ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingenierías en Ciencias de la Tierra.

"IMPLEMENTACIÓN DE ALGORITMOS GENÉTICOS PARA LA OPTIMIZACIÓN DE PARÁMETROS DE YACIMIENTO MEDIANTE CURVAS DE PRODUCCIÓN DE POZOS SELECCIONADOS EN UN CAMPO DEL ORIENTE ECUATORIANO"

TESIS DE GRADO

Previa a la obtención del Título de:

INGENIERO EN PETRÓLEOS

Presentado por:

DARÍO EMIL MONDAVI SOBBY

Guayaquil Ecuador 2014

AGRADECIMIENTO

...Y es que el agradecimiento es tan vasto e imposible de repartir, por lo que agradezco a todos, especialmente a Edwin Pineda, persona que hizo posible este proyecto, a mi familia por tenerme la paciencia requerida cuando peor anduve, a mis amigos por los golpes necesarios para seguir adelante y a quienes hayan leído y opinado sobre este proyecto.

Darío Mondavi Sobby

TRIBUNAL DE GRADUACION

PhD. Eddy Sanclemente

Director

Ing. César Pinargote

Vocal Principal

PhD. Elizabeth Peña

Decana de la FICT

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado	corresponde
exclusivamente; y el patrimonio intelectual de la misma a la Es	cuela Superior
Politécnica del Litoral"	
(Reglamento de Graduación de la ESPOL).	
Darío Mondavi Sobby	

RESUMEN

El uso de las ciencias computacionales en la industria petrolera es indispensable en la actualidad, incluyendo además tecnología de última generación, especialmente el avance constante en el desarrollo de procesadores; permitiendo utilizar algoritmos cada vez más potentes que permiten realizar cálculos extremadamente complejos, que posibilitan la obtención de soluciones a problemas previamente considerados pendientes en la industria.

La mayoría de veces la carencia de parámetros obliga a los ingenieros a limitar el estudio de un pozo, haciendo consideraciones y predicciones no tan acertadas, especialmente referente a la producción; ya que esta depende totalmente de mediciones de parámetros de yacimiento y de la completación final que se haya establecido para ese pozo.

El presente proyecto propone una nueva alternativa para la obtención de parámetros de pozo/yacimiento que no se hayan obtenido mediante pruebas o no se tengan a mano para un determinado instante de la vida productiva del pozo/yacimiento (como presiones de fondo fluyente, compresibilidades totales, factores volumétricos, daños, permeabilidad, presión de yacimiento, cantidad de petróleo inicial en el sitio, viscosidades, espesores, radios de drenaje y radios de pozo) mediante el uso de algoritmos genéticos (inteligencia artificial).

Estos algoritmos son un método de inteligencia artificial (ciencia de automatización de procesos computacionales basados en toma de decisiones, para nuestro caso será la selección de individuos, parámetros de yacimiento, más aptos) derivado de la computación evolutiva (metodología basada en el estudio de la evolución de las especies como individuos, sociedades o generaciones) que se basan en la teoría de

evolución y en la transmisión genética de una generación a otra, encapsulando los parámetros a optimizar codificados en lenguaje binario, lo que representa la estructura genética de un individuo (posible respuesta). Así, tomando un problema y generando de manera aleatoria alternativas de solución (múltiples individuos), se hace competir a estas alternativas, de manera que se transmiten características de generación a generación, mediante distintos procesos evolutivos como pueden ser los cruzamientos o las mutaciones (las más representativas entre las leyes de la genética) para así llegar a tener un individuo (alternativa) que mejor cumpla la función objetivo que se requiera de este. Establecemos dicha función objetivo mediante las curvas de producción (Curvas de declinación e IPR) de cada pozo, en donde se analizarán los posibles parámetros con los que se trabajará y los que necesitaremos que sean calculados con el algoritmo genético.

Para la implementación del algoritmo genético se debe comprender los fundamentos de su programación, que en general se podría decir que son directamente relacionados con las leyes genética y evolución de las especies (Darwin, 1859). Para esto se trabajará con un lenguaje básico y funcional (Visual Basic) implementado en macros de Microsoft Excel para una mayor agilidad en el proceso.

Mediante una extensiva investigación se encontró ecuaciones de producción (qL) (Kegang, He, 2012), (Guo, Lyons, Ghalambor, 2007), y producción acumulada (Np) para distintos tipos de yacimiento, las mismas que son compatibles con las ecuaciones para la determinación de las curvas de declinación (Arps, 1947) e IPR (Darcy, 1850, Voguel, 1968, Standing, 1971). Mediante un algoritmo genético se busca obtener los parámetros que aparecen en estas ecuaciones basados únicamente en la producción en determinados tiempos de yacimiento, cualquier parámetro fijo del que se disponga y algunas consideraciones generales, como si los

datos fueron obtenidos sobre o debajo del punto de burbuja (presión del reservorio) o el tipo de reservorio que se tiene.

De entre una variedad de curvas y ecuaciones se seleccionarán las más aptas para la optimización de la solución para el problema y para la obtención eficaz de los parámetros de reservorio, de manera que se pueda obtener datos confiables para futuros análisis.

ÍNDICE GENERAL

CAPÍTULO I	1
1.1. Descripción del problema	1
1.2. Formulación del problema	3
1.3. Objetivos	5
1.3.1. Objetivos Generales	5
1.3.2. Objetivos específicos	5
1.4. Justificación	7
CAPÍTULO II	8
2.1. Parámetros principales de fondo de pozo	9
2.2. Curvas de Producción	17
2.2.1. Curvas de declinación de producción	19
2.2.3. Curvas de declinación Armónica	32
2.2.2. Curvas de IPR	35
2.3. Diferencias entre curvas de declinación y de IPR	55
2.4. Aplicabilidad de curvas de producción	56
CAPÍTULO III	61
3.1. Inteligencia Artificial	62
3.2. Computación Evolutiva – Algoritmos Genéticos	68
3.3. Teoría de la evolución	82
3.4. Leyes de la genética	87
3.5. Fundamentos de programación	90
3.6. Microsoft Excel - Macros de Visual Basic en Microsoft Excel	94
CAPÍTULO IV	101
4.1. Diseño del Algoritmo Genético Para las Curvas de Producción Seleccionadas.	101
4.2. Implementación del Algoritmo Para Modelos Sintéticos	104
4.3. Parámetros de inicio del Algoritmo	112
4.4 Parámetros de Reservorio a Optimizar	115

4.5. Operaciones de Cruzamiento119
4.6. Operaciones de Mutación124
4.7. Criterios de Parada126
CAPÍTULO V135
5.1. Campo del Oriente Ecuatoriano135
5.1.1. Localización135
5.1.2. Información General (Pozos, Arenas)
5.1.3. Pozos y Arenas Seleccionadas
5.1.4. Características Generales de los pozos e Historiales de Producción
5.2. Comportamiento de Producción del Campo140
5.3. Implementación de Metodología a los Pozos Seleccionados del Campo141
5.4. Revisión de resultados de parámetros obtenidos con el algoritmo genético
CAPÍTULO VI
6.1. CONCLUSIONES
6.2. PERSPECTIVAS 165
REFERENCIAS
7.1. Textos
7.2. Papers
7.3. Sitios Web
ANEXOS

ÍNDICE DE GRÁFICOS Gráfico 2.1. Formaciones geológicas con yacimientos de petróleo
Gráfico 2.2. Efecto del cambio de presión debido al radio de drenaje a) a tasa
de producción constante y b) a caída constante de presión. M. Golan. (1996).
Well Performance. Noruega: Tapir
Gráfico 2.3. Comportamiento del <i>Rs</i> con el cambio de presión. A. Tarek.
(2006). Reservoir Engineering Handbook. Oxford: Elsevier
Gráfico 2.4. Comportamiento típico del βo de un black oil a temperatura de
yacimiento constante. Ursin J., Zolotukhin A (1997), Reservoir Engineering,
Stavanger
Gráfico 2.5. Comportamiento típico de la μo de un black oil a temperatura de
yacimiento constante. Donnez P. (2007). Essentials of Reservoir Engineering.
Paris: Technip
Gráfico 2.6. Comportamiento típico de la co de un black oil a temperatura de
yacimiento constante. McCain, W (1990). The Properties Of Petroleum
Fluids. Tulsa: PennWellBooks
Gráfico 2.7. Cambio de presión debido al factor de daño de la formación 16
Gráfico 2.8. Efecto del daño positivo a través del radio de drenaje. Beggs
H.(2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and
Petroskills Publications
Gráfico 2.9. Curva de producción de petróleo y agua típica
Gráfico 2.10. Patrones de los distintos tipos de curvas de declinación.
Graficados en coordenadas cartesianas, semi-log y log-log. Parte superior: q
vs t. Parte inferior q vs Np. Arps JJ. 1945 Analysis of decline curves. Trans.
Am. Inst. Min. Metall
Gráfico 2.11. Patrones de tasa de producción contra tiempo en gráfico a)
cartesiano y b) semi-log respectivamente para el caso de declinación
exponencial24

Gráfico 2.13. Comportamiento de la tasa de producción contra la producción
acumulada. Gráficos a) cartesiano y b) semi-log respectivamente 27
Gráfico 2.14. Diferentes valores de exponente "n" para gráficos de
producción contra tiempo a) cartesiana y b) semi-log mediante análisis
hiperbólico. (De menor a mayor desde más inferior a mas superior) 29
Gráfico 2.15. Valores de Np para cada tasa de producción q variando el
exponente n para los casos a) cartesiano, b) semi-log y c) log-log. (De menor
a mayor desde más inferior a mas superior)
Gráfico 2.16. Comportamiento de la declinación armónica, q contra t en a)
coordenadas cartesianas, b) semi-log y c) log-log
Gráfico 2.17. Comportamiento de la declinación armónica, q contra Np en a)
coordenadas cartesianas, b) semi-log y c) log-log
Gráfico 2.18. Gráficos de IPR en base a la ecuación de Darcy para distintos
pozos
Gráfico 2.19. Efecto de la depleción del yacimiento en las curvas IPR. Beggs
H.(2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and
Petroskills Publications
Gráfico 2.20. Comparación entre método de Darcy (curva) y método de Vogel
(Recta)
Gráfico 2.21. Patrón de curva de IPR típica de un yacimiento saturado 43
Gráfico 2.22. Representación de caso real de curva IPR. Beggs H.(2003).
Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills
Publications43
Gráfico 2.23. Efecto de la estimulación de un pozo en la curva de IPR 47
Gráfico 2.24. Gráfico log-log de presión contra producción. Beggs H (2003).
Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills
Publications

Gráfico 2.25. Análisis nodal para un pozo. Beggs H.(2003). Production	
Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills Publications	; <u>.</u>
5	6
Gráfico 2.26. A. Declinación relativa contra producción. Guo B., Lyons W.,	
Ghalambor (2008). Petroleum Production Engineering 5	58
Gráfico 3.1. Etapas de evolución de las especies	8
Gráfico 3.2. Computación evolutiva y los métodos que la componen 7	'1
Gráfico 3.3. Esquema básico de un algoritmo genético	'3
Gráfico 3.4. Individuo/cromosoma de población del algoritmo 7	'4
Gráfico 3.5. Cruzamiento entre dos individuos y codificación de hijos 7	'5
Gráfico 3.6. "Localización Óptima De Pozos De Desarrollo Mediante La	
Integración De Modelamiento Geoestadístico Basado En Objetos Y	
Computación Evolutiva " Cruzamiento de un solo punto a nivel de bits.	
Idrobo, Pineda. et al. (2004)	'6
Gráfico 3.7. Idrobo "Localización Óptima De Pozos De Desarrollo Mediante	
La Integración De Modelamiento Geoestadístico Basado En Objetos Y	
Computación Evolutiva " Cruzamiento de un solo punto a nivel de genes.	
Idrobo, Pineda. et al. (2004)	7
Gráfico 3.8. "Localización Óptima De Pozos De Desarrollo Mediante La	
Integración De Modelamiento Geoestadístico Basado En Objetos Y	
Computación Evolutiva "Cruzamiento multipunto a nivel de bits. Idrobo,	
Pineda. et al. (2004)	'8
Gráfico 3.9. Mutación de un solo bit aleatorio	30
Gráfico 3.10. Mutación de un gen aleatorio	30
Gráfico 3.11. Mutación de un cromosoma completo 8	<u>}</u> 1
Gráfico 3.12. Herencia de los caracteres adquiridos en la evolución del de la	S
jirafas según Lamarck 8	3
Gráfico 3.13. Variación en la forma del pico de los pinzones	}4
Gráfico 3.14. Varios mamíferos provenientes de distintos ambientes 8	36

Gráfico 3.15. Relación de colores generacional. (En generación de padres,
considérese amarillo oscuro como blanco)
Gráfico 3.16. Distribución genética por alelos de los experimentos de Mendel
88
Gráfico 3.17. Segregación de alelos en la producción de células sexuales 90
Gráfico 3.18. Estructura básica de un algoritmo en pseudocódigo y
flujograma93
Gráfico 3.19. Entorno de la plataforma Visual Basic Studio
Gráfico 3.20. Entorno de programación de V.B
Gráfico 3.21. Entorno principal para edición de datos Microsoft Excel 2007 97
Gráfico 3.22. Entorno de V.B con ficha de programador. Se observan
controles disponibles para programar98
Gráfico 3.23. Editor de códigos de V.B en Excel
Gráfico 4.1. Resultados gráficos del cálculo de las presiones contra las
presiones reales para yacimiento subsaturado 109
Gráfico 4.2. Resultados gráficos del cálculo de las presiones contra las
presiones reales para yacimiento saturado
Gráfico 4.3. Interfaz de inicio de WellGenSys
Gráfico 4.4. Interfaz de Arranque de WellGenSys
Gráfico 4.5. Operaciones de reproducción disponibles para WellGenSys 119
Gráfico 4.6. Tipos de cruzamiento disponibles en WellGenSys 120
Gráfico 4.7. Cromosomas (individuos) codificados con parámetros a
optimizar
Gráfico 4.8. Individuos hijos resultantes del cruzamiento de un punto a nivel
de bits
Gráfico 4.9. Hijos resultantes del cruzamiento de un punto a nivel de genes.
Gráfico 4.10. Cromosomas resultantes de un cruzamiento multipunto 122
Gráfico 4.11. Tipos de mutación disponibles para WellGenSys 124
Gráfico 4.12. Cromosoma con parámetros codificados

Gráfico 4.13. Cromosoma afectado por mutación de un bit aleatorio 124
Gráfico 4.14. Cromosoma afectado por una mutación de un gen 125
Gráfico 4.15. Cromosoma alterado en por mutación en toda su codificación.
Gráfico 4.16: Interfaz de ingreso de producciones y tipo de yacimiento 128
Gráfico 4.17: Límites y valores para parámetros que se vayan a optimizar.129
Gráfico 4.18: Botones de la interfaz de Inicio
Gráfico 4.19: Interfaz de Gráficos con valores ingresados y calculados por
declinación Hiperbólica
Gráfico 4.20: Patrones estándar de curvas de declinación y botones de
comando
Gráfico 4.21: Interfaz de arranque del algoritmo
Gráfico 5.1. Región de Localización del campo ORE
Gráfico 5.2. Pozo ubicado en medio de fallas paralelas
Gráfico 5.3. Historia de producción de Agua y Petróleo, y corte de agua del
pozo PORE-001
Gráfico 5.4. Historia de producción de Agua y Petróleo, y corte de agua del
pozo PORE-006
Gráfico 5.5. Producción del campo ORE hasta la actualidad 141
Gráfico 5.6. Parámetros a optimizar seleccionados con sus respectivos
límites máximos mínimos posibles para pozo PORE-001 144
Gráfico 5.7. Parámetros de arranque para el algoritmo genético para la
optimización de parámetros del pozo PORE-001146
Gráfico 5.8. Comparación de resultados entre información ingresada,
información de la curva de declinación y la calculada por el algoritmo
(Tolerancia 1%)
Gráfico 5.9. Comparación de resultados entre información ingresada,
información de la curva de declinación y la calculada por el algoritmo
(Tolerancia 2%)

Gráfico 5.10. Parámetros seleccionados para optimización y sus límites	
respectivos para el pozo PORE-006	
Grafico 5.11. Parámetros para el funcionamiento del algoritmo para el PORE-	
006	}
Gráfico 5.12. Resultado gráfico de las producciones ingresadas, las del	
método seleccionado y las calculadas por el algoritmo para el PORE-006 154	ļ

ÍNDICE DE TABLAS

Tabla I. Categorización de pozos en base al índice de productividad	. 37
Tabla II. Tabla IIa. Información de presión y producción en tiempos y IIb.	
Información para el cálculo de las producciones del modelo sintético	106
Tabla IIIa. Presiones calculadas y presiones optimizadas y IIIb. Parámetro	S
originales y parámetros optimizados	108
Tabla IVa. Producciones y presiones para evaluar el modelo sintético y IVb)
parámetros para evaluar el modelo sintético	110
Tabla Va. Presiones reales y las optimizadas por el algoritmo y Vb.	
Parámetros de yacimiento real y parámetros optimizados	111
Tabla VI. Parámetros iniciales del algoritmo genético	114
Tabla VII. Ejemplo de Tabla de equivalencias de código binario con valores	S
reales.	123
Tabla VIII. Intervalo de producción seleccionado para el pozo PORE-001.	142
Tabla IX. Tasas de producción y acumulados del pozo PORE-001	150
Tabla X. Valores de parámetros del algoritmo para PORE-001 (1% de	
tolerancia) con valores reales.	155
Tabla XI. Valores de parámetros del algoritmo para PORE-001 (2% de	
tolerancia) con valores reales.	156
Tabla XII. Comparación entre valores obtenidos por el algoritmo de toleran	ıcia
1% y tolerancia 2% para el PORE-001	157
Tabla XIII. Valores de presiones de ambos casos de tolerancia para el poz	Ό.
PORE-001, comparados con la primera presión	158
Tabla XIV. Valores de parámetros del algoritmo para PORE-006 con valore	es
reales	159
Tabla XV. Comparación de presiones para pozo PORE-006	160

CAPÍTULO I

GENERALIDADES

1.1. DESCRIPCIÓN DEL PROBLEMA

El avance de la ciencia petrolera a través de los años ha sido de vanguardia y los hechos que generan su teoría son realmente impresionantes, a pesar de ser una ciencia relativamente nueva. Muchos de los problemas que en principio parecían cuestiones sin solución actualmente son solucionables de cálculos sencillos o de aplicación de métodos computacionales. Pero hay muchos problemas que persisten o que aún conservan un alto grado de incertidumbre.

En ocasiones, los ingenieros de reservorios o de producción necesitan analizar yacimientos para poder tomar decisiones respecto a algún trabajo que se debe realizar en dicho yacimiento o para tener conocimiento de cuáles son sus propiedades, ya sea en la sección de un pozo, en una región del yacimiento o en todo el yacimiento.

Los datos necesarios para ejecutar una toma de decisiones respecto a un trabajo algunas veces se encuentran disponibles, ya sea porque se haya realizado una prueba en un instante de la vida del pozo, o porque se puedan calcular en base a relaciones matemáticas; aunque en la actualidad existan herramientas de medición más exactas, aún existe cierto grado de incertidumbre en estas pruebas, además de que depende de cómo y bajo qué condiciones se realizaron y también del error que representa factor humano.

La única información registrada diaria de la que se dispone es la producción diaria de un pozo, la cual es un dato comprimido de todos los fenómenos físicos que están sucediendo en el sistema de producción, pero principalmente del yacimiento.

La producción actual diaria del pozo y parámetros referenciales que se hayan obtenido de pruebas en fechas demasiado anteriores a la actual no son datos confiables para realizar estimaciones de las propiedades de un reservorio, y menos aun tomando en cuenta que si un parámetro fue calculado con una correlación de grado de incertidumbre medio alto, un cálculo posterior dependiente de aquel parámetro tendrá un grado de incertidumbre aún mayor.

Más aún, no existen métodos matemáticos que permitan determinar parámetros de yacimiento solo en base a la producción del pozo, al menos no con un grado de incertidumbre bajo.

1.2. FORMULACIÓN DEL PROBLEMA

La carencia de datos físicos del pozo limita el análisis de información o un posible estudio que se quiera realizar del reservorio; con mayor cantidad de pozos se posee mayor conocimiento del campo.

Se conoce el comportamiento general de los parámetros de yacimiento, mas no cifras exactas de cómo evoluciona un yacimiento que se esté analizando. Mediante las pruebas se tienen datos referenciales para ciertos instantes de tiempo, y mediante extrapolaciones en las curvas de declinación e IPR podemos determinar información estimada para puntos de tiempo que no se tengan disponibles; pero estas estimaciones son referenciales y teóricas. El comportamiento real del yacimiento se ve reflejado en su producción.

El comportamiento de producción del yacimiento es considerado pseudoestable una vez que se haya mantenido abierto el pozo durante cierto tiempo hasta terminar el flujo transciente (flujo inicial hasta alcanzar la estabilidad), que es el que se requiere para que el radio de drenaje llegue a su punto máximo. Al ser flujo pseudo-estable, hay fluctuaciones leves en las presiones y por consecuente, en las producciones.

Además de dichas fluctuaciones, se debe considerar que a lo largo de la vida del pozo se cierra o se regula el flujo varias veces dependiendo de las necesidades o demanda productiva que se necesite, esto es controlado por los ingenieros de producción; al haber estos cambios, varía la presión y la producción, y por consecuencia, los parámetros de fondo también se comportan acorde a estas variaciones.

Un ingeniero de producción determina hasta qué presión controlar el pozo para obtener cierta producción, pero para ese instante no obtiene propiedades que variarían dentro del yacimiento para dicho cambio.

Determinar estos parámetros mediante ecuaciones es realmente un proceso extenso e impreciso, por lo que existen métodos computacionales

para su determinación, pero son dependientes de ciertos datos, los cuales muy posiblemente no se disponga, y se vea la necesidad de utilizar datos de pruebas anteriores a la fecha actual.

Existen otra clase de métodos computacionales estocásticos, que vendrían a ser estadísticos, que trabajan con ciertos parámetros disponibles y actuales, como puede ser la producción o la presión de fondo, y el resto de parámetros los calculan aleatoriamente o mediante técnicas no fundamentadas de manera científica, el cálculo directo sin considerar los otros parámetros de la ecuación, lo que lleva a cierto nivel de error alto. Sin embargo, hay otros métodos que sí son precisos y además son aplicables para la determinación de parámetros de yacimiento, mediante ecuaciones matemáticas dependiendo de la clase de yacimiento que se desee analizar, que se presentarán en este proyecto.

1.3. OBJETIVOS.

1.3.1. Objetivos Generales

- Implementar un algoritmo genético en macros de Visual Basic compilados en Microsoft Excel basado en principios de curvas de declinación de producción e IPR para la obtención de parámetros de yacimiento en distintas fechas para pozos determinados de un campo productor del Oriente Ecuatoriano.
- Determinar la exactitud de los datos obtenidos mediante el algoritmo con datos reales del campo.

1.3.2. Objetivos específicos

- Investigar y analizar los principios de curvas de declinación e IPR para extraer ecuaciones que relacionen parámetros de reservorio con producciones diarias de pozo.
- Programar un algoritmo genético capaz de determinar los parámetros de yacimiento presentes en las ecuaciones extraídas.
- Analizar la información del campo seleccionado para establecer rangos de cada variable implementada en el algoritmo genético.
- Comparar la información de parámetros de yacimiento obtenida mediante el algoritmo genético con datos de pruebas que se hayan obtenido en algún momento para los pozos seleccionados del campo.
- Establecer criterios de parada para el algoritmo una vez alcanzada una tolerancia asignada por el usuario, que dependerá de la tendencia matemática de la curva de declinación.

 Establecer y proponer el método de realizaciones en el algoritmo genético, para un mejor desempeño del mismo y obtención de resultados múltiples y más precisos.

1.4. JUSTIFICACIÓN

La realización de este proyecto surge en base a la necesidad de poseer datos de yacimiento para todos los instantes de la vida productiva de un pozo y del reservorio en sí, considerando que estos datos podrían servir tanto para cálculos de IP, de balance de materiales o de volumen inicial que se quieran realizar, así como para hacer un análisis de pruebas de presión y la producción diaria.

Esta investigación se fundamenta en las distintas curvas de producción de pozos, como son las de declinación (Arps, 1945) como las de IPR (Voguel, 1968).

Las modificaciones que posteriormente se dieron a estas ecuaciones y principios estuvieron a cargo de muchos investigadores que después intentaron mejorar estos métodos.

Un aporte importante es la fundamentación que le dieron Kegang L. y He J. (2012) al análisis de curvas de declinación de Arps, es su aproximación mediante parámetros de yacimiento y no mediante análisis matemático, como se venía haciendo en los años anteriores.

Con las ecuaciones y las mostradas en el libro de Guo B., Lyions W. y Ghalambor A. demostradas por Golan, que muestran relaciones para algunos parámetros de las curvas de declinación de Arps, se construirá un algoritmo que permita el cálculo de variables no disponibles para un yacimiento en cualquier instante de su vida productiva.

CAPÍTULO II

MARCO TEÓRICO INGENIERIL

La parte teórica competente a este trabajo de investigación se ha dividido en dos secciones generales, que observaremos como marco teórico ingenieril y el computacional.

La presente sección brindará una perspectiva general sobre los principios físicos y matemáticos de ingeniería en petróleos que en algún momento se integrarán en alguna función del algoritmo genético.

2.1. PARÁMETROS PRINCIPALES DE FONDO DE POZO

Las características geológicas de una formación petrolera, varían dependiendo del ambiente sedimentario de la región donde se ubica; este ambiente se va cubriendo por capas de sedimentos que después sufrirán una diagénesis y a través de millones de años se apilarán en una columna estratigráfica, formada por los distintos ambientes sedimentarios que cubrieron al mencionado en un principio y generará un yacimiento con las propiedades necesarias para almacenar fluidos. El Gráfico 2.1 muestra los distintos tipos de t

Gráfico 2.1. Formaciones geológicas con yacimientos de petróleo.

(http://2.bp.blogspot.com/-UYapiEjYdJM/TdbFPRQISPI/AAAAAAAAAAAho/N6K19xd4pi0/s320/Dibujo.JPG)

El reservorio también es dependiente de los diferentes fenómenos tectónicos que pueden variar sus características y su forma, por lo que se ocasionan las trampas donde los fluidos de producción son atrapados; para esto deben haberse formado rocas sello tanto en la parte inferior (previamente)como la superior (posteriormente), y el yacimiento encerrado entre estos dos sellos puede tener un espesor (h) variable (que para propósitos de cálculo se considera como promedio, o se considera sólo el espesor de la cara de la

arena productora). Todo yacimiento capaz de producir y almacenar petróleo, debe tener las propiedades geológicas básicas como son la porosidad (\emptyset), que simboliza los espacios vacíos entre los poros de una roca en donde se almacenan los diferentes fluidos de yacimiento (hidrocarburos, ya sean gas o petróleo, y agua); y por consiguiente, debe existir la capacidad de que estos espacios vacíos estén interconectados de manera que los fluidos puedan moverse a través de ellos hasta llegar a la cara de la arena, esta capacidad se llama permeabilidad (k), y considerando los fluidos del yacimiento, es interconectada para un determinado fluido (permeabilidad efectiva k_f) y también al mismo tiempo es relativa al movimiento a este fluido (permeabilidad relativa k_r).

Para poder entender qué es lo que se sucede en el subsuelo, se han establecido y probado distintas técnicas mediante las cuales se puede determinar si existe o no hidrocarburo. Para esto, la técnica más fiable es la perforación de un pozo exploratorio en un área donde se estime más confiable la inversión.

Un pozo petrolero es la conexión entre el yacimiento y la superficie; este es perforado con la intención de producir el petróleo que se encuentra a profundidad entrapado en una formación geológica.

En el subsuelo, existen muchos factores que intervienen en la producción del petróleo, como por ejemplo la presión del yacimiento, la misma que se asumirá como un promedio para todo el reservorio, $(\overline{P_R})$; esta presión es el parámetro principal a considerarse para implementar un sistema de producción, ya que una presión insuficiente podría limitar o inclusive evitar la producción de petróleo. La presión de yacimiento regula la presión de fondo fluyente (P_{wf}) , aunque también puede ser regulada desde superficie; esta presión es gobernada por las condiciones de yacimiento y apertura del pozo. La diferencia entre estas presiones es la que genera que el yacimiento pueda permitir el flujo

de fluidos desde el radio de drenaje (r_e) hasta el pozo productor que tiene su respectivo radio (r_w). El Gráfico 2.2 muestra el efecto del radio de drenaje sobre la presión del yacimiento.

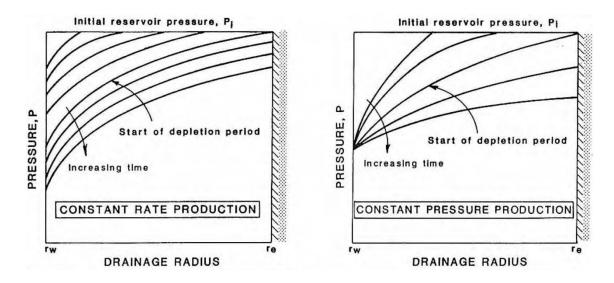


Gráfico 2.2. Efecto del cambio de presión debido al radio de drenaje a) a tasa de producción constante y b) a caída constante de presión. M. Golan. (1996).

Well Performance. Noruega: Tapir.

El fluido entrampado entre los poros de la roca del yacimiento, '(típicamente areniscas o calizas) se encuentra sometido a la presión $\overline{P_R}$ (mencionada anteriormente), la cual rige el comportamiento del flujo de fluidos en el reservorio; esta presión se puede considerar igual a la presión en el radio de drenaje (P_e) para cuando el flujo es pseudo-estable. La presión en el radio de drenaje no es más que un indicativo de que a una distancia r_e de la cara de la arena se conserva la presión del reservorio. En lo que se denomina área de drenaje, cuyo límite es el radio de drenaje para flujo radial, y límite de drenaje para flujo lineal, existe un volumen de petróleo que será extraído, denominado petróleo inicial en el área del pozo (N_i) o POES (Petróleo Original En Sitio) en el área del pozo.

Todo fluido sometido a una presión y temperatura tiene un comportamiento especial, y aún más en el caso de los hidrocarburos. Por ejemplo, en un yacimiento subsaturado (sin capa de gas), todo el gas está disuelto en el petróleo y las propiedades de este son diferentes a un petróleo cuya presión esté debajo de la presión suficiente para mantener al gas disuelto (conocida en la industria como presión de burbuja (P_b).

El parámetro que mide la capacidad del gas para estar disuelto en el petróleo es la solubilidad del gas (R_s) ; se mantiene constante mientras la presión del reservorio sea mayor a la presión de burbuja. Una vez alcanzado el punto de burbuja, empieza a disminuir, permitiendo cada vez menos gas estar disuelto en el petróleo, como se muestra en el gráfico 2.3.

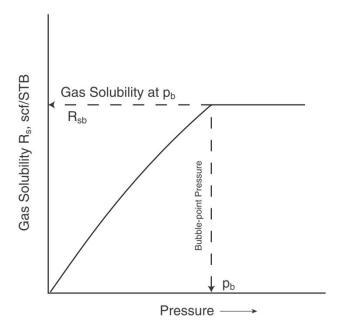


Gráfico 2.3. Comportamiento del R_s con el cambio de presión. A. Tarek. (2006). Reservoir Engineering Handbook. Oxford: Elsevier.

Las propiedades del petróleo en un yacimiento subsaturado, son mucho más estables que en las de un yacimiento saturado. Por ejemplo en el caso del factor volumétrico del petróleo (β_o), su comportamiento es como se muestra

en el Gráfico 2.4; aumenta levemente con la disminución de la presión, hasta llegar al punto de burbuja, donde el comportamiento cambia para empezar una disminución pronunciada con el cambio de la presión.

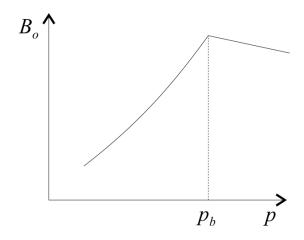


Gráfico 2.4. Comportamiento típico del β_o de un black oil a temperatura de yacimiento constante. Ursin J., Zolotukhin A (1997), Reservoir Engineering, Stavanger.

De manera similar, con la caída de presión a través del tiempo, y con el desprendimiento del gas disuelto en el petróleo una vez llegado al punto de burbuja, son liberados los hidrocarburos livianos, que son básicamente los componentes del gas (metano $\mathcal{C}H_4$, etano \mathcal{C}_2H_6), dejando finalmente a condiciones de presión atmosférica, 14.68 Psi, muy baja concentración de componentes livianos y alta concentración de componentes pesados, así, generando un fluido más viscoso.

Este comportamiento puede ser observado en el Gráfico 2.5, en donde se observa el comportamiento típico de la viscosidad (μ_o) de un petróleo negro a medida que su presión disminuye; en un principio la viscosidad disminuye debido a la expansión que el gas ejerce sobre el petróleo, pero finalmente este gas se empieza a liberar y sucede el fenómeno mencionado anteriormente.

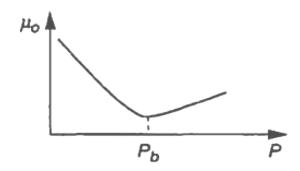


Gráfico 2.5. Comportamiento típico de la μ_o de un black oil a temperatura de yacimiento constante. Donnez P. (2007). Essentials of Reservoir Engineering. Paris: Technip.

Un fenómeno físico ligado directamente con el parámetro anterior, es la expansión y contracción del fluido, es decir, la capacidad que tiene el fluido para encogerse en un determinado instante o a una determinada presión. Esta capacidad es denominada compresibilidad del petróleo (c_o) , que es una función del volumen de petróleo y de la presión (para yacimiento subsaturado), además, también del factor volumétrico del petróleo β_o , factor volumétrico del gas β_g , la presión y factor de solubilidad R_s . Existe otra clase de compresibilidad denominada compresibilidad total de fluidos de yacimiento (c_t) , que simbolizatodos los fluidos y la roca presentes en el yacimiento (agua petróleo y gas), y es la que se considerará de aquí en adelante.

No debe confundirse la compresibilidad total de fluidos con la compresibilidad de la formación, cuya presencia no es indispensable para los propósitos de este proyecto.

El Gráfico 2.6 representa el comportamiento de la compresibilidad típica de un petróleo negro a condiciones isotérmicas.

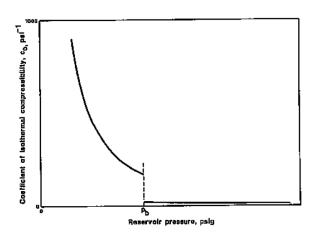
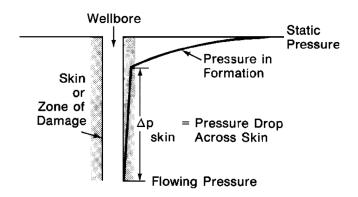



Gráfico 2.6. Comportamiento típico de la c_o de un black oil a temperatura de yacimiento constante. McCain, W (1990). The Properties Of Petroleum Fluids. Tulsa: PennWellBooks.

Los fluidos de yacimiento tienen varios parámetros más, los cuales para propósitos actuales no serán utilizados debido a que las ecuaciones a implementarse no los involucran.

Ahora bien, cuando se perfora un pozo y también cuando se realizan distintas clases de trabajos en él, como la completación, el squeeze, entre otros, se generara un daño (S) en la cara de la arena, lo que produciría una caída adicional (ΔP_S) en el diferencial de presión (ΔP) . El Gráfico 2.7 describe el fenómeno de caída de presiones debido al daño en la cara de la arena productora.

El Gráfico 2.8 expresa analíticamente el efecto del daño en la cara de la arena. Observa una disminución de presión ΔP_{skin} que es otra forma de enunciar ΔP_{s} .

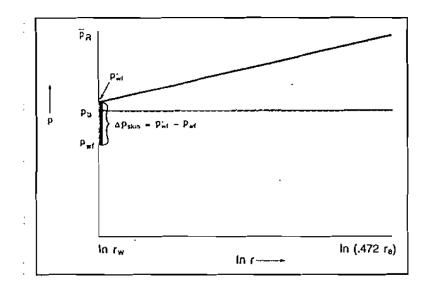


Gráfico 2.8. Efecto del daño positivo a través del radio de drenaje. Beggs H.(2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills Publications.

La caída de presión por daño puede ser remediada; esto es lo que en la industria se conoce como "Estimulación del pozo". Estos múltiples procesos se realizan con el fin de reducir el factor S, es decir, reducirlo a cero o a un valor negativo.

Todos los parámetros mencionados rigen sobre el comportamiento del yacimiento, el cual generará una producción de fluidos (q_L) y de gas (q_g) ; la producción de fluidos puede ser de petróleo (q_o) o de agua (q_w) .

La producción de líquidos puede permanecer constante debido a una presión constante, como en el caso de un yacimiento con un acuífero infinito, al igual que podría declinar debido a la caída de presión a través del tiempo. Contrariamente, la producción de petróleo casi siempre va en declinación debido a la depleción que sufre el yacimiento; la producción de petróleo, por ende, debe ser reemplazada con agua, y esto es lo que pasa en casos reales, la producción de agua va en aumento (considerando que el yacimiento fluye naturalmente y sin ser alterado).

Hay métodos de predicción matemática de producción, como lo son las curvas de declinación, los cuales dependen de datos históricos de yacimiento y producción, que sirven para ayudar a los ingenieros a entender al yacimiento y además a la toma de decisiones respecto a este.

2.2. CURVAS DE PRODUCCIÓN.

La producción diaria de un pozo es medida en las estaciones de producción, específicamente en los separadores; además de la producción se puede medir varias otras propiedades, como el BSW (Basic Sediment Water, o porcentaje de agua), el contenido de arena, entre otros.

En la industria petrolera se debe llevar el control de la producción de cada pozo existente, y cuando se tiene varios datos de producción es posible realizar un gráfico, con la producción en cada instante. Esto, es un gráfico de producción, como se presenta en el Gráfico 2.9.

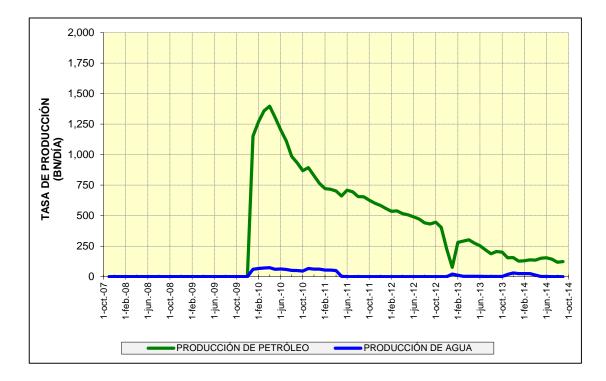


Gráfico 2.9. Curva de producción de petróleo y agua típica.

A partir de esta clase de gráficos y los parámetros de yacimiento, tomados en alguna prueba o que se conozcan por otras maneras, se hacen diferentes estudios con métodos propuestos por distintos investigadores.

