ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Pruebas Experimentales en un Filtro de Mangas Tipo Pulse Jet del Laboratorio de Calidad del Aire de la FIMCP"

TESIS DE GRADO

Previo a la obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

Oscar Arturo Donoso Baquerizo

GUAYAQUIL – ECUADOR

Año: 2010

AGRADECIMIENTO

A todas las personas que de uno u otro modo colaboraron en la realización de este trabajo y especialmente al Ing. Mario Patiño A. Director de Tesis, por su invaluable ayuda.

DEDICATORIA

A DIOS

A MIS PADRES

A MIS HERMANOS

A MI ESPOSA

A MIS HIJOS

TRIBUNAL DE GRADUACIÓN

Ing. Francisco Andrade S.
DECANO DE LA FIMCP
PRESIDENTE

Ing. Mario Patiño A.

DIRECTOR DE TESIS

Dr. Alfredo Barriga R. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Oscar Arturo Donoso Baquerizo

RESUMEN

El Filtro de Mangas ubicado en el Laboratorio de Calidad del Aire de la FIMCP formó parte de la Tesis de Grado "Cálculo y Diseño Fluidodinámico de un Filtro de Mangas (Tipo Pulse Jet) para Partículas Minerales de Origen Industrial" elaborado en el periodo 2000 - 2001 y cuyo autor es el Ing. Germán Peralta Castillo.

Para el desarrollo de su Tesis, el Ing. Peralta construyó este equipo, para verificar experimentalmente las variables involucradas en el diseño de filtros de mangas tales como: caída de presión, caudal, concentración de partículas, masa, eficiencia de filtración, selección de válvulas, potencia del ventilador, etc. utilizando para ello como material filtrante poliéster y como polvo contaminante cemento, para así obtener el mejor diseño posible que se ajuste con los requerimientos de las condiciones locales.

El presente trabajo es una extensión a esta investigación, donde se desarrollaron seis diseños diferentes de filtros de mangas y cuyos resultados fueron verificados o comprobados por medio de la elaboración de seis pruebas experimentales piloto correspondientes utilizando para ello la combinación de tres tipos de medios filtrantes (poliéster, polipropileno y

homopolímero acrílico) con dos tipos de polvos contaminantes (cemento y harina).

Unas vez realizadas las pruebas de laboratorio, se pudo establecer que este equipo verifica o comprueba de manera aceptable los criterios de diseño involucrados en el diseño de un filtro de mangas, o también puede ser utilizado para evaluar el funcionamiento de un filtro de mangas existente (de una industria por ejemplo), por lo que este banco de pruebas puede ser utilizado con seguridad en la evaluación de otros equipos o verificar el diseño de otras combinaciones tela - polvo.

Para un mejor desempeño del equipo, se le realizaron mejoras mecánicas y tecnológicas para hacer de éste un equipo, versátil, funcional y didáctico, y que, a través de la automatización de su funcionamiento pueda ser más eficiente y capaz de evaluar los parámetros involucrados en el diseño de cualquier combinación tela - polvo para la filtración de aire.

Este trabajo se lo complementó con la elaboración de una guía experimental para realizar prácticas de laboratorio, dirigido a aquellos estudiantes interesados en tomar los cursos de Contaminación y Calidad del Aire y de

Diseño de Sistemas de Control de la Contaminación del Aire pertenecientes a la especialización de Medio Ambiente de la FIMCP,

En esta guía de laboratorio se describe paso a paso la metodología de trabajo a seguir y la obtención de datos y resultados que le permitan al estudiante desarrollar el pensamiento crítico para discernir sobre los diversos parámetros involucrados en el diseño de filtros de mangas.

ÍNDICE GENERAL

	Pág.
RESUMEN	ll
ÍNDICE GENERAL	III
ABREVIATURAS	IV
SIMBOLOGÍA	V
ÍNDICE DE FIGURAS	VI
ÍNDICE DE TABLAS	VII
ÍNDICE DE PLANOS	VIII
INTRODUCCIÓN	1
CAPÍTULO 1	
1. CARACTERÍSTICAS DEL FILTRO DE MANGAS PROTOTIPO	4
1.1 Antecedentes	4
1.2 Características del Prototipo	6
1.3 Parámetros de Diseño Teórico y Real del Filtro actual	14
1.4 Combinaciones de la Relación Tela – Contaminante	17
CAPÍTULO 2	
2. PARÁMETROS DE DISEÑO DE LOS FILTROS	19

2.1. Velocidad de Filtración (Relación Gas – Tela)19	
2.2. Caída de Presión23	
2.3. Características del Flujo de Gas37	
2.4. Temperatura de Operación	
2.5. Características de las Partículas39	
CAPÍTULO 3	
3. EVALUACIÓN DE LOS PARÁMETROS DE DISEÑO40	
3.1. Diseño de los Filtros 1, 2 y 3 para el Contaminante A40	
3.1.1. Determinación de la Velocidad de Filtración y Área Neta	
de Tela42	
3.1.2. Selección del Medio Filtrante45	
3.1.3. Determinación del Número de Mangas47	
3.1.4. Análisis del Sistema de Limpieza Pulse – Jet (Selección	
de Válvulas)49	
3.1.5. Determinación de la Caída de Presión de Diseño61	
3.1.6. Determinación de la Potencia del Ventilador63	
3.1.7. Tabulación de Resultados65	
3.2. Diseño de los Filtros 1, 2 y 3 para el Contaminante B67	
3.2.1. Determinación de la Velocidad de Filtración y Área Neta	
de Tela68	
3.2.2. Selección del Medio Filtrante71	

3.2.3. Deter	minación del Número de Mangas	73
3.2.4. Análi	sis del Sistema de Limpieza Pulse – Jet (Selección	
de Vá	álvulas)	75
3.2.5. Deter	minación de la Caída de Presión de Diseño	86
3.2.6. Deter	minación de la Potencia del Ventilador	89
3.2.7. Tabu	lación de Resultados	90
CAPÍTULO 4		
4. ANÁLISIS EXF	PERIMENTAL DE LOS FILTROS	92
4.1. Análisis Ex	perimental de los Filtros 1, 2 y 3 para el	
Contamina	nte A	92
4.1.1. Simili	tud Dimensional del Filtro Prototipo con el Filtro	
Real	(Caudal y Caída de Presión)	93
4.1.2. Datos	s y Resultados Obtenidos en la Prueba Experimental	96
4.1.2.1.	Obtención del Caudal	97
4.1.2.2.	Obtención de la Concentración de Entrada	101
4.1.2.3.	Prueba de Filtración para determinar las Constantes	
	de Filtración	108
4.1.2.4.	Determinación de la Eficiencia Promedio de	
	Recolección y Tiempo de Filtración	120
4.1.2.5.	Determinación de la Eficiencia de Colección Total	130
4.1.2.6.	Determinación de la Caída de Presión Real	141

4.2. Análisis	Experimental de los Filtros 1, 2 y 3 para el
Contam	nante B145
4.2.1. Si	militud Dimensional del Filtro Prototipo con el Filtro Real
(C	audal y Caída de Presión)146
4.2.2. Da	atos y Resultados Obtenidos en la Prueba Experimental149
4.2.2	1. Obtención del Caudal150
4.2.2	2. Obtención de la Concentración de Entrada154
4.2.2	3. Prueba de Filtración para determinar las Constantes
	de Filtración162
4.2.2	4. Determinación de la Eficiencia Promedio de
	Recolección y Tiempo de Filtración174
4.2.2	5. Determinación de la Eficiencia de Colección Total184
4.2.2	6. Determinación de la Caída de Presión Real195
OADÍTUU O 5	
CAPÍTULO 5	
5. GUIA EXPE	RIMENTAL PARA PRÁCTICAS DE LABORATORIO200
5.1. Práctica	No 1: Prueba de Filtración para determinar las
Constar	tes de Filtración200
5.2. Práctica	No 2: Determinación de la Eficiencia Promedio de
Recoled	ción y Tiempo de Filtración208
5.3. Práctica	No 3: Determinación de la Eficiencia de Colección
Total y 0	Caída de Presión Real213

CAPÍTULO 6
6. CONCLUSIONES Y RECOMENDACIONES219
APÉNDICES
BIBLIOGRAFÍA

ABREVIATURAS

Hp Caballo de Fuerza

cm Centímetro

°C Grado Centígrado °F Grado Fahrenheit

g/cm³ Gramo por Centímetro Cúbico g/m² Gramo por Metro Cuadrado g/m³ Gramo por Metro Cúbico gr/ft³ Grano por Pie Cúbico g Gravedad (9.81 m/s²)

Hz Hertz Kg Kilogramo

Kg/m³ Kilogramo por Metro Cúbico

Lb Libra

Lb/ft² Libra por Pie Cuadrado Lb/ft³ Libra por Pie Cúbico

Libra por Pulgada Cuadrada (psi)

Lt Litro

Lt/min Litro por Minuto
MPa Megapascal
m² Metro Cuadrado

m³/min Metro Cúbico por Minuto

m
 m/min
 m/s
 μm
 Metro por Minuto
 Metro por Segundo
 Micra o Micrómetro

mm Milímetro

mm² Milímetro Cuadrado

ms Milisegundo
min Minuto
oz Onza
Pa Pascal

Pi (3.14159265358979) Pie Cuadrado $\begin{array}{l} \pi \\ \text{ft}^2 \\ \text{ft}^3 / \text{min} \end{array}$

Pie Cúbico por Minuto

Pie Lineal ft Pie por Minuto ft/min Pulgada Lineal
Pulgada de Agua
Revoluciones por Minuto pulg Pulg H₂O

RPM

Segundo s

SIMBOLOGÍA

H Altura B Ancho A Área

A_e Área del Tubo de Entrada al Filtro
A_s Área del Tubo de Salida del Filtro

A_m, A_{MANGA} Área Lateral de una Manga A_{NETA} Área Neta de Tela de Filtración

S Arrastre

S_e Arrastre del Filtro Limpio

 $\begin{array}{ll} \Delta P_s & \text{Caída de Presión a través de la Estructura} \\ \Delta P_f & \text{Caída de Presión a través de la Tela Limpia} \\ \Delta P_p & \text{Caída de Presión a través del Pastel de Polvo} \end{array}$

 ΔP Caída de Presión Total Q_D Caudal de Diseño

Q_e Caudal de Entrada al Filtro Q_s Caudal de Salida del Filtro

Q_{gas} Caudal del Gas PVC Cloruro de Polivinilo

C_v Coeficiente de Relación de Flujo Volumétrico

C Concentración

C_e Concentración de Entrada C_s Concentración de Salida

K_e Constante de Extrapolación en Gráfica W vs S

AC Corriente Alterna

W_c Densidad de Área de Polvo Reciclado

W_o Densidad de Área de Polvo Últimamente Depositado

 $\begin{array}{ll} \rho_L & \quad & \text{Densidad de Capa de Polvo} \\ \rho_p & \quad & \text{Densidad de Partícula} \\ W & \quad & \text{Densidad de Polvo} \end{array}$

 $\rho_g \qquad \qquad \text{Densidad del Gas}$

Ø Diámetro

D_D Diámetro de Partícula

D_e Diámetro del Tubo de Entrada al Filtro D_s Diámetro del Tubo de Salida del Filtro

d_{g,masa} Diámetro Medio Geométrico de Masa de Partícula ΔT Diferencial de Tiempo de Respuesta del Pulso

η Eficiencia de Colección Global E_r Eficiencia de Recolección en Tolva

E Espesor

FS Factor de Seguridad

X(x) Función de Entrada de un Sistema de Control Y(x) Función de Salida de un Sistema de Control

L Longitud

M_t Masa Colectada en Tolva

Me Masa de Entrada o Flujo de Masa de Entrada

Masa de Recipiente + Polvo o Masa del Filtro + Polvo

Ms Masa de Salida o Flujo de Masa de Salida Masa del Recipiente o Masa del Filtro

M_f Masa Final de Tanque + Polvo M_i Masa Inicial de Tanque + Polvo

N° Número

N_{MANGAS} Número Total de Mangas de un Filtro

K_s Pendiente en Gráfica W vs S

K₂ Permeabilidad de la Capa de Polvo
 K_p Permeabilidad de la Capa de Polvo
 K_f Permeabilidad del Filtro Limpio

K Permeabilidad del Filtro o de la Capa de Polvo

% Porcentaje
Pot Potencia
P Presión

P_e Presión de Entrada al Filtro P_s Presión de Salida del Filtro P_i Presión del Pulso de Limpieza

Pa Presión Neumática de Entrada al Sistema en Tanque de

Compensación

P_n Presión Neumática de Salida en Toberas P_m Presión Neumática en la Válvula Solenoide

X_p Profundidad de la Capa de Polvo
 X_f Profundidad del Filtro Limpio

X Profundidad del Filtro o de la Capa de Polvo

PLC Programa de Control Lógico (Programing Logical Control)

θ Rapidez de Acción del Pulso

(K₂)_C Resistencia Específica del Polvo Reciclado

K₂ Resistencia Específica del Polvo Recientemente

Depositado

SMC Shimbashi Minato-Ku Corporation

T Temperatura t Tiempo

B9 Tiempo de Activación de la Electroválvula (Programación

del PLC)

B13 Tiempo de Activación del Timbre (Programación del PLC)

Te Tiempo de Energización de la Válvula Solenoide

T_f Tiempo de Filtración

B7 Tiempo de Filtración (Programación del PLC)

 T_c Tiempo de Limpieza T_m Tiempo de Mezclado

B5 Tiempo de Mezclado Inicial (Programación del PLC)

 $egin{array}{lll} T_2 & & \mbox{Tiempo de Respuesta} \\ T_1 & & \mbox{Tiempo de Vacío} \\ T_p & & \mbox{Tiempo del Pulso} \\ \end{array}$

V Velocidad

 V_f Velocidad de Filtración V_α Velocidad del Gas

Ve Velocidad en el Tubo de Entrada al Filtro Vs Velocidad en el Tubo de Salida del Filtro

V Velocidad Superficial de Filtración

 $\mu_{\text{g}} \hspace{1cm} \text{Viscosidad del Gas} \\$

V Voltaje

ÍNDICE DE FIGURAS

Figura		Pág.
2.1	Curva Típica de Funcionamiento de un Filtro de Mangas	
	para Diferentes Grados de Limpieza	31
3.1	Esquema de Sistema de Control de Lazo Abierto	51
3.2	Esquema de Sistema de Control de Lazo Cerrado	51
3.3	Proporciones de Relación de Presiones y Tiempos	
	de Acción de la Válvula Solenoide	55
3.4	Válvula Solenoide Marca SMC Modelo VXF2150-06-1-G	60
3.5	Esquema de Sistema de Control de Lazo Abierto	77
3.6	Esquema de Sistema de Control de Lazo Cerrado	77
3.7	Proporciones de Relación de Presiones y Tiempos	
	de Acción de la Válvula Solenoide	80
3.8	Válvula Solenoide Marca SMC Modelo VXF2150-06-1-G	86
4.1	Comportamiento de la Formación de Pastel a través	
	del Aumento del Arrastre de las Partículas para la	
	Combinación Cemento + Poliéster	.116
4.2	Comportamiento de la Formación de Pastel a través	
	del Aumento del Arrastre de las Partículas para la	
	Combinación Cemento + Polipropileno	117
4.3	Comportamiento de la Formación de Pastel a través	
	del Aumento del Arrastre de las Partículas para la	
	Combinación Cemento + Homopolímero Acrílico	118
4.4	Gráfico Eficiencia de Recolección Vs Tiempo de	
	Limpieza para obtener el Punto Óptimo de Operación	
	para la Combinación Cemento + Poliéster	127
4.5	Gráfico Eficiencia de Recolección Vs Tiempo de	
	Limpieza para obtener el Punto Óptimo de Operación	
	para la Combinación Cemento + Polipropileno	128

Figura		Pág.
4.6	Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación	
4.7	para la Combinación Cemento + Homopolímero Acrílico Comportamiento de la Formación de Pastel a través del Aumento del Arrastre de las Partículas para la	129
	Combinación Harina + Poliéster	.170
4.8	Comportamiento de la Formación de Pastel a través del Aumento del Arrastre de las Partículas para la	
	Combinación Harina + Polipropileno	171
4.9	Comportamiento de la Formación de Pastel a través del Aumento del Arrastre de las Partículas para la	
	Combinación Harina + Homopolímero Acrílico	172
4.10	Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación	
	para la Combinación Harina + Poliéster	181
4.11	Gráfico Eficiencia de Recolección Vs Tiempo de	
	Limpieza para obtener el Punto Óptimo de Operación	
	para la Combinación Harina + Polipropileno	182
4.12	Gráfico Eficiencia de Recolección Vs Tiempo de	
	Limpieza para obtener el Punto Óptimo de Operación	400
	para la Combinación Harina + Homopolímero Acrílico	183

ÍNDICE DE TABLAS

Tabla		Pág.
1	Parámetros de Diseño Teórico y Real del Filtro Actual	16
II	Características de Diseño de los Filtros para Cemento	66
III	Características de Diseño de los Filtros para Harina	91
IV	Mediciones de Velocidad del Ventilador de Succión	
	a la Entrada del Filtro para Cemento	99
V	Datos de Medición de la Masa Promedio en Papel Filtro	
	para la obtención de la Concentración a la Entrada	404
\ /I	del Filtro para la Combinación Cemento + Poliéster	104
VI	Datos de Medición de la Masa Promedio en Papel Filtro	
	para la obtención de la Concentración a la Entrada	105
VII	del Filtro para la Combinación Cemento + Polipropileno	105
VII	Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Entrada	
	del Filtro para la Combinación Cemento + Homopolímero	
	Acrílico	106
VIII	Datos de Caída de Presión obtenidos durante la Prueba	
	de Filtración para Siete Intervalos de Filtración para la	
	Combinación Cemento + Poliéster	112
IX	Datos de Caída de Presión obtenidos durante la Prueba	
	de Filtración para Siete Intervalos de Filtración para la	
	Combinación Cemento + Polipropileno	113
X	Datos de Caída de Presión obtenidos durante la Prueba	
	de Filtración para Siete Intervalos de Filtración para la	
\ /I	Combinación Cemento + Homopolímero Acrílico	114
XI	Datos de Pesaje de Masa en Tanque y Tolva y	
	Resultados de Eficiencias obtenidos para Cinco	
	diferentes Tiempos de Limpieza para la Combinación	123
	Cemento+ Poliéster	123

Tabla		Pág.
XII	Datos de Pesaje de Masa en Tanque y Tolva y Resultados de Eficiencias obtenidos para Cinco diferentes Tiempos de Limpieza para la Combinación	
XIII	Cemento+ Polipropileno Datos de Pesaje de Masa en Tanque y Tolva y Resultados de Eficiencias obtenidos para Cinco	124
V(I) (diferentes Tiempos de Limpieza para la Combinación Cemento+ Homopolímero Acrílico	125
XIV	Mediciones de Velocidad del Ventilador de Succión a la Salida del Filtro para Cemento	132
XV	Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro	
XVI	para la Combinación Cemento + Poliéster Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro	135
XVII	para la Combinación Cemento + Polipropileno Datos de Medición de la Masa Promedio en Papel Filtro	136
XVIII	para la obtención de la Concentración a la Salida del Filtro para la Combinación Cemento + Homopolímero Acrílico Mediciones de Velocidad del Ventilador de Succión	137
	a la Entrada del Filtro para Harina	152
XIX	Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro para la Combinación Harina + Poliéster	158
XX	Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro	450
XXI	para la Combinación Harina + Polipropileno Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro	159
XXII	para la Combinación Harina + Homopolímero Acrílico Datos de Caída de Presión obtenidos durante la Prueba	160
	de Filtración para Siete Intervalos de Filtración para la Combinación Harina + Poliéster	166
XXIII	Datos de Caída de Presión obtenidos durante la Prueba de Filtración para Siete Intervalos de Filtración para la	
XXIV	Combinación Harina + Polipropileno Datos de Caída de Presión obtenidos durante la Prueba de Filtración para Siete Intervalos de Filtración para la	167
	Combinación Harina + Homopolímero Acrílico	168

Tabla		Pág.
XXV	Datos de Pesaje de Masa en Tanque y Tolva y Resultados de Eficiencias obtenidos para Cinco diferentes Tiempos de Limpieza para la Combinación Harina+ Poliéster	477
XXVI	Datos de Pesaje de Masa en Tanque y Tolva y Resultados de Eficiencias obtenidos para Cinco diferentes Tiempos de Limpieza para la Combinación	177
	Harina+ Polipropileno	178
XXVII	Datos de Pesaje de Masa en Tanque y Tolva y Resultados de Eficiencias obtenidos para Cinco diferentes Tiempos de Limpieza para la Combinación	
	Harina+ Homopolímero Acrílico	179
XXVIII	Mediciones de Velocidad del Ventilador de Succión	
	a la Salida del Filtro para Harina	186
XXIX	Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro	100
XXX	para la Combinación Harina + Poliéster Datos de Medición de la Masa Promedio en Papel Filtro	189
^^^	para la obtención de la Concentración a la Salida del Filtro	
	para la Combinación Harina + Polipropileno	190
XXXI	Datos de Medición de la Masa Promedio en Papel Filtro para la obtención de la Concentración a la Salida del Filtro	
	para la Combinación Harina + Homopolímero Acrílico	191

ÍNDICE DE PLANOS

Plano

1 Dimensiones Generales del Filtro de Mangas Pulse - Jet

INTRODUCCIÓN

El presente trabajo tiene como objetivo fundamental evaluar las condiciones de operación del Filtro de Mangas de la FIMCP y que sirva como banco de pruebas experimentales a los alumnos de la Especialización de Medio Ambiente de la Facultad, para lo cual se le han hecho mejoras mecánicas y tecnológicas para hacer de éste un equipo funcional y didáctico, y que, a través de la automatización de su funcionamiento pueda ser más eficiente y capaz de evaluar los parámetros involucrados en el diseño de cualquier combinación tela - polvo para la filtración de aire.

Para alcanzar este objetivo, este trabajo se lo ha dividido en seis capítulos que abarcan lo siguiente: (1) Descripción de las partes constituyentes del Filtro de Mangas de la FIMCP; (2) Descripción de los parámetros empleados en el Diseño de los Filtros; (3) Diseño de los Filtros 1, 2 y 3 tanto para el Contaminante A como para el Contaminante B; (4) Evaluación del Filtro para estos seis diseños; (5) Elaboración de una Guía de Prácticas de Laboratorio; (6) Conclusiones y Recomendaciones.

