	19	M18	5 880	UC209D1	32 500	20 400	32
	UCM210-50	107	890	830	500	780	165	210	51.6	19	M18	6 460	UC210D1	35 000	23 200	23
	UCM210-60	107	990	930	600	880	165	210	51.6	19	M18	6 460	UC210D1	35 000	23 200	24
50	U CM 21 0-70	107 1	090 1	030	700	980	165	210	51.6	19	M18	6 460	UC210D1	35 000	23 200	30
	UCM210-80		190 1			1 080	165	210	51.6	19	M18	6 460	UC210D1		23 200	32
	UCM210-90	107 1	290 1	230	900	1 180	165	210	51.6	19	M18	6 460	UC210D1	35 000	23 200	33
	UCM211-50	115	910	850	500	800	175	230	55.6	22.2	M18	6 460	UC211D1	43 500	29 200	25
	UCM211-60	115 1	010	950	600	900	175	230	55.6	22.2	M18	6 460	UC211D1	43 500	29 200	27
55	U CM 21 1-70	115 1	110 1	050	700	1 000	175	230	55.6	22.2	M18	6 460	UC211D1	43 500	29 200	32
	UCM211-80		210 1			1 100	175	230	55.6	22.2	M18	6 460	UC211D1	43 500		34
	UCM211-90	115 1	310 1	250	900	1 200	175	230	55.6	22.2	M18	6 460	UC211D1	43 500	29 200	36
	UCM316-50	160	1 000) 9	340	500	890	220	315 8	6 34	M18	19 600	UC316D1	123 0 0 0	86 500	54
	UCM316-60	160	1 100	10	040	600	990	220	315 8	6 34	M18	19 600	UC316D1	123 000	86 500	57
80	UCM316-70	160	1 200	11	140	700	1 090	220	315 8	6 34	M18	19600	UC316D1	123 000	86 500	60
	UCM316-80	160	1 300	12	240	800	1 190	220	315 8	6 34	M18	19600	UC316D1	123 000	86 500	63
	UCM316-90	160	1 400	13	340	900	1 290	220	315 8	6 34	M18	19600	UC316D1	123 000	86 500	66
	UCM317-50	165	1 020) 9	960	500	910	230	325 9	6 40	M18	19 600	UC317D1	133 000	97 000	60
	UCM317-60	165	1 120	10	080	600	1 010	230	325 9	6 40	M18	19600	UC317D1	133 000	97 000	63
85	UCM317-70	165	1 220	11	160	700	1110	230	325 9	6 40	M18	19600	UC317D1	133 000	97 000	65
	UCM317-80	165	1 320		260		1 210	230		6 40	M18	19600	UC317D1	133 000	97 000	68
	UCM317-90	165	1 420	13	360	900	1 310	230	325 9	6 40	M18	19600	UC317D1	133 000	97 000	71

CATÁLOGO 2400-IX/S CHUMACERAS. [18]

APENDICE Y

CADENA DE TRANSPORTACIÓN DE CILINDROS

Combination Chains

Combination chains are made of cast block links and steel sidebars alternately spaced. The N combination chains have pear-shaped barrels to provide additional metal where the chain engages the sprocket teeth to increase the service life of the chain. Combination chains are well suited for abrasive, gritty or corrosive materials and are a less

expensive option to their all steel counterparts (HSB).

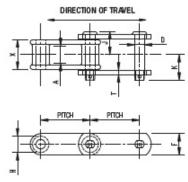
MATERIAL

The cast links are high grade copper bearing Duramal with holes smoothly cored for a close fit over the pins. Duramal chains have heat treated pins with Duramal block links. Super Duramal chains have heat treated pins and sidebars with Duramal block links. Chains are also available with block links of file hard Duramal.

ASSEMBLY

Riveted construction is recommended for wood yards and sawmills. Cottered construction is recommended for elevators and conveyors. Riveted or cottered construction must be specified. Chain pins will be alternating, except on C55, N77, N131 and C188 chains.

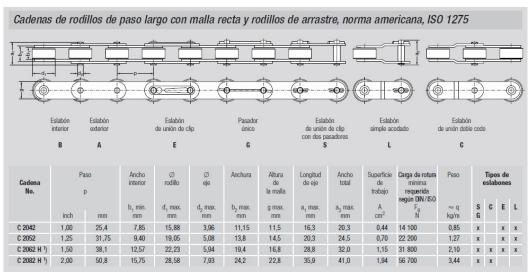
INTERCHANGEABILITY


Combination chains are interchangeable with other standard makes of corresponding sizes and numbers.