Los métodos más generales y utilizados son:

- Curvas de declinación de producción
- Curvas IPR

2.2.1. Curvas de declinación de producción.

Son curvas que utilizan datos de producción para luego estimar un patrón matemático de declinación de la producción y así poder hacer proyecciones de cómo será la producción a futuro.

Los primeros en darse cuenta del comportamiento matemático de la declinación en la producción de petróleo fueron Arnold y Anderson en 1908, quienes mientras estudiaban el campo Caolinga en USA, se dieron cuenta que la producción en tiempos periódicos formaba una serie geométrica, lo que indica que la producción siguiente tendrá caída en fracción porcentual de la producción anterior; a esta fracción la denominaron Declinación. Observaron que el comportamiento de estas curvas daba un patrón exponencial.

Posteriormente, W.W. Cutler (1924), realizó y observó las curvas de declinación de varios pozos, de donde corroboró la investigación de Arnold y Anderson y además pudo percatarse de que algunos pozos seguían un patrón hiperbólico, lo cual representaba mejor el comportamiento de los pozos a futuro.

Autores como R.H Johnson y A.L. Bollens (1927), introducen un método estadístico para extrapolación de curvas de declinación llamado "loss ratio". Pocos años después S.J. Pirson (1935) vuelve a estudiar el "Loss ratio" y encontró la relación tasa-tiempo para curvas con Loss ratio constante. Encontró también los dos tipos de declinación que se habían identificado previamente (exponencial e hiperbólica) además de otras que no tenían propósitos prácticos.

Después de algunas investigaciones precedentes, J.J. Arps en 1945, hace publicación de un documento en donde hace las demostraciones y las relaciones matemáticas para las curvas de declinación de producción; estas relaciones estaban escritas en base a la producción y el tiempo, de donde

obtenía las tasas de declinación y las declinaciones a diferentes tiempos para cada tipo de grupo de curvas, que en total fueron cuatro grupos:

- Declinación Exponencial
- Declinación Hiperbólica
- Declinación Armónica
- Razón de declinación.

Las tres primeras, son las de uso común, inclusive hoy en día, en la industria petrolera, mientras que el al cuarto tipo no se le encuentra mucho propósito práctico, ya que es muy similar a la exponencial para la determinación de tasa de producción, pero es muy complicada para la determinación de producción acumulada.

Después, en 1956, Arps publicó otro documento en donde detallaba las demostraciones de los mismos grupos de tipos de curvas de declinación, pero esta vez además de la tasa y tiempo, también en relación a la tasa con la producción acumulada, así expandiendo el uso de las ecuaciones para las curvas.

En base al análisis de las curvas de declinación hiperbólica, H.N. Mead, en 1956, analiza varios pozos con diferentes mecanismos de empuje en el yacimiento, y llega a la conclusión que el exponente "b" en la ecuación de la declinación exponencial varía dependiendo del tipo de mecanismo de producción que el reservorio tenga.

En base a las investigaciones mencionadas, varios autores y científicos petroleros se encargaron de experimentalmente determinar más métodos y mejoras para el análisis de curvas de declinación, como Slider (1968), Gentry (1972) y Fetkovich (1973), quienes diseñaron diferentes curvas tipo para análisis desde puntos de vista distintos pero con el fin de lograr mayor exactitud en sus determinaciones.

Después, investigadores como D.R. Long y M.J Davis (1988), hicieron aproximaciones más eficientes para las curvas de declinación hiperbólica usando curvas tipo.

De entre muchas investigaciones teóricas, se empezó a implementar la inteligencia artificial, lo cual mejoró y agilitó esta clase de análisis y combinaciones de métodos. Como por ejemplo el trabajo de J.B Aminzadeh y N.B. Toomarian, quienes en 1999 demostraron mediante una red neuronal la efectividad de la inteligencia artificial para la demostración de algunos parámetros petrofísicos de yacimiento. Así, también, H.H. Nguyen y C.W. Chan (2004) presentaron estrategas para el procesamiento de datos mediante redes neuronales para la predicción de la tasa de producción de petróleo.

Se tomará algunas de estas investigaciones, en especial la de Arps, para el análisis y establecimiento de las ecuaciones a utilizarse.

Los patrones típicos de las curvas de Arps, se pueden observar en el Gráfico 2.10.

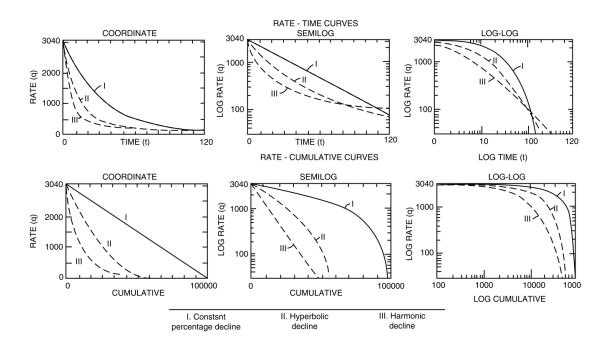


Gráfico 2.10. Patrones de los distintos tipos de curvas de declinación.

Graficados en coordenadas cartesianas, semi-log y log-log. Parte superior: q
vs t. Parte inferior q vs Np. Arps JJ. 1945 Analysis of decline curves. Trans.

Am. Inst. Min. Metall.

El Gráfico 2.10 muestra seis patrones distintos. Los de la parte superior representan la tasa de producción contra el tiempo, es decir, la producción a través del tiempo. Se puede observar la diferencia más significativa entre el primer y segundo gráfico en la parte superior; la curva que representa la declinación exponencial en el segundo gráfico siguen un patrón de línea recta. Esto ayuda al análisis en el momento de obtener la pendiente, que servirá para determinar la tasa de declinación de producción exponencial.

En cambio en la parte inferior tenemos las relaciones entre tasa de producción y producción acumulada. Se puede observar que para el patrón armónico el gráfico semi-log toma forma de línea recta, mientras que para el cartesiano el patrón exponencial es el que tiene forma recta.

2.2.1.1. Curvas de declinación Exponencial.

La declinación exponencial, es la más utilizada en la industria no por su efectividad, sino por la facilidad de manejo que brinda. Los casos reales muy pocas veces se aproximan al patrón exponencial, sino al hiperbólico.

Este tipo de declinación se utiliza para realizar proyecciones económicas del yacimiento, ya que de los tres tipos principales es la más pesimista.

La tasa de producción q varía en el tiempo t a una tasa de cambio b, que reduce porcentualmente a la tasa de producción. Esto se expresa mediante la siguiente ecuación diferencial:

$$\frac{1}{a}\frac{dq}{dt} = -bq^n \ (2.1)$$

Donde el exponente "n" varía dependiendo del patrón de la curva que sigan los datos de producción. Para el caso de declinación exponencial, es igual a cero.

La ecuación (2.1) queda:

$$\frac{1}{q}\frac{dq}{dt} = -b(2.2)$$

Integrando la ecuación (2.2) por ambos lados desde q_1 hasta q_2 y desde t_1 hasta t_2 respectivamente, obtendremos:

$$\int_{q_1}^{q_2} \frac{1}{q} dq = -\int_{t_1}^{t_2} b dt \qquad (2.3)$$

De donde se obtiene:

$$lnq_2 - lnq_1 = -b(t_2 - t_1)$$
 (2.4)

Y así:

$$ln\frac{q_2}{q_1} = -b(t_2 - t_1) \qquad (2.5)$$

Tomando el exponencial a ambos lados de la ecuación (2.5):

$$\frac{q_2}{q_1} = e^{-b(t_2 - t_1)} \quad (2.6)$$

La ecuación (2.6) queda:

$$q_2 = q_1 e^{-b(t_2 - t_1)} (2.7)$$

Dejando la ecuación (2.7) en términos de ecuaciones a utilizarse obtenemos:

$$q = q_i e^{-bt} \qquad (2.8)$$

Donde:

q: Producción para cualquier tiempo (STB/día)

 q_i : Producción al tiempo 0 o tiempo inicial

b: Tasade declinación de producción (1/Tiempo, el tiempo puede ser en días, meses o años)

t: Tiempo para el que se desea calcular la producción del pozo.

El Gráfico 2.11 muestra los patrones típicos en coordenadas cartesianas y semi-log que simbolizan el caso para una declinación exponencial.

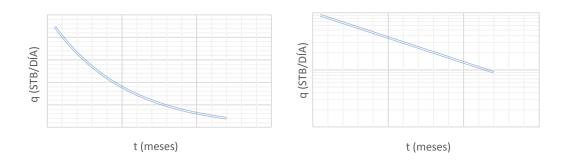


Gráfico 2.11. Patrones de tasa de producción contra tiempo en gráfico a) cartesiano y b) semi-log respectivamente para el caso de declinación exponencial.

En caso de que las unidades de la tasa de declinación no coincidan con las del tiempo en el que se marca cada producción, se puede hacer la siguiente relación:

$$b_a = 12b_m = 356b_d$$
 (2.9)

Donde:

 b_a : Tasa de declinación de producción anual (1/año)

 b_m : Tasa de declinación de producción mensual (1/mes)

 b_d : Tasa de declinación de producción diaria (1/día)

Ambiguamente, se puede hacer un análisis de cualquier curva de declinación utilizando los datos de producción en el tiempo y la producción acumulada.

Para esto, se sabe que la producción acumulada (N_p) es la integral de la tasa de producción. Así:

$$N_p = \int_0^t q \, dt = \int_0^t q_i e^{-bt} \, dt$$
 (2.10)

El gráfico 2.12. Representa el cálculo de la integral en base a los valores de producción contra el tiempo de un pozo.

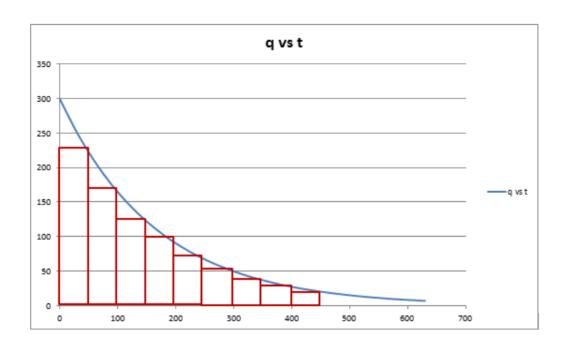


Gráfico 2.12. Representación de la ${\it N}_p$ para un pozo.

Integrando la ecuación (2.10), tenemos:

$$N_p = \frac{q_i}{b} (1 - e^{-bt}) \qquad (2.11)$$

Y sabiendo que $q=q_ie^{-bt}$, la ecuación (2.11) se hace:

$$N_p = \frac{1}{b}(q_i - q)(2.12)$$

En el Gráfico 2.13, podemos observar el comportamiento que tienen los datos de producción exponencial con respecto a la producción acumulada. Se puede observar en coordenadas cartesianas y en semi-log respectivamente.

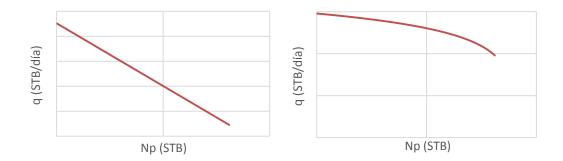


Gráfico 2.13. Comportamiento de la tasa de producción contra la producción acumulada. Gráficos a) cartesiano y b) semi-log respectivamente.

A partir del gráfico semi-log presentado en el Gráfico 2.12, y el Gráfico cartesiano 2.13, se pueden establecer relaciones para la determinación del valor de la tasa de declinación *b*.

Del gráfico 2.12 b), se puede obtener a partir de dos puntos aleatorios:

$$\ln(q_1) = \ln(q_i) - bt_1 \qquad (2.13)$$

Υ

$$ln(q_2) = ln(q_i) - bt_2$$
 (2.14)

Unificando estas dos ecuaciones obtenemos:

$$b = \frac{1}{(t_2 - t_1)} \ln \left(\frac{q_1}{q_2} \right)$$
 (2.15)

En cambio, en base al gráfico 2.13 a) tomamos igualmente dos puntos aleatorios y tendremos:

$$q_1 = q_i - bN_{p_1}$$
(2.16)

Υ

$$q_2 = q_i - bN_{p2} (2.17)$$

Las cuales unificadas darán como resultado:

$$b = \frac{q_1 - q_2}{N_{p_2} - N_{p_1}} \quad (2.18).$$

Tanto la ecuación (2.15) como la ecuación (2.18), servirán para determinar el valor de la tasa de declinación de producción para cualquier caso.

Se puede determinar hasta qué punto el pozo es rentable, estableciendo una producción que se considere límite, es decir, una producción hasta donde la producción deje de ser rentable, mediante la siguiente ecuación:

$$t_a = \frac{1}{b} \ln \left(\frac{q_i}{q_a} \right) \qquad (2.19)$$

Donde t_a es el tiempo de abandono, y q_a es la tasa de producción en el respectivo tiempo de abandono.

2.2.1.2. Curvas de declinación Hiperbólica.

Las curvas de declinación Hiperbólica representan casos más reales para los reservorios. Su forma es dependiente del exponente "n", que simultáneamente es dependiente del mecanismo de producción que ejerce el yacimiento sobre el fluido.

La ecuación característica de la declinación exponencial es:

$$\frac{1}{q}\frac{dq}{dt} = -bq^n \quad (2.20)$$

Que es la ecuación general para las curvas de declinación. Si el exponente "n" es igual a cero, entonces es una declinación exponencial; si este varía en valores entre cero y uno, entonces la declinación es hiperbólica; pero si el valor es igual a uno, entonces la declinación es armónica.

Para estudiar el caso hiperbólico, mantenemos el exponente "n" y con integración, obtenemos finalmente que la producción mediante declinación hiperbólica se obtiene mediante la ecuación (2.21).

$$q = \frac{q_i}{(1+nbt)^{1/n}} \qquad (2.21)$$

Donde 0 < n < 1

Cutler W. (1924)¹⁵ encontró valores de exponente de declinación hiperbólico que variaban entre 0 y 0.7. Arps, hizo un estudio similar y redujo el intervalo a valores entre 0 y 0.4. Leftkovits y Mathews (1958)¹⁶ estudiaron los efectos de yacimientos que producían por drenaje gravitacional y dedujeron que para este tipo de empuje, el valor de n estaba alrededor de 0.5.

Posteriormente Fetkovich (1973), además de poner las bases teóricas para el análisis de curvas de declinación, propuso que los valores de n variaban de 0 a 0.5 para yacimientos de gas y de 0.33 a 0.66 para yacimientos de empuje por capa de gas.

El Gráfico 2.14 demuestra el efecto de la exponente n para el mismo caso de datos de producción.

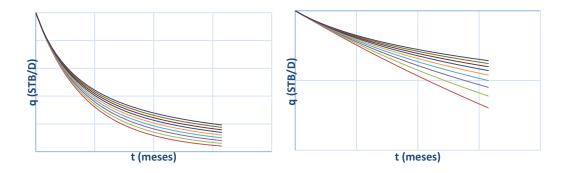


Gráfico 2.14. Diferentes valores de exponente "n" para gráficos de producción contra tiempo a) cartesiana y b) semi-log mediante análisis hiperbólico. (De menor a mayor desde más inferior a mas superior)

Integrando la ecuación (2.21), se podrá obtener la ecuación para la producción acumulada.

$$N_p = \int_0^t q \, dt = \int_0^t \frac{q_i}{(1+nbt)^{1/n}} dt$$
 (2.22)

De la ecuación (2.22) se tendrá:

$$N_p = \frac{q_i}{(1-n)b} \left[1 - (1+nbt)^{\frac{1-n}{n}} \right]$$
 (2.23)

Que también se puede expresar como:

$$N_p = \frac{q_i^n}{(1-n)b} [q_i^{1-n} - q^{1-n}]$$
 (2.24)

El Gráfico 2.15 muestra la variación de los valores de la tasa de producción contra la producción acumulada. Los valores ascienden de n=0.1 hasta n=0.8. Se puede observar que ninguno de los gráficos contiene una línea recta, por ende el cálculo de una pendiente para calcular el respectivo valor de b se hace mucho más complicado.

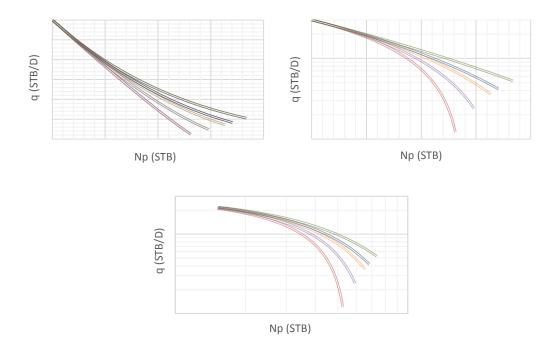


Gráfico 2.15. Valores de N_p para cada tasa de producción q variando el exponente n para los casos a) cartesiano, b) semi-log y c) log-log. (De menor a mayor desde más inferior a mas superior)

El proceso real para la determinación de la exponente n es un proceso iterativo. Se toma un valor de n que se crea que mejor se ajuste a la curva, y se va aumentando o disminuyendo el valor dependiendo de la necesidad del problema.

Gentry (1972), Fetkovich (1973) y otros autores posteriormente vieron esto como un problema, y decidieron generar un método más eficiente, a partir de curvas tipo específicas de cada investigador. Estas curvas son utilizadas y manejadas con parámetros adimensionales.

2.2.3. Curvas de declinación Armónica.

Son las que tienen mayor alcance de producción, es decir, las más optimistas respecto a la producción.

Básicamente, este método sigue la misma metodología de las curvas de declinación hiperbólicas, pero con la ventaja de que el valor del exponente n ya se conoce, y es 1.

Para esto, tenemos la ecuación (2.21):

$$q = \frac{q_i}{(1+nbt)^{1/n}}$$

Reemplazando el valor de n = 1:

$$q = \frac{q_i}{1+ht} \qquad (2.25)$$

Esta es la ecuación para determinar el valor de la tasa de producción para cualquier tiempo t, considerando el caso de declinación armónica en la curva de declinación de producción.

El Gráfico 2.16 muestra el comportamiento de los valores de producción contra tiempo en las distintas gráficas posibles.

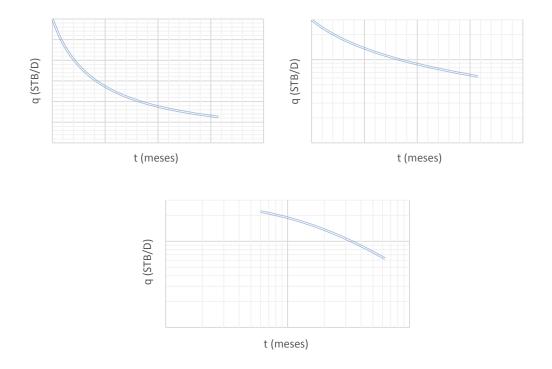


Gráfico 2.16. Comportamiento de la declinación armónica, q contra t en a) coordenadas cartesianas, b) semi-log y c) log-log.

Integrando la ecuación (2.25) para obtener la producción acumulada:

$$N_p = \int_0^t q \, dt = \int_0^t \frac{q_i}{1+bt} dt$$
 (2.26)

$$N_p = \frac{q_i}{b} [1 + bt] \qquad (2.27)$$

Combinando las ecuaciones (2.25) y (2.27):

$$N_p = \frac{q_i}{h} [\ln(q_i) - \ln(q)]$$
 (2.28)

El Gráfico 2.17 muestra el comportamiento de la declinación armónica como q vs *Np*.

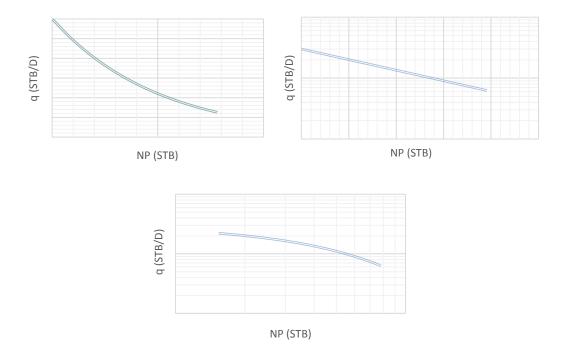


Gráfico 2.17. Comportamiento de la declinación armónica, q contra Np en a) coordenadas cartesianas, b) semi-log y c) log-log.

En base a la ecuación (2.28) se puede obtener la ecuación (2.29), que es la misma ecuación que se obtendría del análisis del Gráfico 2.17 b) al tomar dos puntos aleatorios y haciendo un estudio similar al que se hizo con las ecuaciones (2.13) y (2.14).

$$b = \frac{q_i \ln\left(\frac{q_i}{q}\right)}{N_p} \quad (2.29)$$

Y a partir del Gráfico 2.17 c) se obtiene la ecuación:

$$b = \frac{\frac{q_i}{q} - 1}{t} (2.30)$$

2.2.2. Curvas de IPR

Las curvas de "Inflow Performance Relationship" (IPR) nacen en base a la idea de generar curvas que ayuden a la toma de decisiones para las condiciones actuales de un yacimiento.

La idea de este método es analizar las condiciones actuales del yacimiento para poder hacer un estudio de qué sería lo más conveniente para el pozo, como por ejemplo cuál completación bajar para producir el fluido de yacimiento de manera más eficiente.

El término "inflow performance" fue empleado por Gilbert (1954) para referirse al desempeño del pozo en la cara de la arena, y denominó "inflow performance relationship" al gráfico que se generaba a partir de los datos de IP.

Un gráfico de IPR simboliza el desempeño que tiene un reservorio a condiciones actuales, mostrando los valores de tasa de producción que se pueden obtener a con distintas presiones de fondo fluyente.

Estas curvas son una potente herramienta en el análisis y toma de decisiones respecto al cambio de sistema de producción artificial de un determinado pozo; se puede estimar la producción que el sistema ayudará a producir mediante la presión de fondo fluyente que el yacimiento sea capaz de aportar.

El sistema de levantamiento artificial debe ser diseñado en base a lo que se pueda estimar de las presiones, es decir, cómo será el comportamiento antes de que el pozo alcance el punto de burbuja, o cómo será el comportamiento por debajo del punto de burbuja.

2.2.2.1. Generalidades.

En 1856, Henry Darcy realizaba experimentos con empaquetamientos de arena. Con su profunda investigación, propuso la ecuación que sería la principal herramienta para el estudio de yacimientos de petróleo:

$$q = vA = -\frac{kA}{\mu} \frac{dP}{dL} \qquad (2.31)$$

Siendo:

q: Tasa de producción (STB/D)

k: Permeabilidad (md)

A: Área (ft^2)

P: Presión (Psi)

μ: Viscosidad (cp)

L: Longitud (ft)

Esta ecuación simboliza la producción que se obtiene de un empaquetamiento de arena, siempre y cuando haya un cambio de presión a lo largo de su longitud.

Se establecen posteriormente distintas correlaciones para el flujo de petróleo de manera lineal y radial. La mayoría de veces se produce mediante flujo radial, representado por:

$$q_o = \frac{k_o h(\overline{P_R} - P_{wf})}{\mu_o \beta_o \ln(0.472 \frac{r_e}{r_w} + S)}$$
 (2.32)

La ecuación (2.32) es la representación general del flujo radial.

El fluido llega al pozo con una P_{wf} determinada. Esta presión puede ser regulada desde superficie o mediante distintos mecanismos de producción, pero es por esta presión que la producción del pozo puede variar para una

presión de yacimiento $\overline{P_R}$ constante. En otras palabras, el pozo produce más o menos, dependiendo de cuánta sea la diferencia entre estas presiones.

Se ha definido a la relación entre el inflow rate (tasa que el yacimiento entrega al pozo) y a la diferencia de presiones (ΔP) como el índice de productividad, IP o también I. Definido por la ecuación:

$$IP = J = \frac{k_o h}{\mu_o \beta_o \ln(0.472 \frac{r_e}{r_w} + S)}$$
 (2.33)

O con la ecuación práctica

$$IP = J = \frac{q_o}{(\overline{P_R} - P_{wf})}$$
 (2.34)

Con la relación presentada en la ecuación (2.34) se puede determinar la calidad del pozo en términos de producción, es decir, qué tan buen productor es este. La Tabla 2.2.1 representa los rangos de valores para esta clasificación.

Valor res de J	Categorización
J < 0.5	Mal productor
$0.5 \leq J \leq 1.0$	Productividad media
$1.0 \leq J \leq 2.0$	Buen productor
$j \geq 2.0$	Excelente productor

Tabla I. Categorización de pozos en base al índice de productividad.

En términos de tasa de producción, la ecuación (2.34) es:

$$q_o = J(\overline{P_R} - P_{wf}) \qquad (2.35)$$

Con la ecuación anterior, se puede determinar la producción para cualquier presión. La producción calculada tomando el dato de P_{wf} con un valor de 0,

representa la producción máxima del yacimiento bajo las condiciones determinadas $q_{oM\acute{a}x}$ del pozo. Es un dato analítico, ya que es imposible tomar la presión de fondo fluyente como 0; esto es una asunción de que el yacimiento está aportando a la arena con la misma presión promedio del mismo.

El Gráfico 2.18 muestra el comportamiento del IPR para diferentes pozos mediante la ecuación (2.32), que básicamente es la misma que la ecuación (2.35),

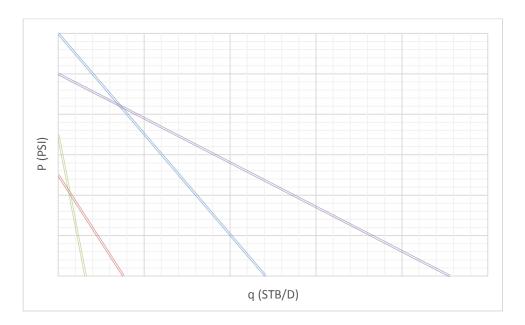


Gráfico 2.18. Gráficos de IPR en base a la ecuación de Darcy para distintos pozos.

La particularidad y desventaja de este método, es que además de solo funcionar para un determinado instante en la vida del yacimiento, este solo calcula datos posibles hasta el punto de burbuja (P_b). Pasado este punto de presión, la ecuación se vuelve inestable y los datos calculados serán sobreestimados, ya que se asume que el fluido de yacimiento sigue en una sola fase, cuando en realidad se encuentra ya en dos fases.

Otro inconveniente grande que tiene este método es que mediante la depleción del yacimiento, los datos se vuelven más y más irreales, especialmente si el yacimiento pasa de ser subsaturado saturado, debido a que el método por la ecuación de IP solo considera líneas rectas.

En el Gráfico 2.19 se puede observar la depleción en el IPR de un yacimiento a lo largo del tiempo, donde $(\overline{P_R} > \overline{P_R}_{\epsilon})$.

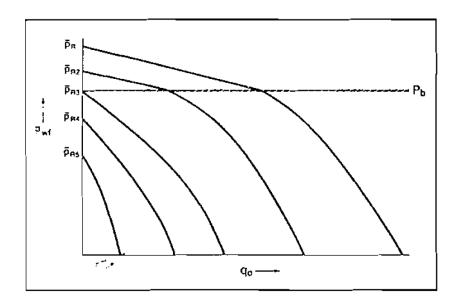


Gráfico 2.19. Efecto de la depleción del yacimiento en las curvas IPR. Beggs H.(2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills Publications.

Mientras haya dos fases en el reservorio, la producción entregada por el pozo ya no es la misma que la observada cuando el yacimiento era subsaturado. Para determinar la producción en cualquier punto debajo de P_b , existen otros métodos como el de Vogel.

2.2.2.2. Método de Vogel.

Vogel J en 1968, posteriormente al análisis de datos de 21 reservorios reales y algunos ficticios, pudo observar que si graficaba los datos de producción para pozos saturados, tomaban una forma diferente a la propuesta previamente.

Entre los experimentos realizados, pudo determinar que las gráficas de IPR en base a la ecuación (2.35) podían llegar a producir errores entre el 70 y 80%.

Además, con sus observaciones experimentales pudo descifrar matemáticamente la ecuación (2.36), representativa para las curvas IPR de yacimientos saturados.

$$\frac{q_o}{q_{oM\acute{a}x}} = 1 - 0.2 \left(\frac{P_{wf}}{\overline{P_R}}\right) - 0.8 \left(\frac{P_{wf}}{\overline{P_R}}\right)^2 \qquad (2.36)$$

La ecuación (2.36) permite además determinar la q_o para cualquier presión P_{wf} .

La forma de esta ecuación se debe a que el gas disuelto en el petróleo, se empezó a desprender una vez alcanzada la presión de burbuja. Mientras más gas (hidrocarburos livianos) se desprende del petróleo, los hidrocarburos pesados van quedando en forma de fluido, lo que provoca un cambio en la viscosidad del fluido, haciendo que cada vez se mueva más lentamente, así, cediendo lugar al gas, cuya permeabilidad relativa irá en aumento, reemplazando al petróleo y así, produciendo menos petróleo en relación a una curva como la 2.18, donde no se observaba el patrón de la curva de Vogel; el Gráfico 2.20 muestra esta diferencia.

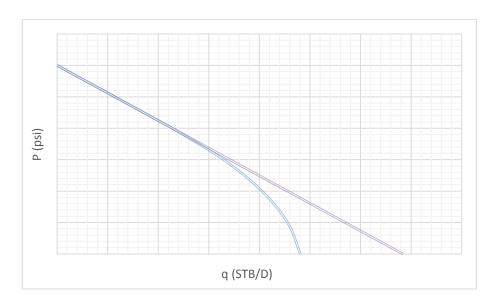


Gráfico 2.20. Comparación entre método de Darcy (curva) y método de Vogel (Recta).

La sección recta es determinada por la ecuación (2.35). La ecuación (2.36) representa a la sección curva la gráfica 2.20, pero no al J para el pozo. Para determinar J, podemos utilizar la ecuación (2.37).

$$J = \frac{q_o}{\frac{\overline{P_R}}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{\overline{P_R}} \right) - 0.8 \left(\frac{P_{wf}}{\overline{P_R}} \right)^2 \right]}$$
 (2.37)

Vogel no toma en cuenta el efecto producido por el daño, es decir, asume un daño de cero.

Las curvas de IPR se ven afectadas por el cambio de los parámetros de yacimiento, como por ejemplo las viscosidades o los factores volumétricos o las permeabilidades relativas. Es por eso que una curva IPR sirve solo para el instante en el que se está analizando la información.

El método de Vogel permite la determinación de curvas de IPR tanto para yacimientos subsaturados como para yacimientos saturados.

Para los yacimientos saturados, el análisis a realizarse es el siguiente:

El yacimiento está por debajo de P_b , por ende las ecuaciones (2.36) y (2.37) se deben trabajar con la presión P_R . Obteniendo así:

$$\frac{q_o}{q_{oM\acute{e}x}} = 1 - 0.2 \left(\frac{P_{wf}}{\overline{P_R}}\right) - 0.8 \left(\frac{P_{wf}}{\overline{P_R}}\right)^2$$
 (2.38)

$$J = \frac{q_o}{\frac{P_R}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_R} \right) - 0.8 \left(\frac{P_{wf}}{P_R} \right)^2 \right]}$$
 (2.39)

En la ecuación (2.38) se puede dejar $q_{oM\acute{a}x}$ en términos de J y $\overline{P_R}$, obteniendo:

$$q_{oM\acute{a}x} = \frac{J\overline{P_R}}{1.8} \qquad (2.40)$$

La condición para que el $q_{oM\acute{a}x}$ exista (hipotéticamente) se llama AOF, Absolute Open Flow.

Despejando la ecuación (2.38) para q_o y reemplazando la ecuación (2.40) en 2.38) obtenemos:

$$q_o = \frac{J\overline{P_R}}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{\overline{P_R}} \right) - 0.8 \left(\frac{P_{wf}}{\overline{P_R}} \right)^2 \right]$$
 (2.41)

Si despejamos la ecuación (2.41) para J, obtendremos la ecuación (2.39).

Comúnmente, para poder determinar el IPR para un pozo, se necesita una prueba de producción actual del mismo; se necesita saber la presión del reservorio $\overline{P_R}$, la presión de fondo fluyente P_{wf} y la producción q_o respectiva al P_{wf} . Con estos datos calculamos el J mediante la ecuación (2.39) y procedemos a calcular valores de q_o para distintos P_{wf} .

Con la ecuación (2.41) podemos calcular el valor de q_o para cualquier punto del Gráfico 2.21.

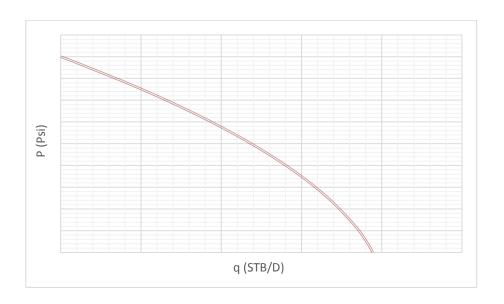


Gráfico 2.21. Patrón de curva de IPR típica de un yacimiento saturado.

En el caso de yacimientos subsaturados, observamos lo siguiente:

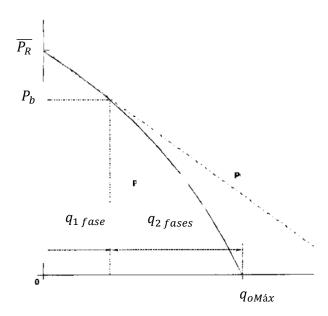


Gráfico 2.22. Representación de caso real de curva IPR. Beggs H.(2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills Publications.

En el Gráfico 2.22 podemos observar dos secciones, separadas por P_b y ambiguamente por q_b (producción en el punto de burbuja). La sección recta de la curva indica que el fluido es monofásico (líquido). La presión en el punto de burbuja marca este límite. Para determinar el J de la sección recta, utilizamos la ecuación (2.34).

$$J = \frac{q_o}{(\overline{P_R} - P_{wf})}$$

Y para determinar la producción para cualquier punto en esta recta utilizamos la ecuación (2.35)

$$q_o = J(\overline{P_R} - P_{wf})$$

El punto límite de la sección recta es la P_b , con la cual se determina un q_b con la ecuación (2.38).

$$q_h = J(\overline{P_R} - P_h) \qquad (2.42)$$

Ahora, para poder analizar las dos secciones juntas, es decir para realizar el análisis bifásico, se debe tomar en cuenta que antes de la sección curva, existe la sección recta, es decir, para cualquier punto de la sección curva se debe sumar la sección recta, de esta manera:

$$q_o = q_{o \ 1fase} + q_{o \ 2fases} = q_b + q_{o \ 2fases}$$
 (2.43)

La ecuación que representa la tasa de producción para cualquier tasa de producción mayor a q_b , es decir para dos fases, es:

$$q_o = \frac{JP_b}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]$$
 (2.44)

Por ende, reemplazando la ecuación (2.42) y (2.44) en (2.43) obtenemos:

$$q_o = J(\overline{P_R} - P_b) + \frac{JP_b}{1.8} \left[1 - 0.2 \left(\frac{P_{wf}}{P_b} \right) - 0.8 \left(\frac{P_{wf}}{P_b} \right)^2 \right]$$
 (2.45)

2.2.2.3. Método (corrección) de Standing.

Como se mencionó anteriormente, Vogel no considera los daños de formación (S); posteriormente, Standing (1970), toma el problema que Vogel dejó y demuestra una solución para este.

Para esto, parte de la premisa que la presión de fondo fluyente se verá afectada debido a la caída de presión ΔP_s ; es por esto que él denominó P_{wf} a la presión de fondo fluyente ideal y P_{wf} a la presión de fondo fluyente real.

La relación entre el "Drawdown" que es la diferencia de presiones ($\Delta P = \overline{P_R} - P_{wf}$) real e ideal las denominó eficiencia de flujo, representada en la ecuación (2.41).

$$EF = \frac{\overline{P_R} - P_{wf}}{\overline{P_R} - P_{wf}} \quad (2.41)$$

Donde EF es la eficiencia de flujo.

La ecuación (2.41) también puede ser expresada en términos del daño y la caída de presión por daño:

$$EF = \frac{\overline{P_R} - P_{wf}' - \Delta P_S}{\overline{P_R} - P_{wf}} = \frac{\ln(0.472r_e/r_w)}{\ln(0.472r_e/r_w) + S}$$
 (2.42)

En términos de P_{wf} , la ecuación (2.41) puede expresarse como:

$$P_{wf}' = \overline{P_R} - EF(\overline{P_R} - P_{wf})$$
 (2.43)

Dividiendo toda la ecuación (2.43) para $\overline{P_R}$ obtendremos:

$$\frac{P_{wf}}{\overline{P_{P}}} = 1 - EF + EF \left(\frac{P_{wf}}{\overline{P_{P}}}\right) \quad (2.44)$$

Recordemos que P_{wf} es la presión de fondo fluyente cuando el skin factor es cero.

Por ende, la ecuación (2.38) queda así:

$$\frac{q_o}{q_{oM\acute{a}x}} = 1 - 0.2 \left(\frac{P_{wf}}{\overline{P_R}}\right) - 0.8 \left(\frac{P_{wf}}{\overline{P_R}}\right)^2 \qquad (2.45)$$

Reemplazando (2.44) en (2.45):

$$\frac{q_o}{q_{oM\acute{a}x}} = 1 - 0.2 \left(1 - EF + EF \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8 \left(1 - EF + EF \left(\frac{P_{wf}}{\overline{P_R}} \right) \right)^2 \tag{2.46}$$

Para dejar la ecuación (2.46) en términos más sencillos, hacemos el álgebra respectiva:

$$\frac{q_o}{q_{oM\acute{a}x}} = 1 - 0.2 \left(1 - EF \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right) - 0.8 \left(1 - EF \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \tag{2.47}$$

Después del requerido proceso de factorización, la ecuación (2.47) pasa a ser:

$$\frac{q_o}{q_{oM\acute{a}x}} = 1.8EF \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8EF^2 \left(\left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \tag{2.48}$$

Que es la ecuación del método de Standing. Tiempo después de su demostración, se determinó que esta ecuación no es viable para valores de EF mayores a 1. Para que sea utilizable, esta ecuación debe cumplir las siguientes dos condiciones.

$$q_o \le q_{o(M\acute{a}x)}^{EF=1}$$
 (Condición 2.1)

$$P_{wf} \ge \overline{P_R} \left(1 - \frac{1}{FE} \right)$$
 (Condición 2.2)

Se mencionó anteriormente que estas dos condiciones se cumplen siempre para una EF menor o igual que uno.

Si no se cumplen estas condiciones, entonces solo se puede determinar el $q_{M\acute{a}x}$ para dicha eficiencia mediante la correlación de Standing, enunciada en la ecuación (2.49)

$$q_{M\acute{a}x} = q_{(M\acute{a}x)}^{EF=1}(0.624 + 0.376EF)$$
 (2.49)

Este principio se puede utilizar para el análisis de pozos, cuyas condiciones actuales son de eficiencias bajas, es decir, alto daño, y se desea estimularlos. En el Gráfico 2.23 se puede observar las condiciones actuales de un pozo y las condiciones de producción que tendría una vez que se haya estimulado.