El primer capítulo hace una descripción de los diferentes elementos constituyentes del equipo tales como el tanque de agitación y mezcla de

polvo, la carcasa metálica donde se aloja la manga y que constituye el cuerpo principal del filtro, la tolva metálica de recolección de polvo con el cual permite determinar la eficiencia de recolección de materia prima y su reutilización en el proceso productivo, el ventilador que succiona el aire con polvo y que está ubicado en la zona de aire limpio, la electroválvula que proporciona el pulso de aire comprimido para la limpieza de la manga, etc.

El segundo capítulo hace una descripción de los parámetros empleados en el diseño de los filtros tales como velocidad de filtración (Relación Gas-Tela), caída de presión, área neta de tela, número de mangas, características del flujo de gas y de partículas, temperatura de operación, etc.

El tercer capítulo tiene que ver con el diseño de seis diferentes combinaciones de tela-polvo, en los cuales se tomarán en consideración los parámetros descritos en el segundo capítulo.

El cuarto capítulo involucra la verificación por medio de pruebas experimentales piloto estos seis diseños diferentes, utilizando para ello los mismos tipos de tela y de polvo descritos en el tercer capítulo.

El quinto capítulo contempla la elaboración de una guía experimental para la realización de prácticas de laboratorio, donde se describe paso a paso la metodología de trabajo y está dirigido a aquellos estudiantes interesados en tomar los cursos de la especialización de Medio Ambiente de la FIMCP.

El sexto capítulo hace referencia a las conclusiones derivadas de este trabajo, mencionando los objetivos alcanzados y las ventajas y limitaciones encontradas en el banco de pruebas, por lo que se establece algunas recomendaciones a implementar en el equipo para mejorar su desempeño.

CAPÍTULO 1

1. CARACTERÍSTICAS DEL FILTRO DE MANGAS PROTOTIPO.

1.1. Antecedentes.

Este banco de pruebas se encuentra ubicado en el Laboratorio de Calidad del Aire de la FIMCP el cual fue diseñado y construido por el Ing. Germán Peralta Castillo como parte de su Tesis de Grado elaborado en el año 2001.

En dicho equipo la elaboración de las pruebas experimentales se realizaron con procesos automatizados de la secuencia de filtrado del aire y que consistía en el encendido y apagado del ventilador de succión y de la electroválvula para la limpieza de la manga. Se implementó un control electrónico (timer) de características similares a los de la marca SMC (Shimbashi Minato-Ku Corporation) modelo VXFC (12) para dirigir estos procesos automatizados por medio de una computadora. Se usaba un ventilador pequeño para el agitado y mezcla del polvo, su uso era manual y su funcionamiento era independiente del control electrónico.

Este equipo disponía para el ingreso del polvo al sistema de un tanque plástico (H=50cm; Ø=40cm) el mismo que se encontraba conectado al filtro por medio de un tubo de PVC (L=50cm; Ø=105mm). En dicho tanque se depositaba el polvo y se lo agitaba manualmente usando el ventilador pequeño ubicado en la boca del tanque, luego de lo cual se generaba la nube de polvo necesaria para que el ventilador succione la mezcla.

Al evaluar el estado actual del equipo, este se encontraba fuera de servicio con el control electrónico dañado, por lo que fue necesario llevarlo a un laboratorio de electrónica de la ciudad para su rehabilitación. El ventilador pequeño al que se hace mención no

estaba en el banco de pruebas al momento de evaluar el equipo, por lo que se lo consideró descartado para el presente proyecto; el tanque de agitación también estaba dañado, por lo que se usó otro de igual material y dimensiones para los ensayos.

Se comprobó que el motor del ventilador necesitaba de un rebobinado por cuanto su devanado estaba quemado; la electroválvula, el ventilador y la carcasa metálica se encontraban en buenas condiciones. La manga ubicada dentro de la carcasa era de poliéster, estaba muy usada y colmatada de polvo por lo que fue reemplazada en los ensayos realizados.

1.2. Características del Prototipo.

El equipo rehabilitado tiene los siguientes componentes principales y complementarios a mencionar (Ver en el Apéndice E las fotos de los diferentes componentes aquí descritos):

Un PLC (Programing Logical Control) marca Siemens LOGO
 230RC con 8 canales de entrada y cuatro de salida, el cual una vez programado e instalado ejecutó las rutinas de trabajo. Ver en el Apéndice G las características técnicas del PLC. Dicho dispositivo controla al ventilador de succión y a los dos

ventiladores pequeños de agitación y mezclado, la electroválvula y la secuencia de filtración. El PLC está instalado en un panel de control fijado a la pared de la carcasa metálica y dispone de sus respectivos breakers de seguridad en caso de ocurrir voltajes excesivos.

- Un panel de control de plástico (H=45cm; B=40cm; E=20cm),
 el cual dispone de una tapa transparente abatible que permite
 ver al PLC y sus accesorios. En dicha tapa se encuentra
 ubicado el switch que permite realizar dos opciones a saber:
 - Abre y cierra, permite la secuencia de filtración sin activación de la electroválvula.
 - Abre, permite la secuencia de filtración con activación de la electroválvula.

Se aclara que el PLC no es encendido ni apagado con este switch. El switch que energiza el banco de pruebas y por ende al PLC se encuentra ubicado en la parte posterior del ventilador de succión, al cual están conectados dos tomacorrientes, uno para el compresor y el otro para el foco de iluminación o la balanza electrónica, los cuales se mencionarán más adelante. El equipo se conecta a un tomacorriente de pared cercano con salida de 110V AC.

- Un ventilador de tipo centrífugo marca Carrier modelo
 51FLC218 y colocado a la salida del aire limpio (ventilador de succión) con un motor eléctrico de 1/4Hp de potencia.
- Una electroválvula que es una válvula solenoide de dos vías con tamaño de orificio de 1/2 pulgada marca Airtac, modelo 2V-130-15-AC110V. Esta válvula es capaz de proveer un pulso de limpieza de 80psi a la manga, con un ciclo de apertura y cierre de 250ms. Ver en el Apéndice I las características técnicas de la electroválvula.
- Un manómetro de presión (0 85psi) instalado en la tubería de alimentación de PVC (Ø=20mm) de aire comprimido justo antes de la electroválvula, para verificar que la presión suministrada por el compresor sea de 80psi.
- Un compresor de aire, que permitirá la alimentación de los 80psi de aire comprimido a la electroválvula.
- Un tanque de plástico (H=50cm; Ø=40cm), el cual tiene dos funciones a saber: agitación y mezcla del polvo con el aire succionado por el ventilador. Este tanque está conectado con la carcasa metálica por medio de un tubo de PVC (L=50cm; Ø=105mm).
- Una tapa transparente de plástico (H=70cm; B=60cm;
 E=5mm), el cual se lo utiliza para tapar la boca del tanque y

evitar que el polvo salga, debido a la agitación que provocan los ventiladores pequeños. Además, sirve para visualizar que el polvo esté continuamente en movimiento y que los ventiladores no se atasquen con el polvo que mueven. Se debe mencionar que cuando está funcionando la electroválvula, es necesario ponerle unos contrapesos encima para evitar que el pulso de aire levante la tapa y el polvo salga.

- Una base (H=20cm) construida con ángulos metálicos (dimensión de los ángulos: H=25mm; E=3mm), el cual sirve de asiento al tanque de agitación para que el tubo de entrada de PVC (Ø=105mm) esté al mismo nivel de la entrada al filtro, para que el tubo permanezca en posición horizontal.
- Dos ventiladores de caja (H=12cm; B=12cm; E=5cm) marca EVL modelo VN-593 de 2300 RPM, ubicados dentro del tanque, uno fijo en la parte superior del tanque y el otro móvil, en contacto directo con el polvo depositado; éstos se encarga de agitar el polvo para favorecer la homogeneidad de la mezcla con el aire. Se debe señalar que se hicieron pruebas para determinar la Concentración de Entrada C_e del aire con polvo que entra a la manga, ya que es el dato principal inicial para el cálculo de los diferentes parámetros del filtro.

- Un velómetro Alnor Serie 6000 para hacer la medición de presión en pulgadas de agua en las tuberías de entrada y salida de PVC (Ø=105mm) del filtro durante la filtración pero sin limpieza de la manga. En esta etapa se calcula la caída de presión ΔP y luego se obtendrá el Gráfico S vs W para obtener las constantes del filtro, K_e y K_s. Con estas constantes se determina la caída de presión real del filtro sin sistema de limpieza. Adicionalmente, con el velómetro se determina la velocidad promedio de aire del ventilador en las tuberías de entrada y salida, para así calcular el caudal respectivo. Ver en el Apéndice J el manual de manejo del velómetro.
- Una tolva metálica de recolección de polvo (H=27cm; B=28cm; E=22cm;), que se encuentra ubicado en la parte inferior de la carcasa metálica, donde se colecta el polvo producto de la limpieza de la manga debido al pulso de aire comprimido. En esta etapa se calcula la eficiencia de recolección o reutilización de materia prima y el tiempo óptimo de filtración del equipo. Esta tolva posee una tapa metálica abatible en su base, para el retiro del polvo colectado.
- Un cárcamo plástico (H=40cm; B=20cm; E=30cm) colocado debajo de la tolva, para recoger el polvo colectado.

- El cuerpo principal o carcasa metálica donde reside la manga, es una estructura rectangular (H=1.50m; B=22cm; E=28cm), con un visor transparente de plástico (H=95mm; B=105mm), para ver la manga y como ésta se colmata de polvo conforme es filtrado el aire. A dicha recámara están conectados el tanque de agitación y mezcla y el tubo de salida del aire limpio de PVC (L=2.00m; Ø=105mm), el mismo que está conectado al ventilador; en esta recámara se producirá el filtrado de aire. En el extremo superior y dentro de la carcasa hay dispuesto un foco de iluminación para observar con mayor claridad la manga a través del visor. Este foco se lo enciende y apaga manualmente.
- Una canastilla cilíndrica (L=1.50m; Ø=150mm) de varilla metálica (Ø=3mm), que sirve como soporte interno a la manga y que permite darle la suficiente rigidez cuando reciba el pulso de aire comprimido. Dentro de la canastilla, en el extremo superior, se encuentra ubicado un venturi que recibe el pulso de aire y crea una onda de choque que flexiona la manga y afloja la capa de polvo que tiene adherida. La manga junto con la canastilla entran por el extremo superior de la carcasa.
- Tres tipos de mangas a utilizar en los experimentos las cuales se detallan a continuación:

- 1. Poliéster
- 2. Polipropileno
- 3. Homopolímero Acrílico

Las especificaciones técnicas de estas tres mangas se encuentran en el Apéndice D (Tablas F, G y H). Estas mangas fueron importadas de Buenos Aires, Argentina y suministradas por la empresa R.M. Seguridad Ambiental, la cual se contactó mediante la página web y correo electrónico siguientes:

www.rmseguridad.com.ar - ventas@rmseguridad.com.ar.

Todas las mangas tienen el mismo peso por unidad de área, 500g/m², y las mismas dimensiones las cuales se ajustan a las requeridas por el filtro, L=1.50m y Ø=150mm. Dichas telas fueron seleccionadas en función de la temperatura de operación, tipo de limpieza y características de los polvos a utilizar.

Abertura de 2 mm aproximadamente, ubicada en el tubo de salida del aire limpio, donde se coloca una mascarilla de papel filtro para colectar el polvo que pueda contener el aire filtrado. En esta etapa se calcula la Concentración de Salida C_s, con lo cual se determina la Eficiencia de Colección Total del Equipo y la caída de presión real del filtro, la cual describe el proceso combinado de filtración y limpieza pulse - jet.

Varias unidades de filtros de papel de Ø=20cm (0.99g-0.035oz)
que servirán para colectar el polvo que ingresa y sale del filtro y
determinar las concentraciones de entrada y salida
respectivamente.

• Dos tipos de balanzas a saber:

- Una balanza electrónica (precisión 0.000 onzas), para pesar el polvo colectado a la entrada y salida del Filtro.
- Una balanza mecánica (precisión 50 gramos), para pesar el polvo colectado en la tolva.
- Un recipiente plástico (H=12cm; B=15cm; E=15cm) de 50 gramos de peso, para depositar el polvo colectado en tolva y ser pesado el conjunto recipiente polvo en la balanza mecánica.
- Un timbre, el cual proporciona una ayuda auditiva para saber que un tiempo preestablecido en cualquier etapa de las pruebas se ha cumplido; este dispositivo es controlado por el PLC. Se encuentra ubicado en el extremo superior de la carcasa, por fuera del mismo.
- Una llave de corte instalada en la tubería de alimentación de PVC (Ø=20mm) de aire comprimido antes del manómetro de presión y de la electroválvula, para permitir la despresurización de la línea y el desmontaje del conjunto manómetro –

electroválvula y poder retirar la manga de la carcasa si así es requerido.

- Dos polvos a utilizar en las pruebas los cuales son cemento y harina de trigo de uso común en cantidad suficiente, 9 kilogramos aproximadamente.
- Las dimensiones generales del equipo se describen en el plano
 I. Ver el Apéndice F.

1.3. Parámetros de Diseño Teórico y Real del Filtro actual.

Para poder desarrollar de manera completa un diseño de filtro para una aplicación específica, se necesitan obtener datos de un prototipo construido de tal forma que reflejen los resultados obtenidos en dicho diseño teórico.

Como se dijo al inicio de esta investigación, el equipo de pruebas del Laboratorio de Calidad del Aire de la FIMCP fue construido para verificar experimentalmente las variables involucradas en el diseño teórico de un filtro tales como: caída de presión, caudal, concentración de partículas, masa, eficiencia de filtración, selección de válvulas, potencia del ventilador, etc. utilizando como contaminante polvo de cemento.

Dicho equipo fue dimensionado de tal forma que simule las condiciones en las cuales el filtro diseñado va a operar.

La Tabla I que se presenta a continuación, contiene los diversos parámetros que fueron empleados tanto en el diseño del filtro como en la elaboración del equipo de pruebas por parte del Ing. Peralta para la elaboración de su Tesis de Grado en el año 2001. Dichos parámetros servirán de referencia para el presente trabajo (9).

TABLA I

PARÁMETROS DE DISEÑO TEÓRICO Y REAL DEL FILTRO

ACTUAL

PARÁMETROS DE DISEÑO	TEÓRICO	REAL
Caudal (ft³/min)	3221	50
Concentración de entrada (gr/ft³)	0,50	0,35
Tipo de polvo	Cemento	Cemento
Velocidad de filtración (ft/min)	8,11	8,50
Área neta de filtración (ft²)	397,20	5,89
Área de cada manga (ft²)	5,89	5,89
Tipo de tela	Poliéster de 16 onzas	Poliéster de 16 onzas
Dimensión manga - canastilla	Ø=4,50 pulg L=60 pulg	Ø=4,50 pulg L=60 pulg
Número de mangas	68	1
Número de válvulas solenoides	7	1
Tipo de válvula	VXF2160 / 2V250 - 25AC 110V	2V-130-15AC110V
Presión del pulso (psi)	80	80
Tiempo de limpieza (ms)	250	250
Caída de presión total (Pulg H₂O)	3,00	2,92
Potencia del ventilador (Hp)	2,50	0,25
Eficiencia (%)	99	93

1.4. Combinaciones de la relación Tela - Contaminante.

Como se había mencionado anteriormente, se realizaron seis ensayos de filtración de aire que provienen de la combinación de emplear tres tipos de tela con dos tipos de polvo o contaminante.

A fin de destacar la importancia de estos elementos en los experimentos, se los presenta nuevamente a continuación:

Tipos de Contaminante:

- A. Cemento
- B. Harina de trigo

Tipos de tela:

- 1. Poliéster
- 2. Polipropileno
- 3. Homopolímero Acrílico

La secuencia u orden seguida en el uso de las seis combinaciones tela – contaminante para la realización de los ensayos fue la siguiente:

Combinación N°1: Cemento + Poliéster (A1)

Combinación N°2: Cemento + Polipropileno (A2)

Combinación N°3: Cemento + Homopolímero Acrílico (A3)

Combinación N°4: Harina de trigo + Poliéster (B1)

Combinación N°5: Harina de trigo + Polipropileno (B2)

Combinación N°6: Harina de trigo + Homopolímero Acrílico (B3)

CAPÍTULO 2

2. PARÁMETROS DE DISEÑO DE LOS FILTROS.

2.1. Velocidad de Filtración (Relación Gas - Tela).

La velocidad de filtración utilizada para obtener la caída de presión total se la conoce como la relación gas – tela, que se la define como la razón entre el gas filtrado de un metro cúbico por minuto y el medio filtrante de un metro cuadrado de área y se la expresa como:

$$V_f = rac{Q_{GAS}}{A_{NETA}}$$
 Ec. 2.1

Donde:

V_f = Velocidad de Filtración (Relación Gas – Tela)

Q_{GAS} = Caudal del gas con concentración de partículas

A_{NETA} = Área neta de tela de filtración

Esta relación es un factor importante en el diseño de casas de bolsas (baghouse), ya que determina la cantidad de área de tela necesaria para la filtración. Esta relación varía de acuerdo al tipo de limpieza que se aplique al equipo, que para el presente caso es pulse - jet.

La clave del diseño de una casa de bolsas pulse jet es determinar la relación gas – tela, es decir, obtener la velocidad de filtrado que produce el óptimo equilibrio entre la caída de presión (los costos de operación aumentan con el aumento de la caída de presión) y el tamaño del baghouse (costo importante que disminuye cuando se reduce el tamaño del baghouse) (5).

El tamaño del baghouse se reduce a medida que aumenta la velocidad de filtración, sin embargo, esta alta relación produce caídas de presión más altas que afectan su costo, pero es compensado con la reducción de tamaño, ventaja en la operación continua y evita la construcción de un compartimiento extra para la

limpieza "fuera de línea" como sucede con los otros sistemas de limpieza. Los principales factores que afectan la proporción gas – tela de diseño son los siguientes:

- Tipo de contaminante que se guiere filtrar
- Tipo de aplicación del filtro
- Temperatura del flujo de gas
- Concentración o carga contaminante en el aire

La proporción gas – tela es difícil de estimar al principio; sin embargo, existen dos métodos de dificultad creciente que permiten una evaluación rápida distinguiéndose a continuación:

Después de que un tejido se ha seleccionado, una relación gas

 tela inicial puede predecirse usando valores tabulados como
 se tiene en el Apéndice C (Tabla F) (5). Esta tabla está en función del polvo a filtrar y el sistema de limpieza; estos valores
 son todos proporciones netas igual a la relación de flujo total en pies cúbicos por minuto dividido para el área neta de tela en pies cuadrados (2).

Esta proporción, en unidades de pies por minuto, afecta la caída de presión y la vida de las mangas; el área neta de tela es determinada dividiendo el caudal de entrada o capacidad de

flujo filtrable en pies cúbicos reales por minuto para la relación gas – tela de diseño.

Los fabricantes han desarrollado ecuaciones y nomogramas que permiten obtener la relación gas – tela para baghouses pulse jet, en las cuales se relacionan la temperatura de operación, tamaño de la partícula, carga de polvo y aplicación, para lo cual se tiene la siguiente ecuación:

$$V_f = 2.878ABT^{-0.2335}C_e^{-0.06021}(0.7471 + 0.0853LnD_p)$$
 Ec. 2.2

Donde:

V_f = Relación gas – tela en ft/min

A = Factor de material, Apéndice C (Tabla E)

B = Factor de aplicación, Apéndice C, (Tabla E)

T = Temperatura de aplicación, entre 50 y 275°F

C_e = Carga de polvo a la entrada, entre 0.05 y 100gr/ft³

 D_p = Diámetro de partícula, entre 3 y 100 μ m

Para temperaturas por debajo de $50^{\circ}F$ se usa T=50 pero se tiene una exactitud disminuida; para temperaturas sobre los $275^{\circ}F$ se usa T=275; para masa de partículas de diámetros menores a $3\mu m$ se toma $D_p=0.8$ y para diámetros mayores a $100\mu m$ se toma $D_p=1.2$; con cargas de polvo menores a

 $0.05 gr/ft^3$ se usa C_e =0.05 y para cargas de polvo mayores a $100 gr/ft^3$ se toma C_e =100. La ecuación 2.2 se obtuvo de forma empírica, por lo tanto se deben respetar las unidades con las cuales se han originado, siendo estas la del sistema americano.

2.2. Caída de Presión.

La caída de presión total a través de una casa de bolsas, durante la operación de filtrado esta dada por la caída de presión a través de la tela, a través de la capa de polvo formado en las bolsas y a través de la estructura, que se la puede expresar como (3):

$$\Delta P = \Delta P_f + \Delta P_p + \Delta P_s$$
 Ec. 2.3

Donde:

 ΔP = Caída de presión total

ΔP_f = Caída de presión a través de la tela limpia

 ΔP_p = Caída de presión a través del pastel

ΔP_s = Caída de presión a través de la estructura

La caída de presión a través de la estructura se la considera despreciable.

Para reducir la caída de presión a un valor razonable es necesario limpiar periódicamente el filtro aplicando uno de los mecanismos de limpieza que se mencionarán más adelante. La caída de presión tanto para el filtro limpio como para la formación de la capa de polvo se la puede representar por medio de la ecuación de Darcy, aplicable para flujo de fluidos a través de medios porosos; en forma general (6):

$$\boxed{\frac{\Delta P}{X} = \frac{V * \mu_g}{K}}$$
 Ec. 2.4

Donde:

X = Profundidad del filtro o de la capa de polvo

K = Permeabilidad del filtro o de la capa de polvo

 μ_g = Viscosidad del gas

V = Velocidad superficial de filtración

La caída de presión total se la puede escribir en términos de la ecuación de Darcy como (6):

$$\Delta P = \frac{X_f * \mu_g * V}{K_f} + \frac{X_p * \mu_g * V}{K_p}$$
 Ec. 2.5

Donde los subíndices f y p indican la tela limpia y la capa de polvo respectivamente. La caída de presión de la tela limpia ΔP_f debe ser esencialmente constante, por tanto, la caída de presión total depende de la variación en la caída de presión de la capa de polvo según se vaya acumulando ésta sobre la tela; es decir, ΔP_p varía en función del espesor de la capa de polvo X_p , y ésta a su vez en función del tiempo de operación t.

El espesor de la capa de polvo crece a medida que transcurre el tiempo de operación, la masa de polvo acumulada en el tiempo t equivale al gasto volumétrico multiplicado por dicho tiempo y por la carga de polvo en la corriente de gas.