APPLICATION

Combination chain is well suited for the handling of stone, cement, gravel and other abrasive materials. It is used extensively in elevating and conveying service where a strong durable, yet inexpensive, chain is required.

OPERATION


Maximum chain speed depends upon size of sprockets. For Conveyor Service see Table 2. Section A.

					(9)			Dir							
Chain	Average Pitch	Links in	Average Weight Per Ft.	Average Ultimate Strength in Lbs.	Working Load in Lbs.★	Leng th		Max. Spkt. Width	Dia.	Nominal Barrel Dia.	Cotter End	€ To Head or Rive t End	Sidebar Thk.	Attac Num	mon h men t ibers
No.	Inches	10 Feet	Lbs.	Dura mal	Duramal	X	F	Α	D	Н	K	J	T	Block Link	Sidebar
C55	1.631	74	2.0	11,250	1,370	11/32	34	11/16	36	13/32	11/1s	1	3∕16		
N77	2.308	52	2.2	13,750	1,640	11/4	7∕1	11/B	7/16	23/12	15/12	1	3/16	F2	K1
N102B	4.000	30	6.7	30,000	5,000	2%	11/2	119/16	%	1	2¾e	21/ie	%	K2	K2, S1
N1 02½	4.040	30	9.4	45,000	6,600	219/16	1¾	2	34	1%	2%	21/4	%	A42, F2, G6, K2, K3, K22	A42, F2, K2, K3, K22, S1
N110	6.000	20	6.0	30,000	5,000	21/8	11/2	1 ¹⁵ /16	5/8	11/4	2º/16	21/16	3/6	A53, F22-10, K2	A42, F1, F2, F4, F24, K2
N1 11#	4.760	25	9.7	45,000	7,500	3%	1¾	2%	34	1¾s	211/32	211/52	36	F2, K2, K22	F2, K1, K2, K22, S1
N111SPC##	4.760 7.240	20	8.5	45,000	7,500	3%	13/4	2¾	3/4	1 ⁷ /16	219/12	211/12	3/1	F2, K2	K2
N1 31	3.075	39	6.5	30,000	3,750	2	1½	1%	%	114	113/16	1%	36	F2, G6, K1, K2	A42, G19, K1, K2, S1
N1 32#	6.050	20	14.4	62,500	10,400	4%	2	3%	1	1%	31/52	31/32	1/2	K2, RF14	F2, K2, S1
C188	2.609	46	3.6	17,500	2,340	1 ⁹ ∕1ε	1¹/s	¹⁵ /16	1/2	7/B	111/52	17/52	1,4	F2, G6, G19, G19SPC, K1, K2, K22	A22, A42, G27, K1, K2, K1/K2, K22, S1

CADENA DE TRANSPORTACIÓN DE TELESCOPIO

Cadenas de rodillos, Cadenas Fleyer y Cadenas Rotary. Rexnord® [23]

APENDICE Z

FACTOR DE SERVICIO PARA CALCULO DE POTENCIA

SPECIFICATION HOW TO ORDER

QUANTIS

Service Factor (cont')