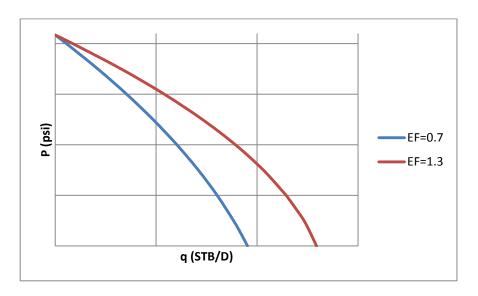


Gráfico 2.23. Efecto de la estimulación de un pozo en la curva de IPR.

Al igual que el método de Vogel, el método de Standing tiene aplicación para yacimientos subsaturados como yacimientos saturados.

Para **yacimientos saturados**, se utiliza la ecuación (2.48), pero tomando el $q_{oM\acute{a}x}$ de la siguiente manera:

$$q_{o(M\acute{a}x)}^{EF=1} = \frac{J^{EF=1}\overline{P_R}}{1.8}$$
 (2.50)

O bien:

$$q_{o(M\acute{a}x)}^{EF} = \frac{J^{EF}\overline{P_{R}}}{1.8*EF}$$
 (2.51)

Entonces, para yacimientos saturados, se puede bien utilizar la ecuación

$$q_o = \frac{J^{EF=1}\overline{P_R}}{1.8} \left[1.8EF \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8EF^2 \left(\left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \right]$$
 (2.52)

O también

$$q_o = \frac{J^{EF}\overline{P_R}}{1.8} \left[1.8 \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8EF \left(\left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \right]$$
 (2.53)

Y para determinar J:

$$J^{EF=1} = \frac{q_o}{\frac{\overline{P_R}}{1.8} \left[1.8EF \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8EF^2 \left(\left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \right]}$$
(2.54)

0

$$J^{EF} = \frac{q_o}{\frac{\overline{P_R}}{1.8} \left[1.8 \left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8EF \left(\left(1 - \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \right]} (2.55)$$

Para yacimientos subsaturados también se hace un análisis similar al de Vogel. Así, utilizando la ecuación (2.43):

$$q_o = q_{o\ 1fase} + q_{o\ 2fases} = q_b + q_{o\ 2fases}$$

Podemos hacer utilizar $q_{o(M\acute{a}x)}^{EF=1}$ o $q_{o(M\acute{a}x)}^{EF}$, obteniendo las siguientes dos ecuaciones:

$$q_{o} = J^{EF=1}(\overline{P_{R}} - P_{b}) + \frac{J^{EF=1}P_{b}}{1.8} \left[1.8EF \left(1 - \left(\frac{P_{wf}}{P_{b}} \right) \right) - 0.8EF^{2} \left(\left(1 - \left(\frac{P_{wf}}{P_{b}} \right) \right) \right)^{2} \right]$$
.56)

Υ

$$q_o = J^{EF}(\overline{P_R} - P_b) + \frac{J^{EF}P_b}{1.8} \left[1.8 \left(1 - \left(\frac{P_{wf}}{P_b} \right) \right) - 0.8EF \left(\left(1 - \left(\frac{P_{wf}}{P_b} \right) \right) \right)^2 \right]$$
 (2.57)

E igualmente para determinar J:

$$J^{EF=1} = \frac{q_o}{(\overline{P_R} - P_b) + \frac{P_b}{1.8} \left[1.8EF \left(1 - \left(\frac{P_{wf}}{P_b} \right) \right) - 0.8EF^2 \left(\left(1 - \left(\frac{P_{wf}}{P_b} \right) \right) \right)^2 \right]}$$
(2.58)

Υ

$$J^{EF} = \frac{q_o}{(P_R - P_b) + \frac{P_b}{1.8} \left[1.8 \left(1 - \left(\frac{P_{wf}}{P_b} \right) \right) - 0.8EF \left(\left(1 - \left(\frac{P_{wf}}{P_b} \right) \right) \right)^2 \right]} (2.59)$$

Recordemos que todas estas ecuaciones son válidas para el método de Standing siempre y cuando se cumplan las condiciones 1 y 2 establecidas para la ecuación (2.48); caso contrario, debemos utilizar la ecuación (2.49) para la determinación de un $q_{o(M\acute{a}x)}^{EF}$.

Se puede hacer un estudio para analizar las condiciones del yacimiento a futuro, es decir, llevar los datos de producción y yacimiento de condiciones actuales a condiciones futuras. Este análisis requiere por lo menos las permeabilidades relativas, viscosidades y presiones de reservorio presentes y futuras.

Para esto, Standing determino la siguiente relación:

$$\frac{J_F}{J_P} = \frac{f(\overline{P_{RF}})}{f(\overline{P_{RP}})} \qquad (2.60)$$

Donde:

 I_F : Índice de productividad a futuro

 J_P : Índice de productividad a condiciones actuales.

 $f(\overline{P_{RF}}) = \frac{k_{roF}}{\mu_{oF}\beta_{oF}}$: Función de la presión a futuro, al igual que los parámetros que la componen.

 $f(\overline{P_{RP}}) = \frac{k_{roP}}{\mu_{oP}\beta_{oP}}$: Función de la presión presente. Los parámetros componentes también son a condiciones presentes.

Una vez determinado el índice de productividad a futuro, el siguiente paso es determinar el $q_{o(Max)F}$. Para esto, se utiliza la relación (2.61)

$$q_{o(Max)F} = q_{o(Max)P} \left[\frac{\overline{P_{RF}} * f(\overline{P_{RF}})}{\overline{P_{RP}} * f(\overline{P_{RP}})} \right]$$
 (2.61)

Posteriormente se procede a determinar las producciones futuras para yacimientos subsaturados mediante las ecuaciones (2.56) y (2.57), o bien si es un yacimiento saturado con las ecuaciones (2.52) o (2.53).

2.2.2.4. Método de Fetkovich.

En base a la gran desventaja del método de Standing, muchos investigadores tuvieron la intención de mejorar este método o introducir uno nuevo. Entre ellos, están Camacho y Raghavan (1987), Bandakhlia y Aziz (1989), Zhang (1992), Klins y Majcher (1992), entre muchos otros.

Entre los más relevantes debido a su expandido uso, está el método de Fetkovich (1973), que se ocupaba de determinar una curva de IPR con la debida curvatura para cualquier EF.

Fetkovich declaró que la condición de no linealidad se debe a que no hay un comportamiento de flujo Darciano en el pozo, inclusive cuando la presión de fondo fluyente es mayor a la presión de burbuja, y también al efecto de las permeabilidades relativas.

Esto lo demostró mediante la siguiente ecuación:

$$q_L = C(\overline{P_R^2} - P_{wf}^2)^n$$
 (2.62)

Donde:

C: Coeficiente de curvatura de IPR

n: exponente dependiente de las características del pozo (comúnmente un valor entre 0.568 y 1.0).

Para poder aplicar este método, será necesario conocer los valores de C y n, los mismos que se pueden obtener mediante pruebas de producción, al igual que en los métodos anteriores.

El procedimiento continúa graficando los valores de presión contra tasa de producción, al igual que en los métodos anteriormente mencionados, excepto que se graficará en papel log-log con el propósito de obtener una recta.

El Gráfico 2.24 muestra luna recta típica para los valores de presión contra tiempo.

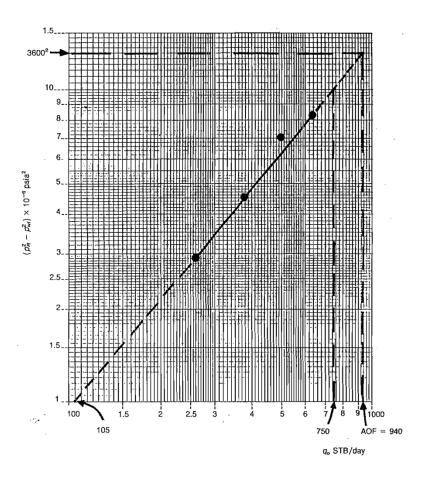


Gráfico 2.24. Gráfico log-log de presión contra producción. Beggs H (2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills Publications.

Se puede observar en el gráfico mostrado que al interceptar la recta dibujada con el valor de la presión de reservorio (3600 2 Psi en este caso) se puede obtener el valor de $q_{L\,M\acute{a}x}$

El valor del exponente n se puede obtener mediante la ecuación (2.63):

$$n = \frac{\Delta \log q_o}{\Delta \log \Delta P^2}$$
 (2.63)

Con el valor de la ecuación (2.63) y los datos de la prueba, podemos calcular el valor de la constante C; después, podemos determinar el valor de la producción para cualquier presión.

Otra manera de estimar la constante C es tomando $q_{l\,{\it M\'{a}x}}$; es decir:

$$q_L = C(\overline{P_R^2} - P_{wf}^2)^n$$

$$q_{LM\acute{a}x} = C(\overline{P_R^2} - 0)^n = C(\overline{P_R^2})^n$$
 (2.64)

Reemplazándolo en la ecuación (2.63) y dejando en términos de $q_L/q_{L\,M\acute{a}x}$:

$$\frac{q_L}{q_{L\,M\acute{a}x}} = \frac{(\overline{P_R^2} - P_{Wf}^2)^n}{(\overline{P_R^2})^n} = \left[1 - \left(\frac{P_{Wf}}{\overline{P_R}}\right)^2\right]^n \tag{2.65}$$

$$\frac{q_L}{q_{L\,M\acute{a}x}} = \left[1 - \left(\frac{P_{Wf}}{\overline{P_R}}\right)^2\right]^n \qquad (2.66)$$

La ecuación (2.66) es la ecuación definitiva del método de Fetkovich. Este método también puede ser utilizado para yacimientos saturados y subsaturados.

Además, se puede expresar en forma analítica para el $q_{L\,M\acute{a}x}$ la ecuación (2.66). Se puede observar que mientras el Drawdown se aproxima a cero, la expresión para $q_{L\,M\acute{a}x}$ es:

$$q_{L\,M\acute{a}x} = \frac{J\overline{P_R}}{2} \qquad (2.67)$$

$$q_L = \frac{J\overline{P_R}}{2} \left[1 - \left(\frac{P_{wf}}{\overline{P_R}} \right)^2 \right]^n \quad (2.68)$$

La expresión (2.68) puede ser utilizada para el análisis de **yacimientos saturados**. Para la determinación de J, se pueden utilizar los datos de la prueba y el valor determinado para el exponente n en la ecuación (2.69):

$$J = \frac{2q_L}{\overline{P_R} \left[1 - \left(\frac{P_{Wf}}{\overline{P_R}} \right)^2 \right]^n}$$
 (2.69)

Por otro lado, para **yacimientos subsaturados**, se utiliza el mismo principio que para los métodos de Vogel y Standing:

$$q_L = q_{L1fase} + q_{L2fases} = q_b + q_{L2fases}$$

Para una sola fase, se utiliza el mismo principio, mientras que para la sección de dos fases (sección curva), se utiliza la ecuación (2.67) en términos de P_b , obteniendo así:

$$q_L = J(\overline{P_R} - P_b) + \frac{JP_b}{2} \left[1 - \left(\frac{P_{wf}}{P_b} \right)^2 \right]^n (2.68)$$

Fetkovich, al igual que Standing, también determinó un método para llevar el pozo a condiciones futuras. En el método de Fetkovich lo que habría que calcular para futuro es el C_F con la siguiente relación:

$$C_F = C_P \left(\frac{\overline{P_{RF}}}{\overline{P_{RB}}} \right)$$
 (2.69)

Así, teniendo el valor de la C_F procedemos al cálculo de las producciones a futuro.

$$q_{o(F)} = C_P \left(\frac{\overline{P_{RF}}}{\overline{P_{RF}}} \right) (\overline{P_R^2} - P_{wf}^2)^n \qquad (2.70)$$

2.3. DIFERENCIAS ENTRE CURVAS DE DECLINACIÓN Y DE IPR.

Las diferencias entre las curvas de declinación de producción y las curvas de IPR son muy pronunciadas, especialmente considerando que son métodos diferentes de análisis de datos y predicciones.

En primer lugar, las curvas de declinación nacieron como un análisis matemático de patrones de producción de un campo, específicamente de cada pozo, que sirvieron para después poder realizar predicciones de la producción a futuro del mismo. Fue mucho después que se pudo demostrar la dependencia a los parámetros de yacimiento que tienen las curvas de declinación, inclusive se puede decir que apenas recientemente se han publicado estudios respecto a la teoría envuelta en este método, como el de Ling K. y He J. (2012) en donde se estipulan las bases teóricas para las curvas de declinación de producción tanto para gas como para petróleo en diferentes tipos de yacimiento. Pero en esencia, las curvas de declinación tienen como objetivo la predicción a futuro de la producción, esto antes del descubrimiento de sus bases teóricas de reservorios.

Por otro lado, las curvas de IPR son un método para el análisis de las condiciones actuales del pozo. Es posible utilizar procedimientos descritos por varios autores para llevar las curvas a condiciones futuras del yacimiento, pero el análisis se torna un poco delicado y porcentaje de incertidumbre aumenta con respecto al número de parámetros que se estén utilizando en las ecuaciones.

Es posible combinar estos dos métodos para poder efectuar el análisis de producción de un pozo, obviamente teniendo a disponibilidad los parámetros de yacimiento de alguna prueba.

2.4. APLICABILIDAD DE CURVAS DE PRODUCCIÓN.

A pesar que anteriormente ya se mencionó, cada una de las curvas tiene una aplicación limitada. Las curvas de IPR sirven para un determinado instante de la vida del pozo; se puede llevar aquel pozo a condiciones futuras para ser analizado, pero los resultados contienen una incertidumbre relativamente alta.

La aplicación primordial de las curvas de IPR es el análisis nodal, que consiste en seleccionar la tubería de diámetro debido para el respectivo pozo, para que tenga la mayor cantidad de producción a lo largo de un tiempo, que normalmente se desea que sea lo mayor posible, y a una presión de fondo fluyente, hasta donde se la pueda mantener, constante.

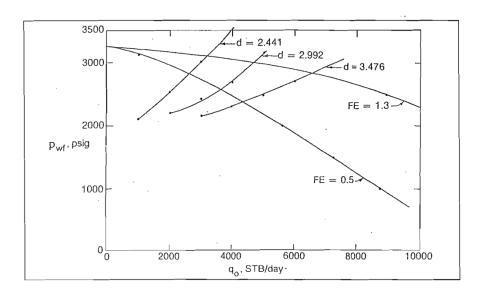


Gráfico 2.25. Análisis nodal para un pozo. Beggs H.(2003). Production Optimization Using Nodal Analysis. Tulsa: OGCI and Petroskills Publications.

El Gráfico 2.5 muestra un análisis nodal para un pozo que muestra curvas de IPR para dos eficiencias de flujo, una actual y la otra estimulada. Además, se pueden observar tres curvas que cortan los IPR, estas son curvas determinadas en base un análisis de diámetros de tubería, los cuales muestran

la capacidad el pozo para producir con cada una de estas tuberías de diámetros diferentes.

Además, en base al análisis nodal se puede decidir el tipo de completación de fondo, es decir, el tipo de bombeo artificial que se implementará en el sistema (bombeo mecánico, bombeo por Gas Lift, bombeo electro-sumergible, bombeo hidráulico).

Por otro lado están las curvas de declinación, las mismas que sirven para hacer predicciones (en sus términos básicos que son las relaciones matemáticas establecidas por Arps) en base a datos de producción que se hayan obtenido a lo largo de la vida productiva del pozo. Estas curvas tienen la gran desventaja de que solo permiten predecir por un tiempo similar al que se tiene datos de producción.

El principal problema es determinar el tipo de curva ideal para los datos de producción que se estén analizando para el determinado problema. Para esto hay otra manera de analizar los datos de producción que es relacionando un diferencial de producción con la producción por el respectivo diferencial de tiempo, contra la tasa de producción, esta relación se llama declinación relativa. El gráfico 2.26 muestra qué forma tomarán los datos de producción para cada caso de tipo de curvas.

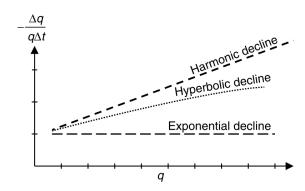


Gráfico 2.26. A. Declinación relativa contra producción. Guo B., Lyons W., Ghalambor (2008). Petroleum Production Engineering.

Es posible realizar varias predicciones y observar cuál es la que mejor se ajusta el modelo, ya que las curvas de declinación de producción histórica no siguen un patrón constante debido a los altos y bajos de producción que se hayan tenido que aplicar o en momentos que la producción haya estado cerrada.

En el presente proyecto se trabajará con curvas de declinación con parámetros de reservorio, tal como lo indican las bases teóricas que plantearon Ling y He y las que muestran Guo, Lyons y Ghalambor en su libro.

Recordemos la ecuación (2.20)

$$\frac{1}{q}\frac{dq}{dt} = -bq^n$$

Se trabajará con flujo pseudo-estable, para lo que tenemos la ecuación de tasa de producción:

$$q_o = \frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472 \frac{r_e}{r_{vv}}\right) + S\right)}$$
 (2.70)

Donde $\overline{P_{tc}}$ es la presión promedio del yacimiento al tiempo t.

La integral de la ecuación (2.70) dará una relación para Np.

$$N_{P} = \int_{0}^{t} q_{o} dt = \int_{0}^{t} \frac{k_{o} h(\overline{P_{t}} - P_{wf})}{141.2\beta_{o} \mu_{o} \left(\ln\left(0.472 \frac{r_{e}}{r_{w}}\right) + S\right)} dt \qquad (2.71)$$

Pero Np también puede ser expresado en términos de la compresibilidad total de reservorio, como lo muestra la ecuación (2.72)

$$N_P = \frac{c_t N_i}{\beta_o} (\overline{P_o} - \overline{P_t}) \qquad (2.72)$$

Donde Igualando la ecuación (2.71) y la (2.72)

$$\int_{0}^{t} \frac{k_{o}h(\overline{P_{t}} - P_{wf})}{141.2\beta_{o}\mu_{o}(\ln(0.472\frac{r_{e}}{r_{vi}}) + S)} dt = \frac{c_{t}N_{i}}{\beta_{o}}(\overline{P_{o}} - \overline{P_{t}}) \quad (2.74)$$

Tomando la derivada con respecto al tiempo t en ambos lados, obtendremos la siguiente ecuación diferencial.

$$\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) + S\right)} = -\frac{c_t N_i}{\beta_o} \frac{d\overline{P_t}}{dt} \qquad (2.75)$$

La ecuación (2.70) puede expresarse como:

$$\frac{dq}{dt} = \frac{kh}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) + S\right)} \frac{d\overline{P_t}}{dt} \quad (2.76).$$

Dejando la ecuación (2.76) en términos de $\frac{d\overline{P_t}}{dt}$:

$$\frac{d\overline{P_t}}{dt} = \frac{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) + S\right)}{kh} \frac{dq}{dt} \quad (2.77)$$

Reemplazando la ecuación (2.77) en la (2.75), y tomando en cuenta que el lado izquierdo de (2.75) es q:

$$q = -\frac{141.2\mu_o c_t N_i \left(\ln\left(0.472 \frac{r_e}{r_w}\right) + S\right)}{kh} \frac{dq}{dt}$$
 (2.78)

La tasa de declinación relativa se observa en la ecuación (2.20)

$$\frac{1}{q}\frac{dq}{dt} = -bq^n$$

Relacionando la ecuación (2.78) con la ecuación (2.20) encontramos que:

$$\frac{kh}{141.2\mu_o c_t N_i \left(\ln\left(0.472 \frac{r_e}{r_w}\right) + S\right)} = bq^n \qquad (2.79)$$

Considerando el caso de declinación exponencial, la ecuación (2.80) se convierte a:

$$b = \frac{kh}{141.2\mu_0 c_t N_i \left(\ln \left(0.472 \frac{r_e}{r_{tu}} \right) + S \right)}$$
 (2.81)

La declinación de la presión de reservorio se expresa como:

$$\overline{P}_t = P_{wf} + (\overline{P}_o - P_{wf})e^{-bt} \quad (2.82)$$

Reemplazando esta ecuación en la (2.70), obtenemos:

$$q = \frac{k_o h(\overline{P_o} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) + S\right)} e^{-bt}$$
 (2.83)

Y así, reemplazando la ecuación (2.81) en la (2.83), obtendremos la ecuación que utilizaremos para el modelo exponencial.

$$\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) + S\right)} = q_o e^{-\frac{kh}{141.2\mu_o c_t N_i \left(\ln\left(0.472\frac{r_e}{r_w}\right) + S\right)}t}$$
(2.84)

Por consiguiente, para las ecuaciones (2.21) y (2.25) respectivamente, quedarían expresadas las siguientes ecuaciones:

$$\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472 \frac{r_e}{r_w}\right) + S\right)} = \frac{q_o}{\left(1 + n * \frac{kh}{141.2\mu_o c_t N_i \left(\ln\left(0.472 \frac{r_e}{r_w}\right) + S\right)} * t\right)^{1/n}} (2.85) \quad y$$

$$\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472 \frac{r_e}{r_w}\right) + S\right)} = \frac{q_o}{1 + \frac{kh}{141.2\mu_o c_t N_i \left(\ln\left(0.472 \frac{r_e}{r_w}\right) + S\right)^* t}} (2.86)$$

CAPÍTULO III.

MARCO TEÓRICO COMPUTACIONAL

A pesar que el área computacional es una ciencia muy diferente a la ingeniería en petróleos, estas dos ciencias se complementan, siendo la ingeniería computacional una gran herramienta para el estudio de problemas complejos para la solución de cálculos que manualmente resultarían complicados y extensos.

La computación es una ciencia relativamente nueva (alrededor de la década de los 40), pero su aparición aceleró el desarrollo de otras ciencias y tecnologías de manera considerable. Muchos métodos de computación se basan en principios naturales, similar al funcionamiento de los nidos de hormigas, en las que cada individuo tiene una labor y tiene que cumplir con ella para perfeccionar el nido como un colectivo, como es el método de Ant Farm (Granja, nido, de hormigas), que toma un problema y lo soluciona

mediante la construcción de soluciones computacionales paulatinas hasta lograr un funcionamiento estable o que cumpla la solución.

Existe un método computacional llamado redes neuronales, que toma decisiones de acuerdo a una secuencia lógica de eventos y datos del problema que se desee solucionar.

La herramienta básica con la que se instruye a una máquina para que realice cualquier proceso es el lenguaje de programación, de los cuales hay varios, como ASCII, Fortran, Visual Basic, C++, C#, JAVA, Pyton y muchos otros.

A continuación se describe una parte importante de los métodos computacionales que se están aplicando en la actualidad para la agilización de varios procesos mecánicos que los seres humanos muchas veces no estamos capacitados para realizar, pero sí las máquinas.

3.1. INTELIGENCIA ARTIFICIAL.

La inteligencia artificial, de entre muchas cosas, se puede definir como un campo en el que se intenta emular las capacidades de inteligencia humana.

Entiéndase por inteligencia a una capacidad determinada de un ser humano para una actividad, pensamiento o labor en específico.

Un ser humano tiene varias capacidades de inteligencia, entre ellas están la lógica (procesos mentales) y la filosofía.

El ser humano a lo largo de su existencia ha logrado descubrir y crear diferentes máquinas y herramientas que han ayudado a su subsistencia y supervivencia en el medio. Una de estas creaciones son las computadoras, a través de las cuales se ha podido sistematizar cálculos matemáticos con la

finalidad de obtener una solución más ágil e incrementar la eficiencia de procesos ingenieriles.

El avance y la necesidad de mejorar procesos ingenieriles e industriales, obligó a los seres humanos a buscar nuevos medios de eficacia en cálculos y soluciones a problemas, a través de los cuales se puedan programar procesos más complejos, que en un principio eran muy complicados y complejos debido a que las primeras computadoras solo eran capaces de solucionar comandos especificados por el usuario.

Es aquí, donde varios científicos se dan cuenta que el futuro de la ciencia avanza hacia la creación de dispositivos inteligentes, con la habilidad de tomar decisiones de acuerdo a la función específica que tengan. Este corresponde al nacimiento del concepto de inteligencia artificial, la misma que se encarga del estudio y creación de máquinas con la capacidad de tomar decisiones en base a las capacidades cognitivas originales del ser humano.

En base a lo mencionado, podemos dividir la inteligencia artificial en las siguientes categorías:

- 1. Sistemas que piensan como humanos
- 2. Sistemas que actúan como humanos
- 3. Sistemas que piensan racionalmente
- 4. Sistemas que actúan racionalmente

Los sistemas que piensan como humanos, intentan emular el esquema de pensamiento humano, como lo son la toma de decisiones mediante una secuencia lógica de asunciones y principios. El método más común de estos sistemas son las redes neuronales.

Los **sistemas que actúan como humanos** son los que tratan de emular la conducta humana, ya sea por realización de tareas igual que los humanos o por la manera de interactuar. Aquí entra el campo de la robótica.

Por otra parte, tenemos los **sistemas que piensan racionalmente**; estos tienen la capacidad de pensar en una secuencia lógica y además pueden razonar y actuar, tomando decisiones inteligentes y adecuadas para la solución de un determinado problema.

Por último están los **sistemas que actúan racionalmente**, que tratan de emular las acciones humanas en su totalidad. Se puede considerar que son sistemas que reaccionan de una manera específica a distintos estímulos.

Es interesante la conexión que esta ciencia computacional tiene con algunas ramas de filosofía, lógica y matemática, ya que los fundamentos de todas estas ciencias convergen en este punto para crear máquinas capaces de entender y manejar, o por lo menos funcionar bajo todos los fundamentos filosóficos en la historia.

A continuación se muestran varias definiciones de inteligencia artificial, dadas por distintos autores, basadas en capacidades de inteligencia específicas.

Sistemas que piensan como humanos

"El nuevo y excitante esfuerzo de hacer que los computadores piensen... máquinas con mentes, en el más amplio sentido literal" (Haugeland, 1985)

"La automatización de actividades que vinculamos con procesos de pensamiento humano, actividades como la toma de decisiones, resolución de problemas, aprendizaje..." (Bellman, 1978)

Sistemas que piensan racionalmente

"El estudio de las facultades mentales mediante el uso de modelos computacionales" (Charniak y McDermott, 1985)

"El estudio de los cálculos que hacen posible percibir razonar y actuar" (Winston, 1992).

Sistemas que actúan como humanos

"El arte de desarrollar máquinas con capacidad para realizar funciones que cuando son realizadas por personas requieren de inteligencia" (Kurzweil, 1990)

"El estudio de cómo lograr que los computadores realicen mejores tareas que, por el momento, los humanos hacen mejor" (Rich y Knight, 1991)

Sistemas que actúan racionalmente

"La inteligencia Computacional es el estudio del diseño de agentes inteligentes" (Poole et al.. 1998)

"IA... está relacionada con conductas inteligentes en artefactos" (Nilsson, 1998)

Las ciencias, y temas, en los que más se apoya la inteligencia artificial son la lógica matemática, que se desarrolla a finales del siglo XIX. Además, se tiene la electrónica y las nuevas ideas que se estaba descubriendo sobre computación, alrededor de la década de 1940.

A continuación tenemos una evolución cronológica resumida de la ciencia computacional.

3000 A.C Las Torres de Hanói, juego matemático que desafía buscar una solución específica.

300 A.C Aristóteles estableció un método estructurado, compuesto por silogismos y reglas, que describen algo de cómo funciona la mente humana.

250 A.C. Ctesibio de Alejandría construyó la primera máquina automática, en donde el flujo de agua era regulado por un mecanismo ingeniado por él.

1847 George Boole logró establecer una nueva clase de lógica de proposiciones, (lógica Booleana).

1879 Gottlob Frege estructura la Lógica de Primer Orden mediante el trabajo de Boole.

1937 Alan Turing, en su artículo "Números Calculables" introdujo el concepto de Máquina de Turing, una entidad matemática abstracta que formalizó el concepto de algoritmo, capaz de leer instrucciones de una cinta de papel perforada y ejecutar todas las operaciones críticas de un computador.

1940 Alan Turing y su equipo construyeron el primer computador electromecánico y en 1941 Konrad Zuse creó la primera computadora programable y el primer lenguaje de programación de alto nivel Plankalkül

1943 Se presenta un trabajo de redes neuronales (modelo de neuronas artificiales) creado por Warren McCulloch y Walter Pitts; es un trabajo analítico y es considerado el primer trabajo del campo de inteligencia artificial.

1950 Alan Turing en su artículo "Computing Machinery and Intelligence" propuso la "prueba de Turing" que explica que se puede considerar inteligente a un sistema (máquina) si cumple con las siguientes premisas:

- La máquina debe ser capaz de **procesar un lenguaje natural**.
- El mecanismo debe tener la capacidad de almacenar conocimiento,
 (memoria y capacidad de cálculo matemático y físico).
- El dispositivo debe tener una rutina o un mecanismo que le permita realizar un razonamiento automático.
- La máquina debe ser capaz de aprender de las decisiones tomadas o aprendizaje automático; la memoria almacenará las decisiones.

1987 Martin Fischles y Oscar Firschein describieron los atributos de un agente inteligente. Dichos atributos Del agente inteligente son:

- 1. Tiene actitudes mentales tales como creencias e intenciones.
- 2. Tiene la capacidad de obtener conocimiento, es decir, aprender.

- 3. Puede resolver problemas, incluso particionando problemas complejos en otros más simples.
- 4. Entiende. Posee la capacidad de crearle sentido, si es posible, a ideas ambiguas o contradictorias.
- Planifica, predice consecuencias, evalúa alternativas (como en los juegos de ajedrez)
- 6. Conoce los límites de sus propias habilidades y conocimientos.
- 7. Puede distinguir a pesar de la similitud de las situaciones.
- 8. Puede ser original, creando incluso nuevos conceptos o ideas, y hasta utilizando analogías.
- 9. Puede generalizar.
- 10. Puede percibir y modelar el mundo exterior.
- 11. Puede entender y utilizar el lenguaje y sus símbolos.

Haciendo un análisis de la información presentada previamente, podemos entonces decir que la inteligencia artificial (IA) posee características humanas tales como el aprendizaje, la adaptación, el razonamiento, la autocorrección, el mejoramiento implícito, y la percepción modular del mundo. Así, podemos hablar ya no sólo de que esta ciencia no persigue un solo objetivo, sino de muchos, dependiendo del punto de vista o utilidad que pueda encontrarse a la IA.

Algunas de las aplicaciones modernas de la inteligencia artificial incluyen los sistemas de procesamiento facial y textual, la previsión de evolución de precios, modelos de predicción de roturas en vigas de hormigón, procesamiento de imágenes aéreas y de satélite, programación automática, navegación autónoma entre muchos otros.

3.2. COMPUTACIÓN EVOLUTIVA - ALGORITMOS GENÉTICOS.

La computación evolutiva es una de las múltiples ramas de la inteligencia artificial. Su metodología se basa en las teorías de evolución planteadas por Charles Darwin (1959).

La teoría de la evolución dice que los individuos se adaptan de acuerdo a los cambios del medio en el que se encuentran, es decir, si el ambiente cambia, los individuos en él cambian, generando así una evolución y desplazando la especie débil por la nueva con mayor capacidad de supervivencia.

El gráfico 3.1 muestra las distintas etapas de la teoría de evolución de las especies, hasta llegar al ser humano, el cual también se ha adaptado y evolucionado con el ambiente y las condiciones requeridas para llegar al Homo Sapiens.

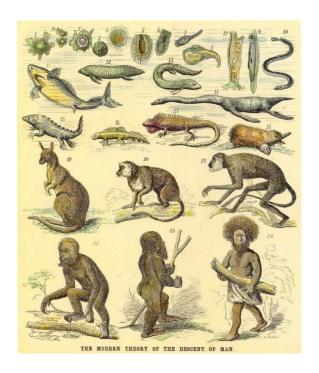


Gráfico 3.1. Etapas de evolución de las especies (http://booksfact.com/images/2014/07/1876-Haeckels_chart_stages_of_human_evolution.jpg).

Los cambios por lo general son físicos (fenotípicos), pero se vuelven genéticos (genotípicos) en el momento en que el individuo desarrollado se aparea con otro y transmite sus características.

Es así como se genera una cadena de especies antecesoras y nuevas especies, de las cuales se podría decir que derivamos nosotros.

En computación, los procesos funcionan de manera similar, excepto que traducidos a lenguaje matemático o lógico (comúnmente binario). A la programación de estos aspectos se le denomina **programación evolutiva**. Este término fue utilizado por primera vez en U.S.A por Lawrence Fogel en la década de los 60. Mientras tanto, otro investigador llamado John Holland, proponía una teoría similar, que se basaba en las leyes de la genética y evolución de manera simultánea, la cual es llamada **algoritmos genéticos**. Por otro lado en Alemania Ingo Rachenberg y Hans Schwefel introdujeron las **estrategias de evolución**. No fue sino hasta la década de los 90 que se unificó estos tres términos bajo el título de **computación evolutiva**.

Mientras estos investigadores desarrollaban estos métodos y exponían ante la comunidad científica, surgieron otros investigadores que ampliaron el concepto de computación evolutiva e inclusive incorporaron nuevos métodos; a continuación se muestra una lista de las técnicas más comunes de computación evolutiva.

- Algoritmos Genéticos.
- Estrategias de Evolución.
- Evolución Diferencial.
- Inteligencia de Colmena.
- Optimización de colonia de Hormigas.
- Optimización de Enjambre de Partículas.
- Algoritmo de Colonia de Abejas Artificial.

- Sistemas Artificiales Inmunes.
- Algoritmos Culturales.
- Redes Neuronales.
- Minería de Datos.

El Gráfico 3.2 muestra de manera resumida las principales ramas de la computación evolutiva y sus respectivos procesos.

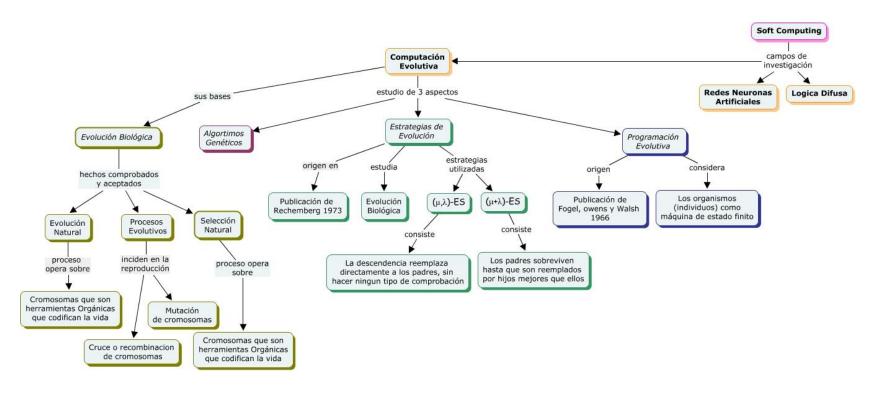


Gráfico 3.2. Computación evolutiva y los métodos que la componen.

(http://cmapspublic2.ihmc.us/rid=1KNJ1DGFP-299MC8S-1FGP/Computaci%C3%B3n%20Evolutiva.cmap)

El Gráfico 3.2 muestra a los **algoritmos genéticos** como una forma de computación evolutiva aparte y general; esto se debe a que es una de las principales ramas del árbol de división de métodos evolutivos de computación. Esta se basa en los principios de evolución genética de manera interna (genotípica) y externa (fenotípica), y de la transferencia genética de una generación a otra, como se postula en las leyes de Gregor Mendel.

El desarrollo de la computación evolutiva se viene dando casi en paralelo con la inteligencia artificial, inclusive con los mismos precursores, como Alan Turing, quien en 1950 propuso la idea de una "máquina de aprendizaje", la cual emularía los principios de la evolución.

En la actualidad, los algoritmos genéticos tienen miles de aplicaciones, especialmente en ingeniería, como la creación de la mejor forma y patrón de una antena, caracterización de reservorios de petróleo, circuitos eléctricos entre muchas otras.

La meta principal de un algoritmo genético es determinar una solución o un conjunto de soluciones para una determinada función objetivo, que es el objetivo que tiene un individuo en una sociedad, en el caso de ciencia computacional, una función matemática. El Gráfico 3.3 muestra el funcionamiento típico de un algoritmo genético.

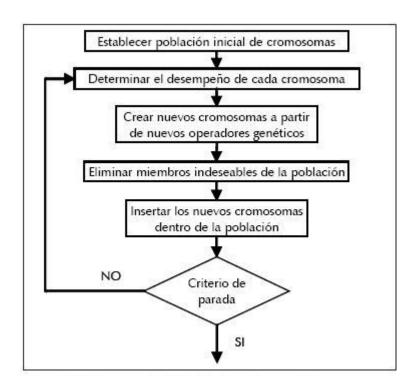


Gráfico 3.3. Esquema básico de un algoritmo genético. (http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092006000300013&Ing=pt&nrm=iso&tlng=es)

Para la implementación de un algoritmo genético se toma una población inicial de individuos (cromosomas), la cual podría ser en base a números aleatorios establecidos dentro de un rango, como podrían ser individuos programados de manera específica para que estén dentro de límites tolerables.

La población, para los casos de análisis matemático, vendrá representada por números; estos números tienen **características fenotípicas**, que es lo que se observa, la forma, el símbolo que este representa; y tienen **características genotípicas**, que es la composición interna del número, cómo se genera; la población, para ser compatible con una computadora, debe tener sus

características genotípicas representadas en lenguaje binario (unos y ceros). Por ejemplo para el caso del 9, su representación binaria sería 1001.

Es aquí que aparece el concepto de cromosomas. Los cromosomas están divididos en genes, (en la sección 3.4 se discutirá más a detalle este tema). En computación evolutiva, un **cromosoma** es un individuo, compuesto por **genes** que simbolizan parámetros, y a su vez, cada gen está compuesto de **bits** (proteínas en biología); los bits vienen representados en lenguaje binario y son estos los que contienen la información genotípica de cada individuo. El Gráfico 3.4 muestra la estructura de un cromosoma con sus respectivos genes y bits.

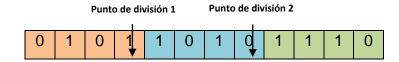


Gráfico 3.4. Individuo/cromosoma de población del algoritmo.

En el gráfico 3.4 se puede observar un cromosoma de tres genes de cuatro bits cada uno. Un cromosoma puede tener n genes y m bits.

Los individuos de la población se someten a un proceso de evaluación, que evolutivamente se puede denominar ambiente, pero el término computacional es **función objetivo o aptitud.** Los individuos tienen que cumplir su parte en la sociedad, es decir desenvolverse en el medio para poder sobresalir. Si un individuo cumple de manera eficiente la función objetivo, o da un buen resultado en su desempeño, este puede pasar a la siguiente generación su codificación genética.

Para poder seleccionar los mejores individuos, se **jerarquiza** la población que se hizo someter al proceso de evaluación, así, determinando cuáles fueron los

mejores y eliminando a los que no dieron buen resultado en su función. Esto se llama proceso de **selección** (véase en sección 3.3 selección natural).

Los mejores individuos se aparearán entre sí, formando así una segunda generación. Los métodos y forma de apareamiento son definidos interna o externamente, es decir estos ya vienen programados ya sea en la estructura del código, o con la opción de seleccionar un método de apareamiento por parte del usuario.

El término apareamiento y transmisión de genes, se refiere al emparejamiento de los distintos individuos, haciendo que intercambien sus genes, de una manera específica. Esta clase de apareamiento se llama **cruzamiento**. El Gráfico 3.5 muestra un proceso común de cruzamiento.