Sin embargo esta masa también equivale a la densidad de la capa sobre la superficie del filtro multiplicado por el volumen de la capa recolectada en el tiempo t (6). Igualando estas equivalencias se llega a la siguiente expresión:

Masa recolectad
$$a = (V * A) * (t) * C = \rho_L * (A * X_p)$$

Se tiene entonces una expresión para el incremento del espesor:

$$X_p = \frac{C * V * t}{\rho_L}$$
 Ec. 2.6

Donde:

C = Carga de polvo o concentración

V = Velocidad superficial de filtración

t = Tiempo de operación

 ρ_L = Densidad de la capa de polvo

Reemplazando la ecuación 2.6 en 2.5 y ordenando se obtiene (6):

$$\Delta P = \frac{X_f * \mu_g}{K_f} * V + \frac{\mu_g}{K_p * \rho_L} * (C * V * t) * V$$
 Ec. 2.7

La relación entre la caída de presión total y la velocidad superficial de filtración se conoce como el arrastre a través del filtro; dividiendo la ecuación anterior para la velocidad de filtración, se obtiene (3):

$$S = K_1 + K_2 W$$
 Ec. 2.8

Donde:

S = Arrastre del filtro (Pa-min / m)

$$K_1 = (X_f * \mu_g) / (60 * K_f)$$
 (Pa-min / m)

$$K_2 = \mu_g / (60 * K_p * \rho_L) (Pa-min-m / kg)$$

W = Densidad de área de polvo = $C * V * t (g/m^2)$

El modelo lineal presentado por la ecuación 2.8 es llamado también como modelo de arrastre del filtro, la evaluación de los parámetros K₁ y K₂, es inapropiado debido que no se puede obtener tan fácilmente los valores de permeabilidad de la capa de polvo como de la tela limpia.

Basado en pruebas dirigidas por Dennis y Frazier a varias velocidades de filtración, con diferentes tipos de polvo (polvos de ceniza volante, mica y talco) y diferentes distribuciones de medida de partículas (con el diámetro medio geométrico de masa entre 2.5 y 16μm), Davis desarrolló una ecuación empírica para la predicción de K₂ como sigue (16):

$$K_2 = \frac{0.00304}{(d_{g,masa})^{l.I}}$$
 Ec. 2.9

Donde:

 K_2 = Permeabilidad de la capa de polvo (cm H_2O / m/s- Kg/m^2)

d_{g,masa} = Diámetro medio geométrico de masa (m)

La ecuación está basada en una velocidad de filtración de 3ft/min (0.0152m/s), una densidad de partículas de 2.6g/cm^3 (2600Kg/m^3) y la viscosidad absoluta del gas a temperatura ambiente ($70^{\circ}\text{F}-21^{\circ}\text{C}$) μ_g =1.81x10⁻⁵Kg/m-s. La ecuación muestra que K₂ es inversamente proporcional al diámetro medio geométrico de masa. Encontraron que K₂ estaba también afectado por la velocidad del gas (16).

Dennis y Davis encontraron que K_2 era proporcional a la velocidad elevado a la 0.5 - 1.0 ($K_2 \propto V^x$). Este efecto de la velocidad es debido en parte a la influencia que la velocidad tiene sobre la densidad de empaquetamiento del polvo como es filtrado (16).

Basados en la ecuación 2.9 desarrollaron (tomando en consideración un efecto de velocidad asumida sobre K_2 con x=0.6, y los efectos teóricos de ρ_p y μ_g) la siguiente ecuación que provee un estimado de K_2 para otras condiciones (16):

$$K_2 = \frac{0.00304}{(d_{g,masa})^{1.1}} \left(\frac{\mu_g}{\mu_{g,70^\circ F}}\right) \left(\frac{2600}{\rho_p}\right) \left(\frac{V_f}{0.0152}\right)^{0.6}$$
 Ec. 2.10

Donde:

 K_2 = Permeabilidad de la capa de polvo (cm H_2O / m/s-Kg/m²)

d_{g,masa} = Diámetro medio geométrico de masa (m)

 μ_g = Viscosidad absoluta del gas a la temperatura de operación en °F (Kg/m-s)

 $\mu_{g,70^{\circ}F}$ = Viscosidad absoluta del gas a temperatura ambiente (70°F - 21°C) = 1.81x10⁻⁵ Kg/m-s

 ρ_p = Densidad de la partícula (Kg/m³)

V_f = Velocidad de filtración (m/s)

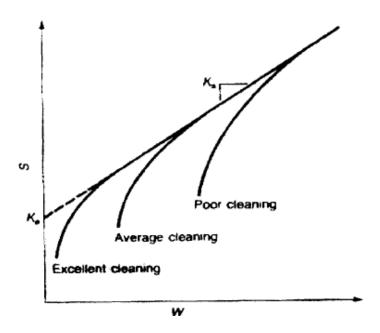
Esta ecuación, aunque está basada en datos limitados, provee una buena indicación del efecto relativo de los varios parámetros considerados. También se ha encontrado que K₂ es afectado por la humedad y carga electrostática, los cuales tienden a decrecer K₂ tanto como ellos son incrementados (16).

Por lo tanto, es recomendable, cuando sea posible, que K_2 sea determinado por ensayos en un banco de pruebas, ya que es una función de algunos parámetros los cuales pueden ser desconocidos.

Experimentalmente, para poder obtener el arrastre en el filtro se escribe la ecuación 2.8 como (3):

$$S = K_e + K_s W$$
 Ec. 2.11

Donde:


K_e = Valor extrapolado del filtro limpio

K_s = Pendiente, constante de las partículas de polvo, gas y tejido implicados en la filtración

Las constantes K_e y K_s son obtenidas empíricamente en un banco de pruebas durante "la prueba de filtración" en la cual se toman las caídas de presión para diferentes intervalos de tiempos de operación con una concentración determinada.

Cabe señalar que es muy difícil simular las condiciones reales de operación del filtro, por tanto, los resultados obtenidos en el banco de pruebas son algo diferentes de los valores medidos en el equipo ya construido (5).

La Figura 2.1 muestra la curva de funcionamiento típica de un filtro de mangas con el arrastre del filtro en función de la densidad de área de polvo:

Fuente [3]

Fig. 2.1 Curva típica de funcionamiento de un filtro de mangas para diferentes grados de limpieza.

Al inicio del proceso el flujo a través de la tela no es uniforme por lo cual la porción inicial de la curva no es lineal, en esta parte se forma el pastel de polvo de una forma irregular.

A medida que transcurre el tiempo de filtrado, el arrastre se incrementa linealmente al aumentar la densidad de área del polvo 'W' hasta el máximo arrastre permisible donde se inicia la limpieza de las manga en un tiempo muy corto para luego reiniciar la

filtración, completando así el ciclo general de filtrado; la parte lineal de la gráfica se la conoce como zona de filtración efectiva.

Un excelente filtrado se da cuando al inicio de la filtración se tiene el aumento de presión y por tanto el aumento del arrastre, el alejarse de este punto disminuye la capacidad de filtración del equipo dando una regular o pobre filtración (3).

Durante la operación de limpieza continua de las mangas en el filtro pulse - jet sólo un fragmento pequeño del polvo removido de la bolsa cae en la tolva de colección, el resto del polvo desalojado será redepositado en la bolsa por el flujo de gas que sigue ingresando al filtro. La capa de polvo redepositada tiene diferentes características de caída de presión que el polvo últimamente depositado (2), (5).

El trabajo modelado para enfocar la característica de limpieza continua (en línea) fue desarrollado por Dennis y Klemm que propusieron el modelo siguiente de arrastre para un filtro de mangas tipo pulse - jet (2), (5):

$$S = S_e + (K_2)_c W_c + K_2 W_o$$
 Ec. 2.12

Donde:

S = Arrastre del filtro

S_e = Arrastre del filtro limpio

(K₂)_C = Resistencia específica del polvo reciclado

W_c = Densidad de área de polvo reciclado

K₂ = Resistencia específica de polvo recientemente depositado

W_o = Densidad de área de polvo últimamente depositado

Este modelo es similar al modelo lineal de arrastre del filtro con la ventaja en que se pueden considerar fácilmente las tres fases de filtración que se dan en un baghouse pulse - jet, las cuales son: filtro limpio, polvo redepositado y polvo nuevo depositado; sin embargo, los valores de S_e, (K₂)_C y W_c pueden asumirse como constantes para poder agruparse como (2), (5):

$$\Delta P = (PE)_{\delta W} + K_2 W_o V_f$$
 Ec. 2.13

Donde:

ΔP = Caída de presión total

$$(PE)_{\delta W} = [S_e + (K_2)_C W_c] V_f$$

V_f = Velocidad de filtración

Esta ecuación describe el comportamiento de la caída de presión de una manga individual, pero determina también la caída de presión de la casa de bolsas debido que el arreglo de las mangas se encuentra en paralelo.

Es importante indicar que esta ecuación se la obtiene del concepto de arrastre aplicado a la filtración, pues se tiene que dicho arrastre es igual a la razón entre la caída de presión y la velocidad de filtración.

Parece razonable extender este análisis al caso cuando el polvo es irregularmente distribuido en la manga, entonces se aplica la ecuación 2.12 a cada área en la bolsa para computar el arrastre global de la misma; la dificultad siguiendo este procedimiento es que se debe asumir valores de W_c para cada área diferente a ser modelada.

La desventaja del modelo representada por las ecuaciones 2.12 y 2.13 es que las constantes S_e , $(K_2)_C$ y W_c , no pueden predecirse tan fácilmente, por consiguiente, correlaciones de datos de laboratorio se deben usar para determinar el valor de $(PE)_{\delta w}$ (5).

Para la combinación del polvo - tejido de Dacrón afelpado, Dennis y Klemm desarrollaron una relación empírica que involucra a (PE)_{8w}, con la relación gas - tela (velocidad de filtrado) y la presión de limpieza de pulso; esta relación (convertida de las unidades métricas a las inglesas) es como sigue (5):

$$(PE)_{\delta W} = 6.08 * V_f * P_j^{-0.65}$$
 Ec. 2.14

Donde:

V_f = Velocidad de filtración (ft/min)

P_i = Presión del pulso de limpieza (psi)

Esta ecuación es esencialmente un ajuste de la regresión para una cantidad limitada de datos de laboratorio y no debe ser aplicado a otras combinaciones de polvo - tejido (2); la presión de pulso que se utiliza en la limpieza normalmente se aplica entre 60 y 100psi.

Para el presente trabajo, debido a la falta de correlaciones experimentales en la literatura técnica, se utilizó la ecuación 2.14 en las seis combinaciones tela – contaminante para establecer el grado de error que se produciría por utilizar está fórmula empírica.

La caída de presión para las bolsas puede calcularse aplicando las ecuaciones 2.13 y 2.14 dadas anteriormente, si los valores de los varios parámetros relacionados son conocidos; frecuentemente estos no se conocen, pero una máxima caída de presión de 2 a 10 Pulg H₂O a través del baghouse y 10 a 20 Pulg H₂O a través del sistema completo puede asumirse si contiene muchos conductos de trabajo.

Aplicando las ecuaciones anteriores y dejando la caída de presión en función del tiempo de filtración se obtiene el comportamiento de un baghouse pulse - jet con la siguiente ecuación:

$$\Delta P = 6.08 * V_f * P_j^{-0.65} + K_2 * V_f^2 * C_e * t_f$$
 Ec. 2.15

Donde:

 ΔP = Caída de presión total del filtro (Pulg H₂O)

V_f = Velocidad de filtración (ft/min)

 K_2 = Coeficiente de resistencia específico del polvo (Pulg H_2O / ft/min-Lb/ft²)

C_e = concentración de polvo a la entrada del filtro (Lb/ft³)

t_f = tiempo de filtración (min)

Aunque hay mucha variabilidad, los valores de K_2 se encuentran desde 1.2 a 30 - 40 Pulg H_2O / ft/min-Lb/ft²; las concentraciones de entrada más comunes varían de menos de 0.05 a más de 100gr/ft^3 , sin embargo un rango casi típico es de aproximadamente 0.5 a 10gr/ft^3 (5).

Los tiempos de filtración pueden ir de aproximadamente 20 a 90 minutos para baghouses de funcionamiento continuo, pero se encuentran más frecuentemente de 30 a 60 minutos.

Debido a la construcción en plancha metálica para el baghouse, generalmente no satisface el servicio más severo por cuanto se tienen pequeñas fugas; sin embargo, para las aplicaciones especiales, puede construirse cáscaras de alta presión.

2.3. Características del Flujo de Gas.

La humedad y contenido de corrosividad son las mayores características del flujo de gas en las consideraciones de diseño requeridas; debe aislarse el baghouse y los ductos de trabajo asociados y posiblemente calentarlos si la condensación pudiera ocurrir; considerando los componentes de la tela deben

manipularse con cuidado y protegerlos ya que pueden rasgarse y dañarse.

Donde la corrosión estructural es probable, la substitución de acero puro por el acero blando puede requerirse, con tal de que los cloruros no estén presentes al usar el acero puro (serie 300), ya que la mayoría de los aceros austeníticos puros (stainless) son susceptibles a corrosión del cloruro.

2.4. Temperatura de Operación.

La temperatura del flujo y del contaminante deben permanecer por encima de su punto de rocío de cualquier flujo condensable; si la temperatura puede bajarse sin acercarse el punto del rocío, pueden usarse refrigeradores o aire de dilución para dejar caer la temperatura tal que la temperatura limite del tejido no sea excedida (5).

Sin embargo, el costo adicional de un pre-enfriador tendrá que ser comparado con el costo más alto de bolsas con resistencia a mayor temperatura. En el Apéndice B (Tablas B y C) se muestran dos tablas donde se listan algunos de los tejidos en uso actual y

proporciona información sobre límites de temperatura y de resistencia química.

2.5. Características de las Partículas.

La distribución del tamaño de partículas y la adhesividad son las propiedades de la partícula más importantes que afectan a los procedimientos de diseño (5). Los tamaños de la partícula más pequeños pueden formar un pastel más denso que aumenta la caída de presión, el efecto del tamaño de la partícula de promedio decreciente da una proporción de gas - tela aplicable más baja.

En partículas altamente adhesivas la filtración se produce más rápido, por ende se necesitan sistemas de limpieza de operación continua para evitar el aumento excesivo de la caída de presión.

CAPÍTULO 3

3. EVALUACIÓN DE LOS PARÁMETROS DE DISEÑO.

3.1. Diseño de los Filtros 1, 2 y 3 para el Contaminante A.

En esta primera parte se realizó el diseño del filtro considerando la combinación de los tres tipos de tela con el primer contaminante, en este caso cemento, donde se realizaron los cálculos para justificar el empleo de estos tres materiales como medio filtrante.

Posteriormente se realizó otro diseño siguiendo el mismo proceso de diseño considerando estos tres tipos de tela pero con el segundo contaminante que es harina de trigo.

Para poder realizar el diseño del filtro pulse – jet es necesario conocer las condiciones de entrada del flujo de aire que se va a filtrar como son caudal de entrada, concentración de partículas, temperatura del gas, diámetro de partícula representativo y el tipo de partículas que se va a colectar; estas condiciones están en función del lugar donde va a operar el filtro.

Debido que no se dispone de datos reales para hacer los diseños y luego ser corroborados por las pruebas experimentales, se tomaron los siguientes datos de entrada que son proporcionales a aquellos determinados en las pruebas realizadas en este proyecto.

Estas condiciones de entrada son las siguientes:

- Caudal de entrada = 50.00m³/min (1764.38ft³/min)
- Concentración de partículas = 1.60g/m³ (0.70gr/ft³)
- Temperatura del gas = 30°C (86°F)
- Diámetro de partícula = 11μm (9)
- Tipo de polvo = cemento

Se procede con las siguientes combinaciones Tipo de Tela –

Contaminante para el diseño de los filtros:

Combinación No 1: Cemento - Poliéster (A1)

Combinación No 2: Cemento - Polipropileno (A2)

Combinación No 3: Cemento - Homopolímero Acrílico (A3)

3.1.1. Determinación de la Velocidad de Filtración y Área

Neta de Tela.

Para poder determinar la capacidad de filtración del equipo es necesario calcular en primer lugar la velocidad de filtración.

Para ello se procede a calcular dicha velocidad aplicando la ecuación 2.2 de los fabricantes norteamericanos con los siguientes parámetros necesarios respetando su sistema de unidades ya que es obtenida de forma empírica:

A = 10 (cemento) Apéndice C, (Tabla E)

B = 0.9 (línea de transporte) Apéndice C, (Tabla E)

T = 86°F

 $C_e = 0.70 gr/ft^3$

 $D_p = 11 \mu m$

$$\begin{split} V_f &= 2.878ABT^{-0.2335}C_e^{-0.06021}(0.7471 + 0.0853LnD_p) \\ V_f &= 2.878x10x0.9x86^{-0.2335}0.70^{-0.06021}(0.7471 + 0.0853Ln11) \\ V_f &= 8.90\frac{ft}{min} \end{split}$$

Además esta velocidad se la puede seleccionar del Apéndice C (Tabla F), con respecto al tipo de polvo y sistema de limpieza a usarse; en este caso el polvo es cemento y se usa el sistema de limpieza pulse – jet, por tanto la velocidad de filtración que se puede utilizar es 8.00ft/min lo que corrobora el resultado anterior.

Se debe mencionar que la velocidad determinada con ambos métodos representa la máxima velocidad de filtración que podemos emplear en cualquier diseño de filtros cuando el polvo a emplear es cemento.

Tomando en consideración el párrafo anterior, se escogerá aproximadamente la mitad de la velocidad de filtración calculada, es decir, 4.40ft/min con los siguientes propósitos:

- Disminuir la potencia del ventilador de succión al haber una menor caída de presión, ya que la presión es directamente proporcional al cuadrado de la velocidad de filtración y,
- Tener un mayor número de mangas para que el flujo de aire se reparta proporcionalmente.

Por consiguiente, el área neta de filtración se la obtiene tomando la razón entre el caudal de entrada y la velocidad de filtración como sigue:

$$A_{NETA} = \frac{Q_e}{V_f}$$

$$A_{NETA} = \frac{1764.38 \frac{ft^3}{min}}{4.40 \frac{ft}{min}}$$

$$A_{NETA} = 401.00 ft^2$$

Esta área neta determina la capacidad efectiva de filtración y la cantidad de mangas que va a tener el filtro diseñado.

3.1.2. Selección del Medio Filtrante.

El conjunto manga – canastilla que se van a usar son del tipo cilíndricas debido a su mayor uso en el mercado; además la casa de bolsas se la considerará de forma cúbica debido al requerimiento de espacio.

La determinación del tipo de tela y su dimensión dependen de las características de operación y del sistema de limpieza que va a estar sometida y del proveedor o fabricante de quién se desee adquirir; se destacan a continuación las características que deben cumplir dichas telas:

Temperatura de operación = 30°C

Punto de rocío = 26°C

Característica del cemento = alcalino y abrasivo

Tipo de limpieza = pulse – jet

La tela debe ser del tipo fieltro debido al sistema de limpieza pulse – jet; y del Apéndice B (Tablas B, C y D) se aprecia que los tres tipos de tela escogidos son adecuados porque son de fibra sintética y cumplen las

condiciones de operación requeridas, además de no ser muy costosas.

Tomando en consideración este resultado, se contactó por Internet con la empresa argentina RM Seguridad Ambiental S.A. y luego de cotizar estas telas se procedió a la compra de las mismas (11).

Entre las características principales de estas mangas se menciona que son de tela punzonada, de 500g/m² de densidad superficial, con tratamiento anticolmatante, antiadherente y antiabrasión, con un diámetro Ø=150mm y una longitud L=1.50m, considerando la manga de forma cilíndrica (11).

Se debe mencionar que las características de las telas, establecidas en el Apéndice B (Tablas B, C y D) con los cuales se delineó el tipo de tela a emplear coinciden con las especificaciones técnicas suministradas por dicho proveedor, las cuales son favorables para los tipos de

47

polvos y método de limpieza a emplear. Ver el Apéndice

D (Tablas G, H e I).

A continuación se detalla el costo por manga ofrecido

por este proveedor a marzo de 2009 (11):

Poliéster: \$4.91

Polipropileno: \$6.05

• Homopolímero Acrílico: \$8.75

3.1.3. Determinación del Número de Mangas.

De acuerdo a las dimensiones de la manga

seleccionada se puede determinar el área total por

manga calculando el área superficial de un cilindro como

se muestra a continuación:

 \emptyset = 150mm = 0.15m

L = 1500mm = 1.50m

 $A_{_{MANGA}} = \pi DL$

 $A_{_{MANGA}} = \pi (0.15m)(1.50m)$

$$A_{\text{\tiny MANGA}} = 0.71 m^2$$

$$A_{_{MANGA}} = 7.64 ft^2$$

Una vez obtenida el área de la manga individual y el área neta de filtración se puede calcular el número real de mangas que va a operar dentro del baghouse como se indica a continuación:

$$N_{MANGAS} = \frac{A_{NETA}}{A_{MANGA}}$$

$$N_{MANGAS} = \frac{401.00 ft^2}{7.64 ft^2}$$

$$N_{MANGAS} = 53 mangas$$

Se considera que cada manga consta de su canastilla y venturi formando un conjunto llamado "manga – canastilla".

3.1.4. Análisis del Sistema de Limpieza Pulse – Jet (Selección de Válvulas).

Este sistema representa la principal característica y ventaja en el baghouse, ya que le proporciona la suficiente autonomía de funcionamiento al equipo.

Normalmente al producir el efecto "aspiradora" por parte del ventilador, son atraídas partículas al medio filtrante (textil), pero éste a su vez se satura produciendo la acumulación del polvo (cake), lo cual se traduce como caída de presión, por lo que es necesario un método cíclico y automático de limpieza de las bolsas.

Se recurre a seleccionar un sistema de control que permita manejar ciertas variables, de tal manera que actúe para condiciones estimadas de trabajo.

Es necesario como primer paso de diseño identificar las variables involucradas. Básicamente se debe controlar el tiempo de apertura de las válvulas solenoides y sus respectivos periodos de ejecución, por lo cual se deben

generar pulsos eléctricos que sean controlados por el PLC (7).

Elementos:

- 1. Actuador:
 - a. Válvula solenoide que produzca el pulso de aire comprimido.
- 2. Controlador: PLC que maneje
 - a. Tiempo de apertura de las válvulas.
 - b. Periodos de ejecución del pulso.
- 3. Transmisor:
 - a. Circuito eléctrico.
 - b. Circuito neumático.
- 4. Alimentación:
 - a. Eléctrica.
 - b. Neumática.
- 5. Sensor de presión:
 - a. Mide la caída de presión existente en el baghouse.

Opciones de Control:

a. Lazo Abierto:

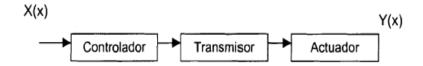


Fig. 3.1 Esquema de sistema de control de lazo abierto

Donde:

- X(x) es la función de entrada del sistema.
- Y(x) es la función de salida del sistema.