CONTROL LACTOR (COME)		
	Ser	vice
Application	3-10 Hrs. /	10+
Application	Hrs./	Hrs/
	Day	Day
FANS (Continued)		
Induced Draft	1.50	1.50
Industrial & Mine	1.50	1.50
FEEDERS		
Apron	1.25	1.50
Belt	1.25	1.50
Disc	1.00	1.25
Reciprocating	1.75	2.00
Screw	1.25	1.50
FOOD INDUSTRY		
Cereal Cookers	1.00	1.25
Dough Mixers	1.25	1.50
Meat Grinders	1.25	1.50
Slicers	1.25	1.50
GENERATORS AND EXCITERS	1.00	1.25
HAMMER MILLS	1.75	2.00
HOIST		
Heavy Duty	1.75	2.00
Medium Duty	1.25	1.50
Skip Hoist	1.25	1.50
LAUNDRY		
Tumblers	1.25	1.50
Washers	1.50	2.00
LUMBER INDUSTRY		
Barkers - Spindle Feed	1.25	1.50
Main Drive	1.75	1.75
Conveyors - Burner	1.25	1.50
Main or Heavy Duty	1.50	1.50
Main Log	1.75	2.00
Re-Saw Merry-Go-Round	1.25	1.50
Conveyor		
Slab	1.75	2.00
Transfer	1.25	1.50
Chains		
Floor	1.50	1.50
Green	1.50	1.75
Cut-Off Saws		l l
Chain	1.50	1.75
Drag	1.50	1.75
Debarking Drums	1.75	2.00
Feeds		
Edger	1.25	1.50
Gang	1.75	1.75
Trimmer	1.25	1.50
Log Deck	1.75	1.75
Log Hauls - Incline, Well Type	1.75	1.75
Log Turning Devices	1.75	1.75
Planer Feed	1.25	1.50
Planer Tilting Hoists	1.50	1.50
Rolls - Live - Off Bearing - Roll	1.75	1.75
Cases	ı	1

	Ser	vice
	3-10	10+
Application	3-10 Hrs. / Day	Hrs /
	Day	Day
Sorting Table, Tipple Hoist	1.25	1.50
Tipple Hoist	1.25	1.50
Transfer		
Chain	1.50	1.75
Craneway	1.50	1.75
Tray Drives	1.25	1.50
Veneer Lathe Drives	1.25	1.50
METAL MILLS		
Draw Bench Carriages & Main	1.25	1.50
Drives		
Runout Table		
Non-Reversing	4 =0	4 = 0
Group Drives	1.50	1.50
Individual Drives	2.00	2.00
Reversing	2.00	2.00
Slab Pushers	1.50	1.50
Shears	2.00	2.00
Wire Drawing	1.25	1.50
Wire Winding Machine	1.50	1.50
METAL STRIP PROCESSING MACHINERY		
Bridles	1.25	1.50
Coilers & Uncoilers	1.00	1.25
Edge Trimmers	1.25	1.50
Flatteners	1.25	1.50
Loopers (Accumulators)	1.00	1.25
Pinch Rolls	1.25	1.50
Scrap Choppers	1.25	1.50
Shears	2.00	2.00
Slitters	1.25	1.50
MILLS, ROTARY TYPE		
Ball and Rod		
Spur Ring Gear	2.00	2.00
Helical Ring Gear	1.50	1.50
Direct Connected	2.00	2.00
Cement Kilns	1.50	1.50
Dryers & Coolers	1.50	1.50
MIXERS		
Concert	1.25	1.50
PAPER MILLS		
Agitator (Mixer)	1.50	1.50
Agitator for Pure Liquids	1.25	1.25
Barking Drums	2.00	2.00
Barkers - Mechanical	2.00	2.00
Beater	1.50	1.50
Breaker Stack	1.25	1.25
Calendar (3)	1.25	1.25
Chipper	2.00	2.00
Chip Feeder	1.50	1.50
Coating rolls	1.25	1.25
Conveyors	1.23	1.23

		vice
Application	3-10 Hrs. /	10+ Hrs/
	Day	
Chip, Bark, Chemical	1.25	
Logs (Including Slab)	2.00	2.00
Couch Rolls	1.25	1.25
Cutter	2.00	2.00
Cylinder Molds	1.25	1.25
Dryers (3)		
Paper Machine	1.25	1.25
Conveyor Type	1.25	1.25
Embosser	1.25	1.25
Extruder	1.50	1.50
Fourdrinier Rolls (Includes lump breaker, dandy roll, wire	1.25	1.25
turning and return rolls		
Jordan	1.50	1.50
Kiln Drive	1.50	1.50
Mt. Hope Rolls	1.25	1.25
Paper Rolls	1.25	1.25
Platter	1.50	1.50
Presses - Felt & Suction	1.25	1.25
Pulper	2.00	2.00
Pumps - Vacuum	1.50	1.50
Reel (Surface Type)	1.25	1.25
Screens -		
Chip	1.50	1.50
Rotary	1.50	1.50
Vibrating	2.00	2.00
Size Press Super Calender	1.25	1.25
Thickener	1.25	1.20
AC Motor	1.50	1.50
DC Motor	1.25	1.25
Washers	1.20	1.20
AC Motor	1.50	1.50
DC Motor	1.25	1.25
Wind & Unwind Stand	1.00	1.00
Winders (Surface Type)	1.25	1.25
Yankee Dryer	1.25	1.25
PLASTIC INDUSTRY		
Primary Processing		
Intensive Internal Mixers		
Batch Mixers	1.75	1.75
Continuous Mixers	1.50	1.50
Batch Drop Mill - 2 Smooth	1.25	1.25
Rolls	4.05	4.00
Continuous Feed, Holding &	1.25	1.25
Blend Mill Compounding Mill	1.25	1.25
Calenders	1.50	1.25
Secondary Processing	1.00	1.30
Blow Molders	1.50	1.50
Coating	1.25	1.25
Coating	1.20	1.20