El cruzamiento es una manera eficiente de intercambio de bits, y dependiendo del tipo que se implemente, podría ser la mejor forma de variar los cromosomas.

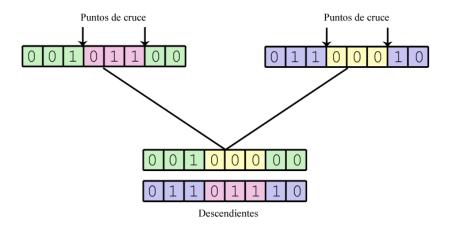


Gráfico 3.5. Cruzamiento entre dos individuos y codificación de hijos. (http://www.cs.us.es/~fsancho/?e=65)

Una vez seleccionados los cromosomas padres después de la jerarquización (mejores individuos de la población), se procede al intercambio de genes, que puede ser por genes, por bits, o multipunto. Los Gráficos 3.6, 3.7 y 3.8 muestran gráficamente los tipos más comunes de cruzamiento.

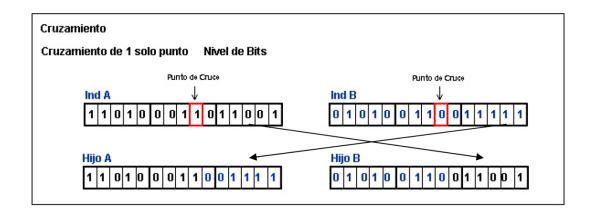


Gráfico 3.6. "Localización Óptima De Pozos De Desarrollo Mediante La Integración De Modelamiento Geoestadístico Basado En Objetos Y Computación Evolutiva " Cruzamiento de un solo punto a nivel de bits. Idrobo, Pineda. et al. (2004)

En el gráfico anterior se puede observar que el individuo A y el individuo B tienen un bit marcado; este bit es el bit seleccionado (punto de cruce), ya sea aleatoriamente o manualmente, a partir del cual se realizará el cruzamiento. El hijo A se puede observar que tiene los mismos bits que el individuo A, excepto a partir del bit seleccionado, que posee los bits del individuo B. De igual manera sucede para el hijo B; este tiene todos los bits del individuo B, excepto desde el bit seleccionado, a partir del cual se observan bits del individuo A.

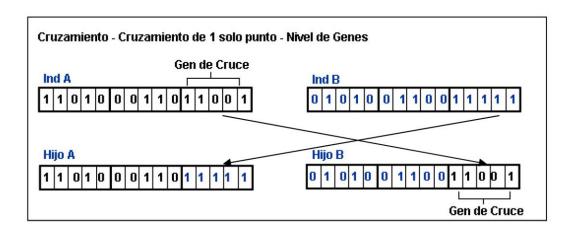


Gráfico 3.7. Idrobo "Localización Óptima De Pozos De Desarrollo Mediante La Integración De Modelamiento Geoestadístico Basado En Objetos Y Computación Evolutiva " Cruzamiento de un solo punto a nivel de genes. Idrobo, Pineda. et al. (2004)

En el Gráfico 3.7 se representa el cruzamiento de un punto a nivel de genes; aquí, ocurre algo similar al cruzamiento a nivel de bits, excepto que aquí ocurre a nivel de genes.

Se generará aleatoriamente o se ingresará manualmente un número (dentro del rango de genes) para determinar el gen en el que iniciará el cruzamiento.

Como se observa en el Gráfico 3.7, se selecciona el tercer gen (contados siempre de izquierda a derecha). Podemos observar en el hijo A que este posee todas las características del individuo A, excepto por el tercer gen en adelante, que es el destinado a ser cruzado. De igual manera sucede para el hijo B.

Nótese que como es cruzamiento de un solo punto, se toman todos los genes a partir del punto seleccionado para el respectivo cruzamiento.

El otro conjunto de tipos de cruzamiento comprende los cruzamientos multipunto, ya sean a nivel de bits o genes.

El gráfico 3.8 muestra un cruzamiento multipunto a nivel de bits.

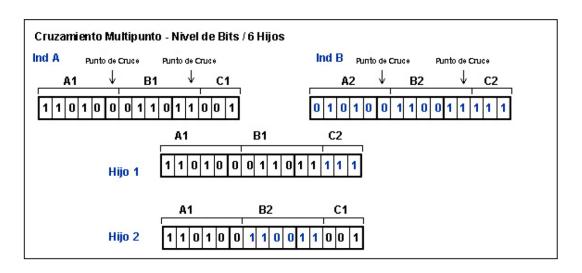


Gráfico 3.8. "Localización Óptima De Pozos De Desarrollo Mediante La Integración De Modelamiento Geoestadístico Basado En Objetos Y Computación Evolutiva "Cruzamiento multipunto a nivel de bits. Idrobo, Pineda. et al. (2004)

El cruzamiento multipunto funciona de la misma manera que el de un solo punto, excepto que se necesitan dos números generados aleatoriamente o definidos por el usuario para poder hacer el intercambio de bits.

En el gráfico 3.8 se observa un cruzamiento a nivel de bits; para esto, se seleccionan dos puntos diferentes, del cromosoma, y se realiza el cruzamiento. En el gráfico se observa que los dos puntos tomados generan tres segmentos diferentes en el cromosoma, denominados A1, B1 y C1.

Otro aspecto importante es el ordenamiento de los bits que serán cruzados; los cromosomas hijo pueden intercambiarse de la forma A1-B2-C1 y A2-B1-C2, o se puede elegir una configuración diferente para ellos.

El gráfico muestra una configuración A1-B1-C2 para el hijo 1 y A1-B2-C1 para el hijo 2.

Otra forma de cruzamiento multipunto es el cruzamiento por genes. Funciona exactamente igual que a nivel de bits, excepto que los bits transferidos serán por genes, es decir, por conjuntos de bits.

Existe otro tipo de variación generacional, que tal vez sea el más interesante (teóricamente) para su estudio. Esto es la **mutación**.

La mutación de individuos es un fenómeno tan natural como el mismo cruzamiento. Siempre que haya cambios de condiciones terrestres, una especie requiere adaptarse al medio aunque sea forzadamente. Muchas veces estos esfuerzos afectan la capacidad natural de transmisión genética y los primeros individuos que nazcan de una generación que viva una etapa de cambios podrían nacer con variaciones en su genética.

Por esta razón, y como parte importante de la programación evolutiva, se considerará que cierto porcentaje de la población sufrirá un cambio por mutación, ya sea en un bit, en un gen o en toda su genética.

Para la **mutación de un solo bit**, se toma un número aleatorio dentro del rango del cromosoma y se altera su condición al número contrario al que tenga actualmente (si es 0, se hará 1 y viceversa). Como se muestra en el Gráfico 3.9. El bit mutado es el séptimo.

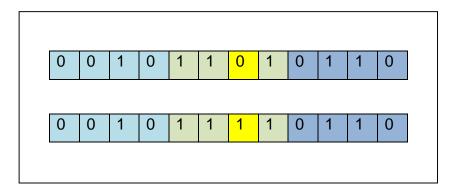


Gráfico 3.9. Mutación de un solo bit aleatorio.

Otra clase de mutación es cuando una especie evoluciona de un estado a otro, como la obtención de nuevas características fenotípicas y no solo las genotípicas. Computacionalmente, el gen variará totalmente, por lo que se lo tratará como **mutación por genes**. Aquí, se toma un número aleatorio que esté en el rango del número de genes que tenga el cromosoma, se mutan únicamente los bits de aquel gen. El Gráfico 3.10 muestra el funcionamiento de este fenómeno. El gen mutado es el segundo.

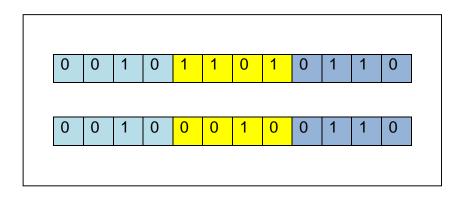


Gráfico 3.10. Mutación de un gen aleatorio

Y la última clase de mutación, que se podría considerar la más fuerte, es la **mutación de todo el cromosoma**. Esto hace que alterne completamente su

forma genotípica, y por ende, fenotípica. Esta clase de mutación se aplica para casos en los que se desee agregar un poco de variedad, ya que un individuo cambiado completamente de manera repentina da más oportunidades para que aparezca un individuo mejor.

El Gráfico 3.11 muestra cómo un cromosoma completo cambia debido a la aplicación de esta clase de mutación.

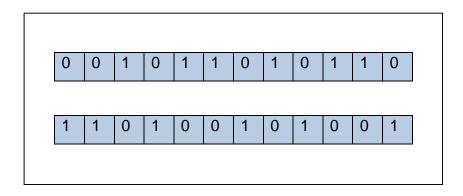


Gráfico 3.11. Mutación de un cromosoma completo.

Una vez completo el proceso de apareamiento, se procede a jerarquizar la nueva población, para después obtener los n mejores individuos, que serán los que representen la nueva generación.

La nueva generación puede estar compuesta por individuos de la generación anterior, ya que puede que sigan siendo los mejores, es decir, los que mejor cumplen la función objetivo. En otras palabras, la supervivencia de los más hábiles y aptos es la que juega el papel vital en este método de computación evolutiva.

El proceso generacional continúa hasta que aparezca un individuo capaz de cumplir la función objetivo, ya sea en su totalidad o dentro de una tolerancia establecida por el usuario o programada internamente en el algoritmo. Otra

manera de que el algoritmo culmine su proceso generacional es que este alcance un número permitido de generaciones, evitando así que este cree generaciones sin cambios significativos.

3.3. TEORÍA DE LA EVOLUCIÓN.

La teoría de la evolución surge en una época donde el florecimiento de la ciencia era tan vasto y abierto, que muchos científicos, mediante la experimentación y teoría lograron deducir la mayoría de los aspectos científicos que en la sociedad moderna son tan fundamentales como las leyes de la mecánica.

Jean Baptiste Lamarck (1802) fue el primero que propuso una teoría de evolución biológica; formuló la premisa de que las especies fueron formas estáticas creadas por Dios y que han ido evolucionando desde formas simples, en base a cambios ambientales que generaban la necesidad de adaptarse, ya que estos ambientes exigían adaptaciones nuevas de parte de estas especies.

Lamarck formuló dos leyes fundamentales para su teoría:

Primera ley: Toda especie que esté en etapa de desarrollo, experimentará cambios constantes en su morfología; estos cambios se verán más pronunciados en órganos o extremidades que utilicen más, ya sea para conseguir la comida o para protegerse del medio en que habitan. Los órganos que ya no se usan poco a poco se van volviendo más débiles y pierden su importancia vital para el animal de dicha especie, hasta llegar a desaparecer del organismo.

Segunda ley: La naturaleza conserva las características morfológicas e internas adquiridas por evolución y los órganos perdidos los mantiene como perdidos, ya sea que estos cambios se produjeron a ambos sexos o solo a uno.

Estas dos leyes se pueden observar en gráfico 3.12, que es el ejemplo típico que Lamarck utilizó para explicar sus leyes. Esta simboliza el cómo el ambiente obligó e hizo evolucionar a las jirafas para que adquirieran su largo cuello.

Gráfico 3.12. Herencia de los caracteres adquiridos en la evolución del de las jirafas según Lamarck.

(http://horapensar.blogspot.com/2013_08_01_archive.html)

Posteriormente, otra teoría de la evolución fue propuesta por **Charles Darwin en 1859**, mediante investigación y observaciones que realizó mientras viajaba en el Beagle por varios destinos, pero el principal fueron las Islas Galápagos, donde pudo observar las distintas especies que evolucionaron en distintas maneras apenas a una isla de distancia. Esta es la teoría aceptada actualmente.

Darwin pudo percatarse por el estudio de quince especies de pinzones de la forma del pico de los estos; variaban de forma dependiendo de la isla donde los pinzones se encontraran; pudo descifrar que la forma del pico se debía al alimento que al pinzón le tocaba cazar para su subsistencia. Algunos comían frutos, otros cazaban gusanos. Pudo además observar que de estas quince especies, apenas una se parecía a las que se podían encontrar en el continente suramericano. El Gráfico 3.13 muestra las observaciones de Darwin en los pinzones que observó en las Galápagos.

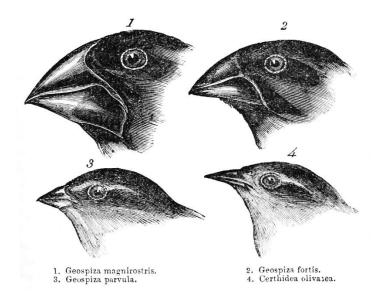


Gráfico 3.13. Variación en la forma del pico de los pinzones. (http://sedin-notas.blogspot.com/2014/06/los-pinzones-de-darwin-exhiben-una.html)

A partir de estas observaciones declaró que todas las especies tienen por lo menos un individuo diferente en su genealogía.

La teoría de la evolución de Darwin, tiene la premisa de que toda la vida proviene de un ancestro común, es decir, toda la vida está relacionada con microorganismos primitivos.

Mientras el proceso de evolución toma lugar a través de miles de años, ocurren varias mutaciones aleatorias en los seres vivos, preservando así los seres cuyas mutaciones son compatibles con el medio en el que se desenvuelven y eliminando los organismos cuya mutación no es suficiente para la subsistencia en su ambiente natal; esto es lo que se conoce como **selección natural**. A lo largo del tiempo, las mutaciones acumuladas en un organismo son las que permiten que este organismo vaya en evolución y no sea una especie estática. A pesar de que

el término "Selección natural" era nuevo para la época de Darwin, el estudio del origen del hombre era muy antiguo.

Como se mencionó anteriormente, la selección natural actúa en las especies creando una acumulación de mutaciones que posteriormente generarán un ser con características únicas de sí, y todas estas mutaciones son transferidas de generación en generación a través de la reproducción

Se mencionó en párrafos anteriores que los seres vivos se adaptan al ambiente en el que se desenvuelven; además, los organismos a lo largo del tiempo cambian su morfología debido a las funciones que hayan aprendido o estén aprendiendo a hacer. Un organismo puede o bien ganar una nueva característica, o perderla; esto debido a la necesidad y carencia o a la presencia y escasez de uso de la misma.

Theodosius Dobzhansky da las siguientes definiciones a la adaptación:

- La adaptación es el proceso evolutivo en donde un organismo se vuelve mejor para vivir en un hábitat.
- La adaptabilidad es el estado en el que cada organismo alcanza un grado de habilidad que le permite vivir y reproducirse en varios lugares diferentes.

Por ejemplo, en el gráfico 3.14 se observan especies de mamíferos que se han adaptado de maneras diferentes a sus respectivos medios.

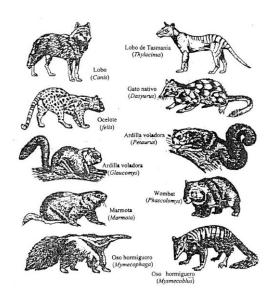


Gráfico 3.14. Varios mamíferos provenientes de distintos ambientes.

(https://www.kmbiology.weebly.com%2Fevolution-of-species---notes.html)

La evolución puede tomar dos caminos (en relación de convivencia de especies). **Co-evolución**, que significa que dos organismos de diferentes especies conviven en un mismo ambiente; pueden ser cazador y presa o patógeno y huésped. El otro camino es la **cooperación**, donde dos especies se benefician mutuamente para sobrevivir en un entorno; un ejemplo de esto son los hongos que crecen en los árboles.

Por otro lado existe el **desplazamiento de especies** y la **extinción**. Cuando una nueva especie surge, desplaza por transmisión genética o por guerra, o simplemente por adaptabilidad al medio a la especie anterior; se puede hacer una analogía con los hijos desplazando la posición de sus padres. Una especie desplazada encara la extinción, que es la desaparición total de esta especie en un entorno o en el planeta.

3.4. LEYES DE LA GENÉTICA.

Las leyes de la genética son consideradas como la herencia mendeliana, término derivado de los trabajos de Gregor Mendel (1865 y 1866), en específico sus trabajos sobre "Experimentos en hibridación de plantas" que fueron redescubiertos en 1900.

Mendel condujo alrededor de 5000 experimentos. En ellos descubrió que cuando cruzaba flores de alverja verdes y amarillas, ambas de casta pura (genética inalterada), llamada esta la generación P, el resultado no sería una combinación. En lugar de ser una mezcla entre las dos especies, las flores eran de color amarillo (a esta generación la llamó F1). Cuando cruzó entre sí la generación F1, obtuvo tres flores amarillas y una blanca; esta generación fue denominada F2. Y así sucesivamente, cada generación contenía un radio de colores diferente. El Gráfico 3.15 muestra la distribución de radios de colores de las flores por generación.

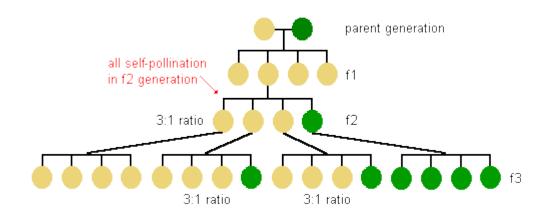


Gráfico 3.15. Relación de colores generacional. (En generación de padres, considérese amarillo oscuro como blanco)

http://anthro.palomar.edu/mendel/mendel_1.htm

En base a estos experimentos, Mendel concluyó en los siguientes resultados:

- Hay "factores" o "unidades" de herencia que intervienen en las características de una generación a otra. Actualmente se conocen como Genes.
- Un individuo hereda una unidad de cada padre para cada característica.
- Una característica puede no mostrarse en un individuo, pero aun así puede aparecer en una generación próxima.

Recordemos que para el experimento, Mendel utilizó plantas homocigotas, es decir, cada una tenía genes idénticos (dos amarillas y dos verdes). Las plantas en la generación F1 son heterocigotos, es decir, cada una heredó un alelo (gen) diferente de cada planta.

El Gráfico 3.16 muestra el los alelos que contienen las distintas generaciones mencionadas.

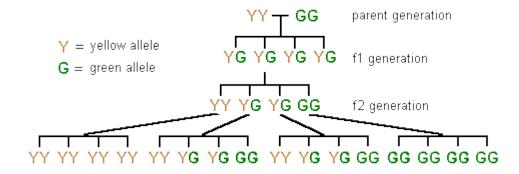


Gráfico 3.16. Distribución genética por alelos de los experimentos de Mendel. http://anthro.palomar.edu/mendel/mendel_1.htm

Como se puede observar, desde la generación F1 en adelante, a pesar de que la apariencia (fenotipo) de las flores es amarilla, la composición de sus alelos

(genotipo) no cambia, es decir se conserva el gen pero en estado recesivo. El gen que da la apariencia amarilla es el gen dominante, es decir, el que tiene mayor probabilidad de aparecer en la siguiente generación.

A partir de todas estas observaciones, los principios de Mendel pueden ser resumidos en tres grandes leyes:

- El principio de la segregación.
- La ley del ordenamiento independiente.
- La ley del dominio.

El **principio de segregación** explica que cuando las plantas se van a reproducir, estas generan gametos (óvulo y esperma). Como los pares de alelos se separan durante la producción de gametos, el esperma u óvulo lleva consigo solo un alelo por cada característica heredada.

Cuando el óvulo y esperma se unen en la fertilización, cada uno contribuye con si alelo, restaurando la condición de pareo en la descendencia. (Gráfico 3.17)

Además, cada par de alelos se segrega independientemente del otro par de alelos durante la formación de gametos. Esta es la ley de ordenamiento independiente.

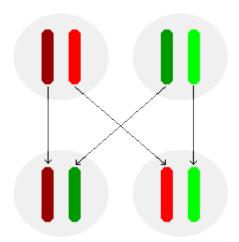


Gráfico 3.17. Segregación de alelos en la producción de células sexuales. http://anthro.palomar.edu/mendel/mendel_1.htm

La ley del dominio, expresa que la presencia de un alelo en un individuo no obliga a este a presentar las características fenotípicas que representa este genotipo, sino que siempre habrá un gen (alelo) dominante que determinará las características físicas del individuo; esto no quiere decir que el otro gen no exista, sino que no se manifiesta.

3.5. FUNDAMENTOS DE PROGRAMACIÓN.

La programación es una manera de dar instrucciones a una máquina o computador mediante un lenguaje que tiene sus propias reglas de sintaxis y lógica, para la solución de un determinado problema o para realizar una actividad específica.

Para poder solucionar problemas, es necesario seguir como mínimo los pasos siguientes:

- 1) Definir o analizar el problema.
- 2) Diseñar el algoritmo correspondiente.
- 3) Transformar el algoritmo a un programa.
- 4) Ejecutar y validar dicho programa.

La manera en que uno puede generar una secuencia de pasos lógica para poder programar una computadora es mediante el diseño de un algoritmo.

Un algoritmo es un conjunto de instrucciones que llevan una secuencia de lectura adecuada para poder llegar a una solución en un tiempo finito.

El algoritmo debe de cumplir las siguientes características:

- Orden lógico; ser preciso y lo más breve posible en cada paso.
- Eficiencia en cuanto a recursos y tiempo
- Flexibilidad para poder realizar cambios futuros
- Debe estar definido, es decir, si da un resultado una vez, debe permitirlo una segunda.
- Ser finito; terminar el proceso en algún momento.

Un algoritmo debe tener la capacidad de realizar o presentar una entrada de datos, un debido procesamiento y la respectiva salida de datos procesados.

Previo a la programación de un algoritmo, lo que se hace es generar un pseudocódigo o mediante diagramas de flujo (flujogramas) que es la representación gráfica y general de un algoritmo, de manera que este pueda ser traducido a cualquier lenguaje de programación.

El pseudocódigo es básicamente la escritura del programa en lenguaje convencional, con los respectivos operadores que permitan una comprensión general por parte de cualquier usuario.

La combinación de los diagramas de flujo y el pseudocódigo genera los algoritmos generales.

El siguiente paso del algoritmo es establecer parámetros de entrada. Estos pueden ser definidos por el usuario o bien ser programados internamente. Los datos de entrada al algoritmo son los que determinarán los parámetros que este utilizará posteriormente para el cálculo de lo que se necesite.

Una vez ingresados los datos de entrada, se procede a calcular la función que se haya programado. Esta función debe ser definida internamente en la estructura. Esta función puede ser cualquier clase de comando que implique cálculos.

El siguiente paso es establecer los criterios de seguridad para el algoritmo, es decir, los criterios de parada. Esto se llama condicional. Para este caso ejemplo, si el condicional es positivo, el algoritmo parará, si por el contrario es negativo, el algoritmo continuará.

Si el condicional da como resultado negativo, entonces se deberá establecer otra función que permita la opción ya sea de mejorar el problema o de terminar el programa.

El Gráfico 3.18 muestra el algoritmo con todos los elementos descritos anteriormente con un condicional de parada y la acción alterna a tomar en caso que sea negativa la respuesta del mismo.

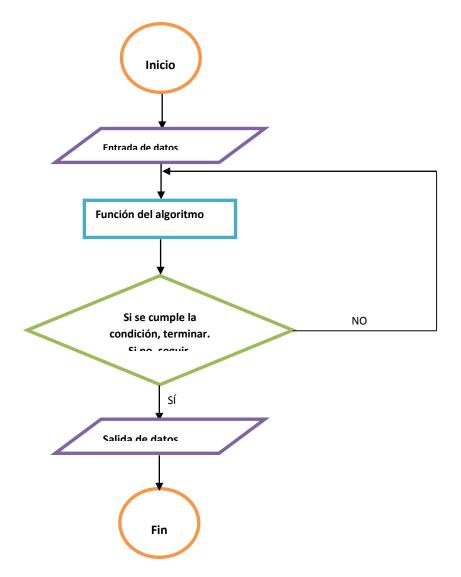


Gráfico 3.18. Estructura básica de un algoritmo en pseudocódigo y flujograma.

La estructura mostrada en el Gráfico 3.18 es un algoritmo representativo de los más sencillos. En él, podemos ver cómo se desenvuelve un condicional, la entrada de datos y las funciones definidas. Si el condicional es negativo, este repetirá la función hasta llegar a un valor dentro de la tolerancia o la condición del problema.

El paso siguiente es programar el algoritmo descrito en el flujograma como algoritmo en un lenguaje compresible para la computadora, como pueden ser Fortran, Matlab, Visual Basic, VisualC Python, entre muchos otros.

3.6. MICROSOFT EXCEL - MACROS DE VISUAL BASIC EN MICROSOFT EXCEL.

Uno de los lenguajes más sencillos y funcionales para Microsoft Windows (sistema operativo más común en el mundo) es el Visual Basic. A pesar de que existen varias versiones del mismo, e inclusive existen lenguajes mucho mejores que este, Visual Basic sigue siendo una herramienta potente para la realización de programas sencillos, así como macros (secuencias de comando cortas para la generación de pequeños programas dentro de un programa mayor).

Visual Basic (V.B) es un lenguaje de programación que nace en 1993, desarrollado por Alan Cooper para Microsoft. La versión más estable, que es con la que se sigue trabajando es la 6.0. Posteriormente en el 2001, se deja el desarrollo basado en API Win32 y se empieza a utilizar un framework (biblioteca o marco de librerías), siendo este independiente del sistema operativo, además se desarrolla el .NET Framework a través del Visual Basic .NET (plataformas dedicadas a a controlar la fidelidad de redes).

A partir de la versión 6.0, este lenguaje se instalaba con su propia plataforma que contenía el respectivo depurador, compilador y un editor de interfaces gráficas, que permitía un trabajo mucho más eficiente y rápido, ya que simplemente se tenía que ordenar los diferentes elementos de interfaz para el programa que se

desea realizar a conveniencia de usuario, y así, dar comandos a cada elemento para que pueda realizar una determinada función.

A pesar de que se han proporcionado varias versiones de la plataforma que da las facilidades de manejo del lenguaje para el usuario, la versión del (V.B) no ha cambiado, sino que la plataforma va encapsulando mayor número de funciones, opciones para librerías de funciones e información y hasta compatibilidad con nuevos lenguajes.

Los gráficos 3.19 y 3.20 muestran el entorno de la plataforma Visual Basic Studio.

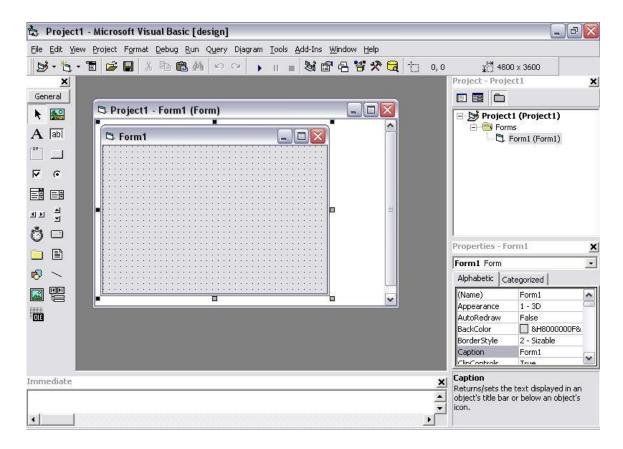


Gráfico 3.19. Entorno de la plataforma Visual Basic Studio.

Obsérvese a la izquierda los distintos elementos que se pueden colocar a disposición en la forma, ubicada en el centro de la pantalla; a la derecha se puede observar las propiedades de los elementos y en la derecha superior los proyectos abiertos.

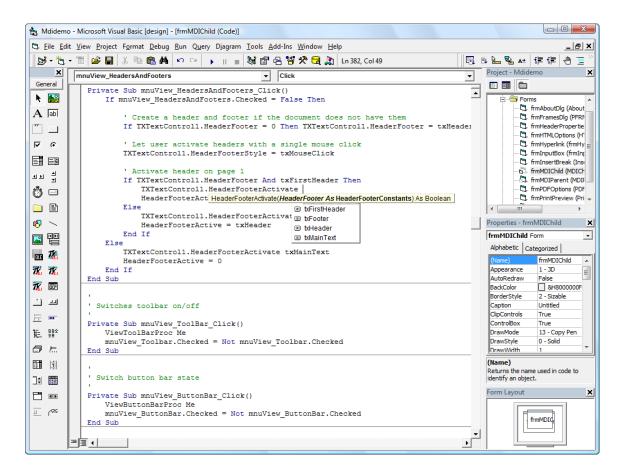


Gráfico 3.20. Entorno de programación de V.B.

El otro entorno, tal vez el más importante, es el entorno de programación, que es donde se asigna las funciones y comportamiento para cada elemento que se desee agregar. Visual Basic, al ser un lenguaje de programación de Microsoft, extiende su permiso para el uso de su lenguaje a otros programas de Microsoft, como lo son los de Office.

Microsoft Office es una de las plataformas de manejo de bases datos, edición de texto y cálculo más utilizadas alrededor del mundo, en especial Microsoft Excel, cuya importancia es vital en la mayoría de oficios actuales.

Microsoft Excel es una potente herramienta de cálculo y manejo de tablas, que comprende varios entornos y varias funciones. Nos enfocaremos en dos entornos principales, que son los libros (hojas de cálculo) y el entorno de Visual Basic que viene incorporado para el Excel.

En el gráfico 3.21 se puede apreciar el entorno de Microsoft Excel 2007. Es aquí donde se realizan las ediciones y el uso de fórmulas de Excel.

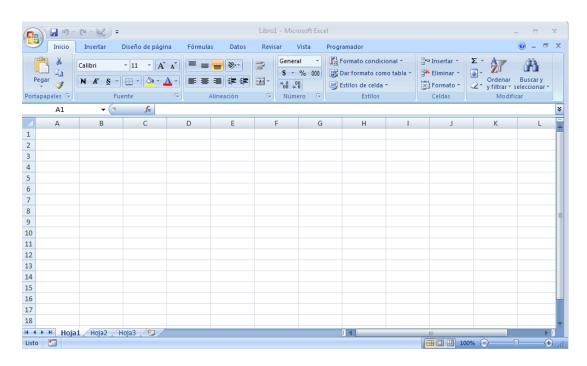


Gráfico 3.21. Entorno principal para edición de datos Microsoft Excel 2007

Se puede observar en la parte superior central del gráfico 3.21 que existe una pestaña denominada "Programador". Aquí, están los controles que se pueden insertar en la hoja de cálculo de Excel para ser utilizados de distintas maneras.

El Gráfico 3.22 muestra la ficha programador con los distintos controles que se pueden insertar en la hoja de cálculo.

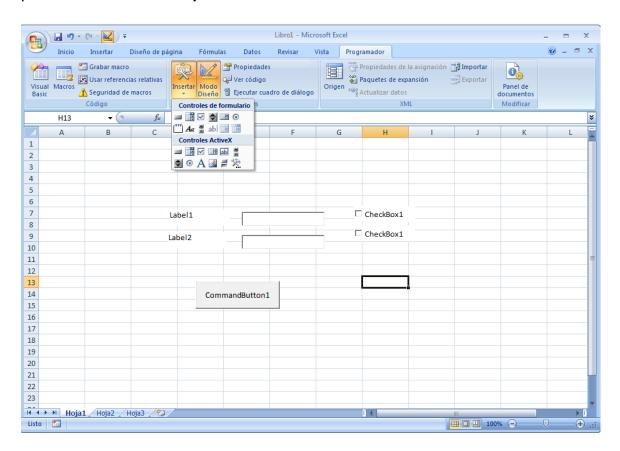


Gráfico 3.22. Entorno de V.B con ficha de programador. Se observan controles disponibles para programar.

Se puede observar en la parte superior del gráfico 3.22 que hay un botón activado que se denomina "Modo Diseño". Si este botón está activado, se puede editar libremente los controles insertados en la hoja de cálculo. A lado de dicho botón

hay tres botones; el primero (Propiedades) permite ver y editar las propiedades de cada uno de los controles, mientras que el segundo (Ver Código) permite visualizar la programación que se haya redactado para el control o para el entorno en general. El gráfico 3.23 muestra la ventana de edición de códigos.

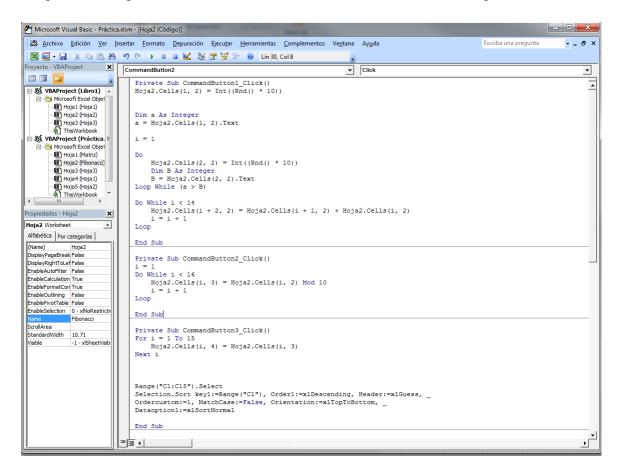


Gráfico 3.23. Editor de códigos de V.B en Excel.

La diferencia entre hacer un programa en Visual Basic y crear un programa mediante macros en Excel es mínima pero muy relevante. Para generar un programa en Visual Basic este debe ser sometido a un proceso de compatibilidad y debe ser comprimido a un instalador para pasarlo de una computadora a otra, mientras que en macros de Excel los programas se grabarán como documentos

Excel habilitados para macros, que con simplemente con la opción "Habilitar macros" se podrá ejecutar las funciones del programa desde cualquier equipo con Microsoft Excel instalado. Es decir, es mucho más portable (transferible de computadora a computadora sin requerir instalación) y eficaz.

CAPÍTULO IV

METODOLOGÍA

4.1. DISEÑO DEL ALGORITMO GENÉTICO PARA LAS CURVAS DE PRODUCCIÓN SELECCIONADAS.

Para el algoritmo genético, el análisis de información se clasifica en dos secciones, que al mismo tiempo son las dos distintas etapas de la vida del reservorio:

- Cuando el yacimiento está subsaturado
- Cuando el yacimiento está saturado

Las ecuaciones de modelo matemático de curvas de declinación de producción son una estimación algebraica, pero para la determinación de parámetros de yacimiento se estableció las relaciones presentadas en la sección 2.4.

Estas relaciones matemáticas expuestas en la investigación de Ling K y He J funcionan únicamente para yacimientos subsaturados. Para el caso de yacimientos saturados, como consecuencia de la carencia de un método que permita la representación directa mediante curvas de declinación, es decir, que no permita demostrar la declinación de producción a través del tiempo, utilizaremos relaciones que combinen la producción en un determinado tiempo del yacimiento mediante ecuaciones descritas en los métodos de IPR, y con el método de Darcy, con las ecuaciones matemáticas de las curvas de declinación de producción.

Las ecuaciones definitivas a implementarse en el algoritmo genético, derivadas de las ecuaciones explicadas y demostradas en el capítulo 2, para el caso de yacimientos subsaturados cerrados (volumétricos) son las siguientes:

Modelo Exponencial:

$$\frac{\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) - \frac{3}{4} + S\right)}}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) - \frac{3}{4} + S\right)} t \qquad (4.1)$$

Modelo Hiperbólico:

$$\frac{\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472\frac{r_e}{r_w}\right) - \frac{3}{4} + S\right)}}{\left(1 + n*\frac{kh}{141.2\mu_o c_t N_i \left(\ln\left(0.472\frac{r_e}{r_w}\right) - \frac{3}{4} + S\right)} * t\right)^{\frac{1}{n}}}$$
(4.2)

Modelo Armónico:

$$\frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472 \frac{r_e}{r_w}\right) - \frac{3}{4} + S\right)} = \frac{q_o}{1 + \frac{kh}{141.2\mu_o c_t N_i \left(\ln\left(0.472 \frac{r_e}{r_w}\right) - \frac{3}{4} + S\right)^* t}}$$
(4.3)

Para el caso de yacimientos saturados cerrados, se presentan las ecuaciones siguientes (similares a las presentadas anteriormente)

Modelo Exponencial:

$$\frac{k_{o}h}{\mu_{o}\beta_{o}(\ln 0.472\frac{r_{e}}{r_{w}}-\frac{3}{4}+S)} \left(\frac{\overline{P_{R}}}{1.8} \left[1.8\left(1+\left(\frac{P_{wf}}{\overline{P_{R}}}\right)\right)-0.8EF\left(\left(1+\left(\frac{P_{wf}}{\overline{P_{R}}}\right)\right)\right)^{2}\right]\right) = q_{o}e^{-\frac{kh}{141.2\mu_{o}c_{t}N_{i}\left(\ln\left(0.472\frac{r_{e}}{r_{w}}\right)-\frac{3}{4}+S\right)}t}$$
(4.7)

Modelo Hiperbólico:

$$\frac{k_{o}h}{\mu_{o}\beta_{o}(\ln 0.472\frac{r_{e}}{r_{w}}-\frac{3}{4}+S)} \left(\frac{\overline{P_{R}}}{1.8}\left[1.8\left(1+\left(\frac{P_{wf}}{\overline{P_{R}}}\right)\right)-0.8EF\left(\left(1+\left(\frac{P_{wf}}{\overline{P_{R}}}\right)\right)\right)^{2}\right]\right) = \frac{q_{o}}{\left(1+n*\frac{kh}{141.2\mu_{o}c_{t}N_{i}\left(\ln\left(0.472\frac{r_{e}}{r_{w}}\right)-\frac{3}{4}+S\right)*t}\right)^{\frac{1}{n}}} \tag{4.8}$$

Modelo Armónico:

$$\frac{k_{o}h}{\mu_{o}\beta_{o}(\ln 0.472\frac{r_{e}}{r_{w}}-\frac{3}{4}+S)} \left(\frac{\overline{P_{R}}}{1.8}\left[1.8\left(1+\left(\frac{P_{wf}}{\overline{P_{R}}}\right)\right)-0.8EF\left(\left(1+\left(\frac{P_{wf}}{\overline{P_{R}}}\right)\right)\right)^{2}\right]\right) = \frac{q_{o}}{1+\frac{q_{o}}{141.2\mu_{o}c_{t}N_{i}\left(\ln\left(0.472\frac{r_{e}}{r_{w}}\right)-\frac{3}{4}+S\right)}*t} \tag{4.9}$$

El programa que permitirá implementar el algoritmo genético se llamó WellGenSys, el mismo que, como se mencionó anteriormente, funcionará basado en la interfaz de Microsoft Excel, con todas las funciones disponibles del mismo, así como la edición de gráficos y diferentes objetos que dicho software permita.

En las próximas secciones se describe el diseño específico de cada una de las interfaces que ofrece WellGenSys para las diferentes funciones programadas en el mismo, entre ellas, la selección del método de declinación óptimo para la solución del problema que el usuario desee proponer.

4.2. IMPLEMENTACIÓN DEL ALGORITMO PARA MODELOS SINTÉTICOS

Para demostrar la aplicabilidad de las ecuaciones descritas en la sección anterior, se realizó la prueba para cada uno de los casos con **modelos sintéticos**; un modelo sintético es un problema del cual se conoce la información de entrada, para el cual se realizará la respectiva prueba, con el método que se esté proponiendo o investigando, para determinar si este funciona o es efectivo; es decir, es un modelo teórico con el que se trabaja para determinar si el método funcionaría con un caso real, en el que no se conozca la información. Con este proceso, conociendo toda la información necesaria para el algoritmo e inclusive las respuestas, se podrá determinar si el algoritmo es efectivo o no.