Las principales características en este caso son que solo se necesita de una calibración (fijar tiempos de apertura y periodos de la válvula) y su bajo costo para condiciones de operación relativamente estables.

b. Lazo Cerrado:

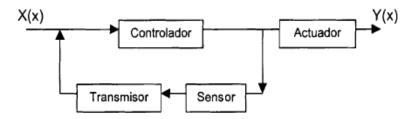


Fig. 3.2 Esquema de sistema de control de lazo cerrado

Para esta opción el sistema es retroalimentado, por la comparación de presiones que realiza el controlador (medido por un sensor).

Puesto que se necesita de un equipo adicional (medidor diferencial de presión) éste proporcionaría un costo mayor y cierta sensibilidad a los cambios, aunque como es lógico se garantizaría la eficiencia del proceso.

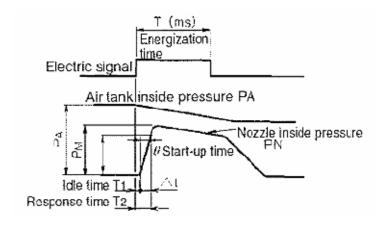
Dadas las condiciones de operación en el proceso industrial en el que el filtro de mangas va a trabajar, con caudales de flujo de aire sucio, temperaturas, propiedades físicas y químicas, y concentraciones relativamente constantes, se ha seleccionado el sistema de control de lazo abierto.

En el sistema de limpieza pulse – jet es necesario saber qué modelo de válvula solenoide es requerida, para ello los fabricantes de estos sistemas han desarrollado nomogramas que están en función del tiempo de apertura de la válvula (milisegundos), presión de

descarga de limpieza y número de mangas que van a ser limpiadas por cada válvula (número de orificios en tubo inyector), determinando el arreglo de mangas más adecuado que puede ser dispuesto en el filtro.

Se requiere las siguientes condiciones de funcionamiento:

- Presión de limpieza = 80psi (0.55MPa)
- Tiempo de apertura = 250ms
- Número de mangas = 53


Normalmente la selección de una válvula de control se basa en el criterio de la relación de flujo C_{ν} (caudal) que se necesita producir, pero en nuestro caso el principal requerimiento es generar un pulso de aire comprimido muy corto en duración (de 100 a 300ms).

Dado que se van a producir pérdidas y que se dispondría de un circuito de tuberías, es necesario conocer los tiempos de respuesta de las válvulas, con diferentes longitudes y cantidad de toberas por tubería.

En este caso se recurre a la selección de la válvula con ayuda de los diagramas A, B y C (ver el Apéndice H) pertenecientes a la marca SMC (12) y que se usarán con el criterio de que el tiempo de energización T_e debe ser mayor en por lo menos cinco veces el valor del diferencial de tiempo de respuesta del pulso ΔT (12).

$$T_e \ge 5\Delta T$$
 Ec. 3.1

Para lo cual se recurre a un tanque de compensación de presión previo, cuyo volumen se determinará también. Ver Figura 3.3.

Fuente [12]

Fig. 3.3 Proporciones de relación de presiones y tiempos de acción de la válvula solenoide.

Donde:

T_e = Tiempo de energización de válvula solenoide (ms)

P_a = Presión neumática de entrada al sistema en tanque de compensación (MPa)

P_m = Presión neumática en la válvula solenoide (MPa)

P_n = Presión neumática de salida en toberas (MPa)

 θ = Rapidez de acción del pulso (MPa/ms)

 T_1 = Tiempo de vacío (ms)

 T_2 = Tiempo de respuesta (ms)

 $\Delta T = T_2 - T_1$ = Diferencial de tiempo de respuesta del pulso

Criterios de diseño:

- $P_n = 80 \text{ psi} = 0.55 \text{MPa}$
- P_a se asume idealmente constante = 0.70MPa

Cabe indicar que los parámetros de trabajo se ajustaron para cumplir con los requerimientos de los diagramas. SMC estima la siguiente relación entre P_m y P_n (12):

$$P_n = 0.90 P_m$$
 Ec. 3.2

Despejando P_m se tiene:

$$P_{m} = \frac{1}{0.90} P_{n}$$

$$P_m = \frac{1}{0.90}(0.55)$$

$$P_m = 0.61MPa$$

Se ingresa al diagrama C observando que si se elige la válvula modelo VXF2150 con un tanque de compensación de 20 litros y para una longitud de tubería

de 1500mm se obtiene un θ =0.017MPa/ms y de la siguiente ecuación se despeja ΔT (ver el Apéndice H) (12):

$$\Theta = \frac{P_m * 0.90}{\Delta T}$$
 Ec. 3.3

Por lo que despejando ΔT se obtiene:

$$\Delta T = \frac{P_m * 0.90}{\Theta}$$

$$\Delta T = \frac{0.61*0.90}{0.017}$$

$$\Delta T = 32.29ms$$

Seguidamente del diagrama B se verifica que el valor de ΔT correspondiente al modelo de válvula seleccionada es aproximadamente igual y finalmente se calcula el tiempo de energización $T_e(12)$

$$T_e \geq 5 \Delta T$$

$$T_e \ge 5(32.29)$$

$$T_e \ge 162 ms$$

Por lo tanto, se encuentra que la válvula será accionada durante 162ms, para nuestro caso se elige 250ms para que las mangas tengan un mayor tiempo de limpieza.

Se selecciona el arreglo Ø6x6pcs que indica que cada válvula puede limpiar hasta 6 mangas en un pulso de aire teniendo las toberas un diámetro de orificio de salida de aire presurizado de 6mm. Por lo tanto se escoge 9 válvulas para limpiar las 53 mangas. Las primeras 8 válvulas limpiarán 6 mangas y la última 5 mangas.

Del diagrama A, para el modelo VXF2150 con tanque de compensación de 20Lt, T_e =250ms y Ø6x6pcs se obtiene un caudal aproximado de 6000Lt/min de aire requerido por válvula para limpiar las 6 mangas.

Se ha elegido el modelo de válvula VXF2150-06-1-G de SMC (ver el Apéndice H) que es la que permite un

manejo adecuado de presiones para nuestra aplicación,

ya que si fuera por ejemplo, un modelo superior, esta

manejaría caudales mayores, tuberías más pequeñas y

tanques de compensación más grandes, es decir, queda

a criterio del diseñador buscar el compromiso más

adecuado.

válvula siguientes La seleccionada tiene las

características principales:

Normalmente cerrada

Diámetro de orificio: 3/4pulg

Coeficiente de relación de flujo C_v: 9.5

Área efectiva de orificio: 170mm²

Mínima presión de operación permitida: 0.03MPa

Máxima presión de operación permitida: 1.00MPa

Mínima temperatura de operación permitida: -10°C

Peso: 0.53Kg

Alimentación eléctrica: 110V, AC, 60Hz

Para consultar características adicionales de la válvula

ver el Apéndice H.

Características complementarias del diseño:

Cantidad de válvulas: 9

Cantidad de tuberías: 9

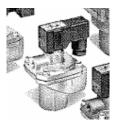
Cantidad de toberas por tubería: 6

Cantidad de mangas por tubería: 6

Diámetro de orificio de las toberas: 6mm

Longitud de cada tubería: 1.50m

Diámetro de la manga: 0.15m


Distancia libre entre mangas: 0.10m

 $L= 6 \times (0.15+0.10) = 1.50 \text{m}$

P_a: 0.70MPa.

P_m: 0.61MPa.

P_n: 0.55MPa.

Fuente [12]

Fig. 3.4 Válvula solenoide marca SMC modelo VXF2150-06-1-G.

3.1.5. Determinación de la Caída de Presión de Diseño.

Para poder establecer la caída de presión que se desarrollaría en el filtro es necesario asumir el tiempo de filtración y determinar el valor de K_2 con la ecuación 2.10. El rango típico de K_2 es de 1.2 – 30 o 40 Pulg H_2O / ft/min-Lb/ft². El cálculo de K_2 se muestra a continuación tomando en consideración los siguientes datos:

$$d_{q,masa} = 11 \mu m = 11x10^{-6} m (9)$$

$$\mu_{g,86^{\circ}F} = 1.90 \times 10^{-5} \text{ Kg / m-s (6)}$$

$$\mu_{g,70^{\circ}F} = 1.82 \times 10^{-5} \text{ Kg / m-s (6)}$$

$$\rho_p = 3500 \text{Kg/m}^3 (4)$$

$$V_f = 4.40 ft/min = 0.022 m/s$$

$$K_2 = \frac{0.00304}{(d_{g,masa})^{1.1}} \left(\frac{\mu_g}{\mu_{g,70^\circ F}}\right) \left(\frac{2600}{\rho_p}\right) \left(\frac{V_f}{0.0152}\right)^{0.6}$$

$$K_{2} = \frac{0.00304}{(11x10^{-6})^{1.1}} \left(\frac{1.90x10^{-5}}{1.82x10^{-5}}\right) \left(\frac{2600}{3500}\right) \left(\frac{0.022}{0.0152}\right)^{0.6}$$

$$K_2 = 846 cm H_2 O/m/s - Kg/m^2$$

$$K_2 = 1.40Pa - min - m/g$$

$$K_2 = 8.26 Pulg H_2 O / ft / min - Lb / ft^2$$

Se puede observar que el resultado calculado con la ecuación anterior se encuentra dentro del rango típico de valores de K_2 . La caída de presión de diseño calculada debe estar dentro del rango típico entre 2 y 10 Pulg H_2O .

Los parámetros para el cálculo de la caída de presión del filtro son los siguientes:

•
$$C_e = 1.61 \frac{g}{m^3} = 0.70 \frac{gr}{ft^3} = 1.01x10^{-4} \frac{Lb}{ft^3}$$

•
$$V_f = 4.40 \frac{ft}{min}$$

•
$$t_f = 30min$$
 (asumido)

• $P_j = 80 psi$ (de acuerdo a válvula seleccionada)

$$K_2 = 8.26 \frac{PulgH_2O}{\frac{ft}{min} \frac{Lb}{ft^2}}$$

Aplicando la ecuación 2.13 que combina el proceso de filtración con el proceso de limpieza se tiene la siguiente caída de presión:

$$\begin{split} & \varDelta P = 6.08 * V_f * P_j^{-0.65} + K_2 * V_f^2 * C_e * t_f \\ & \varDelta P = 6.08 * 4.40 * 80^{-0.65} + 8.26 * 4.40^2 * 1.01 x 10^{-4} * 30 \\ & \varDelta P = 2.03 Pulg \ H_2 O \end{split}$$

Se aprecia que el resultado calculado con la ecuación anterior se encuentra dentro del rango típico de caída de presión, a pesar de la asunción del tiempo de filtración. Dicho valor será corroborado en las pruebas experimentales.

3.1.6. Determinación de la Potencia del Ventilador.

Para la generación del caudal que ingresa al filtro y por lo tanto para la filtración, se selecciona el sistema de succión o de presión negativa que consta de un ventilador debiendo cumplir las siguientes características:

- Ventilador de succión
- Tipo centrífugo
- Aletas curvadas hacia atrás, de alta eficiencia (n=0.70)

 Operar en la zona de aire limpio para no sufrir abrasión

La potencia de consumo adecuada que necesita el ventilador depende de la resistencia que debe vencer por la caída de presión y del caudal que debe generar. Dicha potencia será calculada de acuerdo a la siguiente ecuación:

$$Pot = \frac{Q_e * \Delta P}{6356 * \eta}$$
 Ec. 3.4

Donde:

Pot = Potencia del ventilador (Hp)

Q_e = Caudal de entrada (ft³/min)

 ΔP = Caída de Presión (Pulg H₂O)

 η = Eficiencia del ventilador

Aplicando dicha ecuación se tiene:

$$Pot = \frac{1764.38 * 2.51}{6356 * 0.70} = 1.00 Hp$$

$$Pot = 1.00 Hp*(FS = 1.30)$$

$$Pot = 1.30Hp$$

3.1.7. Tabulación de resultados.

Los resultados de los filtros diseñados de acuerdo a las condiciones expuestas anteriormente se los ha tabulado en la Tabla II como se muestra a continuación:

TABLA II

CARACTERÍSTICAS DE DISEÑO DE LOS FILTROS

PARA CEMENTO

Caudal (ft³/min)	1764.38
Concentración de entrada (gr/ft³)	0,70
Tipo de polvo	Cemento
Velocidad de filtración (ft/min)	4,40
Área neta de filtración (ft²)	401.00
Área de cada manga (ft²)	7.64
Tipos de tela	Poliéster Polipropileno Homopolímero Acrílico
Dimensión manga - canastilla	Ø=150mm L=1500mm
Número de mangas	53
Número de válvulas solenoides	9
Tipo de válvula	VXF2150-06-1-G
Presión de pulso (psi)	80
Tiempo de limpieza (ms)	250
Caída de presión total (Pulg H₂O)	2,03
Potencia del ventilador (Hp)	1.30

3.2. Diseño de los Filtros 1, 2 y 3 para el Contaminante B.

En esta segunda parte se realizó el diseño de filtro considerando la combinación de los mismos tres tipos de tela con el segundo contaminante, que en este caso es harina de trigo, donde se realizaron los cálculos necesarios para justificar el empleo de estos tres materiales como medio filtrante.

Debido que no se dispone de datos reales para hacer los diseños y luego ser corroborados por las pruebas experimentales, se tomaron los siguientes datos de entrada que son proporcionales a aquellos determinados en las pruebas realizadas en este proyecto.

Estas condiciones de entrada son las siguientes:

- Caudal de entrada = 36.00m³/min (1270.35ft³/min)
- Concentración de partículas = 6.32g/m³ (2.76gr/ft³)
- Temperatura del gas = 30°C (86°F)
- Diámetro de partícula = 75μm (1)
- Tipo de polvo = harina de trigo

Se procede con las siguientes combinaciones Tipo de Tela –

Contaminante para el diseño de los filtros:

Combinación No 1: Harina de trigo - Poliéster (B1)

Combinación No 2: Harina de trigo - Polipropileno (B2)

Combinación No 3: Harina de trigo - Homopolímero Acrílico (B3)

3.2.1. Determinación de la Velocidad de Filtración y Área Neta de Tela.

Para poder determinar la capacidad de filtración del equipo es necesario calcular en primer lugar la velocidad de filtración. Para ello se procede a calcular dicha velocidad aplicando la ecuación 2.2 de los fabricantes norteamericanos con los siguientes parámetros necesarios respetando su sistema de unidades ya que es obtenida de forma empírica:

A = 15 (harina de trigo) Apéndice C, (Tabla E)

B = 0.9 (línea de transporte) Apéndice C, (Tabla E)

T = 86°F

 $C_e = 2.76 gr/ft^3$

 $D_{p} = 75 \mu m$

$$\begin{split} V_f &= 2.878ABT^{-0.2335}C_e^{-0.06021}(0.7471 + 0.0853LnD_p) \\ V_f &= 2.878x10x0.9x86^{-0.2335}2.76^{-0.06021}(0.7471 + 0.0853Ln75) \\ V_f &= 14.41\frac{ft}{min} \end{split}$$

Además esta velocidad se la puede seleccionar del Apéndice C (Tabla F), con respecto al tipo de polvo y sistema de limpieza a usarse; en este caso el polvo es harina de trigo y se usa el sistema de limpieza pulse – jet, por tanto la velocidad de filtración que se puede utilizar es 12.00ft/min que corrobora el resultado anterior.

Se debe mencionar que la velocidad determinada con ambos métodos representa la máxima velocidad de filtración que podemos emplear en cualquier diseño de filtros cuando el polvo a emplear es harina de trigo.

Tomando en consideración el párrafo anterior, se escogerá aproximadamente un tercio de la velocidad de

filtración calculada, es decir, 4.40ft/min con los siguientes propósitos:

- Disminuir la potencia del ventilador de succión al haber una menor caída de presión, ya que la presión es directamente proporcional al cuadrado de la velocidad de filtración y,
- Tener un mayor número de mangas para que el flujo se reparta proporcionalmente.

Por consiguiente, el área neta de filtración se la obtiene tomando la razón entre el caudal de entrada y la velocidad de filtración como sigue:

$$A_{NETA} = \frac{Q_e}{V_f}$$

$$A_{NETA} = \frac{1270.35 \frac{ft^3}{min}}{4.40 \frac{ft}{min}}$$

$$A_{NETA} = 288.72 ft^2$$

Esta área neta determina la capacidad efectiva de filtración y la cantidad de mangas que va a tener el filtro diseñado.

3.2.2. Selección del Medio Filtrante.

El conjunto manga – canastilla que se van a usar son del tipo cilíndricas debido a su mayor uso en el mercado; además la casa de bolsas se la considerará de forma cúbica debido al requerimiento de espacio.

La determinación del tipo de tela y su dimensión dependen de las características de operación y del sistema de limpieza que va a estar sometida y del proveedor o fabricante de quién se desee adquirir; se destacan a continuación las características que deben cumplir dichas telas:

Temperatura de operación = 30°C

Punto de rocío = 26°C

Característica de la harina = alcalino y abrasivo

Tipo de limpieza = pulse – jet

La tela debe ser del tipo fieltro debido al sistema de limpieza pulse – jet; y del Apéndice B (Tablas B, C y D) se aprecia que los tres tipos de tela escogidos son adecuados porque son de fibra sintética y cumplen las condiciones de operación requeridas, además de no ser muy costosas.

Tomando en consideración este resultado, se contactó por Internet con la empresa argentina RM Seguridad Ambiental S.A. y luego de cotizar estas telas se procedió a la compra de las mismas.

Entre las características principales de estas mangas se menciona que son de tela punzonada, de 500g/m² de densidad superficial, con tratamiento anticolmatante, antiadherente y antiabrasión, con un diámetro Ø=150mm y una longitud L=1.50m, considerando la manga de forma cilíndrica (11).

Se debe mencionar que las características de las telas, establecidas en el Apéndice B (Tablas B, C y D) con los

73

cuales se delineó el tipo de tela a emplear coinciden con

las especificaciones técnicas suministradas por dicho

proveedor, las cuales son favorables para los tipos de

polvos y método de limpieza a emplear. Ver el Apéndice

D (Tablas G, H e I).

A continuación se detalla el costo por manga ofrecido

por este proveedor a marzo de 2009 (11):

Poliéster: \$4.91

Polipropileno: \$6.05

• Homopolímero Acrílico: \$8.75

3.2.3. Determinación del Número de Mangas.

De acuerdo a las dimensiones de la manga

seleccionada se puede determinar el área total por

manga calculando el área superficial de un cilindro como

se muestra a continuación:

 \emptyset = 150mm = 0.15m

L = 1500 mm = 1.50 m

$$A_{MANGA} = \pi DL$$

$$A_{MANGA} = \pi (0.15m)(1.50m)$$

$$A_{MANGA} = 0.71m^{2}$$

$$A_{MANGA} = 7.64ft^{2}$$

Una vez obtenida el área de la manga individual y el área neta de filtración se puede calcular el número real de mangas que va a operar dentro del baghouse como se indica a continuación:

$$N_{MANGAS} = \frac{A_{NETA}}{A_{MANGA}}$$

$$N_{MANGAS} = \frac{288.72 ft^2}{7.64 ft^2}$$

$$N_{MANGAS} = 38 mangas$$

Se considera que cada manga consta de su canastilla y venturi formando un conjunto llamado "manga – canastilla".

3.2.4. Análisis del Sistema de Limpieza Pulse – Jet (Selección de Válvulas).

Este sistema representa la principal característica y ventaja en el baghouse, ya que le proporciona la suficiente autonomía de funcionamiento al equipo.

Normalmente al producir el efecto "aspiradora" por parte del ventilador, son atraídas partículas al medio filtrante (textil), pero éste a su vez se satura produciendo la acumulación del polvo (cake), lo cual se traduce como caída de presión, por lo que es necesario un método cíclico y automático de limpieza de las bolsas.

Se recurre a seleccionar un sistema de control que permita manejar ciertas variables, de tal manera que actúe para condiciones estimadas de trabajo.

Es necesario como primer paso de diseño identificar las variables involucradas. Básicamente se debe controlar el tiempo de apertura de las válvulas solenoides y sus respectivos periodos de ejecución, por lo cual se deben

generar pulsos eléctricos que sean controlados por el PLC (7).

Elementos:

- 1. Actuador:
 - a. Válvula solenoide que produzca el pulso de aire comprimido
- 2. Controlador: PLC que maneje
 - b. Tiempo de apertura de las válvulas
 - c. Periodos de ejecución del pulso
- 3. Transmisor:
 - d. Circuito eléctrico
 - e. Circuito neumático
- 4. Alimentación:
 - f. Eléctrica
 - g. Neumática
- 5. Sensor de presión:
 - h. Mide la caída de presión existente en el baghouse

Opciones de Control:

c. Lazo Abierto:

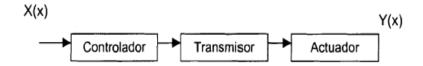


Fig. 3.5 Esquema de sistema de control de lazo abierto

Donde:

- X(x) es la función de entrada del sistema
- Y(x) es la función de salida del sistema

Las principales características en este caso son que solo se necesita de una calibración (fijar tiempos de apertura y periodos de la válvula) y su bajo costo para condiciones de operación relativamente estables.

d. Lazo Cerrado:

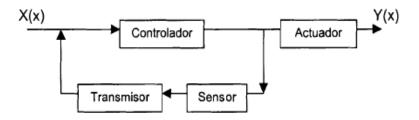


Fig. 3.6 Esquema de sistema de control de lazo cerrado

Para esta opción el sistema es retroalimentado, por la comparación de presiones que realiza el controlador (medido por un sensor).

Puesto que se necesita de un equipo adicional (medidor diferencial de presión) éste proporcionaría un costo mayor y cierta sensibilidad a los cambios, aunque como es lógico se garantizaría la eficiencia del proceso.

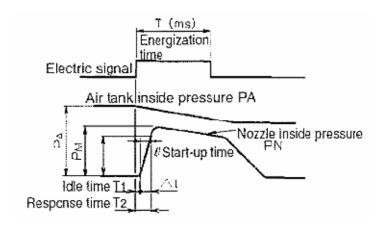
Dadas las condiciones de operación en el proceso industrial en el que el filtro de mangas va a trabajar, con caudales de flujo de aire sucio, temperaturas, propiedades físicas y químicas, y concentraciones relativamente constantes, se ha seleccionado el sistema de control de lazo abierto.