QUANTIS-15

Conveyors

BALDOR. DODGE. QUANTIS GEAR ENGINEERIN CATALOG 2009. [20]

TAMAÑO DEL REDUCTOR DE ACUERDO RATIO Y FRAME

SELECTION

RIGHT ANGLE HELICAL BEVEL REDUCER (RHB) Service Factor 1.0 / Clamp Collar / 3 Pc Coupled / Separate Triple Reduction SIZE: B_883 60 HZ

NEN	IA MOTOR FRAME		56C						140TC			180TC					1	210TC	
IE	MOTOR FRAME		71D			80D			900			1000			112D		2	1320	
S	PARATE GROUP		71			80			90			100			112			132	
RATIO	OUTPUT	3450	1750	1160	3450	1750	1160	3450	1750	1160	3450	1750	1160	3450	1750	1160	3450	1750	1160
	RATING DATA																		
	Output RPM	135	69	45	135	69	45	135	69	45	135	69	45	135	69	45	135	69	45
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.46	1.63	9.86	5.01	3.32	19.95	10.36	6.87	20.75	13.25	8.95	20.75	15.89	9.70
25.53	Output Torque, In-Lb	1856	1857	1856	2260	2261	2260	4601	4603	4601	9305	9530	9524	9677	12185	12411	9677	14612	13455
	OHL Input Shaft	(A)	218	225	(A)	346	360	(A)	456	475	(A)	712	738	(A)	828	819	(A)	956	997
	OHL Output Shaft (B) Output RPM	4512 121	4512 61	4512 41	4512 121	4512 61	4512 41	4512 121	4512 61	4512 41	4512 121	4512 61	4512 41	4512 121	4512 61	4512 41	4512 121	4512 61	4512 41
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.46	1.63	9.86	5.01	3.32	18.96	9.95	6.85	19.21	12.58	8.49	19.21	14.24	8.98
28.50	Output Torque, In-Lb	2072	2073	2072	2523	2524	2523	5135	5138	5135	9869	10212	10605	10003	12912	13152	10003	14612	13907
20.00	OHL Input Shaft	(A)	218	226	(A)	346	360	(A)	456	475	(A)	695	738	(A)	773	770	(A)	957	997
	OHL Output Shaft (B)	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512
	Output RPM	112	57	38	112	57	38	112	57	38	112	57	38	112	57	38	112	57	38
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.46	1.63	9.86	5.01	3.32	18.16	9.57	6.59	18.16	12.10	8.17	18.16	13.14	8.49
30.87	Output Torque, In-Lb	2244	2246	2244	2732	2734	2732	5562	5565	5562	10243	10635	11047	10243	13452	13702	10243	14612	14241
00.07	OHL Input Shaft	(A)	217	226	(A)	346	360	(A)	455	475	(A)	660	737	(A)	729	733	(A)	958	997
	OHL Output Shaft (B)	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512
	Output RPM										100	51	34	100	51	34	100	51	34
	Input HP (Max) (C)	-	-	-	-	-	-	-		-	18.13	10.36	6.87	18.13	11.80	7.81	18.13	11.80	7.81
34.40	Output Torque, In-Lb	-	-		_	-	-	-	-	-	11393	12837	12830	11393	14612	14604	11393	14612	14604
1000000	OHL Input Shaft		-	-	-	-	-	-	:	-	(A)	713	742	(A)	840	874	(A)	958	997
	OHL Output Shaft (B)	-	-	-	-	-	-	-		-	4512	4512	4512	4512	4512	4512	4512	4512	4512
	Output RPM	-	-	-	-	-	-	-	7	-	83	42	28	83	42	28	83	42	28
	Input HP (Max) (C)	-	-	15	-	-	-	-		-	15.90	9.78	6.48	15.90	9.78	6.48	15.90	9.78	6.48