Para esto, necesitamos generar una función objetivo capaz de resolver eficientemente el problema de encontrar los parámetros desconocidos.

La función objetivo debe quedar estipulada de tal manera que pueda calcular los parámetros de reservorio tanto para los tres tipos de declinación (Exponencial, Hiperbólico y Armónico) como para los dos tipos de yacimiento (Subsaturado y Saturado). Para efectos de facilidad de cálculo, se decidió establecer la función objetivo, llamada Valfunc(), de manera que la sumatoria de la diferencia entre los caudales generados por el método escogido con cada lado de las ecuaciones de

la sección (4.1), sea igual a la tolerancia multiplicada por la primera producción. Así:

$$Valfunc() = |q_o - (lado\ izquierdo)| + |q_o - (lado\ derecho)| < (q_{o1}*tolerancia)$$
 (4.19)

Por ejemplo, para el caso de yacimientos subsaturados y con el método declinación Exponencial (seleccionado por el usuario), la función objetivo, tomaría la siguiente forma a partir de la ecuación (4.1):

$$Valfunc() = \left| q_{o1} - \frac{k_o h(\overline{P_t} - P_{wf})}{141.2\beta_o \mu_o \left(\ln\left(0.472 \frac{r_e}{r_w}\right) - \frac{3}{4} + S \right)} \right| + |q_{o1} - q_o e^{-bt}| \quad (4.20)$$

Donde el valor de b que aparece en la segunda parte de la ecuación 4.20 $(|q_{o1} - q_o e^{-bt}|)$ corresponde al valor calculado por el algoritmo.

A su vez, se implementó una segunda condición para la función objetivo, denominada Valb (), la cual establece que el valor de la constante de declinación (b) del método seleccionado debe tener una diferencia menor a 0.00002 con respecto a la b calculada por el algoritmo. Es decir:

$$Valb() = (b_{metodo} - b_{algoritmo})$$
 (4.21)

Que para el caso de declinación exponencial (el mismo tomado en la ecuación 4.20) sería:

$$Valb(\) = \left| b_{metodo} - \frac{kh}{141.2\mu_0 c_t N_i \left(\ln \left(0.472 \frac{r_e}{r_w} \right) - \frac{3}{4} + S \right)} \right| \quad (4.22)$$

Para el caso de un yacimiento saturado, la función objetivo Valfunc() y Valb () vendría a ser de la siguiente manera (para el mismo caso de declinación exponencial):

$$Valfunc() = \left| q_{o1} - \frac{k_o h}{\mu_o \beta_o (\ln 0.472 \frac{r_e}{r_w} - \frac{3}{4} + S)} \left(\frac{\overline{P_R}}{1.8} \left[1.8 \left(1 + \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) - 0.8EF \left(\left(1 + \left(\frac{P_{wf}}{\overline{P_R}} \right) \right) \right)^2 \right] \right) \right| + \left| q_{o1} - q_o e^{-bt} \right|$$

$$(4.23)$$

$$Valb(\) = \left| b_{metodo} - \frac{kh}{141.2\mu_o c_t N_i \left(\ln \left(0.472 \frac{r_e}{r_w} \right) - \frac{3}{4} + S \right)} \right|$$
 (4.24)

Para el caso de **yacimiento subsaturado**, se realizó un modelo sintético corriendo el algoritmo con 20 realizaciones, una población de 20 individuos y 100 generaciones, 6 bits por variable, cruzamiento de un solo punto a nivel de bits, 60% de cruzamiento y 10% de mutación y 1% de tolerancia en las respuestas; se tomaron los siguientes datos, mostrados a continuación:

Tiempo (Días)	qo (STB/D)	Presión(psi)		
0	1229.84	3000.00	S	3
30	1132.70	2800.00	re	500 ft
60	1043.24	2620.00	rw	0.328 ft
120	884.95	2300.00	k	400 md
150	815.06	2150.00	h	10 ft
180	750.68	2030.00		
210	691.39	1900.00	Pwf	500 psi
240	636.78	1790.00	Ni	40000000 STB
270	586.49	1690.00	μ	5 cp
300	540.17	1600.00	ct	0.000005
330	497.50	1510.00	Ci	psi ⁻¹
360	458.21	1420.00	βο	1.115
390	422.02	1370.00	ро	rb/STB

Tabla II. Tabla IIa. Información de presión y producción en tiempos y IIb. Información para el cálculo de las producciones del modelo sintético

La información de las producciones en los respectivos tiempos (Tabla IIa) se obtiene mediante la aplicación de los parámetros de yacimiento, mostrados en la Tabla IIb aplicando la relación de Darcy (ecuación 2.32); después del cálculo de la primera producción (la única que se calcula por ahora) utilizamos la ecuación 2.81 para calcular el valor de la declinación b, con la que se procede a calcular una declinación matemática para los parámetros.

Después, calculamos las otras producciones con la ecuación 2.32. Debe mencionarse que se estimó con las presiones (Tabla IIa tercera columna) para que las producciones calculadas con la ecuación 2.32 sean similares a las calculadas mediante la declinación matemática.

Toda la información se ingresa en mínimos y máximos, excepto las producciones y tiempos. Esto se hace con el fin de que el algoritmo tenga un espacio de búsqueda de las respuestas para los parámetros. Los resultados de presiones que optimizó el programa (Tabla IIIa columna derecha) y los parámetros de yacimiento optimizados (Tabla IIIb columna derecha) se muestran a continuación.

Presiones Reales (psi)	Presiones Algoritmo (psi)
3000.00	2963.3333
2800.00	2689.5238
2620.00	2514.2857
2300.00	2214.9206
2150.00	2081.8823
2030.00	1954.3632
1900.00	1833.3408
1790.00	1745.1469
1690.00	1642.8671
1600.00	1555.7655
1510.00	1468.6639
1420.00	1397.7983
1370.00	1327.1173

	Reales	Algoritmo
S	3	5.89
re	500 ft	732.38 ft
rw	0.328 ft	0.328 ft
k	400 md	476.19 md
h	10 ft	11.37 ft
Pwf	500 psi	520 psi
Ni	40000000 STB	39333333.33 STB
μ	5 cp	6.257 cp
ct	0.000005	0.00000506
	psi-1	psi-1
βο	1.115 rb/STB	1.0373 rb/STB

Tabla IIIa. Presiones calculadas y presiones optimizadas y IIIb. Parámetros originales y parámetros optimizados

El gráfico 4.1 muestra los resultados gráficos de las presiones.

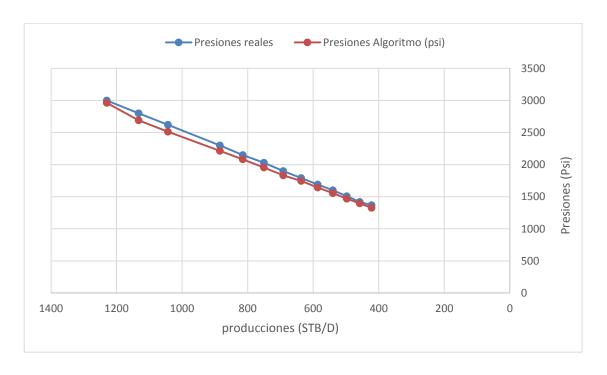


Gráfico 4.1. Resultados gráficos del cálculo de las presiones contra las presiones reales para yacimiento subsaturado.

Debe tenerse recordarse que el modelo sintético es un modelo ideal generado para realizar pruebas sobre el algoritmo, es decir, un modelo generado con datos conocidos para poder evaluar la efectividad del algoritmo. En este caso, podemos observar que los valores no son tan alejados del valor real, exceptuando los valores de radio de drenaje y factor volumétrico, los cuales no son tan sensibles a los cambios, por ejemplo, la permeabilidad y el espesor de la formación.

Para el caso de **yacimiento saturado**, se realizó un modelo sintético corriendo el algoritmo con 20 realizaciones, una población de 20 individuos y 100 generaciones, 6 bits por variable, cruzamiento de un solo punto a nivel de bits, 60% de cruzamiento y 10% de mutación y 1% de tolerancia en las respuestas; se tomaron los siguientes datos, mostrados en las tablas 4.3a y 4.3b.

Tiempo (Días)	qo (STB/D)	Presión(psi)	_	
0	400.00	776.89		
31	363.61	751.69		
62	331.96	729.79		
92	305.12	711.21		
153	259.68	679.76	S 13.5	
184	240.38	666.40	re 2305 ft	
215	223.16	654.48		
244	208.67	644.45		
275	194.69	634.77	k 2500 md	
366	160.89	611.37	h 10 ft	
428	142.66	598.75	Pwf 500 psi	
458	134.93	593.40	Ni 50000000)
489	127.59	588.32	STB	
519	121.04	583.79	µ 3 cp	
550	114.79	579.46	ct 0.00001 p)Si ⁻
581	109.01	575.46	8 0 1 002	
609	104.15	572.10	βο 1.092 rb/STB	
670	94.64	565.51	18/618	

Tabla IVa. Producciones y presiones para evaluar el modelo sintético y IVb parámetros para evaluar el modelo sintético

El proceso para optimizar los parámetros para un yacimiento saturado es el mismo que el proceso para un modelo subsaturado, a excepción de que en lugar de utilizar el modelo de Darcy se utiliza el modelo IPR (ecuación 2.53); para este modelo se pudo obtener los siguientes resultados, mostrados en las tablas 4.4a y 4.4b.

Presiones Reales (psi)	Presiones Algoritmo (psi)	_		
776.89	818.0952			
751.69	781.6423			
729.79	750.6281			
711.21	723.5302			
679.76	678.1457		Reales	Algoritmo
666.40	659.0199	S	13.5	10.88
654.48	641.8551	re	2305 ft	2336.90 ft
644.45	627.0679	rw	0.3 ft	0.3 ft
634.77	613.3812	k h	2500 md 10 ft	2190.478 md 9.48 ft
611.37	579.6066	Pwf	500 psi	418.25 psi
598.75	560.8967	Ni	50000000 STB	45857142.86 STB
593.40	552.8794	μ	3 cp	6.86 cp
588.32	545.6452	ct	0.00001 psi ⁻¹	0.00000844 psi-1
583.79	539.3571	βο	1.092 rb/STB	1.056 rb/STB
579.46	532.7528			
575.46	527.2503			
572.10	522.6037			
565.51	512.0704	_		

Tabla Va. Presiones reales y las optimizadas por el algoritmo y Vb. Parámetros de yacimiento real y parámetros optimizados.

El gráfico 4.2. Muestra los resultados gráficos de este proceso.

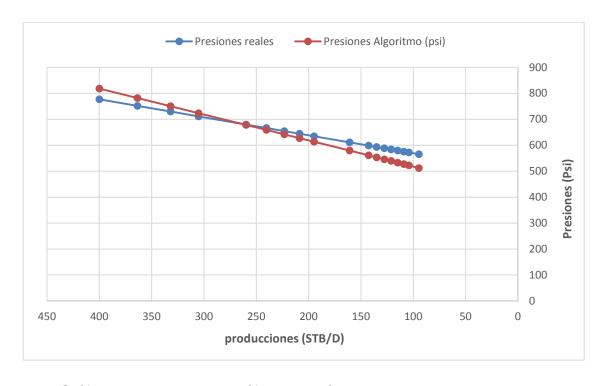


Gráfico 4.2. Resultados gráficos del cálculo de las presiones contra las presiones reales para yacimiento saturado.

Nótese la mayor diferencia en las respuestas, esto quiere decir que el método utilizado para un yacimiento saturado no es efectivo, debido al cambio de parámetros que sufre el yacimiento, explicado en la sección 4.1.

4.3. PARÁMETROS DE INICIO DEL ALGORITMO

El algoritmo calculará varios parámetros de reservorio en base a la información que se ingrese en la interfaz de INICIO. Para esto, se debe tener un conocimiento, por más mínimo que sea, del reservorio y de características básicas del mismo, como por ejemplo el mecanismo de producción de este, si es que este tiene un acuífero activo y si el reservorio está bajo condiciones saturadas o subsaturadas.

En el caso de que el yacimiento produzca con alguna clase de empuje, ya sea por agua o por inyección de CO₂, o por intrusión de algún acuífero, entonces el algoritmo no funcionará eficientemente.

Como el análisis se realizará en base a curvas de declinación principalmente, los parámetros principales requeridos por el algoritmo para poder ser ejecutado son la producción y el tiempo correspondiente al mismo.

Otro parámetro opcional que puede ser ingresado para la determinación de las curvas de declinación es la producción acumulada. Esta ayudará a definir mejor el método a utilizarse debido a que la interfaz del programa tendrá disponible los gráficos estándar de los distintos tipos de declinación, permitiendo comparar mejor los patrones de las curvas generadas.

La Tabla VI muestra los parámetros generales de yacimiento con su respectiva simbología y unidades con que trabajarán y agrupados por secciones, de la interfaz de inicio del algoritmo genético.

Datos Generales del Yacimiento

Presión Inicial del yacimiento	Pi (Psig)	
Permeabilidad promedio del Intervalo	k (mD)	
Petróleo inicial en el área del pozo	Ni (STB)	
Presión actual del Yacimiento	P _R (Psig)	
Presión de fondo Fluyente	Pwf (Psig)	
Producción de petróleo	q₀ (STB/Día)	
Factor de daño total	S (adimensional)	
Viscosidad del petróleo	μ _o (cp)	
Compresibilidad total de componentes	Ct (1/Psig)	
Radio de drenaje	re (ft)	
Radio del pozo	rw (ft)	

Tabla VI. Parámetros iniciales del algoritmo genético.

Adicionalmente, se requerirá cierta información (tamano de población, tipo de mutación etc) de la que dependerá el algoritmo genético para su funcionamiento interno. Para esto existe una sección dentro de WellGenSys donde se puede realizar esta operación. Esta sección aparece una vez ingresada la información de producción y yacimiento (secciones INICIO y GRAFICOS). Esta es la sección ARRANQUE.

En la interfaz de ARRANQUE, el usuario debe seleccionar el tamaño de la población, el tipo de cruzamiento, el tipo de mutación, el número de bits por variable, la tolerancia y el número de realizaciones.

El concepto de "Realizaciones" no se había mencionado anteriormente debido a que esta técnica se emplea en WellGenSys como una alternativa para obtener resultados mucho más acertados para cada parámetro. Este sistema es automático lo que hace es realizar varias corridas del algoritmo, determinando un número de resultados para cada parámetro y al final proporcionando un promedio, que es el resultado final del algoritmo basado en el número de realizaciones que se hayan ingresado.

Una realización difiere de la otra en la mayoría de sus resultados; es demasiado difícil que todos los valores de una realización sean idénticos a una anterior.

Una realización puede dar valores mayores o menores para un parámetro que la realización anterior. Esto quiere decir que el espacio de búsqueda de soluciones es amplio y que los límites para los parámetros, ingresados en la interfaz de Inicio, son compatibles con las producciones ingresadas.

4.4. PARÁMETROS DE RESERVORIO A OPTIMIZAR

En la sección 2.1 se discutió sobre algunos parámetros de reservorio, considerando como los más importantes a las incógnitas que las ecuaciones contienen.

Se mencionó en secciones anteriores que el algoritmo requeriría obligatoriamente producción y tiempo para poder determinar todos los parámetros desconocidos contenidos en las ecuaciones.

El WellGenSys, además, en la interfaz de inicio provee la opción de ingresar datos conocidos de un determinado instante de la vida del yacimiento, para tenerlos como referencia y agilitar el proceso del cálculo. Los parámetros presentados en "INICIO" se presentan en la Tabla II.La Gráfico 4.1 muestra la interfaz de inicio del WellGenSys.

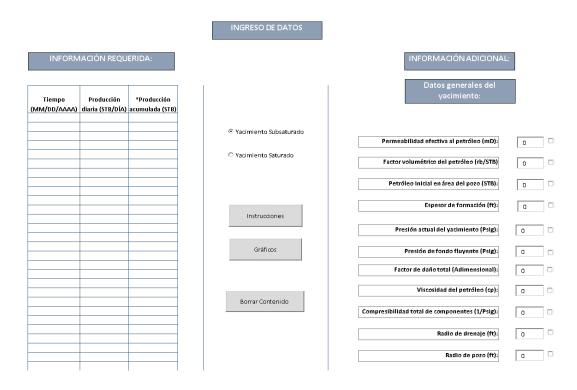


Gráfico 4.3. Interfaz de inicio de WellGenSys.

Se puede observar en la Gráfico 4.3 los mismos parámetros presentados en la Tabla II; es aquí donde debemos ingresar los datos que el algoritmo utilizará para su cálculo matemático. Para que el algoritmo funcione debe seleccionarse por lo menos un parámetro para optimizar.

Mediante las ecuaciones presentadas en la sección 4.3 y la información ingresada (descrita en la sección 4.1), el algoritmo determinará los parámetros de reservorio para cada tiempo de producción que haya sido ingresado.

El usuario mediante los "Checkbox", o cajas de opción, que se muestran en la sección INICIO podrá seleccionar si necesita optimizar dicho parámetro; si no hay necesidad de optimizarlo entonces se debe ingresar obligatoriamente un valor fijo

para el mismo, caso contrario ingresar los posibles límites entre los cuales se podría encontrar el parámetro (haciendo click en el Checkbox respectivo a dicho parámetro para activar el ingreso de máximos y mínimos).

Una de las desventajas de las ecuaciones, es que estas son válidas sólo para yacimientos volumétricos; los parámetros como viscosidad, compresibilidad total y factor volumétrico pueden ser considerados constantes a lo largo de un periodo de tiempo extenso, en el caso de yacimientos subsaturados; ocurre lo contrario para yacimientos saturados, donde estos parámetros varían drásticamente con la declinación de la presión. Para propósitos didácticos y de manejo informático se considerará que los parámetros mencionados se mantienen constantes inclusive para yacimientos saturados.

Una vez ingresada la información, ejecutando el botón de comando GRAFICOS el algoritmo leerá toda la información ingresada y procederá a la ficha GRAFICOS; si hace falta alguna información o esta está fuera de los límites o especificaciones permitidas, el algoritmo dará un aviso y se detendrá hasta que se corrija dicho error.

Si no existen problemas, WellGenSys procederá a la sección GRAFICOS (ver Anexo 2.1) donde el usuario podrá seleccionar el método de declinación que mejor se ajuste a la información ingresada en la sección anterior. Se puede determinar si el método es el correcto comparando la curva de producción del método con la curva de producción de la información ingresada y además observando los gráficos típicos para cada tipo de declinación, los mismos que se muestran en la interfaz de esta sección de WellGenSys.

Esta interfaz permite al usuario, inclusive, seleccionar los valores entre los cuales se calculará la constante de declinación, que servirá para el cálculo de los valores

de producción para las curvas de declinación. Se recomienda tomar puntos alejados y coherentes para el respectivo problema.

Una vez seleccionado el método de declinación, presionando el botón de comando ARRANQUE, WellGenSys leerá la información ingresada y procederá a la sección siguiente (ARRANQUE, ver Gráfico 4.4), donde se ingresan los datos de algoritmo que se mencionaron anteriormente.

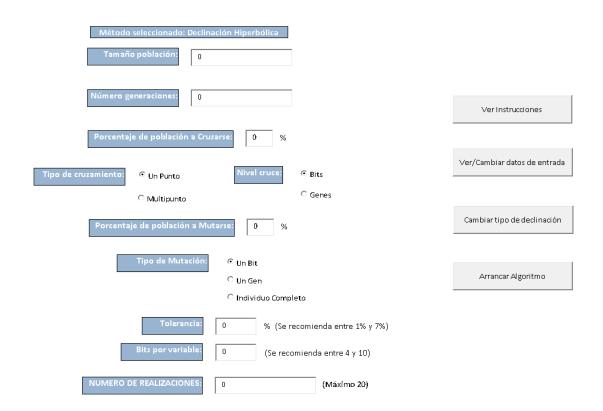


Gráfico 4.4. Interfaz de Arranque de WellGenSys

Una vez ingresadas estas especificaciones, WellGenSys procederá a hacer el cálculo de los parámetros de yacimiento seleccionados y dará los resultados

correspondientes para cada realización y finalmente un promedio (esto puede tardar varios minutos).

4.5. OPERACIONES DE CRUZAMIENTO

WellGenSys realiza todas las operaciones de cruzamiento mencionadas en la sección 3.2.

En la Gráfico 4.5 se puede observar la interfaz presentada en la sección ARRANQUE, donde se debe seleccionar los parámetros del algoritmo, entre ellos el tipo de cruzamiento.

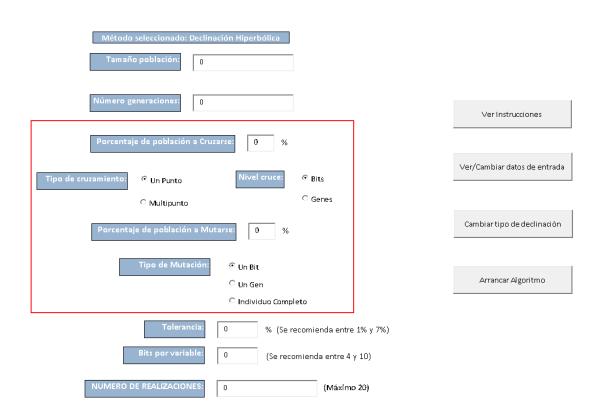


Gráfico 4.5. Operaciones de reproducción disponibles para WellGenSys

Dependiendo del número de parámetros a optimizar (máximo 11), y el número de bits por variable, el programa generará un cromosoma, el cual representa un individuo; como se recomienda un máximo de 10 bits y suponiendo que se optimizan todos los parámetros, el cromosoma tendrá 110 bits.

WellGenSys brinda la opción de tres diferentes maneras de cruzar los cromosomas (mostradas en el gráfico 4.6):

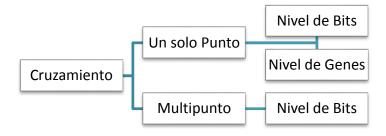


Gráfico 4.6. Tipos de cruzamiento disponibles en WellGenSys.

Para poder observar cómo sucede el cruzamiento, supongamos que se han seleccionado 3 parámetros para optimizar, permeabilidad (k), presión de yacimiento $(\overline{P_R})$ y viscosidad (μ).

Suponiendo que se hayan seleccionado 3 bits por variable, y una población de dos individuos, el algoritmo generará dos cromosomas con 9 bits cada uno, como muestra el gráfico 4.7.

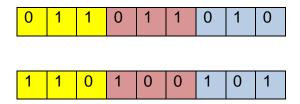


Gráfico 4.7. Cromosomas (individuos) codificados con parámetros a optimizar.

Supóngase que los valores binarios de k (amarillo) equivalen al respectivo valor binario multiplicado por 100, los de $\overline{P_R}$ (rojo) valen por 1000 y los de μ (azul) valen por 1.

Para el presente caso tenemos para el primer cromosoma k= 300 md, $\overline{P_R}$ = 3000 Psi y μ = 2 cp, y para el segundo cromosoma k=600 md, $\overline{P_R}$ =4000 psi y μ = 5cp.

Para cruzamiento de un **solo punto a nivel de bits** tenemos en el gráfico 4.8 los hijos resultantes (cruzando desde el bit 5 de los cromosomas del gráfico 4.7, contando siempre de izquierda a derecha):

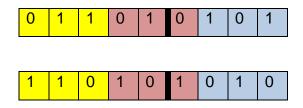


Gráfico 4.8. Individuos hijos resultantes del cruzamiento de un punto a nivel de bits.

Donde para el primer hijo tenemos k= 300 md, $\overline{P_R}$ = 2000 Psi y μ = 5 cp, y para el segundo hijo k= 600 md, $\overline{P_R}$ = 5000 psi y μ = 2 cp.

Nótese que los cambios son leves debido al número bajo de bits, pero se puede observar un cambio en μ .

Para el cruzamiento de **un solo punto a nivel de genes** (tomando desde el segundo gen) tenemos los hijos mostrados en el gráfico 4.9:

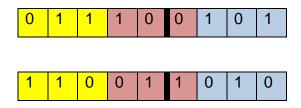


Gráfico 4.9. Hijos resultantes del cruzamiento de un punto a nivel de genes.

Para el presente caso tenemos para el primer hijo k= 300 md, $\overline{P_R}$ = 4000 Psi y μ = 5cp, y para el segundo hijo k=600 md, $\overline{P_R}$ =3000 psi y μ = 2 cp.

Finalmente para el caso **multipunto**, tenemos los resultados mostrados en el gráfico 4.10 (tomando como puntos el primer bit y el último bit del segundo gen):

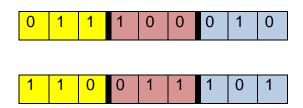


Gráfico 4.10. Cromosomas resultantes de un cruzamiento multipunto.

Donde tenemos como resultado para el primer hijo k= 300 md, $\overline{P_R}$ = 4000 Psi y μ = 2 cp, y para el segundo cromosoma k=600 md, $\overline{P_R}$ =3000 psi y μ = 5 cp.

El algoritmo de WellGenSys trabaja los cruzamientos de la manera descrita en la parte superior, con la excepción de que este maneja una tabla de datos para la lectura de genes binarios correspondientes al cromosoma, es decir, lee el valor binario de cada gen en una tabla generada a partir de los límites ingresados por el usuario en la interfaz de INICIO. Para ilustrar esto, en la Tabla VII se muestran equivalencias de valor binario para cada parámetro.

			$\overline{P_R}$	μ	k
0	0	0	1250	1	50
0	0	1	1500	1.5	64
0	1	0	1750	2	78
0	1	1	2000	2.5	92
1	0	0	2250	3	106
1	0	1	2500	3.5	120
1	1	1	2750	4	134

Tabla VII. Ejemplo de Tabla de equivalencias de código binario con valores reales.

En otras palabras, el algoritmo genera valores en código binario a partir de los límites de búsqueda que se haya dado para cada variable. Con esto genera una tabla de equivalencias donde una secuencia de unos y ceros equivalga a un número respectivo para cada parámetro dentro de la tabla de valores generados.

4.6. OPERACIONES DE MUTACIÓN.

WellGenSys realiza todas las operaciones de mutación mencionadas en la sección 3.2.

Dependiendo de la selección del usuario en la interfaz de ARRANQUE, WellGenSys realizará mutaciones como se muestra en el gráfico 4.11:

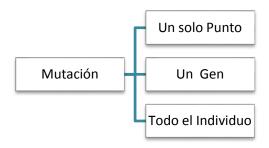


Gráfico 4.11. Tipos de mutación disponibles para WellGenSys.

Para el mismo ejemplo presentado anteriormente, tenemos el siguiente cromosoma (gráfico 4.12):

Gráfico 4.12. Cromosoma con parámetros codificados.

Donde k = 300 md, $\overline{P_R}$ =4000 psi y μ = 3 cp.

Si la mutación es de **un bit** (suponiendo que sea el segundo bit del segundo gen), se obtendría el cromosoma que muestra el gráfico 4.13:

Gráfico 4.13. Cromosoma afectado por mutación de un bit aleatorio.

Donde k = 300 md, $\overline{P_R}$ =6000 psi y μ = 3 cp.

Si la mutación es de **un gen** (suponiendo que sea el tercero) tenemos la consecuencia secuencia mostrada en el gráfico 4.14:

Gráfico 4.14. Cromosoma afectado por una mutación de un gen.

Donde k = 300 md, $\overline{P_R}$ =4000 psi y µ= 2 cp.

En cambio, si la mutación es de **todo el cromosoma**, la consecuencia sería la mostrada en el gráfico 4.15:

Gráfico 4.15. Cromosoma alterado en por mutación en toda su codificación.

Donde k = 400 md, $\overline{P_R}$ =3000 psi y µ= 2 cp.

En cualquiera de los casos, ya sea de cruzamiento o de mutación, dependiendo del número de bits seleccionado, el usuario debería tomar la decisión de qué método sería el más eficiente, logrando que el algoritmo experimente con el mayor número de posibles individuos, así, pudiendo encontrar una solución de la manera más eficiente.

4.7. CRITERIOS DE PARADA

WellGenSys funciona y encuentra respuestas siempre y cuando los rangos de valores sean óptimos para las producciones ingresadas, es decir, que estos rangos estén dentro de valores lógicos para el yacimiento que se esté analizando, de tal manera que las ecuaciones con las que se programó la función objetivo puedan encontrar respuestas con los valores que se obtendrán mediante los procesos descritos en las secciones anteriores.

Ahora, considerando el concepto de realizaciones, descrito en la sección 4.3, el algoritmo tiene dos etapas diferentes de detención; la primera es detenerse cuando haya encontrado valores óptimos de parámetros para una producción y la segunda forma de detención es terminar una realización debido a que terminó la evaluación de todas las producciones ingresadas. En otras palabras, estas son condiciones de salto o de cambio de paso dentro del algoritmo, ya sea para continuar la evaluación o para terminar la operación de determinación de parámetros.

En el caso de detenerse para una producción, se debe haber llegado a alguno de los siguientes criterios:

Detención para una respectiva producción (primera)

- Obtención de parámetros estáticos y dinámicos

Si el algoritmo encuentra valores compatibles para los parámetros estáticos compatibles con la primera producción, entonces este se detendrá y proseguirá a la siguiente producción.

- Llegar a un número máximo de intentos

ProdParOpt tiene una función interna que contabiliza los intentos de obtención para una respuesta. Si el algoritmo no obtiene una respuesta después de 10 intentos, entonces se detendrá y dará un mensaje de error.

- Cumplir la tolerancia establecida

El programa, una vez determinado un valor de producción dentro del rango permitido popr la tolerancia, pasará a la evaluación de la siguiente producción.

- Detención por Incompatibilidad

Si el programa no puede determinar valores estáticos o dinámicos después de cierto número de intentos (10 como estándar), este dará un mensaje de error, indicando que los límites ingresados no son compatibles con los valores de producción que se desea optimizar.

Considerando que los valores estén bien limitados, y que se pueda encontrar respuestas posibles para todas las producciones ingresadas, WellGenSys se detendrá una vez que se hayan completado los siguientes requerimientos:

Detención del programa (todas las producciones)

- Validez de valores de presión

El programa podrá encontrar valores de presión para cada producción siempre y cuando los parámetros estáticos sean compatibles con el valor de producción establecido en la tolerancia, es decir, que tanto parámetros estáticos como valores de producción puedan resolverse para determinar todas las presiones de cada realización.

- Cumplir las realizaciones establecidas

ProdParOpt mostrará un mensaje de finalización una vez que haya cumplido el número de realizaciones.

Para observar y entender mejor todo el proceso que realiza WellGenSys, observaremos el siguiente ejemplo, en donde se observará cómo se llega a respuestas.

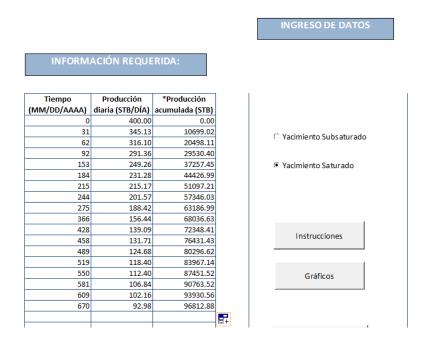


Gráfico 4.16: Interfaz de ingreso de producciones y tipo de yacimiento.

El gráfico 4.16 muestra la interfaz de ingreso de los valores de producción del yacimiento que se desea optimizar, y además los valores de producción acumulada. Además, se debe seleccionar el tipo de yacimiento que se va a tratar, pudiendo ser este volumétrico subsaturado o volumétrico saturado.

Es muy importante recordar que los valores de tiempo deben ser ingresados en el formato indicado en la sección de "Fechas" (MM/DD/AAAA), caso contrario se producirán errores.

Una vez ingresados los datos de producciones y tiempo, y seleccionado el tipo de yacimiento, el siguiente paso es seleccionar las variables a optimizarse y darles valores de límites o fijos, dependiendo de si se van a calcular o no. El gráfico 4.17 muestra la interfaz para esta operación.

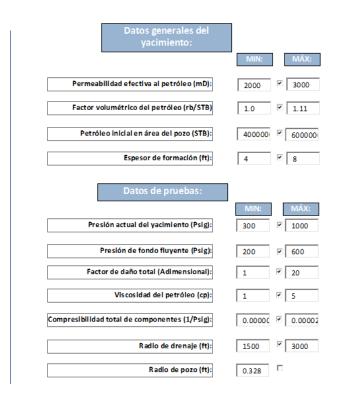


Gráfico 4.17: Límites y valores para parámetros que se vayan a optimizar.

A continuación debemos presionar el botón "GRÁFICOS", que se observa en el gráfico 4.18, que también incluye el botón "INSTRUCCIONES", el mismo que lleva a una interfaz que contiene el manual de usuario para WellGenSys (Anexo 1), y además hay el botón "BORRAR TODO" que dejará toda la información ingresada en el programa en blanco.

Gráfico 4.18: Botones de la interfaz de Inicio

Una vez en la interfaz de gráficos, el usuario podrá seleccionar el método a implementarse, junto con los puntos que el método tomará para poder realizar el respectivo cálculo. El gráfico 19 muestra los métodos disponibles y los datos que se generan para un método cualquiera.

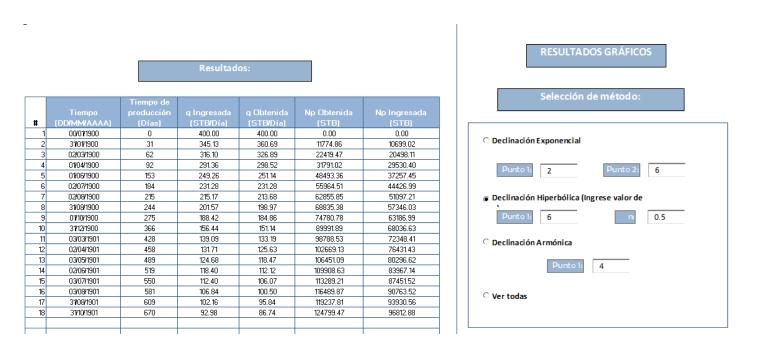


Gráfico 4.19: Interfaz de Gráficos con valores ingresados y calculados por declinación Hiperbólica.

Con estos valores se generarán gráficos (Anexo 2.2), los mismos que el usuario podrá comparar con los patrones estándar (Gráfico 4.20) y seleccionar el método que considere conveniente. Una vez que esté seguro de qué método escoger, deberá presionar el botón "ARRANQUE", que se puede observar debajo del gráfico 4.20.

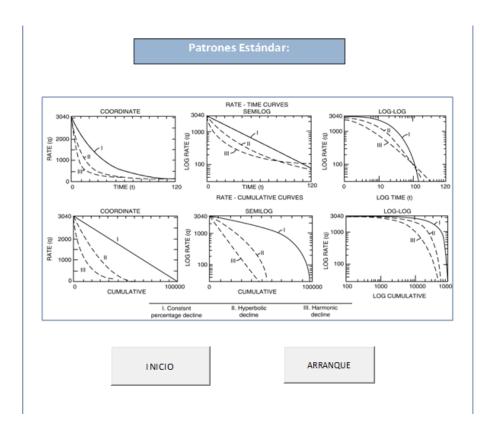


Gráfico 4.20: Patrones estándar de curvas de declinación y botones de comando.

Posteriormente se procede a la interfaz de arranque donde se seleccionan los parámetros para el funcionamiento interno del algoritmo. Aquí, a criterio del usuario, se debe seleccionar la información más coherente para que se pueda realizar un cálculo adecuado para cada parámetro. (Ver gráfico 4.21)

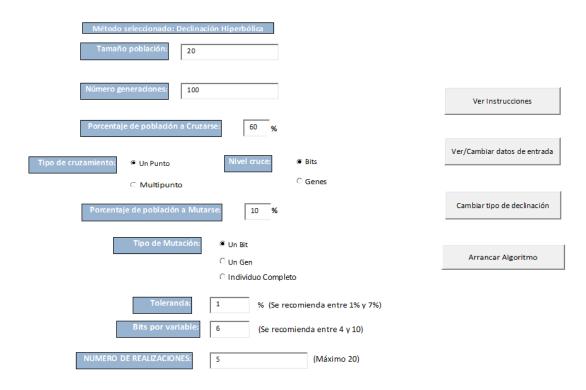


Gráfico 4.21: Interfaz de arranque del algoritmo.

Como se puede observar en el gráfico, se recomienda mínimo 4 bits y máximo de 10 (un número alto de bits para parámetros con rangos pequeños de evaluación dificultará encontrar una respuesta, y por ende, mayor tiempo de ejecución y por el contrario una cantidad pequeña de bits no genera suficientes valores en la tabla de datos como para encontrar una solución óptima), y una tolerancia de máximo 5% de diferencia entre los valores obtenidos por el algoritmo y los valores de producciones pertenecientes a la curva de declinación (que son los que se utiliza para la optimización), caso contrario el algoritmo tendrá menos posibilidades de finalizar su análisis para todas las producciones. Se recomienda además un tamaño de población mayor a 15, y un número de generaciones de mínimo 50.

Una vez que se ejecute el algoritmo, seleccionando el botón "ARRANCAR ALGORITMO", no se detendrá a menos que encuentre un error o que haya

terminado la evaluación. El Anexo 2.3 muestra los resultados del cálculo de parámetros estáticos y el Anexo 2.4 los resultados para las presiones obtenidas por el algoritmo para 20 realizaciones.

El ingeniero a cargo de la operación de WellGenSys tendrá que interpretar los resultados y determinar si de repente los límites que ingresó son compatibles o si necesita cambiarlos. Además, también debe decidir si necesita mejor precisión, por lo que debe incrementar el número de bits por variable o reducir la tolerancia para que pueda ser más exacto el cálculo.

CAPÍTULO V

IMPLEMENTACIÓN DE LA METODOLOGÍA AL CAMPO DEL ORIENTE ECUATORIANO

5.1. CAMPO DEL ORIENTE ECUATORIANO

Para demostrar la funcionalidad de WellGenSys, se ha seleccionado un campo correspondiente al oriente Ecuatoriano, al mismo que denominaremos ORE de ahora en adelante, del cual se tomarán 2 pozos para su respectivo análisis.

5.1.1. Localización

El campo ORE, denominación dada al campo que utilizaremos para el presente proyecto se encuentra en la región nororiente del Ecuador, zona de donde se obtiene la mayor producción del mismo país.