En el sistema de limpieza pulse – jet es necesario saber qué modelo de válvula solenoide es requerida, para ello los fabricantes de estos sistemas han desarrollado nomogramas que están en función del tiempo de apertura de la válvula (milisegundos), presión de

descarga de limpieza y número de mangas que van a ser limpiadas por cada válvula (número de orificios en tubo inyector), determinando el arreglo de mangas más adecuado que puede ser dispuesto en el filtro.

Se requiere las siguientes condiciones de funcionamiento:

- Presión de limpieza = 80psi (0.55MPa)
- Tiempo de apertura = 250ms
- Número de mangas = 38


Normalmente la selección de una válvula de control se basa en el criterio de la relación de flujo C_{ν} (caudal) que se necesita producir, pero en este caso el principal requerimiento es generar un pulso de aire comprimido muy corto en duración (de 100 a 300ms).

Dado que se van a producir pérdidas y que se dispondría de un circuito de tuberías, es necesario conocer los tiempos de respuesta de las válvulas, con diferentes longitudes y cantidad de toberas por tubería.

En este caso se recurre a la selección de la válvula con ayuda de los diagramas A, B y C (Apéndice H) pertenecientes a la marca SMC (12) y que se usarán con el criterio de que el tiempo de energización Te debe ser mayor en por lo menos cinco veces el valor del diferencial de tiempo de respuesta del pulso ΔT (12).

$$T_e \ge 5\Delta T$$
 Ec. 3.5

Para lo cual se recurre a un tanque de compensación de presión previo, cuyo volumen se determinará también. Ver Figura 3.7.

Fuente [12]

Fig. 3.7 Proporciones de relación de presiones y tiempos de acción de la válvula solenoide.

Donde:

T_e = Tiempo de energización de válvula solenoide (ms)

P_a = Presión neumática de entrada al sistema en tanque de compensación (MPa)

P_m = Presión neumática en la válvula solenoide (MPa)

P_n = Presión neumática de salida en toberas (MPa)

 θ = Rapidez de acción del pulso (MPa/ms)

 T_1 = Tiempo de vacío (ms)

 T_2 = Tiempo de respuesta (ms)

 $\Delta T = T_2 - T_1$ = Diferencial de tiempo de respuesta del pulso

Criterios de diseño:

- $P_n = 80psi = 0.55MPa$
- P_a se asume idealmente constante = 0.70MPa

Cabe indicar que los parámetros de trabajo se ajustaron para cumplir con los requerimientos de los diagramas. SMC estima la siguiente relación entre P_m y P_n (12):

$$P_n = 0.90 P_m$$
 Ec. 3.6

Despejando P_m se tiene:

$$P_m = \frac{1}{0.90} P_n$$

$$P_m = \frac{1}{0.90}(0.55)$$

$$P_m = 0.61MPa$$

Se ingresa al diagrama C observando que si se elige la válvula modelo VXF2150 con un tanque de compensación de 20 litros y para una longitud de tubería de 1500mm se obtiene un θ =0.017MPa/ms y de la siguiente ecuación se despeja ΔT (ver el Apéndice H) (12):

$$\Theta = \frac{P_m * 0.90}{\Delta T}$$
 Ec. 3.7

Por lo que despejando ΔT se obtiene:

$$\Delta T = \frac{P_m * 0.90}{\Theta}$$

$$\Delta T = \frac{0.61*0.90}{0.017}$$

$$\Delta T = 32.29ms$$

Seguidamente del diagrama B se verifica que el valor de ΔT correspondiente al modelo de válvula seleccionada es aproximadamente igual y finalmente se calcula el tiempo de energización T_e (12):

$$T_e \ge 5\Delta T$$

$$T_e \ge 5(32.29)$$

$$T_e \ge 162 ms$$

Por lo tanto, se encuentra que la válvula será accionada durante 162ms, para nuestro caso se elige 250ms para que las mangas tengan un mayor tiempo de limpieza.

Se selecciona el arreglo Ø6x6pcs que indica que cada válvula puede limpiar hasta 6 mangas en un pulso de aire teniendo las toberas un diámetro de orificio de

salida de aire presurizado de 6mm. Por lo tanto se escoge 8 válvulas para limpiar las 38 mangas. Las primeras 7 válvulas limpiarán 5 mangas y la última 3 mangas.

Del diagrama A, para el modelo VXF2150 con tanque de compensación de 20Lt, T_e =250ms y Ø6x6pcs se obtiene un caudal aproximado de 6000Lt/min de aire requerido por válvula para limpiar las 5 mangas.

Se eligió el modelo de válvula VXF2150-06-1-G de SMC (ver Apéndice H) que es la que permite un manejo adecuado de presiones para nuestra aplicación, ya que si fuera por ejemplo, un modelo superior, esta manejaría caudales mayores, tuberías más pequeñas y tanques de compensación más grandes, es decir, queda a criterio del diseñador buscar el compromiso más adecuado.

La válvula seleccionada tiene las siguientes características principales:

Normalmente cerrada

• Diámetro de orificio: 3/4pulg

• Coeficiente de relación de flujo C_v: 9.5

• Área efectiva de orificio: 170mm²

• Mínima presión de operación permitida: 0.03MPa

• Máxima presión de operación permitida: 1.00MPa

• Mínima temperatura de operación permitida: -10°C

Peso: 0.53Kg

• Alimentación eléctrica: 110V, AC, 60Hz

Para consultar características adicionales de la válvula ver el Apéndice H.

Características complementarias del diseño:

Cantidad de válvulas: 8

Cantidad de tuberías: 8

Cantidad de toberas por tubería: 5

Cantidad de mangas por tubería: 5

Diámetro de orificio de las toberas: 6mm

Longitud de cada tubería: 1.50m

Diámetro de la manga: 0.15m

Distancia libre entre mangas: 0.10m

L=
$$5 \times (0.15+0.10) = 1.25 \text{m} \Rightarrow 1.50 \text{m}$$

P_a: 0.70MPa

P_m: 0.61MPa

P_n: 0.55MPa

Fuente [12]

Fig. 3.8 Válvula solenoide marca SMC modelo VXF2150-06-1-G.

3.2.5. Determinación de la Caída de Presión de Diseño.

Para poder establecer la caída de presión que se desarrollaría en el filtro es necesario asumir el tiempo de filtración y determinar el valor de K_2 con la ecuación 2.10. El rango típico de K_2 es de 1.2 – 30 o 40 Pulg H_2O /ft/min-Lb/ft². El cálculo de K_2 se muestra a continuación:

$$d_{g,masa} = 75 \mu m = 75x10^{-6} m (1)$$

$$\mu_{g,86^{\circ}F}$$
 = 1.90x10⁻⁵ Kg / m-s (6)

$$\mu_{q,70^{\circ}F} = 1.82 \times 10^{-5} \text{ Kg / m-s (6)}$$

$$\rho_p$$
 = 1500Kg/m³ (1)

$$V_f = 4.40 ft/min = 0.022 m/s$$

$$K_{2} = \frac{0.00304}{(d_{g,masa})^{1.1}} \left(\frac{\mu_{g}}{\mu_{g,70^{\circ}F}}\right) \left(\frac{2600}{\rho_{p}}\right) \left(\frac{V_{f}}{0.0152}\right)^{0.6}$$

$$K_{2} = \frac{0.00304}{(75x10^{-6})^{1.1}} \left(\frac{1.90x10^{-5}}{1.82x10^{-5}}\right) \left(\frac{2600}{1500}\right) \left(\frac{0.022}{0.0152}\right)^{0.6}$$

$$K_{2} = 242cmH_{2}O/m/s - Kg/m^{2}$$

$$K_{2} = 0.40Pa - min - m/g$$

$$K_{2} = 2.36Pulg H_{2}O/ft/min - Lb/ft^{2}$$

Se puede observar que el resultado calculado con la ecuación anterior se encuentra dentro del rango típico de valores de K_2 .

La caída de presión de diseño calculada debe estar dentro del rango típico entre 2 y 10 Pulg H₂O.

Los parámetros para el cálculo de la caída de presión del filtro son los siguientes:

•
$$C_e = 2.76 \frac{gr}{ft^3} = 3.94x10^{-4} \frac{Lb}{ft^3}$$

•
$$V_f = 4.40 \frac{ft}{min}$$

- $t_f = 30min$ (asumido)
- $P_{j} = 80psi$ (de acuerdo a válvula seleccionada)

$$K_2 = 2.36 \frac{PulgH_2O}{\frac{ft}{min} \frac{Lb}{ft^2}}$$

Aplicando la ecuación 2.13 que combina el proceso de filtración con el proceso de limpieza se tiene la siguiente caída de presión:

$$\begin{split} & \Delta P = 6.08*V_f*P_j^{-0.65} + K_2*V_f^2*C_e*t_f \\ & \Delta P = 6.08*4.40*80^{-0.65} + 2.36*4.40^2*3.94x10^{-4}*30 \\ & \Delta P = 2.09PulgH_2O \end{split}$$

Se aprecia que el resultado calculado con la ecuación anterior se encuentra dentro del rango típico de caída de presión, a pesar de la asunción del tiempo de filtración.

Dicho valor será corroborado en las pruebas experimentales.

3.2.6. Determinación de la Potencia del Ventilador.

Para la generación del caudal que ingresa al filtro y por lo tanto para la filtración, se selecciona el sistema de succión o de presión negativa que consta de un ventilador debiendo cumplir las siguientes características:

- Ventilador de succión
- Tipo centrífugo
- Aletas curvadas hacia atrás, de alta eficiencia (n=0.70)
- Operar en la zona de aire limpio para no sufrir abrasión

La potencia de consumo adecuada que necesita el ventilador depende de la resistencia que debe vencer por la caída de presión y del caudal que debe generar. Dicha potencia será calculada de acuerdo a la siguiente ecuación:

$$Pot = \frac{Q_e * \Delta P}{6356 * \eta}$$
 Ec. 3.8

Donde:

Pot = Potencia del ventilador (Hp)

Q_e = Caudal de entrada (ft³/min)

 ΔP = Caída de Presión (Pulg H₂O)

 η = Eficiencia del ventilador

Aplicando la ecuación 3.6 se tiene:

$$Pot = \frac{1270.35 * 2.63}{6356 * 0.70} = 0.75 Hp$$

$$Pot = 0.75 Hp*(FS = 1.30)$$

$$Pot = 1.00Hp$$

3.2.7. Tabulación de resultados.

Los resultados de los filtros diseñados de acuerdo a las condiciones expuestas anteriormente se los ha tabulado en la Tabla III como se muestra a continuación:

TABLA III

CARACTERÍSTICAS DE DISEÑO DE LOS FILTROS

PARA HARINA

Caudal (ft³/min)	1270.35	
Concentración de entrada (gr/ft³)	2.76	
Tipo de polvo	Harina de trigo	
Velocidad de filtración (ft/min)	4.40	
Área neta de filtración (ft²)	288.72	
Área de cada manga (ft²)	7.64	
Tipos de tela	Poliéster Polipropileno Homopolímero acrílico	
Dimensión manga - canastilla	Ø=150mm L=1500mm	
Número de mangas	38	
Número de válvulas solenoides	8	
Tipo de válvula	VXF2150-06-1-G	
Presión de pulso (psi)	80	
Tiempo de limpieza (ms)	250	
Caída de presión total (Pulg H₂O)	2.09	
Potencia del ventilador (Hp)	1.00	

CAPÍTULO 4

4. ANÁLISIS EXPERIMENTAL DE LOS FILTROS.

4.1. Análisis Experimental de los Filtros 1, 2 y 3 para el Contaminante A.

Para poder desarrollar un diseño de filtro más específico se necesitan obtener datos de un equipo experimental construido de tal forma que reflejen los resultados del diseño calculado. El alcance que lleva la construcción de este equipo es para obtener de forma experimental:

- 1. La prueba de filtración, es decir la obtención de $K_{e}\ y\ K_{s}.$
- 2. Eficiencia de colección global.
- Eficiencia de recolección promedio en tolva para un tiempo de operación determinado.

- 4. Tiempo de operación del ciclo de filtrado y limpieza.
- Comprobación visual del comportamiento de las partículas durante la operación del filtro.

Al obtener los valores experimentales de las constantes K_e y K_s , y del tiempo óptimo de filtrado se puede calcular la caída de presión real que se produce en el filtro diseñado; además las eficiencias obtenidas en el equipo, tanto de recolección en la tolva como de colección global reflejan los resultados que se obtendrían en el filtro ya construido.

4.1.1. Similitud Dimensional del Filtro Prototipo con el Filtro Real (Caudal y Caída de Presión)

Para evaluar el equipo se utiliza una combinación manga - canastilla de las mismas características utilizadas en el filtro real, es decir:

- Tipos de tela:
 - o Poliéster
 - o Polipropileno
 - Homopolímero Acrílico
- Dimensiones de la manga canastilla:

o
$$L = 1.50m, Ø = 150mm$$

El caudal que se requiere en el equipo es la razón entre el caudal total de diseño y el número de mangas calculadas; con respecto a la caída de presión total de diseño, esta es la misma para el prototipo ya que el arreglo de las mangas en el filtro real se encuentra en paralelo como se describió anteriormente, por tanto se obtiene el caudal por manga de diseño como sigue:

$$Q_e = \frac{Q_D}{N_{MANGAS}}$$

$$Q_e = \frac{1764.38 \frac{ft^3}{min}}{53}$$

$$Q_e = 33.29 \frac{ft^3}{min}$$

$$Q_e = 0.94 \frac{m^3}{min}$$

El uso en el prototipo de la misma combinación manga – canastilla del equipo real, el caudal obtenido por cada

manga para el prototipo y la caída de presión total igual tanto para el prototipo como para el filtro real, son las características que aseguran la similitud entre el prototipo y el equipo real.

El sistema de limpieza pulse - jet para el equipo consta de una válvula solenoide de 2 vías con tamaño de orificio de 1/2pulg marca Airtac modelo 2V-250-25 (ver especificaciones técnicas en el Apéndice I); dicha válvula es controlada por el PLC que regula el tiempo de apertura o de limpieza y el tiempo de filtración.

La presión del pulso de limpieza es de 80 psi siendo la misma presión de pulso de diseño suministrada por un compresor de aire.

El ventilador de succión se encuentra en la zona de aire limpio, es de tipo centrífugo, con un motor eléctrico de 1/4Hp que se enciende a través del PLC al dar la orden de inicio de secuencia de filtración.

Los dos ventiladores pequeños de 120x120mm están ubicados dentro del tanque de agitación y mezcla, uno está fijo en la parte superior del tanque y el otro móvil en la parte inferior del mismo y que está en contacto directo con el polvo depositado; dicho ventilador es movido manualmente por dos cables conectados uno en cada extremo del ventilador; éste se encargará de generar el polvo para favorecer la homogeneidad de la mezcla con el aire. Estos ventiladores también son controlados por el PLC.

4.1.2. Datos y Resultados Obtenidos en la Prueba Experimental.

El desarrollo experimental que se ha elaborado debe seguir un orden establecido para una mejor obtención de datos y resultados, así primeramente se procede a obtener el caudal que el ventilador genera sin resistencia de polvo, luego se mide la concentración de polvo de cemento a la entrada del filtro prototipo, sabiendo dicha concentración se procede a realizar la prueba de filtración para determinar las constantes K_e y K_s importantes en el análisis de filtración.

Posteriormente se determina la eficiencia promedio de recolección en la tolva y por ende el tiempo óptimo de filtración; siguiendo, se calcula la caída de presión real con los resultados experimentales y se compara con el resultado calculado de forma teórica.

Finalmente se calcula la eficiencia global de colección del filtro midiendo la concentración de polvo a la salida del mismo y se realiza una inspección visual del comportamiento de la combinación flujo de aire y polvo en el proceso de filtración y limpieza.

4.1.2.1. Obtención del Caudal.

Para determinar el caudal de entrada al filtro que genera el ventilador se realiza la medición de velocidad promedio del flujo.

Para ello la sección transversal de la tubería circular de entrada es dividida en varias circunferencias concéntricas para realizar la medición de velocidad en cada una de ellas

utilizando el velómetro marca Alnor Serie 6000 que se lo introduce al interior de la tubería por un orificio el cual se encuentra ubicado en el centro de la longitud de la tubería, posteriormente se calcula la velocidad promedio de acuerdo al número de mediciones que en este caso son cinco.

El caudal es igual a la velocidad promedio por el área de la sección transversal la misma que es una circunferencia de diámetro Ø=105mm.

Cabe recalcar que al tomar las mediciones de velocidad se encuentra colocada la manga y no está pasando polvo por el interior del filtro debido a que el velómetro no realiza mediciones en aire sucio, por consiguiente, el caudal generado por el ventilador no tiene resistencia de polvo.

Las mediciones y la velocidad promedio se muestran a continuación en la Tabla IV:

TABLA IV

MEDICIONES DE VELOCIDAD DEL

VENTILADOR DE SUCCIÓN A LA ENTRADA

DEL FILTRO PARA CEMENTO

TOMAS	VELOCIDAD
N°	EN LA ENTRADA
-	ft/min
1	320
2	320
3	350
4	380
5	380
PROMEDIO	350

Datos de entrada al filtro:

$$D_e = 105mm = 0.34ft$$

$$V_e = 350 \frac{ft}{min}$$

Se procede a calcular el caudal de entrada Q_{e} como sigue:

$$A_e = \frac{\pi D_e^2}{4}$$

$$A_e = \frac{\pi^* 0.34^2}{4}$$

$$A_e = 0.093 ft^2$$

$$Q_e = V_e * A_e$$

$$Q_e = 350 \frac{ft}{min} *0.093 ft^2$$

$$Q_e = 32.55 \frac{ft^3}{min}$$

$$Q_e = 0.92 \frac{m^3}{min}$$

Por lo tanto, el ventilador utilizado para el prototipo genera un caudal real de 0.92m³/min sin resistencia de polvo como se expresó anteriormente y que se aproxima al caudal por manga de diseño deseado en el prototipo, (0.94m³/min).

A fin de destacar la importancia de este resultado se transcribe otra vez el caudal de entrada calculado, que servirá como dato de entrada para la determinación de los diversos parámetros del filtro:

$$Q_e = 0.92 \frac{m^3}{min}$$

4.1.2.2. Obtención de la Concentración de Entrada.

Se requiere simular una concentración de polvo (nube de polvo) que ingrese al filtro, para lo cual se adaptó un tanque donde se coloca la masa de cemento, el mismo que se encuentra conectado al ducto de entrada. Para generar la nube de polvo se utiliza dos ventiladores dentro del tanque, uno de está fijo y el otro móvil, el cual es operado manualmente.

En la obtención de la concentración se procede colocando en el extremo final del tubo de entrada, previo a la entrada del filtro, una

mascarilla de papel filtro previamente pesada (0.99g), luego se coloca el cemento en el tanque, se acciona el equipo y se procede a la agitación del cemento con el ventilador móvil provocando la nube de polvo que ingresa al filtro, sin embargo es captada por la mascarilla de papel filtro; previamente antes de la succión, el polvo se lo agita con el ventilador móvil por el lapso de 1 minuto para que al inicio de la succión el polvo ya esté en suspensión y pueda fácilmente ser succionado por el ventilador.

Se debe mencionar que el ventilador pequeño que está fijo en la parte superior del tanque ayuda a empujar el polvo en suspensión, hacia el extremo inicial del tubo de entrada.

Después de 10 minutos de operación se apaga el equipo y se deja de agitar, se pesa la masa de papel filtro con cemento colectado para obtener la masa de cemento colectada durante 10

minutos por diferencia de pesos con el de la mascarilla; este procedimiento se lo realiza cinco veces para tener un flujo de masa promedio y llegar a una concentración promedio que es más adecuada.

Obtenido el flujo de masa promedio y sabiendo el caudal de entrada al filtro se calcula la concentración promedio como sigue:

$$C_e = \frac{M_e}{Q_e}$$
 Ec. 4.1

Donde:

C_e = Concentración de entrada promedio (g/m³)

M_e = Flujo de masa promedio de entrada para 10 minutos (g/min)

Q_e = Caudal de entrada del filtro (0.92m³/min)

Los resultados de la masa promedio de polvo colectada en la mascarilla a la entrada del filtro para las Combinaciones A1, A2 y A3 se muestran a continuación en las Tablas V, VI y VII:

TABLA V

COMBINACIÓN N°1 (A1)

CEMENTO + POLIÉSTER

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA ENTRADA DEL **FILTRO**

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	MAS ENTR EN 10 M	RADA
N°	T _m	T _f	M ₁	M ₂	$M_{\rm e} = N$	Л ₂ - М ₁
-	min	min	oz	oz	oz	g
1	1	10	0.035	0.591	0.556	15.760
2	1	10	0.035	0.590	0.555	15.731
3	1	10	0.035	0.575	0.540	15.306
4	1	10	0.035	0.510	0.475	13.464
5	1	10	0.035	0.521	0.486	13.776
PROMEDIO						14.807

TABLA VI

COMBINACIÓN N°2 (A2)

CEMENTO + POLIPROPILENO

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA ENTRADA DEL **FILTRO**

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	ENTE	A DE RADA IINUTOS
N°	T _m	T _f	M ₁	M ₂	M _e = N	M ₂ - M ₁
-	min	min	oz	oz	oz	g
1	1	10	0.035	0.590	0.555	15.731
2	1	10	0.035	0.560	0.525	14.881
3	1	10	0.035	0.580	0.545	15.448
4	1	10	0.035	0.505	0.470	13.322
5	1	10	0.035	0.577	0.542	15.363
PROMEDIO						14.949

TABLA VII

COMBINACIÓN N°3 (A3)

CEMENTO + HOMOPOLÍMERO ACRÍLICO

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO

PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA ENTRADA DEL

FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	ENTE	A DE RADA IINUTOS
N°	T _m	T _f	M_1	M ₂	M _e = N	M ₂ - M ₁
-	min	min	oz	oz	oz	g
1	1	10	0.035	0.550	0.515	14.598
2	1	10	0.035	0.570	0.535	15.164
3	1	10	0.035	0.563	0.528	14.966
4	1	10	0.035	0.540	0.505	14.314
5	1	10	0.035	0.550	0.515	14.598
PROMEDIO						14.728

Las concentraciones de entrada para las Combinaciones A1, A2 y A3 se muestran a continuación:

Combinación N°1: Cemento + Poliéster

$$C_{e} = \frac{M_{e}}{Q_{e}}$$

$$C_{e} = \frac{14.807 g / 10 min}{0.92 m^{3} / min} = \frac{1.48 g / min}{0.92 m^{3} / min}$$

$$C_{e} = 1.60 \frac{g}{m^{3}}$$

Combinación N°2: Cemento + Polipropileno

$$\begin{split} C_{e} &= \frac{M_{e}}{Q_{e}} \\ C_{e} &= \frac{14.949 \, g \, / \, 10 \, min}{0.92 \, m^{3} \, / \, min} = \frac{1.49 \, g \, / \, min}{0.92 \, m^{3} \, / \, min} \\ C_{e} &= 1.62 \, \frac{g}{m^{3}} \end{split}$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$C_{e} = \frac{M_{e}}{Q_{e}}$$

$$C_{e} = \frac{14.728g / 10 min}{0.92m^{3} / min} = \frac{1.47g / min}{0.92m^{3} / min}$$

$$C_{e} = 1.59 \frac{g}{m^{3}}$$

Se puede observar que las concentraciones obtenidas experimentalmente para las tres combinaciones no son iguales a la carga de polvo usada en el diseño real pero se aproximan, ya que las condiciones de laboratorio son diferentes a las del lugar de aplicación del filtro real, por cuanto puede haber una ligera desviación de los resultados al realizar pruebas experimentales en el filtro real en operación comparadas con los resultados en un prototipo.