41.50	Output Torque, In-Lb	-	-	-	- 1	-	-	-	-	-	12055	14612	14604	12055	14612	14604	12055	14612	14604
********	OHL Input Shaft	-	-	-	-	-	-	-	3.00	-	(A)	713	742	(A)	839	874	(A)	958	997
	OHL Output Shaft (B)	-	-	-	-	-	-	-	10 - 17 - 1		4512	4512	4512	4512	4512	4512	4512	4512	4512
	Output RPM	-	-	-	69	35	23	69	35	23	69	35	23	69	35	23	69	35	23
	Input HP (Max) (C)	-	-	-	4.85	2.46	1.63	9.86	5.01	3.32	13.99	8.15	5.40	13.99	8.15	5.54	13.99	8.15	5.40
49.80	Output Torque, In-Lb	-	-	-	4407	4410	4407	8972	8977	8972	12730	14612	14604	12730	14612	14604	12730	14612	14604
	OHL Input Shaft	-	-	-	(A)	346	360	(A)	453	471	(A)	708	737	(A)	842	876	(A)	959	998
-	OHL Output Shaft (B)	-	-	-	4512 59	4512	4512	4512 59	4512 30	4512	4512	4512 30	4512	4512 59	4512	4512 20	4512 59	4512 30	4512 20
	Output RPM	-	-	•	4.85	30	20	9.86		20 3.32	59 12.52	6.95	20 4.60	12.52	30	4.60	12.52		4.60
58.37	Input HP (Max) (C)			-	4.85 5166	2.46 5169	1.63 5156	9.86	5.01 10523	10517	13353	14612	14604	13353	6.95 14612	14604	13353	6.95 14612	14604
58.37	Output Torque, In-Lb OHL Input Shaft		-	-	(A)	346	360	(A)	454	472	(A)	707	737	(A)	844	878	(A)	959	998
	OHL Output Shaft (B)				4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512
	Output RPM	-	-		50	25	17	50	25	17	50	25	17	50	25	17	50	25	17
	Input HP (Max) (C)				4.85	2.46	1.63	9.86	5.01	3.32	11.08	5.83	3.86	11.08	5.83	3.86	11.08	5.83	3.86
69.57	Output Torque, In-Lb				6157	6161	6157	12535	12542	12535	14076	14612	14604	14076	14612	14604	14076	14612	14604
	OHL Input Shaft		_		(A)	346	360	(A)	456	474	(A)	711	740	(A)	844	879	(A)	(A)	998
	OHL Output Shaft (B)	_		_	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512
	Output RPM	46	23	15	46	23	15	46	23	15	46	23	15	46	23	15	46	23	15
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.46	1.63	9.86	5.01	3.32	10.46	5.38	3.56	10.46	5.38	3.56	10.46	5.38	3.56
75.45	Output Torque, In-Lb	5484	5489	5485	6678	6682	6678	13594	13602	13594	14423	14612	14604	14423	14612	14604	14423	14612	14604
	OHL Input Shaft	(A)	218	225	(A)	346	360	(A)	456	475	(A)	712	741	(A)	845	879	(A)	(A)	998
	OHL Output Shaft (B)	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512	4512

(A) (B) (C) - See Footnote page on inside back cover Blank areas (-) indicate configuration not available

NOMENCLATURE	STOCK/NON-STOCK PART NUMBERS	DIMENSIONS	THERMAL RATINGS
PAGE RHB-5	PAGE RHB-50	PAGE RHB-186	PAGE RHB-384

RHB-31

BALDOR. DODGE. QUANTIS GEAR ENGINEERIN CATALOG 2009. [20]

TAMAÑO DEL REDUCTOR DE ACUERDO RATIO Y FRAME

SELECTION

RIGHT ANGLE HELICAL BEVEL REDUCER (RHB) Service Factor 1.0 / Clamp Collar / 3 Pc Coupled / Separate Triple Reduction SIZE: B_483 60 HZ