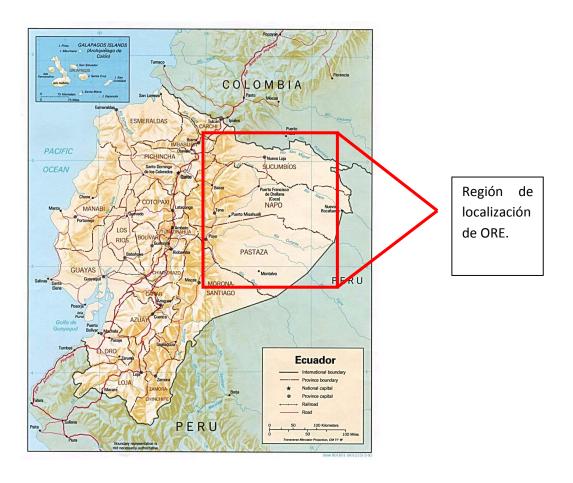


Gráfico 5.1. Región de Localización del campo ORE

5.1.2. Información General (Pozos, Arenas)

El campo ORE tiene un total de cerca de 60 pozos, de los cuales producen actualmente alrededor de 30; la producción viene principalmente de las arenas U inferior (cuyo mecanismo de producción principal es por empuje de acuífero) y T inferior, pero se pueden encontrar pozos que producen de las arenas Basal Tena, U superior y T Superior, a pesar que son muy pocos.

5.1.3. Pozos y Arenas Seleccionadas

Entre los casi 30 pozos productores del campo ORE (Oriente Ecuatoriano), se seleccionarán solo 2, que se denominarán PORE-001 y el PORE-006 (Pozo Oriente Ecuatoriano 001 y 006 respectivamente).

El pozo PORE-001 produce por la arena U inferior en una sección geológica de fallas paralelas, lo que genera un límite y conlleva a considerar este yacimiento como volumétrico. El gráfico 5.2 muestra un sistema básico de fallas paralelas.

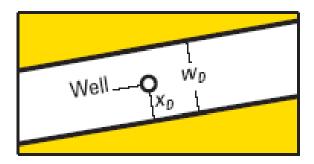


Gráfico 5.2. Pozo ubicado en medio de fallas paralelas.

El pozo PORE-006, al igual que el pozo PORE-001, produce de la arena U inferior, y también en una sección geológica de fallas paralelas, considerándose este como yacimiento volumétrico.

5.1.4. Características Generales de los pozos e Historiales de Producción.

Una de las principales características de los pozos que se presentaron en la sección anterior, es que la arena U inferior (Ui) se comporta volumétricamente para estos pozos, de manera que el algoritmo podrá optimizar valores para los mismos.

El pozo PORE-001 produce por bombeo hidráulico, hasta abril del 2009 que es cuando se cambia por bombeo eléctrico. La producción a lo largo de su vida es como se muestra en el gráfico 5.3.

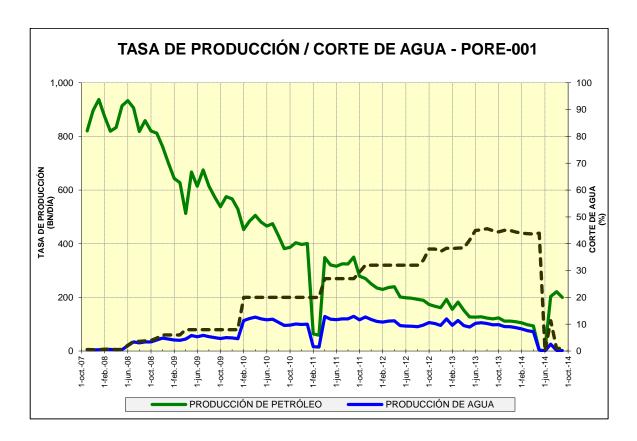


Gráfico 5.3. Historia de producción de Agua y Petróleo, y corte de agua del pozo PORE-001.

El pozo produjo desde que se completó en octubre del 2007 hasta mayo del 2014. Posteriormente se produjo de la arena U superior. Para la optimización de los parámetros de este pozo, se seleccionará el intervalo dese mayo del 2008 hasta octubre del 2009. En este intervalo se puede observar un patrón de declinación relativamente estable, a excepción del abril del 2009, que es una fecha que coincide con un reacondicionamiento realizado para cambiar el sistema de levantamiento artificial.

Ocurre algo similar para el pozo PORE-006, el cual produce por la arena UI toda su vida productiva. Se puede observar en el gráfico 5.4 el historial de la vida de este.

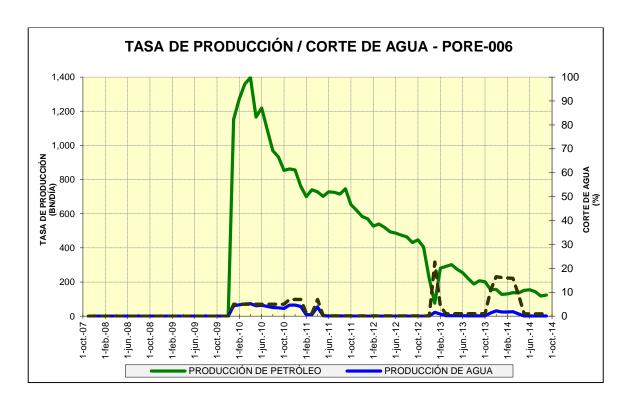


Gráfico 5.4. Historia de producción de Agua y Petróleo, y corte de agua del pozo PORE-006.

Este pozo tiene un reacondicionamiento en enero del 2013, para lo que este pozo quedó cerrado la mitad de dicho mes.

Para el análisis de este pozo, tomaremos un intervalo de producción desde junio del 2010 hasta septiembre del 2012, que es donde se observa una declinación relativamente estable. Este pozo produce muy poca agua, y al igual que el PORE-001, este está encerrado por un sistema de fallas paralelas, por lo que se comporta de una manera volumétrica y no hay influencia fuerte de un acuífero.

5.2. COMPORTAMIENTO DE PRODUCCIÓN DEL CAMPO

Debido a que ORE es un campo nuevo en comparación a otros del oriente ecuatoriano, y está ubicado en una zona de altas producciones, este tiene una producción muy buena, además de producir un a niveles relativamente bajos de agua, a excepción de algunos pozos que producen con altos cortes de agua, los cuales no se pueden considerar para este proyecto debido a la presencia de un acuífero de fuerte acción. Como se mencionó anteriormente, los principales yacimientos de este campo son la arena U inferior y la T inferior, pero hay ciertos pozos que registran producciones de las arenas Basal Tena, U superior y T superior. El gráfico 5.5 muestra la producción del campo a lo largo de su vida.

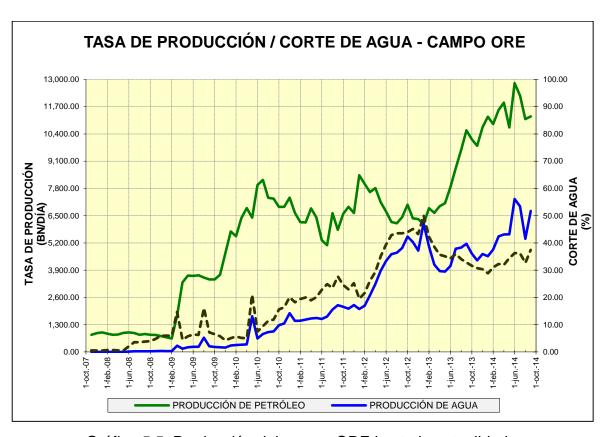


Gráfico 5.5. Producción del campo ORE hasta la actualidad.

5.3. IMPLEMENTACIÓN DE METODOLOGÍA A LOS POZOS SELECCIONADOS DEL CAMPO.

Para los pozos del campo ORE, que como se pudo apreciarse en la sección 5.1.4, se comportan volumétricamente, y producen en un yacimiento Subsaturado, es decir, a condiciones de yacimiento y cara de la arena no hay gas libre sino disuelto.

Para la implementación del algoritmo en los pozos seleccionados (PORE-001 y PORE-006) se tomará el caso de yacimiento subsaturado (ya que así es como estos producen actualmente).

Para el caso del PORE-001, se mencionó que se tomaría el siguiente intervalo de producciones (Tabla VIII):

Tiempo (MM/DD/AAAA)	Producción diaria (STB/DÍA)	*Producción acumulada (STB)
01/05/2008	914.08	0
01/06/2008	933.50	28004.94
01/07/2008	906.15	56095.58
01/08/2008	818.01	81454.04
01/09/2008	858.85	107219.55
01/10/2008	819.95	132638.06
01/11/2008	812.21	157004.23
01/12/2008	762.75	180649.47
01/01/2009	701.67	202401.37
01/02/2009	643.31	220413.99
01/03/2009	627.48	239865.91
01/04/2009	513.01	255256.08
01/05/2009	667.21	275939.52
01/06/2009	614.14	294363.85
01/07/2009	675.30	315298.19
01/08/2009	615.01	334363.46
01/09/2009	574.42	351596.05
01/10/2009	538.22	368280.93

Tabla VIII. Intervalo de producción seleccionado para el pozo PORE-001.

Nótese que en la tercera columna de la Tabla VIII se muestran los valores de producción acumulada del campo para las respectivas fechas; estas producciones acumuladas, en realidad, no empiezan en 0, pero como WellGenSys considera que la producción apenas empieza con el primer dato de

producción, entonces se requiere que el usuario (en caso de que quiera visualizar un mejor ajuste de curvas) ingrese la producción acumulada del campo sólo considerando el intervalo que vaya a copiar dentro del software, empezando desde 0 y aumentando conforme los meses de producción y caudal de petróleo que se produzca en el respectivo mes.

Siguiendo con el proceso para poder ejecutar el programa, debemos seleccionar los parámetros que deseemos optimizar y darles valores a los límites máximos y mínimos. Para los parámetros que no se desee optimizar, se debe asignar un valor, de manera que el algoritmo lo toma como fijo y no lo tomará en cuenta para las operaciones propias del algoritmo genético.

Para este pozo se optimizarán diez parámetros de los once disponibles. El parámetro que no se optimizará es el radio del pozo, ya que este suele venir en rangos fijos, pero si se desea optimizar, WellGenSys puede optimizarlo para dar un valor aproximado teórico de este parámetro.

El gráfico 5.6 Muestra la interfaz de ingreso de los límites para este pozo y los respectivos valores con los que se ejecutó el programa.

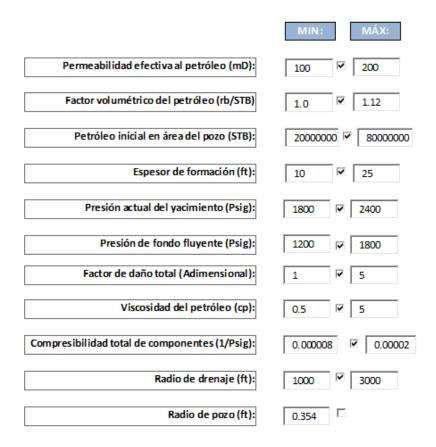


Gráfico 5.6. Parámetros a optimizar seleccionados con sus respectivos límites máximos mínimos posibles para pozo PORE-001.

Una vez ingresada esta información, se procede a la sección gráficos (oprimiendo el botón de comando "GRÁFICOS"), donde observamos la información que se ingresó y los diferentes métodos de declinación. Para este pozo se seleccionó declinación exponencial porque es el método que mejor ajusta con la curva de producción que se genera con los datos ingresados. El Anexo 2.5 muestra los datos de producción ingresados y los calculados por el método seleccionado (que aparece en la parte derecha)

Con esta información se hace las comparaciones entre la curva obtenida, la curva real y las curvas estándar, para definir el método ideal (para este caso ya se mencionó que es la declinación exponencial). El Anexo 2.6 muestra los gráficos generados por la información ingresada y el método seleccionado.

Observamos en el Anexo 2.6, en la parte superior izquierda, un pequeño pico en el tiempo 365. Esto nos da dificultades posteriormente, ya que la curva de declinación debe ajustarse promediada a todas las producciones; por esta razón debemos generar una curva más limpia, es decir, con menos datos fuera de lo normal. Entonces para este pozo retrocedemos presionando el botón de comando INICIO en la sección gráficos y procedemos a borrar dicha producción.

El Anexo 2.7 muestra las nuevas gráficas que se generan sin la producción que generaba el pico.

Una vez que encontramos el método ideal para ajustar las curvas, procedemos a la sección de ARRANQUE, donde asignamos los valores mostrados en el gráfico 5.7 al algoritmo.

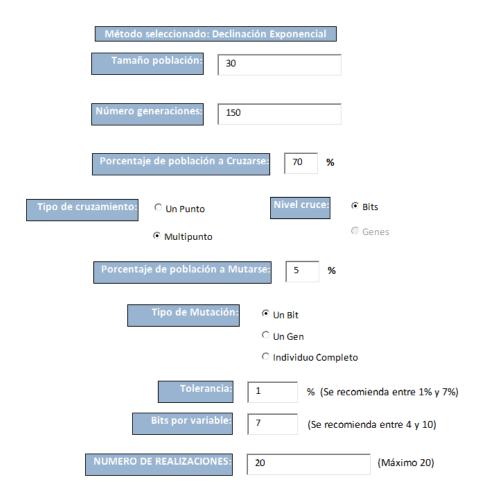


Gráfico 5.7. Parámetros de arranque para el algoritmo genético para la optimización de parámetros del pozo PORE-001.

Como se puede observar en el gráfico anterior, para una ejecución del algoritmo tomaremos una población de 30 individuos, 150 generaciones, cruzamiento

multipunto (para aumentar el número de individuos evaluados, cruzando 70% de la población), mutación a nivel de bits (mutando 5% de la población), con una tolerancia del 1% (demasiado alta) para la diferencia entre las producciones calculadas y originales y además con todas las realizaciones, es decir 20 y 7 bits por variable. Presionando el botón de comando ARRANCAR ALGORITMO, empieza el cálculo de los parámetros de yacimiento. Los factores más determinantes para que el algoritmo sea rápido o lento son el número de bits, el número de parámetros seleccionados para la optimización y más que todo la tolerancia; si se ejecuta el algoritmo con una tolerancia muy baja (0.5 o 1 %) el algoritmo podría tomar mucho tiempo de ejecución, mientras que si se toma tolerancias un poco más altas, como 2 o 3%, el algoritmo tarda menos en su ejecución, pero tendrá un porcentaje de error ligeramente mayor, mientras que para tolerancias altas (de 4 a 5%) el algoritmo podría llegar a determinar respuestas, y su ejecución podría llegar a ser rápida, pero lo más probable es que no encuentre respuestas para las últimas producciones debido a que los parámetros encontrados al principio no son compatibles con estas.

Para este pozo, ejecutando el algoritmo con los parámetros descritos en el gráfico 5.10, hubo una demora de alrededor de 52 minutos. Esto debido a la tolerancia muy baja que se le asignó al algoritmo.

El Anexo 2.8 muestra los resultados de parámetros estáticos de esta corrida y el Anexo 2.9 muestra las corridas dinámicas (datos de presiones).

Para poder observar mejor el comportamiento de las respuestas de producción obtenidas por el algoritmo, con las respuestas obtenidas por la curva de declinación, podemos observar el gráfico 5.8, el cual toma dichos datos junto con los datos de producción real. Se observa que no hay diferencias mayores entre

los valores de producción calculada con declinación y los obtenidos con el algoritmo.

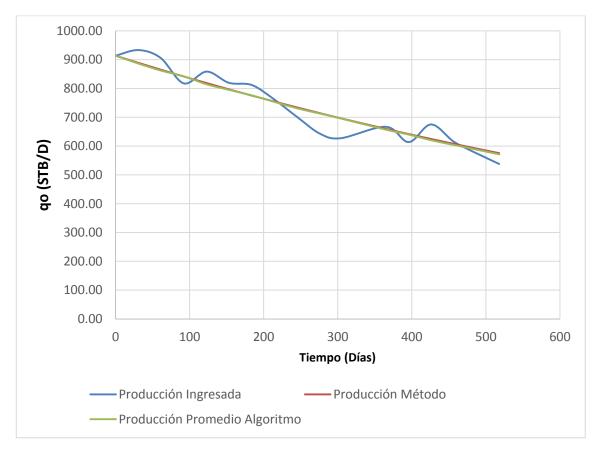


Gráfico 5.8. Comparación de resultados entre información ingresada, información de la curva de declinación y la calculada por el algoritmo (Tolerancia 1%).

En cambio, para una corrida con las mismas características que la anterior, pero para una tolerancia de 2%, se pudo obtener los resultados estáticos mostrados en el Anexo 2.10 y los dinámicos en el Anexo 2.11.

En los Anexos 2.10 y 2.11 se puede visualizar los resultados de todas las realizaciones corridas por el algoritmo, el ingeniero puede tomar en cuenta

cualquiera que él considere la mejor o tomar el promedio de las mismas, mostrado en la última columna.

El gráfico 5.9 a continuación muestra los gráficos de ajuste entre los valores determinados por WellGenSys y los de las curvas de producción real y de declinación.

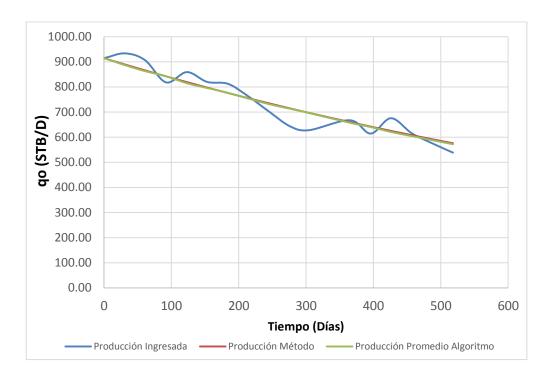


Gráfico 5.9. Comparación de resultados entre información ingresada, información de la curva de declinación y la calculada por el algoritmo (Tolerancia 2%).

Se puede observar en el gráfico que las curvas roja y verde tienen una distancia ligeramente mayor a lo que tenían en el gráfico 5.8, pero la mayor diferencia se puede observar comparando las tablas 2.8 y 2.10, en donde se ven cambios ligeros en datos como la permeabilidad, espesor de formación y petróleo original en sitio. Esto demuestra la sensibilidad del programa con la tolerancia.

Ahora, para el caso del pozo PORE-006, tenemos los siguientes datos de producción, que son el intervalo mencionado en la sección anterior. La Tabla IX muestra los valores de producción y producción acumulada para este intervalo.

Tiempo (MM/DD/AAAA)	Producción diaria (STB/DÍA)	*Producción acumulada (STB)
6/1/2010	1218.70	0.00
7/1/2010	1092.42	33865.02
8/1/2010	968.62	63892.21
9/1/2010	932.68	91872.52
10/1/2010	853.26	118323.52
11/1/2010	862.44	144196.72
12/1/2010	856.49	170747.91
1/1/2011	762.00	194369.91
4/1/2011	727.65	222988.36
5/1/2011	701.79	244743.75
6/1/2011	728.30	266592.66
7/1/2011	725.41	289080.47
8/1/2011	715.28	311254.18
9/1/2011	746.16	333638.89
10/1/2011	653.08	353884.40
11/1/2011	620.10	372487.31
12/1/2011	583.42	390573.42
1/1/2012	570.12	408247.02
2/1/2012	527.29	423538.52
3/1/2012	539.90	440275.51
4/1/2012	520.37	455886.61
5/1/2012	493.61	471188.39
6/1/2012	486.09	485771.18
7/1/2012	474.04	500466.39
8/1/2012	464.40	514862.89
9/1/2012	431.02	527793.58

Tabla IX. Tasas de producción y acumulados del pozo PORE-001.

Ahora, al igual que el PORE-001, debemos ingresar la información de límites para cada parámetro que seleccionemos para su optimización. En gráfico 5.10 muestra los valores seleccionados para optimizar (diez parámetros) con sus respectivos límites.

Dates conorales del

yacimiento:			
	MIN:		MÁX:
Permeabilidad efectiva al petróleo (mD):	70	✓	150
Factor volumétrico del petróleo (rb/STB)	1.0	V	1.12
Petróleo inicial en área del pozo (STB):	2000000	V	8000000
Espesor de formación (ft):	15	~	30
Presión actual del yacimiento (Psig):	1800	v	2500
Presión de fondo fluyente (Psig):	1500	v	2000
Factor de daño total (Adimensional):	1	•	5
Viscosidad del petróleo (cp):	0.5	•	5
Compresibilidad total de componentes (1/Psig):	0.000008	v	0.00002
Radio de drenaje (ft):	1000	•	3000
Radio de pozo (ft):	0.354		

Gráfico 5.10. Parámetros seleccionados para optimización y sus límites respectivos para el pozo PORE-006.

Procedemos a la sección de gráficos donde debemos seleccionar el método indicado que ajuste con la curva de producción. En el Anexo 2.12 podemos ver el método seleccionado con la información de producción ingresada y calculada para el respectivo método.

Se puede observar que en el Anexo 2.12 faltan dos producciones pertenecientes a febrero y marzo del 2011; estas se eliminaron debido a que generaban un pico en la producción, y esto hubiese generado un gran porcentaje de error.

En el Anexo 2.13 se muestran los plots de los resultados de información ingresada contra los del método seleccionado. Aquí es donde se decidió el método a utilizarse, que para este caso fue la declinación armónica.

Procedemos a la selección de los parámetros de algoritmo. Para este pozo seleccionaremos las mismas características del anterior (población de 30 individuos, 150 generaciones, cruzamiento multipunto (cruzando 70% de la población), mutación a nivel de bits (mutando 5% de la población), con una tolerancia del 1% para la diferencia entre las producciones calculadas y originales y además con todas las realizaciones, es decir 20 y 7 bits por variable).

El Gráfico 5.11 muestra los parámetros del algoritmo ingresados.

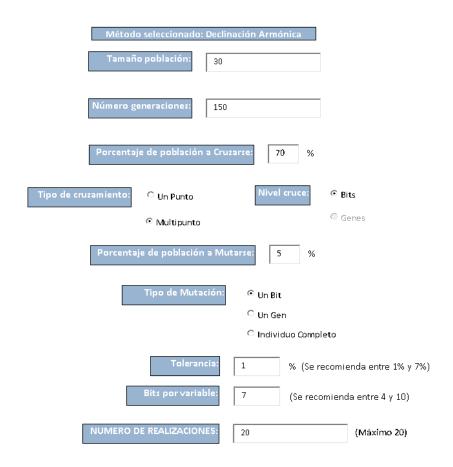


Grafico 5.11. Parámetros para el funcionamiento del algoritmo para el PORE-006.

Se procede a correr el programa. Este pozo tiene una demora de alrededor de 10 minutos. En la próxima sección se discutirá la diferencia de tiempos y el porqué de las demoras.

Una vez finalizada la corrida observamos los resultados mostrados en el Anexo 2.14, que indica los parámetros estáticos para este pozo, y el Anexo 2.15 que muestra las presiones calculadas para cada tiempo en la vida del pozo.

Podemos observar en el gráfico 5.12 el comportamiento de las tres producciones (ingresada, calculada por el método seleccionado y calculada por el algoritmo).

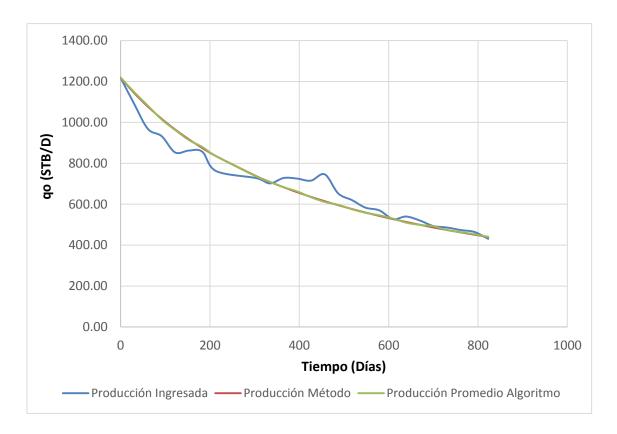


Gráfico 5.12. Resultado gráfico de las producciones ingresadas, las del método seleccionado y las calculadas por el algoritmo para el PORE-006

Se puede observar que las líneas verde y roja están demasiado unidas, y eso se debe a que el algoritmo logró un muy buen ajuste (con un máximo de 1% de error) para el análisis.

5.4. REVISIÓN DE RESULTADOS DE PARÁMETROS OBTENIDOS CON EL ALGORITMO GENÉTICO.

El algoritmo de WellGenSys genera resultados para cada parámetro de yacimiento que se haya seleccionado para optimizar.

En el presente proyecto se realiza una evaluación de dos pozos de un campo del oriente ecuatoriano denominado ORE. Se seleccionaron dos pozos de este campo, el PORE-001 y PORE-006 debido a su buen patrón de declinación estable y a que tienen un comportamiento volumétrico.

Haciendo una comparación con la información real de los pozos de este campo (información de pruebas de presión; información limitada), se puede destacar lo siguiente:

Para el **pozo PORE-001 (1% de tolerancia),** tenemos en la Tabla X los resultados estáticos obtenidos en el algoritmo con los que se tienen disponibles de las pruebas de presión.

Parámetro	Valor Algoritmo	Valor Real.	% ERROR
Permeabilidad (mD)	192.77559	169	14.0684
Espesor de Formación (ft)	18.527559	14	32.33971
Petróleo Inicial en Área del Pozo (STB)	72700787	-	-
Presión de Fondo Fluyente (Psig)	1574.1732	1471	7.013814
Daño de Formación	2.5574803	1.25	104.5984
Radio de Drenaje (ft)	2243.3071	-	-
Viscosidad (cp)	2.1334646	1.36	56.8724
Factor Volumétrico del Petróleo (RB/STB)	1.061937	1.139	6.765847
Compresibilidad total de Componentes (1/Psig)	1.715E-05	1.51431E-05	13.2529

Tabla X. Valores de parámetros del algoritmo para PORE-001 (1% de tolerancia) con valores reales.

Por otro lado **para el mismo pozo con una tolerancia de 2%**, tenemos los siguientes valores, mostrados en la Tabla XI:

Parámetro	Valor Algoritmo	Valor Real.	% ERROR
Permeabilidad (mD)	166.9685039	169	1.202069
Espesor de Formación (ft)	18.91141732	14	35.08155
Petróleo Inicial en Área del Pozo (STB)	67551181.1	-	-
Presión de Fondo Fluyente (Psig)	1578.897638	1471	7.334986
Daño de Formación	2.62519685	1.25	110.0157
Radio de Drenaje (ft)	1785.03937	-	-
Viscosidad (cp)	2.021850394	1.36	48.66547
Factor Volumétrico del Petróleo (RB/STB)	1.055228346	1.139	7.354842
Compresibilidad total de Componentes (1/Psig)	1.82047E-05	1.51431E-05	20.21779

Tabla XI. Valores de parámetros del algoritmo para PORE-001 (2% de tolerancia) con valores reales.

Comparando los valores del algoritmo para el pozo PORE-001 con respecto a la tolerancia 1% y 2% (Tabla XII) se puede observar que no hay mucha diferencia entre ellos (en términos de ingeniería en reservorios), excepto por la permeabilidad, que tenemos una diferencia de casi 30 md (relativamente muy baja diferencia), el radio de drenaje (el mismo que se especificó que no era tan sensible al cambio de valores), el daño de formación (que con el algoritmo se obtiene casi el doble del valor real, pero este valor, al igual que el

radio de drenaje, no es tan sensible en la función objetivo) y el petróleo original en sitio; se describirá el por qué este parámetro varía más adelante.

Parámetro	Valor Algoritmo	Valor Algoritmo
Permeabilidad (mD)	166.9685039	192.77559
Espesor de Formación (ft)	18.91141732	18.527559
Petróleo Inicial en Área del Pozo (STB)	67551181.1	72700787
Presión de Fondo Fluyente (Psig)	1578.897638	1574.1732
Daño de Formación	2.62519685	2.5574803
Radio de Drenaje (ft)	1785.03937	2243.3071
Viscosidad (cp)	2.021850394	2.1334646
Factor Volumétrico del Petróleo (RB/STB)	1.055228346	1.061937
Compresibilidad total de Componentes (1/Psig)	1.82047E-05	1.715E-05

Tabla XII. Comparación entre valores obtenidos por el algoritmo de tolerancia 1% y tolerancia 2% para el PORE-001.

Generalizar una respuesta para un pozo mediante WellGenSys resulta algo difícil, ya que cada corrida dará un nuevo resultado que podría variar entre un 5 y 40% de la respuesta real, ya la estimación de estos parámetros se realiza en un espacio de búsqueda muy grande, y al ser múltiples parámetros entonces la respuesta muy difícilmente llegará a ser la misma.

Para el caso de las presiones, que no se mencionó para los dos casos seleccionados, podemos observar una comparación de la primera presión tomada de la prueba, con la primera presión calculada (ambas pruebas fueron tomadas en el lapso del inicio de producción que estamos analizando).

La Tabla XIII muestra los valores de presión obtenidos para el PORE-001 (tolerancia 1% y 2%), y la comparación con la presión del momento en que empieza el intervalo.

Parámetro:	Tiempo (Días)	Tolerancia 1%	Tolerancia 2%	Presiones reales
	0.00	2452.54	2474.02	2316.00
Presión de	31.00	2379.53	2402.83	
Yacimiento	61.00	2358.74	2382.99	
(Psig)	92.00	2335.43	2362.52	
	123.00	2317.80	2338.58	
	153.00	2291.65	2317.80	
	184.00	2276.22	2299.84	
	214.00	2259.21	2280.63	
	245.00	2240.00	2261.10	
	276.00	2220.16	2242.52	
	304.00	2204.09	2225.20	
	365.00	2171.34	2190.55	
	396.00	2156.22	2174.88	
	426.00	2139.53	2159.29	
	457.00	2124.72	2142.42	
	488.00	2109.73	2127.99	
	518.00	2094.57	2112.50	

Tabla XIII. Valores de presiones de ambos casos de tolerancia para el pozo PORE-001, comparados con la primera presión.

Se puede observar en la Tabla XIII que los valores de presiones calculados por el algoritmo están demasiado cerca entre ambos casos, pero discrepan con el valor real de la primera presión del campo. La razón es los pequeños errores que generan los valores estáticos calculados, ya que estos son la base para determinar las presiones. Además, muchas veces las pruebas están interpretadas de una manera diferente, y cada intérprete tiene su forma de determinar los valores de la prueba, como permeabilidad, presión y daño de formación, por ende no se puede considerar por completo un error del algoritmo.

En el **caso del pozo PORE-006**, se realizó una corrida con la tolerancia de 1% de diferencia entre la producción real y la del algoritmo.

La Tabla XIV a continuación muestra los resultados obtenidos por WellGenSys y los datos reales obtenidos de una prueba de presión del pozo PORE-006.

Parámetro	Valor Algoritmo	Valor Real.	% ERROR
Permeabilidad (mD)	122.0944882	108	8.339934
Espesor de Formación (ft)	22.65354331	24	9.617548
Petróleo Inicial en Área del Pozo (STB)	57748031.5	-	-
Presión de Fondo Fluyente (Psig)	1662.401575	1893	15.6763
Daño de Formación	2.622047244	2.6	1.76378
Radio de Drenaje (ft)	2144.88189	-	-
Viscosidad (cp)	0.992519685	2.2	88.78532
Factor Volumétrico del Petróleo (RB/STB)	1.063023622	1.0868	2.087478
Compresibilidad total de Componentes (1/Psig)	1.51717E-05	1.2012E-05	20.86561

Tabla XIV. Valores de parámetros del algoritmo para PORE-006 con valores reales.

Como se puede ver en la Tabla XIV, desde un punto de vista ingenieril los valores no están tan alejados, ya que todos entran en rangos aceptables para sus respectivas categorías. Tal vez el daño tenga algo de error elevado debido a su diferencia, pero aun así esta diferencia no es significativa en términos de ingeniería de reservorios, ya que diferencias de más del 300% (para este caso) se pueden considerar aceptables.

Para las presiones de este pozo, podemos observar la información en la Tabla XV.

Parámetro:	Tiempo (Días)	Presiones del algoritmo	Presión Real
	0.00	2402.44	2301.00
Presión de	30.00	2358.35	
Yacimiento (Psig)	61.00	2317.83	
radimonto (i dig)	92.00	2280.91	
	122.00	2248.94	
	153.00	2219.45	
	183.00	2194.29	
	214.00	2168.89	
	304.00	2109.91	
	334.00	2092.70	
	365.00	2077.30	
	395.00	2062.58	
	426.00	2048.97	
	457.00	2036.11	
	487.00	2023.59	
	518.00	2012.45	
	548.00	2002.61	
	579.00	1991.47	
	610.00	1982.25	
	639.00	1974.35	
	670.00	1965.82	
	700.00	1958.05	
	731.00	1950.83	
	761.00	1943.19	
	792.00	1937.48	
	823.00	1929.78	

Tabla XV. Comparación de presiones para pozo PORE-006.

Se puede observar, al igual que en el PORE-001, que los valores de presión obtenidos por el algoritmo no salen de la declinación de presión lógica de un yacimiento, por lo que se puede considerar que el yacimiento, para después de 823 días (septiembre del 2012), produce a 1929.78 psig.

La diferencia de presión real con la del algoritmo es 101.44 psig; esto puede ocurrir, como se explicó anteriormente, por error en las pruebas.

Hay que considerar que WellGenSys construye toda esta información sólo a partir de un modelo de declinación de producción, por ende, no se puede esperar a que sea muy exacto.

Ahora bien, los valores de POES en el área del pozo son exageradamente altos, muy por fuera de los límites permitidos, pero esto tiene una razón muy lógica.

Estos pozos, y más que nada la arena U inferior, no es una arena volumétrica; en la mayoría de campos y pozos (inclusive en los pozos de este campo) esta arena produce por empuje de acuífero, lo que lo hace un yacimiento abierto. Estos dos pozos están atrapados entre fallas paralelas, lo que los hace tener límites y ser considerados cerrados, pero a lo largo del tiempo, estos pozos se verán influenciados por la expansión del acuífero que tiene esta arena; esta expansión ocurre desde que la depleción del área del pozo es suficiente como para generar la acción del acuífero a largas distancias, por lo que este acuífero se debe expandir para reemplazar el petróleo que se ha producido ya; esto requiere una gran cantidad de energía de parte del yacimiento y más que nada, un gran volumen expansión para reemplazar la energía del petróleo que ya se ha producido.

Para un yacimiento enteramente volumétrico no se verá este problema, ya que las presiones y producciones declinan mucho más rápidamente, lo que el yacimiento no tiene energía extra que impartir y la expansión es netamente del petróleo que este contiene.

CAPÍTULO VI

CONCLUSIONES Y PERSPECTIVAS

6.1. CONCLUSIONES

A partir de la investigación realizada y de las diferentes corridas de WellGenSys (mencionadas y no mencionadas en este proyecto) se puede concluir que:

- Es posible la determinación de parámetros de yacimiento, programando mediante Macros de Visual Basic en Microsoft Excel un algoritmo Genético, con una función objetivo representativa de tal manera que esta tenga disponibles los parámetros que se desee calcular y que sea compatible con el tipo de yacimiento.
- La función objetivo programada para WellGenSys está basada en las bases teóricas de las curvas de declinación propuestas por Ling K y He

J y las bases establecidas en el libro de Guo B., Lyons W., Ghalambor A para el caso de yacimientos subsaturados, pero para yacimientos saturados se combinó las relaciones de curvas de IPR establecidas por Voguel y Standing, considerando parámetros de yacimiento (excepto presiones) como constantes, lo que lleva a un porcentaje de error considerable para la respuesta final proporcionada por el algoritmo.

- El análisis para yacimientos subsaturados se hizo utilizando las relaciones mencionadas anteriormente combinadas con los principios matemáticos de curvas de declinación; con los modelos sintéticos demostró ser un éxito, mientras que con los modelos de los pozos del campo ORE demostró un inconveniente teórico en cuanto al petróleo inicial en sitio, lo que conllevó a concluir que los pozos no se encuentran en un yacimiento completamente infinito, pero que en un principio sí se comportan como tales y por ende, los valores de petróleo original en sitio equivalen a la expansión del volumen del acuífero que se encuentra presente en la zona. Para todo el resto de parámetros se logró tener valores muy aproximados a los reales y muy acertados en términos de ingeniería en reservorios.
- Para las presiones obtenidas se observó un comportamiento muy lógico con la declinación de la producción del pozo, y el error que representaban las producciones reales comparadas con las del algoritmo es debida a que los espacios de búsqueda del algoritmo son amplios para cada parámetro y esto puede provocar errores mínimos, por lo que es de primordial orden proporcionar valores lógicos con respecto al yacimiento que se está analizando.

- Con pruebas posteriores a las presentadas en este proyecto, se logró
 determinar que el mejor método de cruzamiento para este algoritmo es
 el cruzamiento de un punto a nivel de bits, ya que permite traspaso de
 información completa de un individuo a otro y así hacer un paso
 generacional mucho más acorde con respecto a las leyes genéticas, ya
 que características completas de un individuo en una generación
 podrían presentarse en sus respectivos hijos (siguiente generación).
- Los pozos PORE-001 y PORE-006 son pozos con su sección de yacimiento (Arena U inferior) volumétrica a corto plazo, porque una vez depletada su zona alrededor (Área de drenaje) empiezan a sufrir los efectos de expansión de un acuífero, lejano y débil, lo que provoca un aumento drástico en el petróleo original en el sitio y por ende, mostrando error grande para este parámetro.
- Las presiones de los pozos PORE-001 y PORE-006 no discrepan mucho una de la otra, por lo que se puede entender que se encuentran ubicados en una misma zona bloqueada por fallas paralelas.
- Cada realización que hace el algoritmo corresponde a una posible respuesta. El promedio de todas las realizaciones es la respuesta final del algoritmo, pero cualquier realización puede considerarse como respuesta posible para el conjunto de parámetros que se hayan calculado para el pozo.

Estas conclusiones dan a entender que WellGenSys es un sistema diseñado para yacimientos netamente volumétricos, ya que los sistemas ligeramente abiertos (como fallas paralelas) y los sistemas completamente abiertos (como acuíferos infinitos) están sujetos a mayor magnitud de error conforme sean compartimientos menos aislados.

6.2. PERSPECTIVAS

Además, para que WellGenSys pueda realizar un mejor trabajo y para una mejor experiencia de usuario, es recomendable atenerse a las siguientes recomendaciones:

- Para el ingreso de la información de producción al programa, se recomienda eliminar las producciones más ilógicas (picos de alta o baja presión) con respecto al patrón de declinación de los pozos, caso contrario la curva de declinación también se verá afectada por los valores ingresados y tomará más trabajo lograr un ajuste para esta.
- Para el ingreso de datos, es muy importante conocer el yacimiento, ya sea en el campo donde se está evaluando o en un área cercana que presente una litología similar, ya que el ingeniero que evalúe un pozo deberá ingresar valores razonables para que el algoritmo pueda encontrar valores que sean compatibles con las producciones del pozo que se quiera analizar.
- Si no se conoce mucha información del campo, y se desea estimar respuestas del algoritmo, se recomienda hacerlo con información de un pozo cercano y con rangos altos.
- WellGenSys permite un máximo de 20 realizaciones, y se recomienda que se corran mínimo 10 para así poder llegar a un promedio acertado de los parámetros de yacimiento. Además se recomienda trabajar siempre con más de 6 bits cuando hay rangos muy distantes entre límites de variables, ya que el algoritmo tendrá más opciones de respuesta y no quedará buscando una respuesta infinitamente.
- No ejecutarse el algoritmo con un porcentaje de mutación mayor al 15% (para poblaciones pequeñas) y un 10% (para poblaciones grandes), ya que la búsqueda de una respuesta ya no funcionaría como un método

de inteligencia artificial evolutivo sino un método de búsqueda aleatoria, y ese no es el objetivo de WellGenSys.