4.1.2.3. Prueba de Filtración para determinar las Constantes de Filtración.

Conocida la concentración que se puede obtener y el caudal generado se procede a realizar la prueba de filtración, que consiste en la medición de la caída de presión durante el funcionamiento del filtro a medida que se va formando el pastel de polvo en la manga; durante esta prueba no se utiliza el sistema de limpieza.

Generando la nube de polvo como se describió anteriormente se acciona el filtro dejando pasar dicha nube a su interior; se fija un tiempo de operación de 18 minutos y las mediciones de caída de presión se las toma en intervalos de tiempo llamados tiempos de filtración; la primera medida se la hace a tiempo cero, es decir, sin ingreso de polvo al filtro que describe la caída de presión solo de la manga.

Obtenidos estos datos se calcula la densidad de área de la formación del pastel y el arrastre en las partículas que se obtiene para cada intervalo de tiempo, de la siguiente manera:

$$W = C_e * V_f * t_f$$
 Ec. 4.2

Donde:

$$C_e = 1.60; 1.62; 1.59 \frac{g}{m^3}$$

$$V_f = \frac{Q_e}{A_m}$$

$$V_f = \frac{0.92 \frac{m^3}{min}}{0.71 m^2}$$

$$V_f = 1.31 \frac{m}{min}$$

Donde:

W = Densidad de área (g/m^2)

C_e = Concentración de entrada (g/m³)

V_f = Velocidad de filtración = 1.31m/min

Q_e = Caudal de entrada = 0.92m³/min

 A_m = Área lateral de una manga = $0.71m^2$

t_f = Intervalo de tiempo de filtración (min)

$$S = \frac{\Delta P}{V_f}$$
 Ec. 4.3

Donde:

S = Arrastre del filtro (Pa-min/m)

 ΔP = Caída de presión en el intervalo (Pa)

V_f = Velocidad de filtración = 1.31m/min

Los resultados para las Combinaciones A1, A2 y
A3 se muestran a continuación en las Tablas VIII,
IX y X:

TABLA VIII

COMBINACIÓN N°1 (A1)

CEMENTO + POLIÉSTER

DATOS DE CAÍDA DE PRESIÓN OBTENIDOS DURANTE LA PRUEBA DE FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
N°	T _m	T_f	P_{e}	P_s
-	min	min	Pulg H₂O	Pulg H₂O
	1	0	0.40	0.43
		3	0.43	0.49
		6	0.39	0.50
1		9	0.40	0.54
		12	0.38	0.56
		15	0.38	0.58
		18	0.38	0.59

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
N°	ΔP = I	P _s - P _e	W	S
-	Pulg H₂O	Pa	g/m²	Pa-min/m
	0.03	7.47	0.00	5.71
	0.06	14.94	6.28	11.43
	0.11	27.38	12.57	20.95
1	0.14	34.85	18.85	26.67
	0.18	44.81	25.14	34.29
	0.20	49.78	31.42	38.10
	0.21	52.27	37.71	40.00

TABLA IX

COMBINACIÓN N°2 (A2)

CEMENTO + POLIPROPILENO

DATOS DE CAÍDA DE PRESIÓN OBTENIDOS DURANTE LA PRUEBA DE FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
Nº	T _m	T_f	P_{e}	Ps
-	min	min	Pulg H₂O	Pulg H₂O
	1	0	0.40	0.44
		3	0.42	0.48
		6	0.39	0.50
1		9	0.40	0.54
		12	0.38	0.56
		15	0.38	0.58
		18	0.37	0.58

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
Nº	ΔP = I	P _s - P _e	W	S
-	Pulg H₂O	Pa	g/m²	Pa-min/m
	0.04	9.96	0.00	7.62
	0.06	14.94	6.34	11.43
	0.11	27.38	12.69	20.95
1	0.14	34.85	19.03	26.67
	0.18	44.81	25.38	34.29
	0.20	49.78	31.72	38.10
	0.21	52.27	38.07	40.00

TABLA X

COMBINACIÓN N°3 (A3)

CEMENTO + HOMOPOLÍMERO ACRÍLICO

DATOS DE CAÍDA DE PRESIÓN OBTENIDOS DURANTE LA PRUEBA DE

FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
Nº	T _m	T_f	P_{e}	Ps
-	min	min	Pulg H₂O	Pulg H₂O
	1	0	0.41	0.43
		3	0.42	0.48
		6	0.39	0.50
1		9	0.40	0.54
		12	0.38	0.56
		15	0.38	0.59
		18	0.38	0.60

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
Nº	ΔP = I	P _s - P _e	W	S
-	Pulg H₂O	Pa	g/m²	Pa-min/m
	0.02	4.98	0.00	3.81
	0.06	14.94	6.25	11.43
	0.11	27.38	12.50	20.95
1	0.14	34.85	18.75	26.67
	0.18	44.81	25.00	34.29
	0.21	52.27	31.25	40.00
	0.22	54.76	37.50	41.90

El gráfico Densidad de Área (W) Vs. Arrastre (S) describe el comportamiento de la formación del pastel; como se observa en las Figuras 4.1, 4.2 y 4.3 correspondientes a las Combinaciones A1, A2 y A3, se produce una curva de pendiente creciente que describe el incremento del pastel en la manga provocando la filtración de pastel y por ende el aumento en la eficiencia de colección.

Estos resultados corroboran la teoría de filtración que se describe en el capítulo dos, por consiguiente del mismo gráfico se obtuvieron las constantes K_e y K_s a través de la linealización y extrapolación de las curvas como se aprecian en las Figuras 4.1, 4.2 y 4.3:

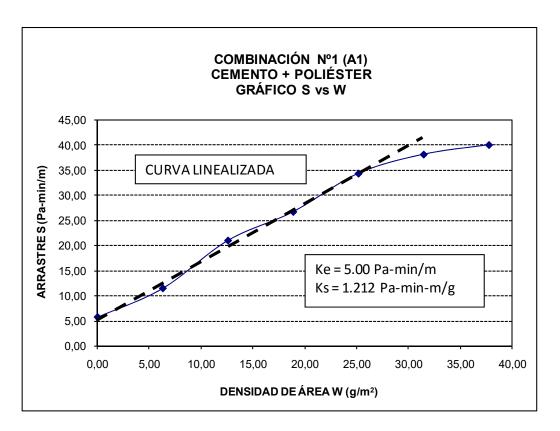


Fig. 4.1 Comportamiento de la formación de pastel a través del aumento del arrastre de las partículas para la Combinación Cemento + Poliéster.

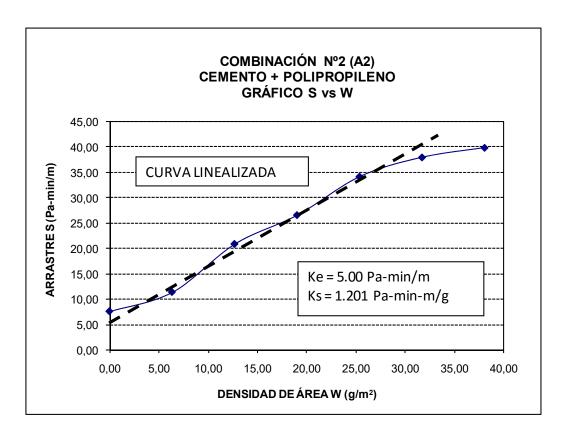


Fig. 4.2 Comportamiento de la formación de pastel a través del aumento del arrastre de las partículas para la Combinación Cemento + Polipropileno.

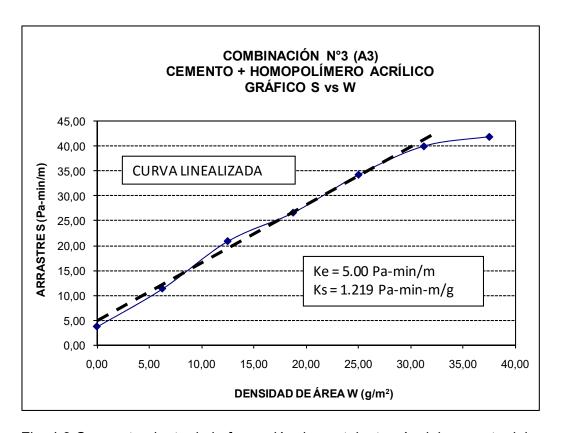


Fig. 4.3 Comportamiento de la formación de pastel a través del aumento del arrastre de las partículas para la Combinación Cemento + Homopolímero Acrílico.

De la extrapolación se obtiene el valor de K_e y de la pendiente de la curva linealizada se obtiene el valor de K_s como se muestra a continuación para las Combinaciones A1, A2 y A3:

Combinación N°1: Cemento + Poliéster

$$K_e = 5.00 \frac{Pa - min}{m}$$

$$K_s = \frac{34.29 - 11.43}{25.14 - 6.28} = 1.212 \frac{Pa - min - m}{g}$$

Combinación N°2: Cemento + Polipropileno

$$K_e = 5.00 \frac{Pa - min}{m}$$

$$K_s = \frac{34.29 - 11.43}{25.38 - 6.34} = 1.201 \frac{Pa - min - m}{g}$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$K_e = 10 \frac{Pa - min}{m}$$

$$K_s = \frac{34.29 - 11.43}{25.00 - 6.25} = 1.219 \frac{Pa - min - m}{g}$$

Con las cuales se calcula la caída de presión real del filtro sin sistema de limpieza y con sistema de

limpieza a través de las ecuaciones 3.7 y 4.5 respectivamente.

4.1.2.4. Determinación de la Eficiencia Promedio de Recolección y Tiempo de Filtración.

Para determinar si el equipo de filtración es adecuado para la recuperación de materia prima que es expulsada a la atmósfera durante el proceso de producción, es necesario saber cuan eficiente es.

Por consiguiente se determina la eficiencia de recolección en la tolva utilizando el sistema de limpieza pulse - jet para un tiempo óptimo de filtración dado por el tiempo de secuencia de pulsación o limpieza de la válvula regulada por el PLC.

En el tanque simulador se coloca la misma cantidad de polvo inicial (cemento) y se utiliza el mismo procedimiento para generar la nube de

polvo que se ha utilizado para las pruebas anteriores con el fin de evitar algún cambio en la concentración obtenida; se deja operar por un cierto tiempo el equipo para que se forme el pastel y se aplica un pulso de limpieza de aire para dejar un pastel definitivo en la manga. Se arranca la prueba dejando operar al filtro durante 30 minutos previamente calibrado el tiempo de apertura de la válvula y el tiempo de filtración o intervalo de limpieza.

Al término de este tiempo de operación se apaga el equipo y se procede a pesar la masa final de polvo que quedó en el tanque y la masa de polvo recolectada en la tolva que fue desprendida de la manga por el sistema de limpieza para obtener la masa real que ingresa al equipo y con ello calcular su eficiencia de la siguiente forma:

$$E_r = \frac{M_t}{M_e} x 100$$
 Ec. 4.4

Donde:

E_r = Eficiencia de recolección en tolva (%)

 M_t = Masa colectada en tolva = $M_2 - M_1$ (g)

M₁ = Masa del recipiente (g)

M₂ = Masa de recipiente + polvo (g)

 M_e = Masa de entrada = $M_i - M_f(g)$

M_i = Masa inicial de tanque + polvo (g)

M_f = Masa final de tanque + polvo (g)

Este procedimiento se lo realiza cinco veces con diferentes tiempos de limpieza calibrados pero con el mismo tiempo de apertura de válvula arrojando los resultados que se indican en las Tablas XI, XII y XIII para las Combinaciones A1, A2 y A3:

TABLA XI

COMBINACIÓN N°1 (A1)

CEMENTO + POLIÉSTER

DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE LIMPIEZA

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MASA TANQUE + POLVO	
N°	T _m	T _f	Tp	T _c	Mi	M _f
-	min	min	ms	s	g	g
1	1	30	250	6	8500.00	7850.00
2	1	30	250	12	8500.00	7865.00
3	1	30	250	18	8500.00	7860.00
4	1	30	250	24	8500.00	7860.00
5	1	30	250	30	8500.00	7855.00

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
N°	$M_e = M_i - M_f$	M ₁	M ₂	$M_t = M_2 - M_1$	$E_r = M_t / M_e$
-	g	g	g	g	%
1	650.00	50.00	535.00	485.00	74.62
2	635.00	50.00	510.00	460.00	72.44
3	640.00	50.00	485.00	435.00	67.97
4	640.00	50.00	470.00	420.00	65.63
5	645.00	50.00	460.00	410.00	63.57
PROMEDIO					68.84

TABLA XII

COMBINACIÓN N°2 (A2)

CEMENTO + POLIPROPILENO

DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE LIMPIEZA

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MASA TANQUE + POLVO	
N°	T _m	T _f	Tp	T _c	Mi	$M_{\rm f}$
-	min	min	ms	s	g	g
1	1	30	250	6	8500.00	7840.00
2	1	30	250	12	8500.00	7855.00
3	1	30	250	18	8500.00	7845.00
4	1	30	250	24	8500.00	7850.00
5	1	30	250	30	8500.00	7855.00

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
Nº	$M_e = M_i - M_f$	M ₁	M ₂	$\mathbf{M_t} = \mathbf{M_2} - \mathbf{M_1}$	$E_r = M_t / M_e$
-	g	g	g	g	%
1	660.00	50.00	535.00	485.00	73.48
2	645.00	50.00	510.00	460.00	71.32
3	655.00	50.00	495.00	445.00	67.94
4	650.00	50.00	480.00	430.00	66.15
5	645.00	50.00	460.00	410.00	63.57
PROMEDIO					68.49

TABLA XIII

COMBINACIÓN N°3 (A3)

CEMENTO + HOMOPOLÍMERO ACRÍLICO

DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE

LIMPIEZA

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MASA TANQUE + POLVO	
N°	T _m	T _f	Tp	T _c	Mi	M _f
-	min	min	ms	s	g	g
1	1	30	250	6	8500.00	7860.00
2	1	30	250	12	8500.00	7850.00
3	1	30	250	18	8500.00	7845.00
4	1	30	250	24	8500.00	7855.00
5	1	30	250	30	8500.00	7865.00

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
N°	$M_e = M_i - M_f$	M ₁	M ₂	$M_t = M_2 - M_1$	$E_r = M_t / M_e$
-	g	g	g	g	%
1	640.00	50.00	525.00	475.00	74.22
2	650.00	50.00	518.00	468.00	72.00
3	655.00	50.00	495.00	445.00	67.94
4	645.00	50.00	475.00	425.00	65.89
5	635.00	50.00	460.00	410.00	64.57
PROMEDIO					68.92

A través del gráfico Eficiencia de Recolección vs Tiempo de Limpieza se obtiene el tiempo óptimo de filtración ingresando por la eficiencia promedio las cuales para las Combinaciones A1, A2 y A3 son las siguientes:

Combinación N°1: Cemento + Poliéster

$$E_r = 68.84\%$$

Combinación N°2: Cemento + Polipropileno

$$E_r = 68.49\%$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$E_r = 68.92\%$$

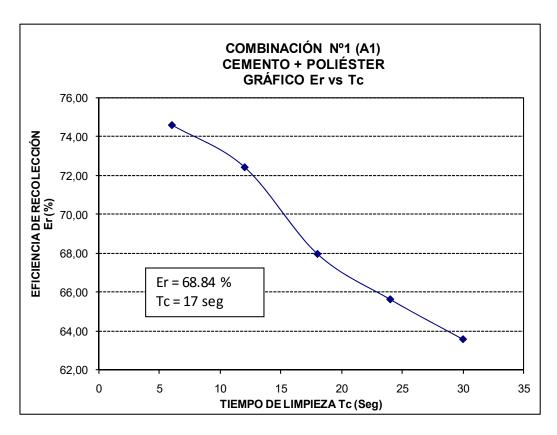


Fig. 4.4 Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación para la Combinación Cemento + Poliéster.

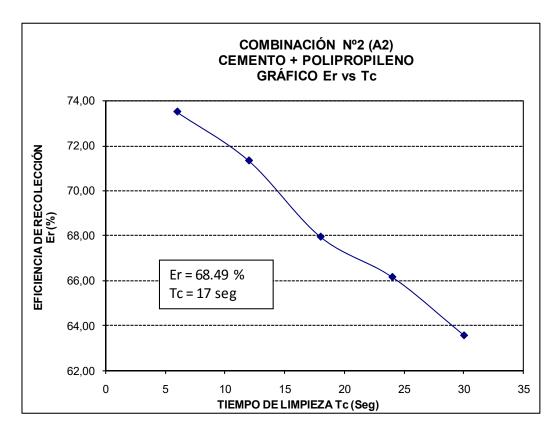


Fig. 4.5 Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación para la Combinación Cemento + Polipropileno.

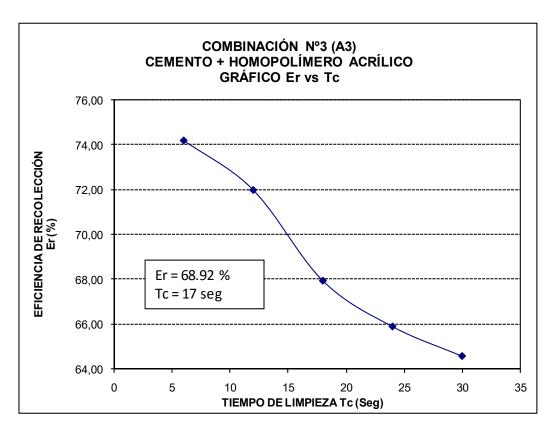


Fig. 4.6 Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación para la Combinación Cemento + Homopolímero Acrílico.

De acuerdo con las Figuras 4.4, 4.5 y 4.6 el tiempo óptimo de filtración al que va a operar el filtro diseñado para las Combinaciones A1, A2 y A3 son:

Combinación N°1: Cemento + Poliéster

$$T_C = 17 seg$$

Combinación N°2: Cemento + Polipropileno

$$T_C = 17seg$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$T_C = 17seg$$

De acuerdo con estos resultados se considera que el filtro opera adecuadamente en el proceso de recuperación de materia prima.

4.1.2.5. Determinación de la Eficiencia de Colección Total

Esta eficiencia determina la característica de funcionamiento del filtro como se describe en el

capítulo tres, pues depende de la concentración a la entrada y a la salida cuando este funciona completamente (combinación de filtración y limpieza pulse-jet).

Por consiguiente se necesita saber la concentración a la salida, para ello se aplica un procedimiento similar al utilizado en la obtención de la concentración a la entrada con la diferencia en la colocación del papel filtro (mascarilla) en el ducto de salida de aire limpio (zona de aire limpio).

Previamente se debe determinar el caudal del ventilador a la salida del filtro, para lo cual se midió con el velómetro la velocidad en cinco puntos concéntricos.

Los resultados se resumen en la Tabla XIV que se muestra a continuación:

TABLA XIV

MEDICIONES DE VELOCIDAD DEL

VENTILADOR DE SUCCIÓN A LA SALIDA DEL

FILTRO PARA CEMENTO

TOMAS	VELOCIDAD EN LA
N°	SALIDA
-	ft/min
1	450
2	450
3	500
4	550
5	550
PROMEDIO	500

Datos de salida del filtro:

$$D_s = 105mm = 0.34ft$$

$$V_s = 500 \frac{ft}{min}$$

Se procede a calcular el caudal de salida $Q_{\mbox{\scriptsize s}}$ como sigue:

$$A_s = \frac{\pi D_s^2}{4}$$

$$A_s = \frac{\pi * 0.34^2}{4}$$

$$A_s = 0.093 ft^2$$

$$Q_s = V_s * A_s$$

$$Q_s = 500 \frac{ft}{min} *0.093 ft^2$$

$$Q_s = 46.50 \frac{ft^3}{min}$$

$$Q_s = 1.32 \frac{m^3}{min}$$

Por lo tanto, el ventilador utilizado para el prototipo genera un caudal real a la salida del filtro de 1.32m³/min sin resistencia de polvo como se expresó anteriormente.

A fin de destacar la importancia de este resultado se transcribe otra vez el caudal de salida calculado, que servirá como dato de salida para la determinación de la eficiencia de colección global:

$$Q_s = 1.32 \frac{m^3}{min}$$

Se deja operar al equipo completo de filtración durante 10 minutos con el sistema de limpieza calibrado a un tiempo de filtración y de apertura de válvula de 17s y 250ms respectivamente siendo este el punto de operación del filtro.