NEMA MOTOR FRAME IEC MOTOR FRAME			56C						140TC		180TC			
IE	C MOTOR FRAME		710			800			900			1000		
S	EPARATE GROUP		71			80			90			100		
RATIO	OUTPUT RATING DATA	3450	1750	1160	3 450	1750	1160	3450	1750	1160	3450	1750	1160	
	Output RPM	168	85	57	168	85	57	168	85	57	168	85	57	
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.26	1.63	8.73	4.56	3.15	9.00	5.39	3.57	
20.54	Output Torque, In-Lb	1489	1494	1494	1818	1675	1818	3276	3373	3514	3378	3985	3983	
20.54	OHL Input Shaft	(A)	218	227	(A)	346	360	(A)	454	475	(A)	714	743	
	OHL Output Shaft (B)	1032	1149	1226	1 032	1149	1226	1032	1149	1226	1032	1149	1226	
\vdash	Output RPM	153	78	52	153	78	52	153	78	52	153	78	52	
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.12	1.63	8.35	4.36	3.01	8.45	4.91	3.25	
22.54	Output Torque, In-Lb	1533	1640	1639	1995	1724	1995	3437	3540	3688	3480	3985	3983	
	OHL Input Shaft	(A)	217	227	(A)	346	360	(A)	45.4	475	(A)	7 08	738	
	OHL Output Shaft (B)	1110	1149	1226	1110	1149	1226	1110	1149	1226	1110	1149	1226	
	Output RPM	139	70	47	139	70	47	139	70	47	139	70	47	
1	Input HP (Max) (C)	3.98	198	1.34	4.85	1.98	1.63	7.91	4.15	2.87	7.91	4.45	2.95	
24.85	Output Torque, In-Lb	1577	1774	1807	2200	1774	2200	3589	3717	3873	3589	3985	3983	
9.0000	OHL Input Shaft	(A)	218	227	(A)	346	359	(A)	454	475	(A)	710	739	
	OHL Output Shaft (B)	1110	1149	1226	1110	1149	1226	1110	1149	1226	1110	1149	1226	
	Output RPM	125	64	42	125	64	42	125	64	42	125	64	42	
	Input HP (Max) (C)	3.87	184	1.34	4.84	1.84	1.63	7.37	3.94	2.66	7.37	4.02	2.66	
27.55	Output Torque, In-Lb	1945	1824	2003	2438	1824	2438	3708	3909	3983	3708	3985	3983	
1000000	OHL Input Shaft	(A)	217	227	(A)	346	359	(A)	453	475	(A)	711	739	
	OHL Output Shaft (B)	1110	1149	1226	1110	1149	1226	1110	1149	1226	1110	1149	1226	
	Output RPM	119	61	40	119	61	40	119	61	40	119	61	40	
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.46	1.63	6.70	3.83	2.54	6.70	3.83	2.54	
28.90	Output Torque, In-Lb	21 01	2102	2101	2558	2559	2558	3535	3985	3983	3535	3985	3983	
2200.000	OHL Input Shaft	(A)	218	227	(A)	346	358	(A)	455	473	(A)	7 15	744	
	OHL Output Shaft (B)	1110	1226	1226	1110	1226	1226	1110	1226	1226	1110	1226	1226	
	Output RPM	103	52	35	103	52	35	103	52	35	103	52	35	
200000000	Input HP (Max) (C)	3.98	202	1.34	4.84	2.46	1.63	6.02	3.29	2.18	6.02	3.29	2.18	
33.60	Output Torque, In-Lb	2443	2444	2443	2974	2976	2974	3698	3985	3983	3698	3985	3983	
	OHL Input Shaft	(A)	218	226	(A)	346	360	(A)	45 6	474	(A)	7 15	744	
	OHL Output Shaft (B)	1110	1226	1591	1110	1226	1591	1110	1226	1591	1110	1226	1591	
1	Output RPM	93	47	31	93	47	31	93	47	31	93	47	31	
3630304	Input HP (Max) (C)	3.98	202	1.34	4.85	2.46	1.63	5.60	2.97	1.97	5.60	2.97	1.97	
37.28	Output Torque, In-Lb	27 11	2712	2711	3300	3302	3300	3815	3985	3983	3815	3985	3983	
	OHL Input Shaft	(A)	217	228	(A)	346	360	(A)	45 6	475	(A)	7 15	744	
	OHL Output Shaft (B)	1149	1226	1591	1149	1226	1591	1149	1226	1591	1149	1226	1591	
	Output RPM	85	43	29	85	43	29	85	43	29	85	43	29	
	Input HP (Max) (C)	3.98	2.02	1.34	4.85	2.46	1.63	5.28	2.73	1.81	5.28	2.73	1.81	
40.60	Output Torque, In-Lb	2952	2954	2952	3594	3596	3594	3914	3985	3983	3914	3985	3983	
	OHL Input Shaft	(A)	219	228	(A)	346	360	(A)	457	475	(A)	7 15	744	
	OHL Output Shaft (B)	1149	1226	1 591	1149	1226	1591	1149	1226	1591	1149	1 2 2 6	1591	
	Output RPM	76	39	26	76	39	26	76	39	26	76	39	26	
	InputHP (Max) (C)	3.98	202	1.34	4.80	2.44	1.61	4.80	2.44	1.61	4.80	2.44	1.61	
45.41	Output Torque, In-Lb	33 01	3303	3301	3983	3985	3983	3983	3985	3983	3983	3 985	3983	
	OHL Input Shaft	(A)	219	227	(A)	346	360	(A)	457	475	(A)	708	737	
	OHL Output Shaft (B)	1149	1591	1 591	1149	1591	1591	1149	1591	1591	1149	1 591	1591	