CAPÍTULO VII

REFERENCIAS

7.1. TEXTOS

- M. Golan. (1996). Well Performance. Noruega: Tapir. Cap 4, pág 382.
- A. Tarek. (2006). Reservoir Engineering Handbook. Oxford: Elsevier.
 Cap 2, pág 79
- Ursin J., Zolotukhin A (1997), Reservoir Engineering, Stavanger. Cap 9, Pág 146.
- Donnez P. (2007). Essentials of Reservoir Engineering. Paris: Technip.
 Cap 2. Pág 53.
- McCain, W (1990). The Properties Of Petroleum Fluids. Tulsa: PennWellBooks. Cap 8. Pág236.
- Beggs H.(2003). Production Optimization Using Nodal Analysis. Tulsa:
 OGCI and Petroskills Publications. Cap 2. Pág 20.
- Guo B., Lyons W.C., Ghalambor A. (2008). "Petroleum Production Engineering: A computer- Assisted Approach". Elsevier.

 Carcamo E. (2007). "Metodología Para la Predicción de Curvas de Declinación de Pozos de Petróleo, Aplicando Redes Neuronales Artificiales". Universidad Industrial de Santander, Colombia, Bucaramanga.

7.2. PAPERS

- Arnold R. and Anderson R. (1908) "Preliminary Report On Caolinga Oil District" U.S. Geological Survey Bull. 377, 79.
- Cutler, W. W. Jr. (1924). "Estimation of Underground Oil Reserves by Well Production Curves" U.S. Bureau of Mines Bull. 228.
- Pirson, S. J. (1935). "Production Decline Curve of Oil Wells May Be Extrapolated by Loss Ratio Method" Oil & Gas Journal. N° 34. 46, 34.
- Arps, J. J. (1945). "Analysis of Decline Curves". Trans., AIME. 160,228.
- Arps, J. J. (1956). "Estimation of Primary Oil Reserves". Trans., AIME.
 207,182.
- Slider, H. (1968). "A simplified Method of Hyperbolic Decline Curve Analysis". JPT, Marzo 1968, 235.
- Gentry, R.W. (1972). "Decline Curve Analysis". JPT, Enero/1972, 38.
- Gentry, R.W. and McCray, A.W. (1978). "The Effect of Reservoir and Fluid Properties on Production Decline Curves". JPT, (Septiembre/1978), 1327.
- Fetkovich, M.J, Fetkovich, E.J and Fetkovich, M.D (1996). "Useful Concepts For Decline Curve Forecasting, Reserve Estimation and Analysis". Paper SPERE (Febrero/1996), 13-22.
- Long, D.R and Davis, M.J. (1988). "A New Approach to the Hyperbolic Curve". JPT (Julio/1988), 909.

- F. Aminzadeh, J Barhen and N.B Toomarian. (1999). "Estimation of Reservoir Parameter Using a Hybrid Neural Network". Journal of Petroleum Science and Engineering, vol. 24, No.1 1999, pág 49-56.
- H.H. Nguyen and C.W. Chan. (2000). "Petroleum Production Prediction:
 A Neural Network Approach", Proceedings of 5th International Joint
 Conference on Engineering Design and Automation 2001 (EDA 2001),
 5-8 Agosto 2001, Las vegas, USA, Pág 85-90.
- Gilbert, W.E. (1954) "Flowing and Gas-Lift Well Performance" API Drill.
 Prod. Practice.
- Vogel, J.V. (1968). "Inflow Performance Relationships for Solution Gas Drive Wells" JPT, Enero 1968.
- Standing, M.B. (1970). "Inflow Performance Relationships for Damaged Wells Producing by Solution Gas Drive". JPT, Noviembre 1970.
- Fetkovich, M.J (1973). "The isochronal TestMg of Oil Wells". Paper 4529,
 48th Annual Fall Meeting of SPE, Las vegas, Nevada.
- Ling K. y He J. (2012). "Theoretical Bases of Arps Empirical Decline Curves. Paper SPE No. 161767.
- E. A. Idrobo, N. Santos, H. Peña, E. E. Martínez, E. Pineda, G. D. Meza,
 J. A. Patarroyo (2004). "Localización Óptima de Pozos de Desarrollo Mediante la Integración de Modelamiento Geoestadístico Basado en Objetos y Computación Evolutiva". ECOPETROL, UIS. Ingepet 2004.

7.3. SITIOS WEB

- Petrowiki (2010) Caída de presión por factor de daño S.
 URL:http://petrowiki.org/images/thumb/e/ec/Vol4_Page_242_Image_0
 001.png/300px-Vol4_Page_242_Image_0001.png
- IHMC Map tools (2007). Ramas y división de la computación evolutiva.
 URL:http://cmapspublic2.ihmc.us/rid=1KNJ1DGFP-299MC8S-1FGP/Computaci%C3%B3n%20Evolutiva.cmap
- Casos y ciencia (2006). Esquema general de un algoritmo genético.
 URL: http://www.caosyciencia.com/img/img240112.jpg
- Photobucket (2011). Cruzamiento multipunto.
 URL:http://i1207.photobucket.com/albums/bb469/mp_blog/cruce2_zps
 98fc826d.png
- Designemergente (2004). Cruzamiento tipo multipunto.
 URL: http://www.designemergente.org/laga/crossover2.jpg

evolution.com/#sthash.QdyIM9aP.dpuf

- Darwins-Theory-of-Evolution.com (2002-2014), Dawins Theory of Evolution. Teoría General.
 URL:http://www.darwins-theory-of-
- Charles Darwin and Evolution (2009). Natural selection.
 URL:http://darwin200.christs.cam.ac.uk/pages/index.php?page_id=d3
- Ficus.mec.es (2005). Leyes de la Genética de Gregor Mendel.
 URL:http://ficus.pntic.mec.es/rmag0063/recursos/php/mendel/mendel.
 php
- Scielo.org (2006). Luis Felipe Giraldo, Edilson Delgado Trejos, Juan Carlos Riaño y Germán Castellanos Domínguez. Selección de características usando modelo híbrido basado en algoritmos genéticos http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092006000300013&lng=pt&nrm=iso&tlng=es

 Quimicaweb.net (2002). Leyes y funcionamiento de la genética según Gregor Mendel.

URL:http://www.quimicaweb.net/Web-alumnos/GENETICA%20Y%20HERENCIA/Paginas/5.htm

 Fernando Sancho Caparrini (2009). Algoritmos genéticos y computación Evolutiva.

URL:http://www.cs.us.es/~fsancho/?e=65

 Arqueologia-diplomacia-ecuador.blogspot.com (2010). Lamarck y teoría transformista.

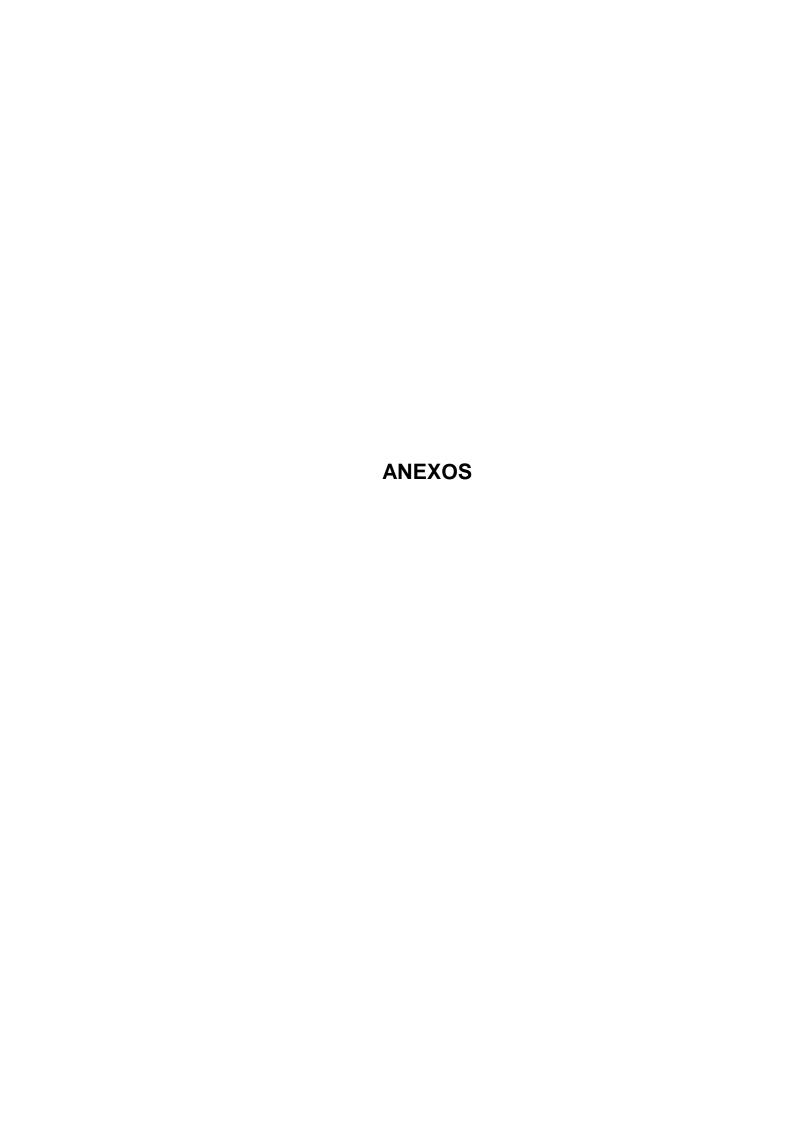
URL:http://arqueologia-diplomacia-

ecuador.blogspot.com/2010/04/lamarck.html

Ambiente-ecologico.com (2001). Alejandro Rodolfo Malpartida. Lamarck y la teoría Biológica.

URL:http://www.ambiente-

ecologico.com/revist38/AlejandroMalpartida038.htm


 Horapensar.blogspot.com (2013). Sushi de Anguila. Lamarck y la teoría del cuello de las jirafas.

URL:http://horapensar.blogspot.com/2013_08_01_archive.html

 Sedin-notas.blogspot.com (2014). Evolution news and Views. Los pinzones de Darwin y su evolución variada.

URL:http://sedin-notas.blogspot.com/2014/06/los-pinzones-de-darwinexhiben-una.html

Antho.palomar.edu. (1997-2013). Dennis O'Neil. Mendel's Genetics.
 URL:http://anthro.palomar.edu/mendel/mendel_1.htm

ANEXOS I.

MANUAL DE USUARIO DE WELLGENSYS

WellGenSys es un software basado en macros de Microsoft Excel que utiliza un algoritmo genético para calcular parámetros establecidos de un yacimiento volumétrico a partir de curvas de declinación de producción ingresada de un pozo que se desee analizar.

Para su uso, el ingeniero debe saber alguna información, por más mínimo que sea, el reservorio y el pozo del cual analizará.

Lo mínimo que se requiere saber del reservorio es el mecanismo de producción que opera en este, ya que si este es infinito o funciona con un acuífero, entonces WellGenSys no será efectivo.

Otro requisito para utilizar WellGenSys es saber si el yacimiento se encuentra saturado o subsaturado.

Si el ingeniero conoce y sabe de estas dos condiciones, entonces debe tener un perfil de producción de un pozo para poder analizarlo, es decir, una curva de declinación de producción. Esta curva debe ser lo más suave posible (sin picos) para que el análisis sea más efectivo.

Con toda esta información a disposición, este manual servirá al usuario para poder guiarse a través de WellGenSys y poder ejecutarlo de una manera eficiente.

INTERFAZ DE INICIO

Esta es la interfaz de ingreso de datos. Aquí, el usuario debe ingresar todo el conocimiento que tenga sobre el reservorio y el pozo. El gráfico 1 muestra la interfaz de inicio

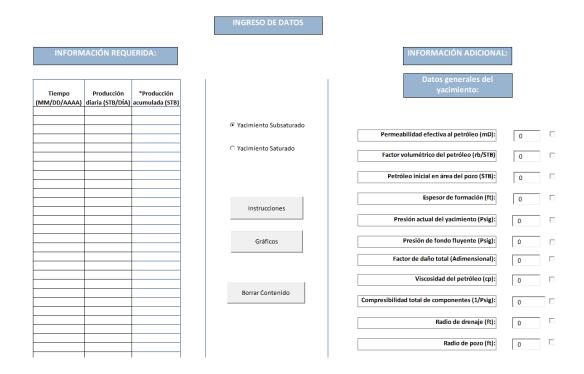


Gráfico 1. Interfaz de Inicio de WellGenSys.

El usuario deberá conocer el tipo de yacimiento con el que está tratando, es decir, si es un yacimiento saturado o subsaturado; si no se tiene conocimiento de esto, el usuario deberá estimarlo en base a las producciones que tenga del pozo.

Con la información del tipo de yacimiento que se disponga, se debe seleccionar el tipo de yacimiento, en la misma ficha inicio en la sección central (como se puede ver en el gráfico 1).

Para esto, se ha dividido en tres secciones: Información Requerida e Información Adicional.

Información Requerida

Esta es la sección de la interfaz de inicio en donde se debe ingresar la producción en su requerido tiempo y la producción acumulada que se tenga para las respectivas fechas.

El gráfico 2 muestra esta sección del programa.

INFORMACIÓN REQUERIDA:

	Tiempo (MM/DD/AAAA)	Producción diaria (STB/DÍA)	*Producción acumulada (STB)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11 12			
13			
14			
15			
16			
17			
18			
19			
20			

Gráfico 2. Sección de ingreso de información en interfaz de Inicio.

Los números a la izquierda de la tabla representan el indicador de producción respectiva. En la primera columna de esta tabla se debe ingresar la fecha respectiva a la producción y producción acumulada. Esta debe ser ingresada en el formato que se indica en el encabezado de la columna.

Información Adicional.

Luego se debe ingresar la producción; esta se debe ingresar en barriles naturales por día (STB/D), y después la producción acumulada. Se puede observar un asterisco en esta columna (tercera), esto indica que es opcional su ingreso.

INFORMACIÓN ADICIONAL:

WellGenSys permite un máximo de 70 producciones.

La sección dos de WellGenSys se muestra en el gráfico 3.

yacimiento:		
		_
Permeabilidad efectiva al petróleo (mD):	0	
Factor volumétrico del petróleo (rb/STB)	0	
Petróleo inicial en área del pozo (STB):	0	
Espesor de formación (ft):	0	
Presión actual del yacimiento (Psig):	0	
Presión de fondo fluyente (Psig):	0	
Factor de daño total (Adimensional):	0	
Viscosidad del petróleo (ф):	0	
Compresibilidad total de componentes (1/Psig):	0	
Radio de drenaje (ft):	0	
Radio de pozo (ft):	0	

Gráfico 3. Sección de ingreso de información adicional en la interfaz de inicio de WellGenSys.

En la sección de información adicional se debe ingresar toda la información conocida del yacimiento y del pozo. Aquí, el usuario puede seleccionar qué información optimizar con el algoritmo (haciendo click en los checkbox correspondientes a cada parámetro, esto activa los ingresos de valores mínimos y máximos entre los que se puede encontrar un respectivo parámetro, el gráfico 4 muestra un ejemplo de dos parámetros para optimizar) y qué información desea ingresar como fija. Si no se desea optimizar un parámetro, entonces este debe obligatoriamente tener un valor.

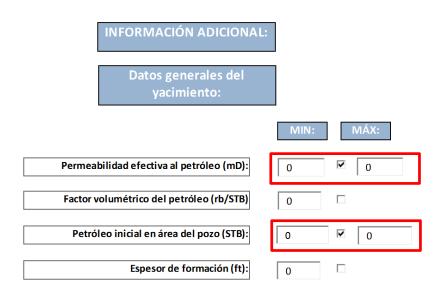


Gráfico 4. Selección de dos parámetros para optimizar en la sección de información adicional en la interfaz de Inicio.

Para todos los parámetros que hayan sido seleccionados para su respectiva optimización, se deben colocar los límites máximos y mínimos, que aparecerán disponibles una vez que se haya seleccionado optimizar dicho parámetro.

Si el usuario ingresa mal alguna información requerida por el algoritmo en la sección inicio, recibirá un mensaje de error con el parámetro que ha ingresado mal.

Si el usuario desea ver el manual del programa, este se muestra en la sección instrucciones, a la cual se puede acceder seleccionando el botón de comando "Instrucciones".

Para borrar toda la información ingresada, el usuario debe presionar el botón de comando "Borrar Contenido".

Posteriormente se debe proceder a la sección de gráficos para el análisis de curvas de declinación adecuadas para el caso que se esté analizando.

INTERFAZ DE GRÁFICOS

En esta sección de WellGenSys el usuario debe seleccionar el tipo de declinación que mejor se ajuste con la curva de producción que se genere en base a la producción ingresada.

El gráfico 5 muestra la interfaz completa de la sección gráficos, la misma que está dividida en 4 partes.

Gráfico 5. Interfaz de Gráficos de WellGenSys.

La primera parte (gráfico 6) muestra la tabla de todas las producciones ingresadas en la interfaz de inicio, junto con dos columnas denominadas "q Obtenida" y "Np Obtenida"; estas dos columnas representan los valores de producción y producción acumulada (respectivamente) que WellGenSys calculará dependiendo del método que se seleccione en la segunda sección de esta interfaz (gráfico 7)

Resultados:

# (DD 1 2 3	Tiempo)/MM/AAAA)	Tiempo de producción (Días)	q Ingresada	q Obtenida		
# (DD 1 2 3)/MM/AAAA)	produccion (Días)	q Ingresada	q Obtenida		
1 2 3)/MM/AAAA)	(Dias)				
3			(STB/Día)	(STB/Día)	Np Obtenida (STB)	Np Ingresada (STB)
3						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						

Gráfico 6. Visualización de la información de producción ingresada y la calculada por el método seleccionado en la segunda sección.

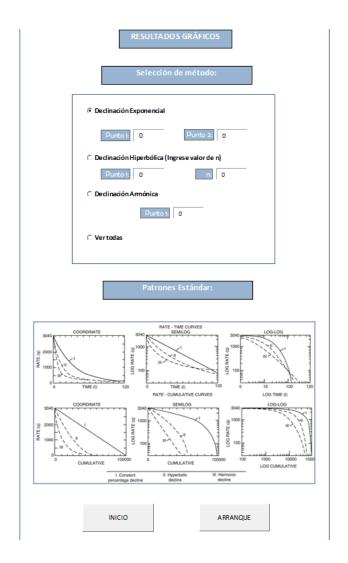


Gráfico 7. Sección de selección de tipo de declinación que se desee para el caso que se esté analizando y patrones estándar propuestos por Arps para las curvas de declinación.

Nótese que para cada tipo de declinación hay que ingresar cierta información (ver gráfico 7). En el caso de declinación exponencial se requieren dos puntos para poder determinar el exponente de declinación correspondiente; estos dos puntos deben ser colocados con los números correspondientes a las filas que se pueden observar en la primera columna del gráfico 6. No se debe ingresar puntos fuera de este rango, caso contrario habrá un mensaje de error.

Para el caso de la declinación hiperbólica, se necesita un punto y el exponente "n" para poder establecer un patrón de declinación. El exponente n depende del mecanismo de producción que tenga el yacimiento (entre 0.1 y 0.3, aproximadamente, corresponde a un empuje por capa de gas o drenaje de gravedad, y entre un 0.3 y 0.8 corresponde a un empuje de acuífero.

Para la declinación armónica sólo es necesario un punto, ya que el exponente "n" es equivalente a 1. Este tipo de declinación es un caso especial, pero puede llegar a darse.

Una vez seleccionado el tipo de declinación, en la sección 3 de la interfaz de Gráficos se puede observar el patrón que toma la curva de declinación que se escogió (curva verde). Se hace una comparación con la curva real (curva azul) y el usuario deberá decidir si es el caso más conveniente para el pozo que se está analizando. Las curvas estándar son una guía visual para que el usuario determine cuál es el método ideal para el pozo que esté analizando. El gráfico 8 muestra un ejemplo de comparación de curvas de información real e información de declinación.

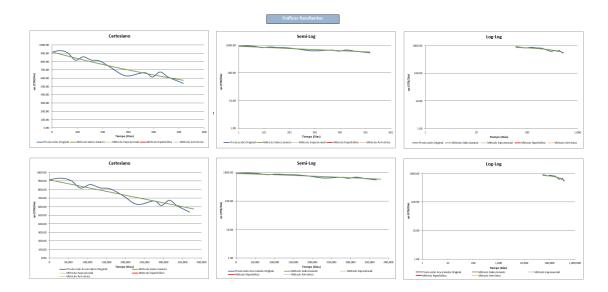


Gráfico 8. Comparación entre caso real (curva azul) y método de declinación (curva verde).

Además, existe la opción de "Ver todas" (ver gráfico 7) que permitirá visualizar todos los métodos comparados con la curva real, siempre y cuando todos los métodos tengan la información de puntos y exponentes que requieran. El gráfico 9 muestra un ejemplo de comparación de todos los métodos de declinación contra una curva real.

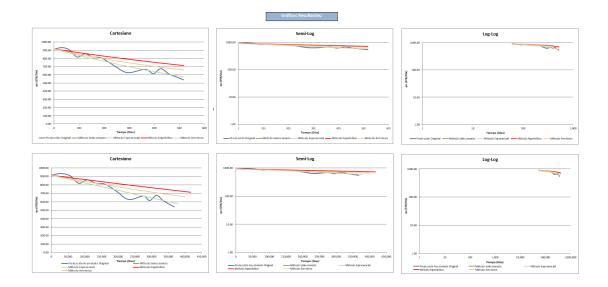


Gráfico 9. Comparación de información real con todos los métodos de declinación. (Exponencial de verde, Hiperbólico de rojo y Armónico de amarillo).

En la sección 4 de la intefaz de gráficos se observan los resultados de la selección de todos los métodos de declinación (opción "Ver todas"). El gráfico 10 muestra la sección 4.

Resultados de todas las curvas:

q Hiperbólica (STB/D)	q Armónica (STB/D)	Np Exponencial (STB)	Np Hiperbólica (STB)	Np Armónica (STB)

Gráfico 10. Resultados de todos los métodos disponibles en WellGenSys.

Una vez que el usuario haya seleccionado el método que considere ideal, se debe proceder a la interfaz de Arranque, presionando el botón de comando "ARRANQUE", que se puede observar en el gráfico 7. Si el usuario desea cambiar alguna información de entrada, puede volver a la interfaz de inicio presionando el botón de comando "INICIO" que se puede observare en el gráfico 7.

INTERFAZ DE ARRANQUE.

En la interfaz de arranque, el usuario debe seleccionar los parámetros de algoritmo genético que desea implementar para el problema que esté tratando. El gráfico 11 muestra la interfaz de arranque.

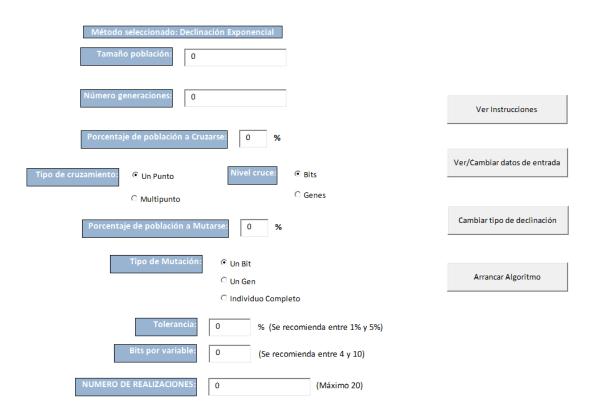


Gráfico 11. Interfaz de Arranque de WellGenSys.

Se puede observar en la parte superior del gráfico 11 que hay una etiqueta que dice el método de declinación seleccionado (Declinación Exponencial por defecto). A continuación el usuario debe ingresar el tamaño de la población que desee (se recomienda que sea mayor a 20 para mejores resultados), el porcentaje de población a cruzarse (se recomienda mayor al 50% para lograr mayor cantidad de respuestas posibles), el tipo de cruzamiento (Si es de un punto, entonces se dispondrá de los niveles de cruce en de bits y genes, si es multipunto entonces se permitirá sólo a nivel de bits), el porcentaje de mutación

(este debe procurar ser menor a un 15% debido a que los principios evolutivos aplicarían débilmente) el tipo de mutación (a nivel de bits, genes o individuo completo), la tolerancia (se puede observar que se recomienda entre un 1% y 5%, pero para un mejor funcionamiento se deben colocar tolerancias menores al 3%), el número de bits por variable (WellGenSys permite el número de bits que sean, pero para un funcionamiento rápido y eficiente se recomienda entre 4 y 10 bits, ya que esto también depende de los rangos que se hayan ingresado, es decir, si se ingresaron rangos muy amplios, se recomienda mayor cantidad de bits) y el número de realizaciones.

El número de realizaciones es máximo 20; se puede ejecutar el programa con menos de 20, pero se recomienda que sean siempre más de 10 para una mejor evaluación de parámetros del pozo.

Una vez ingresados los parámetros del algoritmo genético, se procede a la ejecución. Para esto se debe presionar el botón de comando "Arrancar Algoritmo" que aparece en la parte inferior derecha del gráfico 11.

Si se desean hacer cambios o ver las instrucciones, se lo puede hacer presionando los botones "Ver/Cambiar datos de entrada" o "Cambiar tipo de declinación" y "Ver Instrucciones" respectivamente.

INTERFAZ DE RESULTADOS.

Aquí, se podrá visualizar el progreso del algoritmo genético conforme calcula los resultados para cada realización. Para esto hay dos secciones, una para parámetros estáticos (gráfico 12) y la otra para parámetros dinámicos (gráfico 13)

Gráfico 12. Interfaz de resultados para parámetros estáticos.

Gráfico 13. Interfaz de resultados para parámetros dinámicos.

En el gráfico 13 se pueden visualizar tres botones que indican su respectiva función, que es la misma que se especificó en secciones anteriores. Además, en la primera columna de este gráfico aparecerán los tiempos en días que se hayan ingresado al algoritmo.

Tanto en el gráfico 12 como en el 13 se ven 20 columnas, que corresponden a los resultados que el algoritmo arrojará para cada realización, enumerada respectivamente; además, la última columna de cada una de las tablas de los gráficos se refiere a los promedios calculados en base al número de realizaciones que el usuario haya ingresado.

La interfaz de resultados cuenta con contadores (ver gráfico 14) que marcan la producción (superior izquierda), la realización (superior derecha) y el número de generaciones que se han evaluado (inferior).

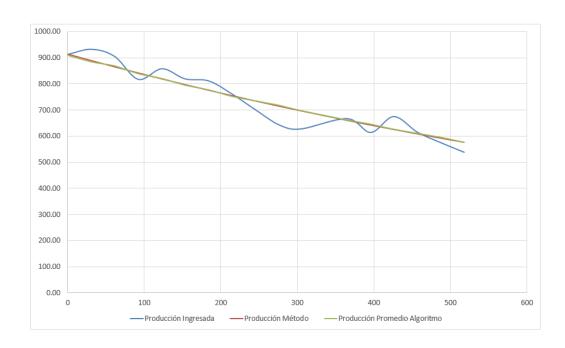
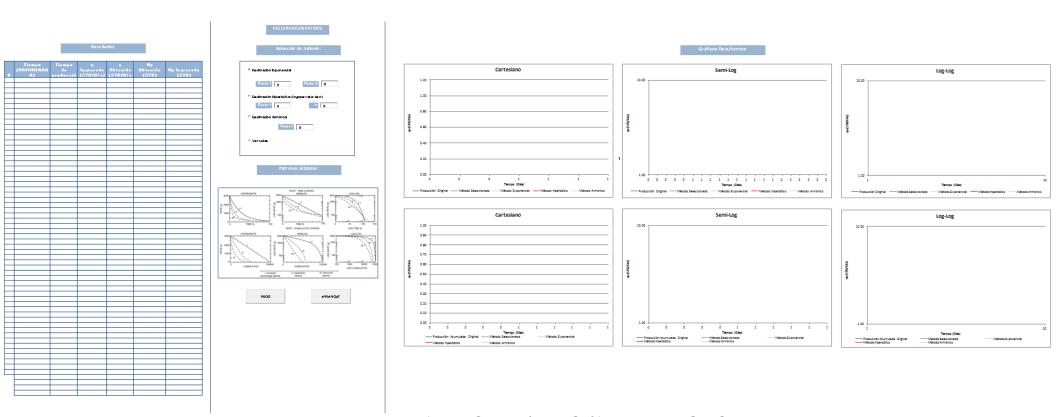
Producción	Realización
0	0
Generaciones	
0	

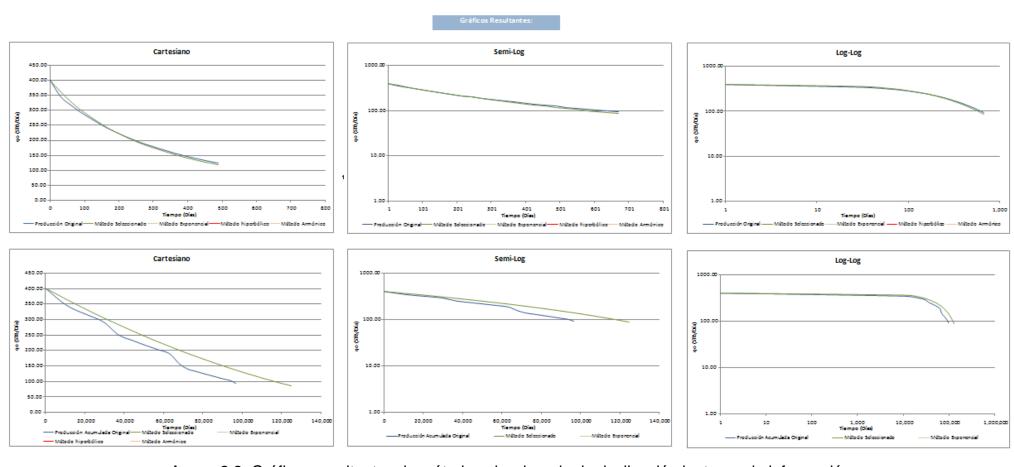
Gráfico 14. Contadores para cada proceso del algoritmo genético en la interfaz de resultados.

Una vez que WellGenSys haya terminado su funcionamiento, este dará un mensaje advirtiendo el fin del algoritmo y generará los valores para la tabla que se muestra en el gráfico 15, la cual generará el gráfico 16 con el que se podrá comparar los valores tanto de la producción original, la producción del método seleccionado y la producción calculada por el algoritmo.

Tiempo (Días)	Producción Ingresada (STB/D)	Producción Método (STB/D)	Producción Promedio Algoritmo (STB/D)
	l		

Gráfico 15. Valores de producción Ingresada, método seleccionado y calculado por el algoritmo en los respectivos tiempos.


Gráfico 16. Curvas obtenidas a partir de información ingresada (Azul), método seleccionado (Rojo) y calculado por el algoritmo (Verde).

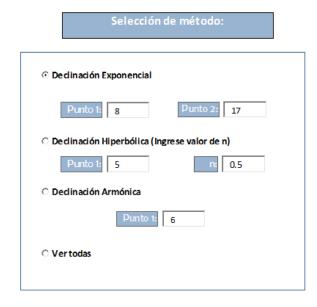
A partir de los resultados obtenidos el usuario podrá determinar sus propias conclusiones y decidir si necesita reducir los rangos máximos y mínimos para determinados parámetros para obtener un conjunto de resultados diferentes.

ANEXOS II TABLAS Y GRÁFICOS

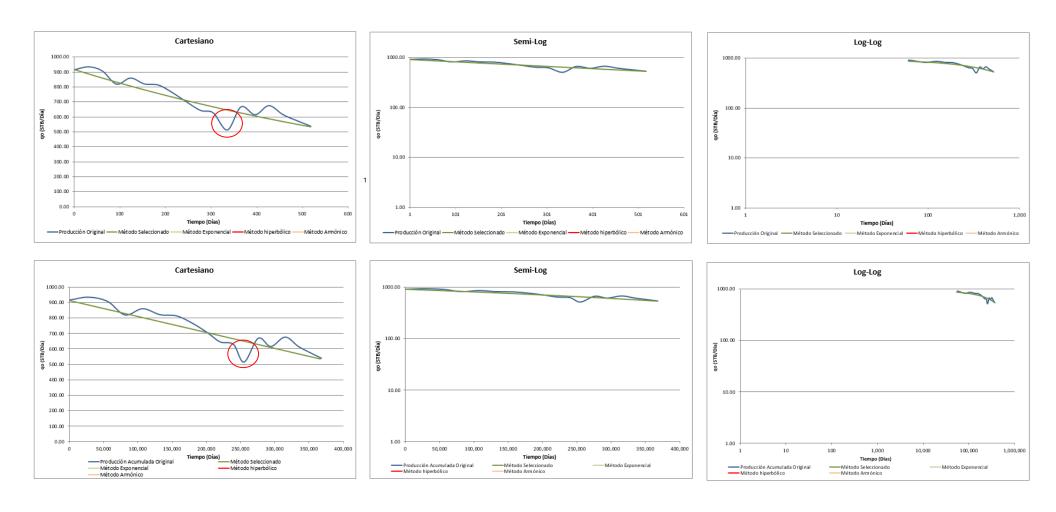
Anexo 2.1. Interfaz de Selección de Gráficos de WellGenSys

Anexo 2.2: Gráficos resultantes de método seleccionado de declinación junto con la información ingresada. (Parte superior: Producción Vs tiempo, Parte inferior: Producción Vs Producción acumulada).

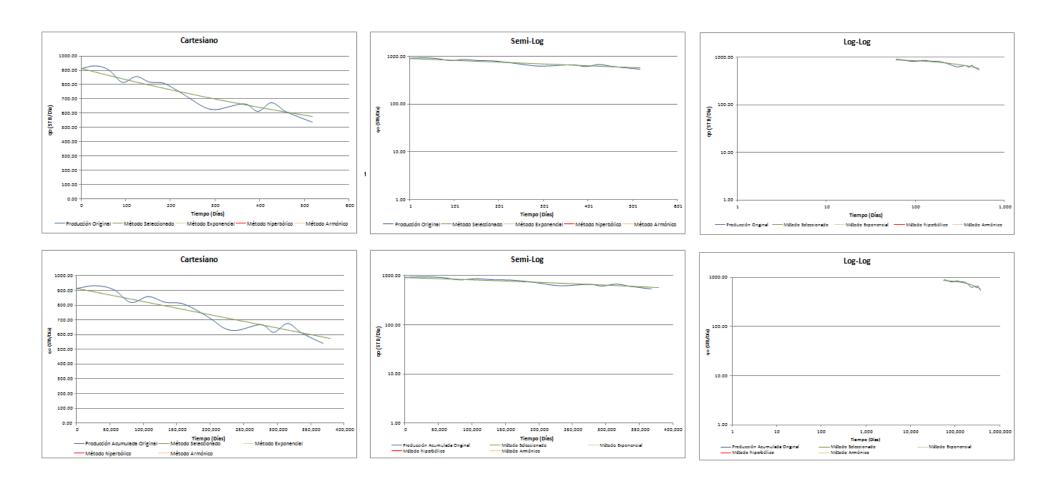
									Par	ámetros Es											
										Realizació	in										
Parám etro:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Promedios
Permeabilidad (mD)	2095.238095	1500	2809.52381	1666.666667	2333.333333	2071.428571	2428.571429	1500	2214.285714	2380.952381	2714.285714	2523.809524	2214.285714	1642.857143	2380.952381	2214.285714	2190.47619	2571.428571	1976.190476	2380.952381	2190.47619
Espesor de Formación (ft)	5.746031746	15	5.047619048	12.5555556	10.80952381	9.936507937	10.98412698	6.44444444	10.11111111	10.11111111	12.03174603	5.746031746	7.492063492	9.761904762	11.50793651	6.968253968	8.19047619	5.920634921	12.20634921	13.07936508	9.482539683
Petróleo Inicial en Área del Pozo (STB)	39523809.52	45714285.71	57142857.14	52380952.38	49523809.52	58095238.1	40952380.95	48095238.1	49047619.05	33809523.81	32380952.38	48095238.1	31428571.43	51428571.43	47619047.62	46666666.67	34761904.76	39047619.05	59523809.52	51904761.9	45857142.86
Presión de Fondo Fluyente (Psig)	295.2380952	604.7619048	422.2222222	239.6825397	430.1587302	303.1746032	382.5396825	430.1587302	565.0793651	485.7142857	573.015873	200	303.1746032	517.4603175	350.7936508	366.6666667	247.6190476	573.015873	565.0793651	509.5238095	418.2539683
Daño de Formación	5.317460317	10.07936508	12.61904762	14.52380952	12.14285714	7.063492063	8.492063492	13.0952381	11.50793651	13.73015873	14.04761905	7.22222222	6.587301587	11.19047619	12.61904762	12.46031746	10.71428571	10.3968254	9.603174603	14.20634921	10.88095238
Radio de Drenaje (ft)	2428.571429	1857.142857	2190.47619	2833.333333	1500	2452.380952	2761.904762	2952.380952	2880.952381	2238.095238	2238.095238	2976.190476	2095.238095	2047.619048	1880.952381	1738.095238	1666.666667	2595.238095	2880.952381	2523.809524	2336.904762
Viscosidad (cp)	8.428571429	7.571428571	6.428571429	8.142857143	4	7.142857143	6.142857143	3.714285714	8	6.714285714	8.142857143	8.571428571	6.428571429	5.285714286	9.857142857	8.142857143	8.285714286	3.714285714	5.857142857	6.714285714	6.864285714
Factor Volumétrico del Petróleo (RB/STB)	1.068571429	1.026666667	1.076190476	1.093333333	1.099047619	1.015238095	1.104761905	1.017142857	1.093333333	1.036190476	1.11047619	1.034285714	1.087619048	1.100952381	1.057142857	1.011428571	1.007619048	1.060952381	1.019047619	1.00952381	1.05647619
Compresibilidad total de Componentes (1/Psig)	6.03175E-06	8.06349E-06	4.25397E-06	4.7619E-06	1.44127E-05	7.30159E-06	1.44127E-05	5.77778E-06	6.53968E-06	1.11111E-05	1.26349E-05	5.01587E-06	1.28889E-05	7.04762E-06	6.53968E-06	4.50794E-06	7.55556E-06	1.26349E-05	8.57143E-06	8.8254E-06	8.44444E-06


Anexo 2.3. Parámetros estáticos para 20 realizaciones del modelo sintético de yacimiento saturado.