Los resultados se aprecian en las Tablas XV, XVI y XVII para las Combinaciones A1, A2 y A3 respectivamente:

TABLA XV

COMBINACIÓN N°1 (A1)

CEMENTO + POLIÉSTER

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
N°	T _m	T _f	Tp	T _c
-	min	min	ms	s
1	1	10	250	17
2	1	10	250	17
3	1	10	250	17
4	1	10	250	17
5	1	10	250	17

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	MASA DE SALIDA EN 10 MINUTOS		
N°	M ₁	M ₂	$M_s = M_2 - M_1$		
-	oz	oz	oz	g	
1	0.035	0.045	0.010	0.283	
2	0.035	0.045	0.010	0.283	
3	0.035	0.040	0.005	0.142	
4	0.035	0.050	0.015	0.425	
5	0.035	0.045	0.01	0.283	
PROMEDIO				0.283	

TABLA XVI

COMBINACIÓN N°2 (A2)

CEMENTO + POLIPROPILENO

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
Nº	T _m	T _f	Tp	T _c
-	min	min	ms	s
1	1	10	250	17
2	1	10	250	17
3	1	10	250	17
4	1	10	250	17
5	1	10	250	17

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	MASA DE SALIDA EN 10 MINUTOS		
N°	M ₁	M ₂	$M_s = M_2 - M_1$		
-	oz	oz	oz	g	
1	0.035	0.050	0.015	0.425	
2	0.035	0.045	0.010	0.283	
3	0.035	0.045	0.010	0.283	
4	0.035	0.050	0.015	0.425	
5	0.035	0.045	0.010	0.283	
PROMEDIO				0.340	

TABLA XVII

COMBINACIÓN N°3 (A3)

CEMENTO + HOMOPOLÍMERO ACRÍLICO DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
N°	T _m	T _f	Tp	T _c
-	min	min	ms	s
1	1	10	250	17
2	1	10	250	17
3	1	10	250	17
4	1	10	250	17
5	1	10	250	17

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	MASA DE SALIDA EN 10 MINUTOS	
N°	M ₁	M ₂	$M_s = M_2 - M_1$	
-	oz	oz	oz	g
1	0.035	0.050	0.015	0.425
2	0.035	0.040	0.005	0.142
3	0.035	0.045	0.010	0.283
4	0.035	0.045	0.010	0.283
5	0.035	0.050	0.015	0.425
PROMEDIO				0.312

Con la masa promedio de polvo colectada en la mascarilla se procede a calcular la concentración a la salida del filtro aplicando la ecuación 4.5 como sigue:

$$C_s = \frac{M_s}{Q_s}$$
 Ec. 4.5

Donde:

C_s = Concentración de salida promedio (g/m³)

 M_s = Flujo de masa promedio de salida para 10 minutos (g/min)

Q_s = Caudal de salida del filtro (1.32m³/min)

Las concentraciones de salida para las Combinaciones A1, A2 y A3 se muestran a continuación:

Combinación N°1: Cemento + Poliéster

$$C_{s} = \frac{M_{s}}{Q_{s}}$$

$$C_{s} = \frac{0.283g / 10 \min}{1.32m^{3} / \min} = \frac{0.0283g / \min}{1.32m^{3} / \min}$$

$$C_{s} = 0.0215 \frac{g}{m^{3}}$$

Combinación N°2: Cemento + Polipropileno

$$C_{s} = \frac{M_{s}}{Q_{s}}$$

$$C_{s} = \frac{0.340g / 10 min}{1.32m^{3} / min} = \frac{0.0340g / min}{1.32m^{3} / min}$$

$$C_{s} = 0.0258 \frac{g}{m^{3}}$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$C_{s} = \frac{M_{s}}{Q_{s}}$$

$$C_{s} = \frac{0.312g / 10 \min}{1.32m^{3} / \min} = \frac{0.0312g / \min}{1.32m^{3} / \min}$$

$$C_{s} = 0.0236 \frac{g}{m^{3}}$$

Se aplica la definición de Eficiencia de Colección de acuerdo con la siguiente ecuación:

$$\eta = \frac{C_e - C_s}{C_e} x 100$$
 Ec. 4.6

Donde:

η = Eficiencia de colección global (%)

 C_e = Concentración de entrada promedio (g/m 3)

C_s = Concentración de salida promedio (g/m³)

Aplicando la definición de eficiencia de colección para las Combinaciones A1, A2 y A3 se tiene lo siguiente:

Combinación N°1: Cemento + Poliéster

$$\eta = \frac{C_e - C_s}{C_e} x100$$

$$\eta = \frac{1.60 - 0.0215}{1.60} x100$$

$$\eta = 98.66\%$$

Combinación N°2: Cemento + Polipropileno

$$\eta = \frac{C_e - C_s}{C_e} x100$$

$$\eta = \frac{1.62 - 0.0258}{1.62} x100$$

$$\eta = 98.41\%$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$\eta = \frac{C_e - C_s}{C_e} x100$$

$$\eta = \frac{1.59 - 0.0236}{1.59} x100$$

$$\eta = 98.52\%$$

Las eficiencias obtenidas de forma experimental son aproximadamente iguales a la eficiencia deseada de 99%.

Esto se debe a que las mangas utilizadas en las pruebas son nuevas, lo cual garantiza una filtración óptima.

4.1.2.6. Cálculo de la Caída de Presión Real

Con los resultados experimentales obtenidos se calcula la caída de presión real que se produce por el efecto solo de la filtración y luego por la combinación de filtración y limpieza.

Para el primer caso se aplica las ecuaciones 2.11 y 4.3 que describen solo el proceso de filtración; reemplazando la ecuación 4.3 en la 2.11 se tiene lo siguiente:

$$\Delta P = (K_e + K_s W)V_f$$
 Ec. 4.7

Reemplazando la ecuación 4.2 en la ecuación 4.7 se tiene:

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$
 Ec. 4.8

Aplicando la ecuación 4.8 para las Combinaciones A1, A2 y A3 se tiene lo siguiente:

Combinación N°1: Cemento + Poliéster

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$

$$\Delta P = (5.00 + 1.212x1.60x1.31x30)1.31$$

$$\Delta P = 106.39 Pa$$

$$\Delta P = 0.43 Pulg H_2 O$$

Combinación N°2: Cemento + Polipropileno

$$\begin{split} \Delta P &= (K_e + K_s C_e V_f t_f) V_f \\ \Delta P &= (5.00 + 1.201 x 1.62 x 1.31 x 30) 1.31 \\ \Delta P &= 106.72 \ Pa \\ \Delta P &= 0.43 Pulg \ H_2 O \end{split}$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$

$$\Delta P = (5.00 + 1.219x1.59x1.31x30)1.31$$

$$\Delta P = 106.33 Pa$$

$$\Delta P = 0.43 Pulg H_2 O$$

Para el segundo caso se aplica la ecuación 2.15 la cual describe el proceso combinado de filtración y limpieza pulse - jet respetando las unidades americanas por su naturaleza empírica, para lo cual se presenta a continuación las variables V_f, K_s y C_e en las unidades requeridas por la ecuación 2.15:

$$V_f(\frac{ft}{min})$$

$$K_s(\frac{Pulg\,H_2O}{\frac{ft}{min}\frac{Lb}{ft^2}})$$

$$C_e(\frac{Lb}{ft^3})$$

Aplicando la ecuación 2.15 para las Combinaciones A1, A2 y A3 se tiene lo siguiente:

Combinación N°1: Cemento + Poliéster

$$\Delta P = 6.08*V_f * P_j^{-0.65} + K_s * V_f^2 * C_e * t_f$$

$$\Delta P = 6.08*4.30*80^{-0.65} + 7.25*4.30^2 * 1.00x10^{-4} * 30$$

$$\Delta P = 1.916Pulg H_2O$$

Combinación N°2: Cemento + Polipropileno

$$\Delta P = 6.08*V_f *P_j^{-0.65} + K_s *V_f^2 *C_e *t_f$$

$$\Delta P = 6.08*4.30*80^{-0.65} + 7.18*4.30^2 *1.01x10^{-4}*30$$

$$\Delta P = 1.917Pulg H_2O$$

Combinación N°3: Cemento + Homopolímero

Acrílico

$$\begin{split} \Delta P &= 6.08*V_f * P_j^{-0.65} + K_s * V_f^2 * C_e * t_f \\ \Delta P &= 6.08*4.30*80^{-0.65} + 7.29*4.30^2 * 0.99x10^{-4} * 30 \\ \Delta P &= 1.915 Pulg \ H_2O \end{split}$$

Comparando estos resultados con el obtenido de forma teórica se aprecia que son aproximadamente iguales.

Por tanto los resultados experimentales anteriores definen completamente al filtro

diseñado en cuanto a la obtención de la calibración del tiempo de filtración y de limpieza, de las eficiencias de recolección y de colección total de las constantes en el proceso de filtración y por consiguiente en la ratificación de la potencia real necesaria para el ventilador de succión.

4.2. Análisis Experimental de los Filtros 1, 2 y 3 para el Contaminante B.

Para poder desarrollar un diseño de filtro más específico se necesitan obtener datos de un equipo experimental construido de tal forma que reflejen los resultados del diseño calculado. El alcance que lleva la construcción de este equipo es para obtener de forma experimental:

- 1. La prueba de filtración, es decir la obtención de Ke y Ks.
- 2. Eficiencia de colección global.
- Eficiencia de recolección promedio en tolva para un tiempo de operación determinado.
- 4. Tiempo de operación del ciclo de filtrado y limpieza.
- Comprobación visual del comportamiento de las partículas durante la operación del filtro.

Al obtener los valores experimentales de las constantes K_e y K_s , y del tiempo óptimo de filtrado se puede calcular la caída de presión real que se produce en el filtro diseñado; además las eficiencias obtenidas en el equipo, tanto de recolección en la tolva como de colección global reflejan los resultados que se obtendrían en el filtro ya construido.

4.2.1. Similitud Dimensional del Filtro Prototipo con el Filtro Real (Caudal y Caída de Presión)

Para evaluar el equipo se utiliza una combinación manga - canastilla de las mismas características utilizadas en el filtro real, es decir:

- Tipos de tela:
 - o Poliéster
 - o Polipropileno
 - Homopolímero Acrílico
- Dimensiones de la manga canastilla:
 - o L = 1.50m, $\emptyset = 150mm$

El caudal que se requiere en el equipo es la razón entre el caudal total de diseño y el número de mangas calculadas; con respecto a la caída de presión total de diseño, esta es la misma para el prototipo ya que el arreglo de las mangas en el filtro real se encuentra en paralelo como se describió anteriormente, por tanto se obtiene el caudal por manga de diseño como sigue:

$$Q_e = \frac{Q_D}{N_{MANGAS}}$$

$$Q_e = \frac{1270.35 \frac{ft^3}{min}}{38}$$

$$Q_e = 33.43 \frac{ft^3}{min}$$

$$Q_e = 0.94 \frac{m^3}{min}$$

El uso en el prototipo de la misma combinación manga – canastilla del equipo real, el caudal obtenido por cada manga para el prototipo y la caída de presión total igual tanto para el prototipo como para el filtro real, son las características que aseguran la similitud entre el prototipo y el equipo real.

El sistema de limpieza pulse - jet para el equipo consta de una válvula solenoide de 2 vías con tamaño de orificio de 1/2pulg marca Airtac modelo 2V-250-25 (ver especificaciones técnicas en el Apéndice I); dicha válvula es controlada por el PLC que regula el tiempo de apertura o de limpieza y el tiempo de filtración.

La presión del pulso de limpieza es de 80psi siendo la misma presión de pulso de diseño suministrada por un compresor de aire.

El ventilador de succión se encuentra en la zona de aire limpio, es de tipo centrífugo, con un motor eléctrico de 1/4Hp que se enciende a través del PLC al dar la orden de inicio de secuencia de filtración.

Los dos ventiladores pequeños de 120x120mm están ubicados dentro del tanque de agitación y mezcla, uno estará fijo en la parte superior del tanque y el otro móvil en la parte inferior del mismo y que está en contacto directo con el polvo depositado.

Dicho ventilador es movido manualmente por dos cables conectados uno en cada extremo del ventilador; éste se encarga de generar el polvo para favorecer la homogeneidad de la mezcla con el aire. Estos ventiladores también son controlados por el PLC.

4.2.2. Datos y Resultados Obtenidos en la Prueba Experimental.

El desarrollo experimental que se ha elaborado debe seguir un orden establecido para una mejor obtención de datos y resultados, así primeramente se procede a obtener el caudal que el ventilador genera sin resistencia de polvo, luego se mide la concentración de polvo de harina a la entrada del filtro prototipo, sabiendo dicha concentración se procede a realizar la prueba de filtración para determinar las constantes K_e y K_s importantes en el análisis de filtración.

Posteriormente se determina la eficiencia promedio de recolección en la tolva y por ende el tiempo óptimo de filtración; siguiendo, se calcula la caída de presión real con los resultados experimentales y se compara con el resultado calculado de forma teórica.

Finalmente se calcula la eficiencia global de colección del filtro midiendo la concentración de polvo a la salida del mismo y se realiza una inspección visual del comportamiento de la combinación flujo de aire y polvo en el proceso de filtración y limpieza.

4.2.2.1. Obtención del Caudal.

Para determinar el caudal de entrada al filtro que genera el ventilador se realiza la medición de velocidad promedio del flujo.

Para ello la sección transversal de la tubería circular de entrada es dividida en varias circunferencias concéntricas para realizar la medición de velocidad en cada una de ellas utilizando el velómetro marca Alnor Serie 6000 que se lo introduce al interior de la tubería por un orificio el cual se encuentra ubicado en el centro

de la longitud de la tubería, posteriormente se calcula la velocidad promedio de acuerdo al número de mediciones que en este caso son cinco.

El caudal es igual a la velocidad promedio por el área de la sección transversal la misma que es una circunferencia de diámetro Ø=105mm. Cabe recalcar que al tomar las mediciones de velocidad se encuentra colocada la manga y no está pasando polvo por el interior del filtro debido a que el velómetro no realiza mediciones en aire sucio, por consiguiente, el caudal generado por el ventilador no tiene resistencia de polvo.

Las mediciones y la velocidad promedio se muestran a continuación en la Tabla XVIII:

TABLA XVIII

MEDICIONES DE VELOCIDAD DEL

VENTILADOR DE SUCCIÓN A LA ENTRADA

DEL FILTRO PARA HARINA

TOMAS	VELOCIDAD EN LA ENTRADA ft/min	
N°		
-		
1	320	
2	320	
3	350	
4	380	
5	380	
PROMEDIO	350	

Datos de entrada al filtro:

$$D_e = 105mm = 0.34ft$$

$$V_e = 350 \frac{ft}{min}$$

Se procede a calcular el caudal de entrada $Q_{\rm e}$ como sigue:

$$A_e = \frac{\pi D_e^2}{4}$$

$$A_e = \frac{\pi^* 0.34^2}{4}$$

$$A_e = 0.093 ft^2$$

$$Q_e = V_e * A_e$$

$$Q_e = 350 \frac{ft}{min} *0.093 ft^2$$

$$Q_e = 32.55 \frac{ft^3}{min}$$

$$Q_e = 0.92 \frac{m^3}{min}$$

Por lo tanto, el ventilador utilizado para el prototipo genera un caudal real de 0.92m³/min sin resistencia de polvo como se expresó anteriormente y que se aproxima al caudal por manga de diseño deseado en el prototipo, (0.94m³/min).

A fin de destacar la importancia de este resultado se transcribe otra vez el caudal de entrada calculado, que servirá como dato de entrada para la determinación de los diversos parámetros del filtro:

$$Q_e = 0.92 \frac{m^3}{min}$$

4.2.2.2. Obtención de la Concentración de Entrada.

Se requiere simular una concentración de polvo (nube de polvo) que ingrese al filtro, para lo cual se ha adaptado un tanque donde se coloca la masa de harina, el mismo que se encuentra conectado al ducto de entrada. Para generar la nube de polvo se utiliza dos ventiladores dentro del tanque, uno está fijo y el otro móvil, el cual es operado manualmente.

En la obtención de la concentración se procede colocando en el extremo final del tubo de entrada, previo a la entrada del filtro, una

mascarilla de papel filtro previamente pesada (0.99g), luego se coloca la harina en el tanque, se acciona el equipo y se procede a la agitación de la harina con el ventilador móvil provocando la nube de polvo que ingresa al filtro, sin embargo es captada por la mascarilla de papel filtro; previamente antes de la succión, el polvo se lo agita con el ventilador móvil por el lapso de 1 minuto para que al inicio de la succión el polvo ya esté en suspensión y pueda fácilmente ser succionado por el ventilador.

Se debe mencionar que el ventilador pequeño que está fijo en la parte superior del tanque ayuda a empujar el polvo en suspensión, hacia el extremo inicial del tubo de entrada.

Después de 10 minutos de operación se apaga el equipo y se deja de agitar, se pesa la masa de papel filtro con harina colectada para obtener la

masa de harina colectada durante 10 minutos por diferencia de pesos con el de la mascarilla.

Este procedimiento se lo realiza cinco veces para tener un flujo de masa promedio y llegar a una concentración promedio que es más adecuada.

Obtenido el flujo de masa promedio y sabiendo el caudal de entrada al filtro se calcula la concentración promedio como sigue:

$$C_e = \frac{M_e}{Q_e}$$
 Ec. 4.9

Donde:

C_e = Concentración de entrada promedio (g/m³)

M_e = Flujo de masa promedio de entrada para 10 minutos (g/min)

Q_e = Caudal de entrada del filtro (0.92m³/min)

Los resultados de la masa promedio de polvo colectada en la mascarilla a la entrada del filtro

para las Combinaciones B1, B2 y B3 se muestran a continuación en las Tablas XIX, XX y XXI:

TABLA XIX

COMBINACIÓN N°4 (B1)

HARINA + POLIÉSTER

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA ENTRADA DEL **FILTRO**

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	MASA DE ENTRADA EN 10 MINUTOS	
Nº	T _m	T _f	M ₁	M ₂	$M_{\rm e} = N$	И 2 - М ₁
-	min	min	oz	oz	oz	g
1	1	10	0.035	2.087	2.052	58.163
2	1	10	0.035	2.096	2.061	58.418
3	1	10	0.035	2.057	2.022	57.313
4	1	10	0.035	2.134	2.099	59.495
5	1	10	0.035	2.068	2.033	57.625
PROMEDIO						58.203

TABLA XX

COMBINACIÓN N°5 (B2)

HARINA + POLIPROPILENO

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA ENTRADA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	MASA DE ENTRADA EN 10 MINUTOS	
N°	T _m	T _f	M ₁	M ₂	M _e = N	Л ₂ - М ₁
-	min	min	oz	oz	oz	g
1	1	10	0.035	2.108	2.073	58.759
2	1	10	0.035	2.095	2.060	58.390
3	1	10	0.035	2.052	2.017	57.171
4	1	10	0.035	2.063	2.028	57.483
5	1	10	0.035	2.111	2.076	58.844
PROMEDIO						58.129

TABLA XXI

COMBINACIÓN N°6 (B3)

HARINA + HOMOPOLÍMERO ACRÍLICO

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA ENTRADA DEL

FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	MASA DE ENTRADA EN 10 MINUTOS	
N°	T _m	T _f	M ₁	M ₂	M _e = N	Л ₂ - М ₁
-	min	min	oz	oz	oz	g
1	1	10	0.035	2.118	2.083	59.042
2	1	10	0.035	2.108	2.073	58.759
3	1	10	0.035	2.057	2.022	57.313
4	1	10	0.035	2.068	2.033	57.625
5	1	10	0.035	2.111	2.076	58.844
PROMEDIO						58.316

Las concentraciones de entrada para las Combinaciones B1, B2 y B3 se muestran a continuación:

Combinación N°4: Harina + Poliéster

$$C_{e} = \frac{M_{e}}{Q_{e}}$$

$$C_{e} = \frac{58.203g / 10 min}{0.92m^{3} / min} = \frac{5.82g / min}{0.92m^{3} / min}$$

$$C_{e} = 6.30 \frac{g}{m^{3}}$$

Combinación N°5: Harina + Polipropileno

$$C_{e} = \frac{M_{e}}{Q_{e}}$$

$$C_{e} = \frac{58.129 g / 10 min}{0.92 m^{3} / min} = \frac{5.81 g / min}{0.92 m^{3} / min}$$

$$C_{e} = 6.29 \frac{g}{m^{3}}$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$C_{e} = \frac{M_{e}}{Q_{e}}$$

$$C_{e} = \frac{58.316 \, g / 10 \, min}{0.92 \, m^{3} / min} = \frac{5.83 \, g / min}{0.92 \, m^{3} / min}$$

$$C_{e} = 6.31 \frac{g}{m^{3}}$$

Se puede observar que las concentraciones obtenidas experimentalmente para las tres combinaciones no son iguales a la carga de polvo usada en el diseño real pero se aproximan, ya que las condiciones de laboratorio son diferentes a las del lugar de aplicación del filtro real, por cuanto puede haber una ligera desviación de los resultados al realizar pruebas experimentales en el filtro real en operación comparadas con los resultados en un prototipo.

4.2.2.3. Prueba de Filtración para determinar las Constantes de Filtración.

Conocida la concentración que se puede obtener y el caudal generado se procede a realizar la prueba de filtración, que consiste en la medición de la caída de presión durante el funcionamiento del filtro a medida que se va formando el pastel de polvo en la manga; durante esta prueba no se utiliza el sistema de limpieza.

Generando la nube de polvo como se describió anteriormente se acciona el filtro dejando pasar dicha nube a su interior; se fija un tiempo de operación de 18 minutos y las mediciones de caída de presión se las toma en intervalos de tiempo llamados tiempos de filtración; la primera medida se la hace a tiempo cero, es decir, sin ingreso de polvo al filtro que describe la caída de presión solo de la manga.