(A) (B) (C) - See Footnote page on inside back cover Blank areas (-) indicate configuration not available

NOMENCLATURE	STOCK/NON-STOCK PART NUMBERS	DIMENSIONS	THERMAL RATINGS
PAGE RHB-5	PAGE RHB-50	PAGE RHB-122	PAGE RHB-364

BALDOR. DODGE. QUANTIS GEAR ENGINEERIN CATALOG 2009. [20]

BIBLIOGRAFÍA

- [1] Norma NTE INEN 0111:98. Cilindros de acero soldados para gas licuado de petróleo GLP. Requisitos e inspección * 9
- [2]http://www.austrogas.com.ec/index.php?option=com_content&view=a rticle&id=20&Itemid=23
- [3] Norma NFPA 704. Sistema normativo para la identificación de los riesgos de los materiales.
- [4] Reglamento Técnico de Comercialización de Gas Licuado de Petróleo GLP. Acuerdo Ministerial No. 116. RO/ 313 de 8 de Mayo de 1998.
- [5] Tesis de Diseño de un Túnel para Lavado Exterior de los Cilindros
 15 kg GLP. Pág. 27. Diagrama de flujos de procesos. Johnny Ernesto
 Espinoza Tello. ESPOL. FIMCP. 2007.
- [6] http://www.ricni.com/caroselloes.htm
- [7].http://www.kosancrisplant.com
- [8] http://www.aws.org/mexico/mx standards.html
- [9] http://www.atmosferasexplosivas.com/
- [10] Comisión europea http://ec.europa.eu/enterprise/policies/european-standards/index es.htm
- [11] http://www.siraga.com/sistema-de-transportador.html
- [12] http://www.weg.net/; Catálogo de motores WEG.

- [13] http://www.renold.com/ (Para cálculo de tracción y potencia pag 34. Renold)
- [14] Catálogo Webster Chain DATA.
- [15] Resistencia de los materiales, Pytel y Singer cuarta edición.Capítulo de vigas continúas.
- [16] Diseño de máquinas, Robert Norton, Cámara Nacional de la Industria Mexicana Reg. Num. 1524.
- [17] ANSI/ASME B106.1M-1985.
- [18] http://www.ntnsudamericana.com Catálogo Rodamientos de Bolas y de Rodillos.
- [19] http://www.miguelabad.com.ar/miguel abad.htm Ruedas para rieles Catálogo Técnico. Rev. 5
- [20] BALDOR. DODGE. QUANTIS GEAR ENGINEERIN CATALOG 2009.
- [21] Diseño de estructuras de acero. Método del LFRD. McCormac.Segunda Edición.
- [22] http://www.cursoscbca.com.br/mod/resource/view.php?id=4025

Centro brasileño de construcción

- [23] Rexnord® and Link-Belt® Engineered Steel Chains
- [24] Autocad 2013 versión estudiantil
- [25] Inventor 2013 profesional versión estudiantil.
- [26] http://www.tsubaki.ca Sección Técnica de Catalinas.