										Parámetr	os Dinámic	os										
										Real	lización											
Parám etro:	Tiempo (Días)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Promedios
Presión de Yacimiento	0.0000	866.6667	955.5556	993.6508	784.1270	625.3968	606.3492	625.3968	904.7619	1000.0000	841.2698	917.4603	733.3333	650.7937	911.1111	790.4762	974.6032	733.3333	847.6190	815.8730	784.1270	818.0952
(Psig)	31.0000	809.5238	923.8095	936.5079	735.4331	606.3492	580.9524	603.1496	860.3175	961.9048	809.5238	885.7143	691.3386	619.0476	873.0159	748.0315	923.8095	691.3386	822.2222	792.1260	758.7302	781.6423
	62.0000	771.4286	898.4127	898.4127	691.3386	593.6508	555.5556	584.2520	822.2222	930.7087	779.5276	860.3175	647.2441	593.6508	842.5197	716.5354	873.0159	647.2441	796.8254	773.2283	736.4706	750.6281
	92.0000	733.3333	873.0159	860.3175	659.8425	577.9528	533.8583	565.3543	792.1260	899.2126	755.2941	834.9206	609.4488	568.2540	817.3228	685.0394	834.9206	615.7480	779.5276	754.3307	720.7843	723.5302
	153.0000	669.8413	834.9206	792.1260	596.8504	557.6471	502.3622	540.1575	735.4331	848.8189	717.6471	796.8254	546.4567	530.1587	773.2283	636.0784	758.7302	559.0551	748.0315	729.1339	689.4118	678.1457
	184.0000	640.9449	817.3228	766.9291	571.6535	548.2353	483.4646	527.5591	716.5354	829.9213	698.8235	779.5276	521.2598	510.5882	754.3307	614.1176	733.3333	540.1575	735.4331	716.5354	673.7255	659.0199
	215.0000	615.7480	798.4252	741.7323	546.4567	538.8235	470.8661	516.8627	695.6863	811.0236	683.1373	766.9291	502.3622	498.0392	735.4331	595.2941	707.9365	521.2598	722.8346	703.9370	664.3137	641.8551
	244.0000	596.8504	785.8268	716.5354	527.5591	532.5490	460.3922	507.4510	676.8627	792.1260	670.5882	754.3307	483.4646	485.4902	722.8346	579.6078	682.5397	502.3622	716.5354	695.6863	651.7647	627.0679
	275.0000	571.6535	773.2283	697.6378	508.6614	526.2745	450.9804	501.1765	661.1765	779.5276	658.0392	741.7323	464.5669	472.9412	710.2362	563.9216	669.8413	483.4646	703.9370	686.2745	642.3529	613.3812
	366.0000	527.5591	748.0315	653.5433	458.2677	507.4510	425.8824	479.2157	620.3922	741.7323	629.8039	710.2362	414.1732	441.5686	676.8627	529.4118	609.4488	445.6693	685.0394	667.4510	620.3922	579.6066
	428.0000	496.0630	729.1339	628.3465	433.0709	498.0392	413.3333	469.8039	598.4314	722.8346	610.9804	697.6378	388.9764	425.8824	658.0392	507.4510	584.2520	420.4724	672.4409	654.9020	607.8431	560.8967
	458.0000	483.4646	722.8346	615.7480	426.7717	494.9020	403.9216	463.5294	589.0196	710.2362	604.7059	691.3386	382.6772	419.6078	648.6275	498.0392	577.9528	407.8740	666.1417	648.6275	601.5686	552.8794
	489.0000	477.1654	716.5354	603.1496	414.1732	491.7647	400.7843	460.3922	579.6078	703.9370	598.4314	685.0394	370.0787	413.3333	642.3529	491.7647	559.0551	401.5748	659.8425	645.4902	598.4314	545.6452
	519.0000	464.5669	710.2362	596.8504	407.8740	488.6275	394.5098	454.1176	573.3333	697.6378	592.1569	678.7402	363.7795	407.0588	636.0784	485.4902	552.7559	395.2756	653.5433	642.3529	592.1569	539.3571
	550.0000	458.2677	703.9370	584.2520	395.2756	485.4902	388.2353	450.9804	567.0588	691.3386	589.0196	672.4409	357.4803	403.9216	629.8039	476.0784	540.1575	382.6772	653.5433	636.0784	589.0196	532.7528
	581.0000	451.9685	697.6378	577.9528	388.9764	482.3529	385.0980	447.8431	560.7843	685.0394	582.7451	666.1417	344.8819	397.6471	623.5294	469.8039	533.8583	382.6772	647.2441	632.9412	585.8824	527.2503
	609.0000	439.3701	697.6378	571.6535	382.6772	479.2157	381.9608	444.7059	551.3725	678.7402	576.4706	666.1417	338.5827	394.5098	620.3922	466.6667	527.5591	376.3780	645.4902	629.8039	582.7451	522.6037
	670.0000	426.7717	685.0394	559.0551	370.0787	476.0784	372.5490	438.4314	541.9608	666.1417	570.1961	653.5433	325.9843	385.0980	610.9804	454.1176	508.6614	363.7795	636.0784	623.5294	573.3333	512.0704


Anexo 2.4. Presiones evaluadas para 20 realizaciones del modelo sintético de yacimiento saturado.

Resultados:


	Tiempo	Tiempo de producción	q Ingresada	q Obtenida		
#	(DD/MM/AAAA)	(Días)	(STB/Día)	(STB/Día)	Np Obtenida (STB)	Np Ingresada (STB)
1	05/01/2008	0	914.08	914.08	0.00	0.00
2	06/01/2008	31	933.50	885.22	27886.89	28004.94
3	07/01/2008	61	906.15	858.16	54035.58	56095.58
4	08/01/2008	92	818.01	831.07	80216.39	81454.04
5	09/01/2008	123	858.85	804.83	105570.57	107219.55
6	10/01/2008	153	819.95	780.22	129344.41	132638.06
7	11/01/2008	184	812.21	755.59	153147.45	157004.23
8	12/01/2008	214	762.75	732.49	175466.83	180649.47
9	01/01/2009	245	701.67	709.36	197813.62	202401.37
10	02/01/2009	276	643.31	686.97	219454.85	220413.99
11	03/01/2009	304	627.48	667.34	238413.85	239865.91
12	04/01/2009	335	513.01	646.27	258773.19	255256.08
13	05/01/2009	365	667.21	626.52	277863.51	275939.52
14	06/01/2009	396	614.14	606.74	296977.28	294363.85
15	07/01/2009	426	675.30	588.19	314899.68	315298.19
16	08/01/2009	457	615.01	569.62	332844.09	334363.46
17	09/01/2009	488	574.42	551.63	350221.93	351596.05
18	10/01/2009	518	538.22	534.77	366516.59	368280.93

Anexo 2.5. Producciones y producciones acumuladas ingresadas y generadas por método seleccionado.

Anexo 2.6. Gráficos generados a partir de la información ingresada y la información calculada por el método exponencial.

Anexo 2.7. Curvas corregidas para la producción del pozo PORE-001.

									Parái	netros Está	tions										
										Realización											
Parámetro:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Promedios
Permeabilidad (mD)	173.2283465	219.2913386	181.496063	235.8267717	213.3858268	220.4724409	190.9448819	167.3228346	110.6299213	135.4330709	138.976378	144.8818898	151.9685039	128.3464567	131.8897638	179.1338583	125.984252	162.5984252	174.4094488	153.1496063	166.9685039
Espesor de Formación (ft)	15.07874016	23.22834646	15.5511811	16.8503937	20.62992126	17.67716535	24.88188976	19.33070866	10.35433071	20.27559055	25	22.28346457	14.37007874	12.12598425	23.93700787	16.61417323	20.03937008	18.62204724	21.1023622	20.27559055	18.91141732
Petróleo Inicial en Área del Pozo (STB)	64409448.82	67244094.49	74330708.66	74803149.61	65354330.71	53543307.09	73385826.77	73858267.72	64881889.76	60157480.31	70078740.16	68661417.32	74803149.61	54015748.03	75748031.5	73858267.72	72440944.88	57795275.59	62047244.09	69606299.21	67551181.1
Presión de Fondo Fluyente (Psig)	1626.771654	1456.692913	1425.19685	1733.858268	1670.866142	1475.590551	1639.370079	1444.094488	1588.976378	1444.094488	1683.464567	1538.582677	1796.850394	1507.086614	1538.582677	1714.96063	1714.96063	1444.094488	1500.787402	1633.070866	1578.897638
Daño de Formación	1.472440945	3.42519685	3.362204724	2.25984252	1.251968504	3.047244094	3.74015748	4.023622047	1.31496063	4.68503937	1.094488189	3.519685039	1.31496063	3.078740157	2.228346457	2.732283465	1.188976378	4.149606299	2.070866142	2.543307087	2.62519685
Radio de Drenaje (ft)	1141.732283	2023.622047	2464.566929	1047.244094	2196.850394	1094.488189	1220.472441	1188.976378	2354.330709	2779.527559	2007.874016	2669.291339	2070.866142	1173.228346	1440.944882	1220.472441	1944.88189	2039.370079	1283.464567	2338.582677	1785.03937
Viscosidad (cp)	1.917322835	3.051181102	2.059055118	2.519685039	3.051181102	2.838582677	2.519685039	2.271653543	0.748031496	1.492125984	2.271653543	1.633858268	1.279527559	1.102362205	2.094488189	1.846456693	1.633858268	1.811023622	2.661417323	1.633858268	2.021850394
Factor Volumétrico del Petróleo (RB/STB)	1.077480315	1.044409449	1.020787402	1.026456693	1.083149606	1.009448819	1.038740157	1.090708661	1.024566929	1.093543307	1.029291339	1.009448819	1.110551181	1.037795276	1.070866142	1.043464567	1.109606299	1.083149606	1.041574803	1.059527559	1.055228346
Compresibilidad total de Componentes (1/Psig)	1.84882E-05	1.79213E-05	1.31024E-05	1.79213E-05	1.89606E-05	1.97165E-05	1.82992E-05	1.37638E-05	1.97165E-05	1.93386E-05	1.87717E-05	1.97165E-05	1.95276E-05	1.95276E-05	1.65984E-05	1.68819E-05	1.92441E-05	1.84882E-05	1.82047E-05	1.99055E-05	1.82047E-05

Anexo 2.8. Resultados de parámetros estáticos para el pozo PORE-001 con una tolerancia de 1%.

									Parámetros												
									Realiz	ación											
arámetro:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Pro
de Yacimiento	2527.5591	2379.5276	2521.2598	2524.4094	2562.2047	2458.2677	2426.7717	2577.9528	2404.7244	2433.0709	2458.2677	2307.0866	2577.9528	2496.0630	2433.0709	2552.7559	2559.0551	2451.9685	2433.0709	2395.2756	24
(Psig)	2436.2205	2303.9370	2467.7165	2486.6142	2480.3150	2423.6220	2373.2283	2455.1181	2360.6299	2316.5354	2417.3228	2278.7402	2474.0157	2442.5197	2354.3307	2499.2126	2455.1181	2341.7323	2360.6299	2329.1339	24
	2417.3228	2278.7402	2455.1181	2467.7165	2461.4173	2398.4252	2360.6299	2423.6220	2335.4331	2297.6378	2398.4252	2266.1417	2455.1181	2411.0236	2329.1339	2486.6142	2436.2205	2329.1339	2341.7323	2310.2362	23
	2398.4252	2259.8425	2423.6220	2455.1181	2436.2205	2379.5276	2335.4331	2392.1260	2316.5354	2278.7402	2385.8268	2247.2441	2436.2205	2392.1260	2316.5354	2467.7165	2411.0236	2303.9370	2316.5354	2297.6378	23
	2373.2283	2240.9449	2385.8268	2429.9213	2404.7244	2354.3307	2322.8346	2373.2283	2297.6378	2253.5433	2366.9291	2222.0472	2417.3228	2366.9291	2285.0394	2442.5197	2392.1260	2278.7402	2291.3386	2272.4409	23
	2354.3307	2222.0472	2360.6299	2417.3228	2385.8268	2316.5354	2303.9370	2341.7323	2272.4409	2234.6457	2341.7323	2203.1496	2411.0236	2335.4331	2266.1417	2423.6220	2373.2283	2253.5433	2278.7402	2259.8425	23
	2335.4331	2196.8504	2341.7323	2398.4252	2379.5276	2303.9370	2285.0394	2316.5354	2259.8425	2215.7480	2329.1339	2190.5512	2385.8268	2310.2362	2253.5433	2398.4252	2354.3307	2234.6457	2259.8425	2247.2441	22
	2316.5354	2184.2520	2322.8346	2379.5276	2348.0315	2278.7402	2272.4409	2297.6378	2247.2441	2190.5512	2310.2362	2165.3543	2379.5276	2291.3386	2228.3465	2385.8268	2335.4331	2215.7480	2234.6457	2228.3465	22
	2297.6378	2159.0551	2297.6378	2360.6299	2335.4331	2247.2441	2253.5433	2278.7402	2222.0472	2171.6535	2291.3386	2146.4567	2360.6299	2278.7402	2215.7480	2366.9291	2322.8346	2190.5512	2215.7480	2209.4488	22
	2278.7402	2140.1575	2266.1417	2341.7323	2310.2362	2234.6457	2240.9449	2247.2441	2209.4488	2152.7559	2278.7402	2140.1575	2348.0315	2247.2441	2196.8504	2348.0315	2303.9370	2171.6535	2196.8504	2196.8504	22
	2259.8425	2121.2598	2247.2441	2329.1339	2297.6378	2209.4488	2215.7480	2234.6457	2190.5512	2133.8583	2259.8425	2121.2598	2335.4331	2234.6457	2177.9528	2329.1339	2291.3386	2152.7559	2177.9528	2184.2520	22
	2228.3465	2089.7638	2203.1496	2291.3386	2266.1417	2171.6535	2184.2520	2190.5512	2159.0551	2096.0630	2228.3465	2089.7638	2303.9370	2190.5512	2146.4567	2297.6378	2259.8425	2114.9606	2146.4567	2152.7559	21
	2210.9804	2070.8661	2184.2520	2278.7402	2253.5433	2165.3543	2171.6535	2165.3543	2140.1575	2077.1654	2215.7480	2070.8661	2291.3386	2177.9528	2127.5591	2285.0394	2247.2441	2096.0630	2127.5591	2140.1575	217
	2195.2941	2054.1176	2165.3543	2266.1417	2234.6457	2146.4567	2165.3543	2146.4567	2127.5591	2064.5669	2203.1496	2058.2677	2278.7402	2159.0551	2110.5882	2266.1417	2232.9412	2079.2157	2108.6614	2123.1373	21
	2180.4305	2038.4314	2140.1575	2247.2441	2222.0472	2121.2598	2146.4567	2127.5591	2114.9606	2045.6693	2189.0196	2045.6693	2259.8425	2140.1575	2094.9020	2253.5433	2217.2549	2063.5294	2089.7638	2110.5882	21
	2166.3405	2022.7451	2121.2598	2234.6457	2203.1496	2108.6614	2133.8583	2114.9606	2102.3622	2029.0196	2173.3333	2033.0709	2247.2441	2121.2598	2082.3529	2240.9449	2204.7059	2044.7059	2077.1654	2098.0392	21
	2152.2505	2007.0588	2102.3622	2222.0472	2184.2520	2089.7638	2114.9606	2096.0630	2083.4646	2013.3333	2160.7843	2020.4724	2234.6457	2108.6614	2066.6667	2228.3465	2192.1569	2029.0196	2058.2677	2085.4902	21
																					\perp
																					\perp
																					-
																					+-
																					+-
																					+
																					+
																					+
																					+
																					+
																					+
																					+

Anexo 2.9. Parámetros dinámicos (Presiones) calculados por el algoritmo para el pozo PORE-001 con una tolerancia de 1%.

									Par	ámetros Est	táticos										
Parámetro:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Promedios
Permeabilidad (mD)	218.11024	195.66929	166.14173	244.09449	163.77953	242.91339	200.3937	177.95276	161.41732	195.66929	218.11024	232.28346	146.06299	207.48031	128.34646	189.76378	237.00787	240.55118	121.25984	168.50394	192.77559
Espesor de Formación (ft)	20.275591	12.007874	24.055118	15.669291	15.551181	10.11811	10.11811	24.055118	24.173228	19.566929	22.992126	21.220472	22.992126	18.267717	16.614173	22.519685	12.598425	14.606299	22.755906	20.393701	18.527559
Petróleo Inicial en Área del Pozo (STB)	77165354	72913386	68188976	80000000	75275591	71968504	55433071	77637795	70551181	79527559	71496063	74803150	75748031	70551181	79055118	72440945	70078740	69606299	61574803	80000000	72700787
Presión de Fondo Fluyente (Psig)	1425.1969	1570.0787	1551.1811	1431.4961	1714.9606	1494.4882	1626.7717	1607.874	1651.9685	1507.0866	1595.2756	1588.9764	1513.3858	1828.3465	1683.4646	1475.5906	1519.685	1456.6929	1588.9764	1651.9685	1574.1732
Daño de Formación	2.1968504	1.9448819	4.4015748	2.9212598	3.488189	4.023622	1.9448819	2.8582677	2.2283465	3.2677165	3.519685	2.007874	2.480315	3.8346457	1.1259843	1.6614173	1.2204724	1.5669291	2.2598425	2.1968504	2.5574803
Radio de Drenaje (ft)	2559.0551	2511.811	2685.0394	1708.6614	2480.315	2905.5118	2937.0079	1551.1811	1031.4961	1929.1339	2007.874	2070.8661	2574.8031	2070.8661	2086.6142	1519.685	2905.5118	2795.2756	1787.4016	2748.0315	2243.3071
Viscosidad (cp)	2.8385827	1.4566929	2.3070866	2.3425197	1.3149606	1.5275591	1.3503937	2.6968504	2.6259843	2.0590551	2.980315	2.9448819	2.3070866	1.7755906	1.2795276	2.9094488	2.0944882	2.3779528	1.9173228	1.5629921	2.1334646
Factor Volumétrico del Petróleo (RB/STB)	1.0340157	1.0774803	1.1086614	1.0576378	1.055748	1.0302362	1.1077165	1.0075591	1.1171654	1.0699213	1.0141732	1.0859843	1.0822047	1.055748	1.0651969	1.0434646	1.0529134	1.0444094	1.0661417	1.0623622	1.061937
Compresibilidad total de Componentes (1/Psig)	1.65E-05	1.745E-05	1.641E-05	1.603E-05	1.802E-05	1.376E-05	1.981E-05	1.546E-05	1.802E-05	1.641E-05	1.546E-05	1.896E-05	1.443E-05	1.962E-05	1.83E-05	1.717E-05	1.669E-05	1.622E-05	1.849E-05	1.981E-05	1.715E-05

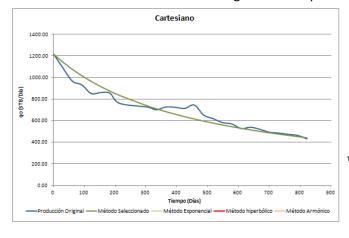
Anexo 2.10. Resultados de parámetros estáticos para el pozo PORE-001 con una tolerancia de 2%.

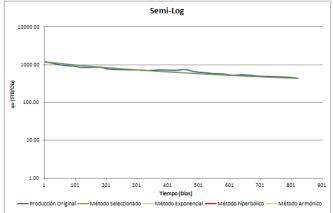
										Realiz												
Parámetro:	Tiempo (Días)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Promedio:
Presión de	0.0000	2325.9843	2445.6693	2590.5512	2322.8346	2537.0079	2499.2126	2600.0000	2467.7165	2552.7559				2546.4567	2568.5039	2423.6220		2411.0236	2357.4803	2546.4567	2300.7874	
Yacimiento (Psig)	31.0000	2272.4409	2366.9291	2467.7165	2253.5433		2436.2205	2486.6142	2442.5197	2461.4173			2341.7323		2511.8110	2354.3307	2253.5433		2285.0394		2240.9449	
	61.0000	2240.9449	2329.1339	2455.1181	2240.9449		2436.2205	2448.8189	2404.7244	2429.9213	2247.2441	2417.3228	2322.8346	2398.4252	2492.9134	2348.0315		2329.1339	2278.7402	2436.2205	2222.0472	
	92.0000	2215.7480	2310.2362	2411.0236	2215.7480	2417.3228	2411.0236		2385.8268		2209.4488	2411.0236	2303.9370		2474.0157	2335.4331		2297.6378	2253.5433	2429.9213	2215.7480	
	123.0000	2203.1496	2278.7402	2385.8268	2196.8504	2398.4252	2379.5276	2423.6220	2366.9291	2392.1260		2373.2283		2360.6299	2455.1181	2316.5354		2297.6378	2215.7480	2411.0236	2196.8504	
	153.0000	2165.3543	2266.1417	2354.3307	2165.3543		2360.6299	2385.8268	2341.7323	2354.3307	2190.5512	2348.0315	2247.2441	2322.8346	2442.5197	2285.0394		2259.8425	2209.4488	2360.6299	2190.5512	2291.6535
	184.0000	2152.7559	2259.8425		2140.1575	2373.2283	2335.4331			2354.3307	2171.6535	2335.4331			2423.6220	2285.0394		2240.9449	2177.9528	2360.6299	2165.3543	
	214.0000	2133.8583	2222.0472		2133.8583	2360.6299	2303.9370	2354.3307	2316.5354	2329.1339		2322.8346	2222.0472		2417.3228	2266.1417		2234.6457	2159.0551		2159.0551	2259.2126
	245.0000	2114.9606	2215.7480	2316.5354	2102.3622	2329.1339	2291.3386	2335.4331	2291.3386	2310.2362	2133.8583	2303.9370	2203.1496	2266.1417	2404.7244	2247.2441	2121.2598	2215.7480	2146.4567	2303.9370	2146.4567	2240.0000
	276.0000	2089.7638	2209.4488	2272.4409	2083.4646	2329.1339	2259.8425	2310.2362	2266.1417	2297.6378		2278.7402	2184.2520		2385.8268	2240.9449		2184.2520	2121.2598	2291.3386	2127.5591	2220.1575
	304.0000	2083.4646	2184.2520	2259.8425		2303.9370	2247.2441								2373.2283	2215.7480		2165.3543	2108.6614	2259.8425	2121.2598	2204.0945
	365.0000	2039.3701	2146.4567	2234.6457	2039.3701	2266.1417	2209.4488			2240.9449		2222.0472		2209.4488	2341.7323	2177.9528	2058.2677	2140.1575	2077.1654		2096.0630	2171.3386
	396,0000	2026.7717	2140.1575	2209.4488		2253.5433	2190.5512	2247.2441	2215.7480	2222.0472		2209.4488			2322.8346	2177.9528		2127.5591	2058.2677		2083.4646	
	426,0000	2007.8740	2108.6614	2203.1496		2240.9449	2165.3543	2228.3465	2190.5512	2215.7480			2114.9606		2316.5354	2159.0551		2096.0630		2203.1496	2070.8661	2139.5276
	457.0000	1995.2756	2108.6614	2165.3543	1988.9764	2228.3465	2146.4567	2209.4488	2165.3543	2203.1496	2026.7717	2177.9528	2096.0630	2152.7559	2303.9370	2152.7559		2083.4646	2026.7717	2177.9528	2058.2677	2124.7244
	488.0000	1978.8235	2096.0630 2077.1654	2159.0551	1976.3780	2215.7480	2127.5591	2196.8504	2152.7559	2184.2520 2177.9528	2014.1732	2159.0551	2083.4646	2114.9606 2089.7638	2285.0394	2133.8583		2077.1654	2007.8740		2045.6693 2035.2941	2109.7286 2094.5672
	518.0000	1963.1373	2011.1654	2146.4567	1963.7795	2196.8504	2114.9606	2177.9528	2146.4567	2111.3526	2001.5748	2146.4567	2070.8661	2003. (630	2278.7402	2114.9606	1982.6772	2058.2677	1995.2756	2152.7559	2035.2341	2034.5672
										-												-
										 												
										<u> </u>												

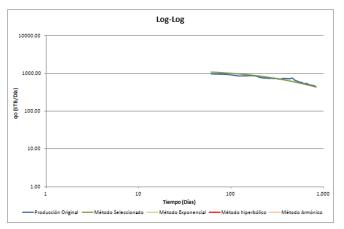
Anexo 2.11. Parámetros dinámicos (Presiones) calculados en WellGenSys para el pozo PORE-001 con una tolerancia de 2%.

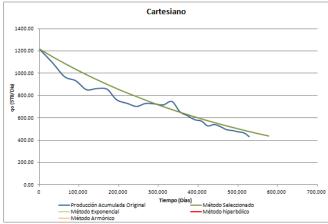
Resultados:

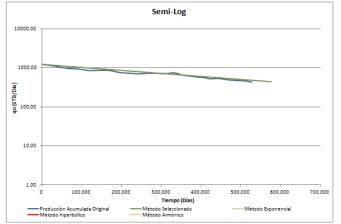
		Tiempo de				
	Tiempo	producción	q Ingresada	q Obtenida		
#	(DD/MM/AAAA)	(Días)	(STB/Día)	(STB/Día)	Np Obtenida (STB)	Np Ingresada (STB)
1	01/06/2010	0	1218.70	1218.70	0.00	0.00
2	01/07/2010	30	1092.42	1144.87	35430.49	33865.02
3	01/08/2010	61	968.62	1077.42	69854.90	63892.21
4	01/09/2010	92	932.68	1017.48	102308.22	91872.52
5	01/10/2010	122	853.26	965.50	132039.32	118323.52
6	01/11/2010	153	862.44	917.08	161206.52	144196.72
7	01/12/2010	183	856.49	874.64	188072.35	170747.91
8	01/01/2011	214	762.00	834.72	214557.83	194369.91
9	01/04/2011	304	727.65	737.06	285105.62	222988.36
10	01/05/2011	334	701.79	709.39	306797.00	244743.75
11	01/06/2011	365	728.30	682.90	328372.29	266592.66
12	01/07/2011	395	725.41	659.08	348497.83	289080.47
13	01/08/2011	426	715.28	636.16	368569.90	311254.18
14	01/09/2011	457	746.16	614.77	387955.58	333638.89
15	01/10/2011	487	653.08	595.41	406105.17	353884.40
16	01/11/2011	518	620.10	576.63	424268.64	372487.31
17	01/12/2011	548	583.42	559.56	441308.95	390573.42
18	01/01/2012	579	570.12	542.95	458395.20	408247.02
19	01/02/2012	610	527.29	527.29	474981.56	423538.52
20	01/03/2012	639	539.90	513.44	490070.47	440275.51
21	01/04/2012	670	520.37	499.42	505767.92	455886.61
22	01/05/2012	700	493.61	486.57	520556.08	471188.39
23	01/06/2012	731	486.09	473.96	535442.44	485771.18
24	01/07/2012	761	474.04	462.36	549485.75	500466.39
25	01/08/2012	792	464.40	450.96	563640.73	514862.89
26	01/09/2012	823	431.02	440.11	577450.90	527793.58

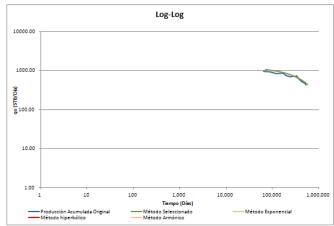

RESULTADOS GRÁFICOS


Selección de método:


C Declinación Exp	onencial	
Punto 1:	3	Punto 2: 19
C Declinación Hip	erbólica (Ingre:	se valor de n)
Punto 1:	17	n: 0.1
⊙ Declinación Arn	ónica	
	Punto 1: 1	9
○ Ver todas		


Anexo 2.12. Producciones ingresadas y calculadas para el pozo PORE-006 con el respectivo método seleccionado


Anexo 2.13. Gráficos generados a partir de la información ingresada y el método seleccionado para el PORE-006.



									Par	ámetros Es Realizació											
Parámetro:	1	2	3	4	5	6	7	8	9	Kealizacio	n 11	12	13	14	15	16	17	18	19	20	Promedios
Permeabilidad (mD)	136.1417323	146.8503937	126.6929134	144.3307087	92.67716535	126.6929134	147.480315	127.9527559	117.8740157	122.2834646	131.1023622	102.1259843	136.7716535	131.7322835	105.9055118	137.4015748	76.92913386	95.82677165	148.7401575	86.37795276	122.0944882
Espesor de Formación (ft)	25.03937008	29.40944882	17.71653543	26.45669291	28.34645669	19.2519685	19.13385827	15.11811024	24.56692913	23.62204724	22.44094488	27.04724409	20.31496063	19.01574803	20.78740157	20.78740157	20.31496063	28.46456693	19.01574803	26.22047244	22.65354331
Petróleo Inicial en Área del Pozo (STB)	39842519.69	35118110.24	56377952.76	78110236.22	47874015.75	47401574.8	60157480.31	71968503.94	79527559.06	63464566.93	36062992.13	67244094.49	40314960.63	68188976.38	69133858.27	40787401.57	65826771.65	58267716.54	70078740.16	59212598.43	57748031.5
Presión de Fondo Fluyente (Psig)	1531.496063	1610.23622	1704.724409	1850.393701	1751.968504	1657.480315	1555.11811	1779.527559	1637.795276	1614.173228	1519.685039	1622.047244	1657.480315	1562.992126	1759.84252	1657.480315	1669.291339	1724.409449	1720.472441	1661.417323	1662.401575
Daño de Formación	1.31496063	1.125984252	3.708661417	2.070866142	3.834645669	3.897637795	2.228346457	2.165354331	1.283464567	2.606299213	1.535433071	4.212598425	2.448818898	4.118110236	2.291338583	3.11023622	2.25984252	1.188976378	4.496062992	2.543307087	2.622047244
Radio de Drenaje (ft)	2039.370079	2055.11811	1425.19685	1692.913386	2779.527559	1566.929134	2480.314961	2480.314961	2070.866142	1913.385827	1866.141732	2606.299213	2952.755906	1645.669291	2905.511811	1929.133858	1897.637795	1803.149606	2007.874016	2779.527559	2144.88189
Viscosidad (cp)	1.527559055	2.165354331	0.818897638	0.818897638	0.783464567	0.854330709	1.208661417	0.641732283	0.818897638	0.996062992	1.492125984	0.641732283	1.066929134	1.066929134	0.712598425	0.960629921	0.641732283	0.88976378	0.854330709	0.88976378	0.992519685
Factor Volumétrico del Petróleo (RB/STB)	1.117165354	1.05007874	1.055748031	1.020787402	1.113385827	1.025511811	1.108661417	1.090708661	1.066141732	1.029291339	1.102992126	1.024566929	1.076535433	1.01984252	1.016062992	1.094488189	1.063307087	1.076535433	1.082204724	1.026456693	1.063023622
Compresibilidad total de Componentes (1/Psig)	1.88661E-05	1.94331E-05	1.30079E-05	1.85827E-05	1.77323E-05	1.5937E-05	1.11181E-05	1.23465E-05	1.46142E-05	1.30079E-05	1.81102E-05	1.65039E-05	1.89606E-05	9.13386E-06	1.33858E-05	1.9811E-05	1.09291E-05	1.73543E-05	1.2252E-05	1.23465E-05	1.51717E-05

Anexo 2.14. Resultado del cálculo de parámetros estáticos para el pozo PORE-006.

										Parámetr	os Dinámico	os										
										Rea												
Parámetro:	Tiempo (Días)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Prom edios
Presión de Yacimiento	0.0000	2395.2756	2497.2441	2497.2441	2249.2126	2486.2205	2417.3228	2458.6614	2466.9291	2152.7559	2296.0630	2500.0000	2158.2677	2469.6850	2500.0000	2403.5433	2395.2756	2477.9528	2312.5984	2453.1496	2461.4173	2402.4409
(Psig)	30.0000	2340.1575	2439.3701	2455.9055	2224.4094	2439.3701	2373.2283	2411.8110	2422.8346	2119.6850	2251.9685	2439.3701	2125.1969	2422.8346	2439.3701	2356.6929	2356.6929	2439.3701	2279.5276	2411.8110	2417.3228	2358.3465
	61.0000	2290.5512	2400.7874	2406.2992	2202.3622	2395.2756	2323.6220	2356.6929	2389.7638	2097.6378	2218.8976	2378.7402	2097.6378	2373.2283	2400.7874	2329.1339	2312.5984	2389.7638	2246.4567	2373.2283	2373.2283	2317.8346
	92.0000	2251.9685	2345.6693	2373.2283	2180.3150	2367.7165	2290.5512	2307.0866	2356.6929	2070.0787	2185.8268	2329.1339	2070.0787	2340.1575	2351.1811	2296.0630	2274.0157	2351.1811	2213.3858	2340.1575	2323.6220	2280.9055
	122.0000	2213.3858	2312.5984	2334.6457	2163.7795	2334.6457	2262.9921	2274.0157	2318.1102	2048.0315	2158.2677	2285.0394	2048.0315	2307.0866	2301.5748	2268.5039	2246.4567	2312.5984	2191.3386	2307.0866	2290.5512	2248.9370
	153.0000	2180.3150	2274.0157	2301.5748	2152.7559	2307.0866	2229.9213	2235.4331	2296.0630	2025.9843	2130.7087	2257.4803	2025.9843	2274.0157	2262.9921	2240.9449	2213.3858	2285.0394	2163.7795	2274.0157	2257.4803	2219.4488
	183.0000	2152.7559	2246.4567	2274.0157	2136.2205	2274.0157	2202.3622	2206.2745	2268.5039	2009.4488	2103.1496	2213.3858	2009.4488	2246.4567	2240.9449	2218.8976	2191.3386	2251.9685	2147.2441	2251.9685	2240.9449	2194.2901
	214.0000	2119.6850	2213.3858	2251.9685	2125.1969	2257.4803	2174.8031	2176.0784	2246.4567	1992.9134	2081.1024	2180.3150	1989.4118	2218.8976	2202.3622	2196.8504	2165.0980	2224.4094	2125.1969	2228.2353	2207.8740	2168.8861
	304.0000	2048.0315	2141.7323	2185.8268	2092.1260	2191.3386	2119.6850	2101.9608	2196.8504	1948.8189	2027.8431	2108.6614	1948.2353	2152.7559	2125.1969	2147.2441	2107.4510	2163.7795	2081.1024	2167.8431	2141.7323	2109.9108
	334.0000	2031.4961	2130.7087	2169.2913	2081.1024	2174.8031	2097.6378	2082.7451	2174.8031	1937.7953	2011.3725	2081.1024	1934.5098	2130.7087	2114.1732	2130.7087	2088.2353	2141.7323	2064.5669	2151.3725	2125.1969	2092.7031
	365.0000	2009.4488	2108.6614	2152.7559	2070.0787	2163.7795	2081.1024	2063.0137	2163.7795	1926.7717	1997.6471	2064.5669	1923.5294	2114.1732	2092.1260	2119.6850	2072.6027	2125.1969	2053.5433	2134.9020	2108.6614	2077.3013
	395.0000	1992.9134	2092.1260	2136.2205	2064.5669	2147.2441	2064.5669	2045.2055	2147.2441	1921.2598	1983.9216	2048.0315	1912.5490	2097.6378	2064.5669	2104.7059	2058.9041	2108.6614	2042.5197	2121.1765	2097.6378	2062.5830
	426.0000	1981.8898	2070.0787	2119.6850	2059.0551	2136.2205	2059.0551	2027.3973	2136.2205	1904.7244	1970.1961	2025.9843	1904.3137	2081.1024	2053.5433	2093.7255	2045.2055	2096.4706	2031.4961	2107.4510	2075.5906	2048.9703
	457.0000	1965.3543	2059.0551	2108.6614	2048.0315	2119.6850	2042.5197	2012.3288	2125.1969	1899.2126	1959.2157	2014.9606	1893.3333	2070.0787	2037.0079	2082.7451	2031.5068	2080.0000	2020.4724	2093.7255	2059.0551	2036.1073
	487.0000	1948.8189	2048.0315	2092.1260	2042.5197	2108.6614	2025.9843	1997.2603	2114.1732	1888.1890	1948.2353	1992.9134	1885.0980	2053.5433	2020.4724	2071.7647	2020.5479	2066.2745	2011.3725	2082.1918	2053.5433	2023.5861
	518.0000	1937.7953	2031.4961	2081.1024	2037.0079	2097.6378	2014.9606	1983.5616	2103.1496	1882.6772	1937.2549	1976.3780	1876.8627	2042.5197	2009.4488	2063.5294	2008.2192	2055.2941	2003.1373	2069.8630	2037.0079	2012.4452
	548.0000	1926.7717	2020.4724	2070.0787	2031.4961	2086.6142	2003.9370	1971.2329	2097.6378	1877.1654	1929.0196	1970.8661	1868.6275	2031.4961	1992.9134	2055.2941	1997.2603	2041.5686	1994.9020	2058.9041	2025.9843	2002.6121
	579.0000	1910.2362	2003.9370	2059.0551	2025.9843	2075.5906	1998.4252	1958.9041	2081.1024	1866.1417	1918.0392	1948.8189	1863.1373	2020.4724	1976.3780	2044.3137	1989.0411	2033.3333	1986.6667	2049.3151	2020.4724	1991.4682
	610.0000	1899.2126	1992.9134	2048.0315	2020.4724	2070.0787	1987.4016	1946.5753	2075.5906	1860.6299	1909.8039	1943.3071	1854.9020	2009.4488	1965.3543	2036.0784	1978.0822	2019.6078	1978.4314	2039.7260	2009.4488	1982.2548
	639.0000	1893.7008	1987.4016	2042.5197	2014.9606	2059.0551	1976.3780	1936.9863	2070.0787	1855.1181	1901.5686	1926.7717	1849.4118	2003.9370	1959.8425	2030.5882	1969.8630	2011.3725	1972.9412	2031.5068	1992.9134	1974.3458
	670.0000	1882.6772	1976.3780	2031.4961	2014.9606	2048.0315	1970.8661	1926.0274	2059.0551	1849.6063	1893.3333	1915.7480	1843.9216	1992.9134	1948.8189	2022.3529	1961.6438	2003.1373	1964.7059	2023.2877	1987.4016	1965.8181
	700.0000	1871.6535	1965.3543	2020.4724	2009.4488	2048.0315	1959.8425	1916.4384	2053.5433	1844.0945	1887.8431	1904.7244	1838.4314	1981.8898	1932.2835	2016.8627	1953.4247	1994.9020	1959.2157	2015.0685	1987.4016	1958.0463
	731.0000	1866.1417	1954.3307	2014.9606	2003.9370	2037.0079	1954.3307	1908.2192	2048.0315	1838.5827	1879.6078	1899.2126	1830.1961	1976.3780	1932.2835	2008.6275	1945.2055	1986.6667	1953.7255	2008.2192	1970.8661	1950.8265
	761.0000	1855.1181	1948.8189	2003.9370	1998.4252	2031.4961	1948.8189	1898.6301	2042.5197	1833.0709	1874.1176	1888.1890	1824.7059	1970.8661	1915.7480	2003.1373	1938.3562	1975.6863	1945.4902	2001.3699	1965.3543	1943.1928
	792.0000	1849.6063	1943.3071	1998.4252	1998.4252	2020.4724	1937.7953	1890.4110	2037.0079	1833.0709	1868.6275	1877.1654	1821.9608	1959.8425	1915.7480	1997.6471	1931.5068	1972.9412	1942.7451	1993.1507	1959.8425	1937.4849
	823.0000	1844.0945	1926.7717	1992.9134	1992.9134	2014.9606	1932.2835	1880.8219	2031.4961	1827.5591	1860.3922	1871.6535	1816.4706	1948.8189	1904.7244	1992.1569	1926.0274	1961.9608	1934.5098	1986.3014	1948.8189	1929.7824
										-								-				
															-							+
																						-
										L				l .	L		l					

Anexo 2.15. Resultados de parámetros dinámicos (presiones) para el pozo PORE-006.