Obtenidos estos datos se calcula la densidad de área de la formación del pastel y el arrastre en las partículas que se obtiene para cada intervalo de tiempo, de la siguiente manera:

$$W=C_e*V_f*t_f$$
 Ec. 4.10

Donde:

$$C_e = 6.30; 6.29; 6.31 \frac{g}{m^3}$$

$$V_f = \frac{Q_e}{A_m}$$

$$V_f = \frac{0.92 \frac{m^3}{min}}{0.71 m^2}$$

$$V_f = 1.31 \frac{m}{min}$$

Donde:

W = Densidad de área (g/m^2)

C_e = Concentración de entrada (g/m³)

V_f = Velocidad de filtración = 1.31m/min

Q_e = Caudal de entrada = 0.92m³/min

 A_m = Área lateral de una manga = $0.71m^2$

t_f = Intervalo de tiempo de filtración (min)

$$S = \frac{\Delta P}{V_f}$$
 Ec. 4.11

Donde:

S = Arrastre del filtro (Pa-min/m)

 ΔP = Caída de presión en el intervalo (Pa)

V_f = Velocidad de filtración = 1.31m/min

Los resultados para las Combinaciones B1, B2 y
B3 se muestran a continuación en las Tablas
XXII, XXIII y XXIV:

TABLA XXII

COMBINACIÓN N°4 (B1)

HARINA + POLIÉSTER

DATOS DE CAÍDA DE PRESIÓN OBTENIDOS DURANTE LA PRUEBA DE FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
N°	T _m	T_f	P_{e}	Ps
-	min	min	Pulg H₂O	Pulg H₂O
	1	0	0.40	0.42
		3	0.43	0.49
		6	0.39	0.50
1		9	0.40	0.54
		12	0.37	0.56
		15	0.37	0.58
		18	0.38	0.60

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
N°	ΔP = P	P _s - P _e	W	s
-	Pulg H₂O	Pa	g/m²	Pa-min/m
	0.02	4.98	0.00	3.81
	0.06	14.94	24.70	11.43
	0.11	27.38	49.40	20.95
1	0.14	34.85	74.11	26.67
	0.19	47.29	98.81	36.19
	0.21	52.27	123.51	40.00
	0.22	54.76	148.21	41.90

TABLA XXIII

COMBINACIÓN N°5 (B2)

HARINA + POLIPROPILENO

DATOS DE CAÍDA DE PRESIÓN OBTENIDOS DURANTE LA PRUEBA DE FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
N°	T _m	T_f	P_{e}	Ps
-	min	min	Pulg H₂O	Pulg H₂O
	1	0	0.39	0.42
		3	0.43	0.49
		6	0.39	0.50
1		9	0.40	0.54
		12	0.37	0.56
		15	0.37	0.58
		18	0.37	0.59

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
N°	ΔP = F	P _s - P _e	W	S
-	Pulg H₂O	Pa	g/m²	Pa-min/m
	0.03	7.47	0.00	5.71
	0.06	14.94	24.67	11.43
	0.11	27.38	49.34	20.95
1	0.14	34.85	74.01	26.67
	0.19	47.29	98.68	36.19
	0.21	52.27	123.35	40.00
	0.22	54.76	148.02	41.90

TABLA XXIV

COMBINACIÓN N°6 (B3)

HARINA + HOMOPOLÍMERO ACRÍLICO

DATOS DE CAÍDA DE PRESIÓN OBTENIDOS DURANTE LA PRUEBA DE

FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
N°	T _m	T_f	P_{e}	Ps
-	min	min	Pulg H₂O	Pulg H₂O
	1	0	0.40	0.43
		3	0.41	0.47
		6	0.39	0.50
1		9	0.40	0.54
		12	0.37	0.56
		15	0.36	0.58
		18	0.37	0.60

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
N°	∆P = F	P _s - P _e	W	S
-	Pulg H₂O	Pa	g/m²	Pa-min/m
	0.03	7.47	0.00	5.71
	0.06	14.94	24.75	11.43
	0.11	27.38	49.50	20.95
1	0.14	34.85	74.25	26.67
	0.19	47.29	99.00	36.19
	0.22	54.76	123.75	41.90
	0.23	57.25	148.50	43.81

El gráfico Densidad de Área (W) Vs. Arrastre (S) describe el comportamiento de la formación del pastel; como se observa en las Figuras 5.1, 5.2 y 5.3 correspondientes a las Combinaciones B1, B2 y B3, se produce una curva de pendiente creciente que describe el incremento del pastel en la manga provocando la filtración de pastel y por ende el aumento en la eficiencia de colección.

Estos resultados corroboran la teoría de filtración que se describe en el capítulo dos, por consiguiente del mismo gráfico se obtienen las constantes K_e y K_s a través de la linealización y extrapolación de las curvas como se aprecian en las Figuras 4.7, 4.8 y 4.9:

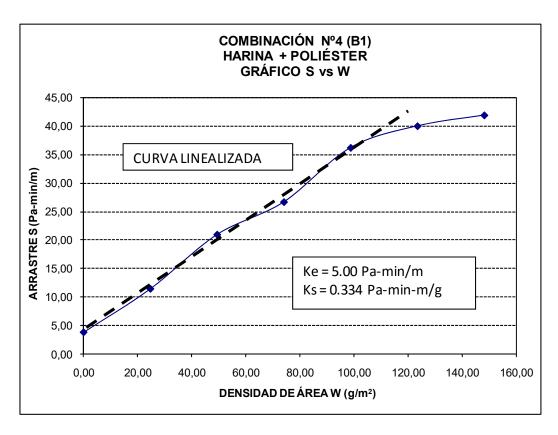


Fig. 4.7 Comportamiento de la formación de pastel a través del aumento del arrastre de las partículas para la Combinación Harina + Poliéster.

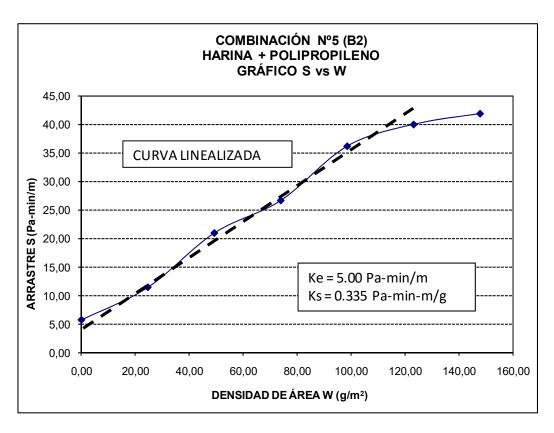


Fig. 4.8 Comportamiento de la formación de pastel a través del aumento del arrastre de las partículas para la Combinación Harina + Polipropileno.

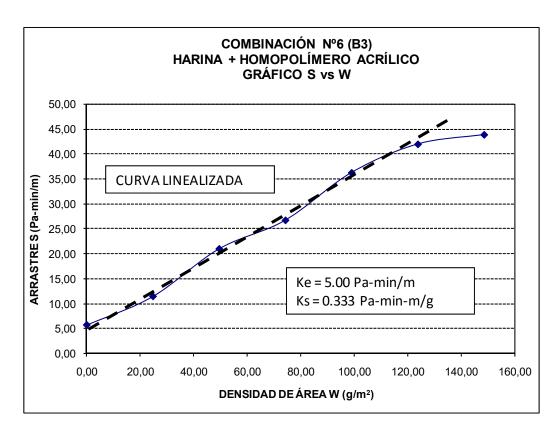


Fig. 4.9 Comportamiento de la formación de pastel a través del aumento del arrastre de las partículas para la Combinación Cemento + Homopolímero Acrílico.

De la extrapolación se obtiene el valor de K_e y de la pendiente de la curva linealizada se obtiene el valor de K_s como se muestra a continuación para las Combinaciones B1, B2 y B3:

Combinación N°4: Harina + Poliéster

$$K_e = 5.00 \frac{Pa - min}{m}$$

$$K_s = \frac{36.19 - 11.43}{98.81 - 24.70} = 0.334 \frac{Pa - min - m}{g}$$

Combinación N°5: Harina + Polipropileno

$$K_e = 5.00 \frac{Pa - min}{m}$$

$$K_s = \frac{36.19 - 11.43}{98.68 - 24.67} = 0.335 \frac{Pa - min - m}{g}$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$K_e = 10 \frac{Pa - min}{m}$$

$$K_s = \frac{36.19 - 11.43}{99.00 - 24.75} = 0.333 \frac{Pa - min - m}{g}$$

Con las cuales se calcula la caída de presión real del filtro sin sistema de limpieza y con sistema de

limpieza a través de las ecuaciones 3.7 y 4.5 respectivamente.

4.2.2.4. Determinación de la Eficiencia Promedio de Recolección y Tiempo de Filtración.

Para determinar si el equipo de filtración es adecuado para la recuperación de materia prima que es expulsada a la atmósfera durante el proceso de producción, es necesario saber cuan eficiente es.

Por consiguiente se determina la eficiencia de recolección en la tolva utilizando el sistema de limpieza pulse - jet para un tiempo óptimo de filtración dado por el tiempo de secuencia de pulsación o limpieza de la válvula regulada por el PLC.

En el tanque simulador se coloca la misma cantidad de polvo inicial (harina) y se utiliza el mismo procedimiento para generar la nube de

polvo que se ha utilizado para las pruebas anteriores con el fin de evitar algún cambio en la concentración obtenida; se deja operar por un cierto tiempo el equipo para que se forme el pastel y se aplica un pulso de limpieza de aire para dejar un pastel definitivo en la manga.

Se arranca la prueba dejando operar al filtro durante 30 minutos previamente calibrado el tiempo de apertura de la válvula y el tiempo de filtración o intervalo de limpieza.

Al término de este tiempo de operación se apaga el equipo y se procede a pesar la masa final de polvo que quedó en el tanque y la masa de polvo recolectada en la tolva que fue desprendida de la manga por el sistema de limpieza para obtener la masa real que ingresa al equipo y con ello calcular su eficiencia de la siguiente forma:

$$E_r = \frac{M_t}{M_e} x 100$$

Ec. 4.12

Donde:

E_r = Eficiencia de recolección en tolva (%)

 M_t = Masa colectada en tolva = $M_2 - M_1$ (g)

 M_1 = Masa del recipiente (g)

 M_2 = Masa de recipiente + polvo (g)

 M_e = Masa de entrada = $M_i - M_f(g)$

 M_i = Masa inicial de tanque + polvo (g)

M_f = Masa final de tanque + polvo (g)

Este procedimiento se lo realiza cinco veces con diferentes tiempos de filtración calibrados pero con el mismo tiempo de apertura de válvula arrojando los resultados que se indican en las Tablas XXV, XVI y XVII para las Combinaciones B1, B2 y B3:

TABLA XXV

COMBINACIÓN N°4 (B1)

HARINA + POLIÉSTER

DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE LIMPIEZA

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MASA TANQUE + POLVO	
N°	T _m	T _f	Тp	T _c	Mi	M _f
-	min	min	ms	s	g	g
1	1	30	250	6	8500.00	7555.00
2	1	30	250	12	8500.00	7565.00
3	1	30	250	18	8500.00	7560.00
4	1	30	250	24	8500.00	7560.00
5	1	30	250	30	8500.00	7563.00

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
N°	M _e = M _i - M _f	M ₁	M ₂	$M_t = M_2 - M_1$	$E_r = M_t / M_e$
-	g	g	g	g	%
1	945.00	50.00	830.00	780.00	82.54
2	935.00	50.00	807.00	757.00	80.96
3	940.00	50.00	785.00	735.00	78.19
4	940.00	50.00	770.00	720.00	76.60
5	937.00	50.00	760.00	710.00	75.77
PROMEDIO					78.81

TABLA XXVI

COMBINACIÓN N°5 (B2)

HARINA + POLIPROPILENO

DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE LIMPIEZA

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MASA TANQUE + POLVO	
N°	T _m	T _f	Тp	T _c	Mi	M _f
-	min	min	ms	s	g	g
1	1	30	250	6	8500.00	7575.00
2	1	30	250	12	8500.00	7580.00
3	1	30	250	18	8500.00	7565.00
4	1	30	250	24	8500.00	7570.00
5	1	30	250	30	8500.00	7558.00

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
N°	$M_e = M_i - M_f$	M ₁	M ₂	$M_t = M_2 - M_1$	$E_r = M_t / M_e$
-	g	g	g	g	%
1	925.00	50.00	833.00	783.00	84.65
2	920.00	50.00	809.00	759.00	82.50
3	935.00	50.00	788.00	738.00	78.93
4	930.00	50.00	772.00	722.00	77.63
5	942.00	50.00	770.00	720.00	76.43
PROMEDIO		•			80.03

TABLA XXVII

COMBINACIÓN N°6 (B3)

HARINA + HOMOPOLÍMERO ACRÍLICO

DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE LIMPIEZA

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MASA TANQUE + POLVO	
N°	T _m	T _f	Tp	T _c	Mi	M _f
-	min	min	ms	s	g	g
1	1	30	250	6	8500.00	7570.00
2	1	30	250	12	8500.00	7575.00
3	1	30	250	18	8500.00	7565.00
4	1	30	250	24	8500.00	7565.00
5	1	30	250	30	8500.00	7568.00

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
N°	$M_e = M_i - M_f$	M ₁	M ₂	$M_t = M_2 - M_1$	$E_r = M_t / M_e$
-	g	g	g	g	%
1	930.00	50.00	825.00	775.00	83.33
2	925.00	50.00	802.00	752.00	81.30
3	935.00	50.00	785.00	735.00	78.61
4	935.00	50.00	775.00	725.00	77.54
5	932.00	50.00	760.00	710.00	76.18
PROMEDIO					79.39

A través del gráfico Tiempo de Filtración Vs Eficiencia de Recolección se obtiene el tiempo óptimo de filtración ingresando por la eficiencia promedio las cuales para las Combinaciones B1, B2 y B3 son las siguientes:

Combinación N°4: Harina + Poliéster

$$E_r = 78.81\%$$

Combinación N°5: Harina + Polipropileno

$$E_r = 80.03\%$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$E_r = 79.39\%$$

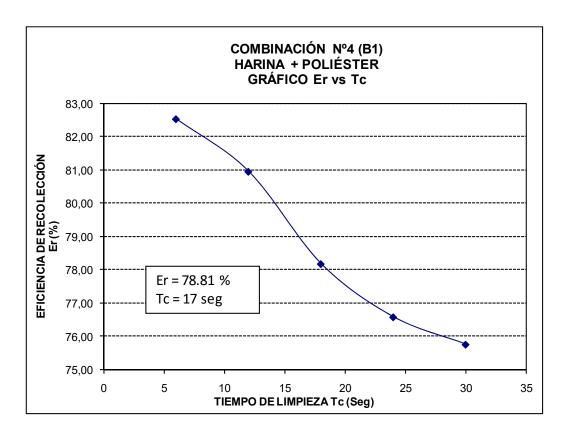


Fig. 4.10 Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación para la Combinación Harina + Poliéster.

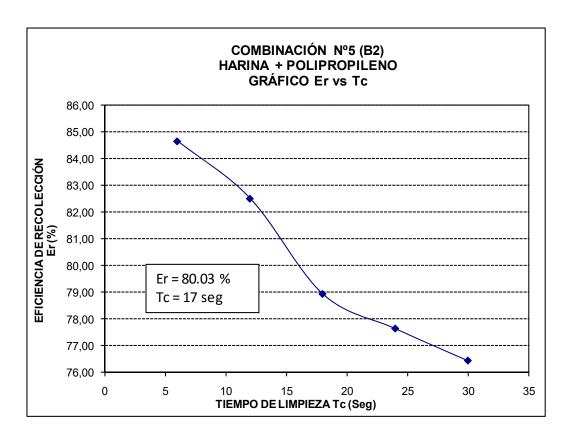


Fig. 4.11 Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación para la Combinación Harina + Polipropileno.

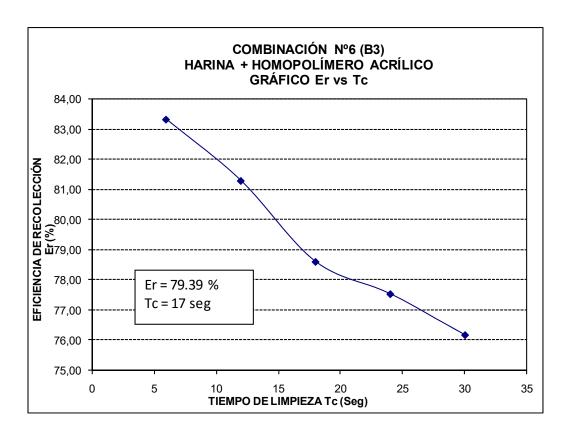


Fig. 4.12 Gráfico Eficiencia de Recolección Vs Tiempo de Limpieza para obtener el Punto Óptimo de Operación para la Combinación Harina + Homopolímero Acrílico.

De acuerdo con las Figuras 5.4, 5.5 y 5.6 el tiempo óptimo de filtración al que va a operar el filtro diseñado para las Combinaciones B1, B2 y B3 son:

Combinación N°4: Harina + Poliéster

$$T_C = 17 seg$$

Combinación N°5: Harina + Polipropileno

$$T_C = 17seg$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$T_C = 17seg$$

De acuerdo con estos resultados se considera que el filtro opera adecuadamente en el proceso de recuperación de materia prima.

4.2.2.5. Determinación de la Eficiencia de Colección Total

Esta eficiencia determina la característica de funcionamiento del filtro como se describe en el

capítulo tres, pues depende de la concentración a la entrada y a la salida cuando este funciona completamente (combinación de filtración y limpieza pulse - jet).

Por consiguiente se necesita saber la concentración a la salida, para ello se aplica un procedimiento similar al utilizado en la obtención de la concentración a la entrada con la diferencia en la colocación del papel filtro (mascarilla) en el ducto de salida de aire limpio (zona de aire limpio).

Previamente se debe determinar el caudal del ventilador a la salida del filtro, para lo cual se midió con el velómetro la velocidad en cinco puntos concéntricos.

Los resultados se resumen en la Tabla XXVIII que se muestra a continuación:

TABLA XXVIII MEDICIONES DE VELOCIDAD DEL VENTILADOR DE SUCCIÓN A LA SALIDA DEL FILTRO PARA HARINA

TOMAS	VELOCIDAD EN LA
N°	SALIDA
-	ft/min
1	450
2	450
3	500
4	550
5	550
PROMEDIO	500

Datos de salida del filtro:

$$D_s = 105mm = 0.34ft$$

$$V_s = 500 \frac{ft}{min}$$

Se procede a calcular el caudal de salida $Q_{\mbox{\scriptsize s}}$ como sigue:

$$A_s = \frac{\pi D_s^2}{4}$$

$$A_s = \frac{\pi * 0.34^2}{4}$$

$$A_s = 0.093 ft^2$$

$$Q_s = V_s * A_s$$

$$Q_s = 500 \frac{ft}{min} *0.093 ft^2$$

$$Q_s = 46.50 \frac{ft^3}{min}$$

$$Q_s = 1.32 \frac{m^3}{min}$$

Por lo tanto, el ventilador utilizado para el prototipo genera un caudal real a la salida del filtro de 1.32m³/min sin resistencia de polvo como se expresó anteriormente.

A fin de destacar la importancia de este resultado se transcribe otra vez el caudal de salida calculado, que servirá como dato de salida para la determinación de la eficiencia de colección global:

$$Q_s = 1.32 \frac{m^3}{min}$$

Se deja operar al equipo completo de filtración durante 10 minutos con el sistema de limpieza calibrado a un tiempo de filtración y de apertura de válvula de 17s y 250ms respectivamente siendo este el punto de operación del filtro.

Los resultados se aprecian en las Tablas XXIX, XXX y XXXI para las Combinaciones B1, B2 y B3 respectivamente:

TABLA XXIX

COMBINACIÓN N°4 (B1)

HARINA + POLIÉSTER

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
N°	T _m	T _f	Tp	T _c
-	min	min	ms	s
1	1	10	250	17
2	1	10	250	17
3	1	10	250	17
4	1	10	250	17
5	1	10	250	17

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	MASA DE SALIDA EN 10 MINUTOS	
N°	M ₁	M ₂	$M_s = M_2 - M_1$	
-	oz	oz	oz	g
1	0.035	0.050	0.015	0.425
2	0.035	0.050	0.015	0.425
3	0.035	0.045	0.01	0.283
4	0.035	0.050	0.015	0.425
5	0.035	0.050	0.015	0.425
PROMEDIO	0.397			

TABLA XXX

COMBINACIÓN N°5 (B2)

HARINA + POLIPROPILENO

DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
N°	T _m	T _f	Tp	T _c
-	min	min	ms	s
1	1	10	250	17
2	1	10	250	17
3	1	10	250	17
4	1	10	250	17
5	1	10	250	17

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	MASA DE SALIDA EN 10 MINUTOS		
N°	M ₁	M ₂	$M_s = M_2 - M_1$		
-	oz	oz	oz	g	
1	0.035	0.050	0.015	0.425	
2	0.035	0.045	0.010	0.283	
3	0.035	0.040	0.005	0.142	
4	0.035	0.050	0.015	0.425	
5	0.035	0.050	0.015	0.425	
PROMEDIO	0.340				

TABLA XXXI

COMBINACIÓN N°6 (B3)

HARINA + HOMOPOLÍMERO ACRÍLICO DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO PARA LA OBTENCIÓN DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
Nº	T _m	T _f	Tp	T _c
-	min	min	ms	s
1	1	10	250	17
2	1	10	250	17
3	1	10	250	17
4	1	10	250	17
5	1	10	250	17

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	MASA DE SALIDA EN 10 MINUTOS	
N°	M ₁	M ₂	M _s = I	M ₂ - M ₁
-	oz	oz	oz	g
1	0.035	0.055	0.02	0.567
2	0.035	0.045	0.010	0.283
3	0.035	0.050	0.015	0.425
4	0.035	0.045	0.01	0.283
5	0.035	0.045	0.01 0.283	
PROMEDIO	0.368			

Con la masa promedio de polvo colectada en la mascarilla se procede a calcular la concentración a la salida del filtro aplicando la ecuación 4.1 como sigue:

$$C_s = \frac{M_s}{Q_s}$$
 Ec. 4.13

Donde:

C_s = Concentración de salida promedio (g/m³)

 M_s = Flujo de masa promedio de salida para 10 minutos (g/min)

Q_s = Caudal de salida del filtro (1.32m³/min)

Las concentraciones de salida para las Combinaciones B1, B2 y B3 se muestran a continuación:

Combinación N°4: Harina + Poliéster

$$C_{s} = \frac{M_{s}}{Q_{s}}$$

$$C_{s} = \frac{0.397g / 10 \min}{1.32m^{3} / \min} = \frac{0.0397g / \min}{1.32m^{3} / \min}$$

$$C_{s} = 0.0301 \frac{g}{m^{3}}$$

Combinación N°5: Harina + Polipropileno

$$C_{s} = \frac{M_{s}}{Q_{s}}$$

$$C_{s} = \frac{0.340g / 10 \min}{1.32m^{3} / \min} = \frac{0.0340g / \min}{1.32m^{3} / \min}$$

$$C_{s} = 0.0258 \frac{g}{m^{3}}$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$C_{s} = \frac{M_{s}}{Q_{s}}$$

$$C_{s} = \frac{0.368g / 10 \min}{1.32m^{3} / \min} = \frac{0.0368g / \min}{1.32m^{3} / \min}$$

$$C_{s} = 0.0279 \frac{g}{m^{3}}$$

Aplicando la definición de Eficiencia de Colección de acuerdo con la siguiente ecuación:

$$\eta = \frac{C_e - C_s}{C_e} x 100$$
 Ec. 4.14

Donde:

η = Eficiencia de colección global (%)

C_e = Concentración de entrada promedio (g/m³)

C_s = Concentración de salida promedio (g/m³)

Aplicando la definición de eficiencia de colección para las Combinaciones B1, B2 y B3 se tiene lo siguiente:

Combinación N°4: Harina + Poliéster

$$\eta = \frac{C_e - C_s}{C_e} x100$$

$$\eta = \frac{6.30 - 0.0301}{6.30} x100$$

$$\eta = 99.52\%$$

Combinación N°5: Harina + Polipropileno

$$\eta = \frac{C_e - C_s}{C_e} x100$$

$$\eta = \frac{6.29 - 0.0258}{6.29} x100$$

$$\eta = 99.59\%$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$\eta = \frac{C_e - C_s}{C_e} x 100$$

$$\eta = \frac{6.31 - 0.0279}{6.31} \times 100$$

$$\eta = 99.56\%$$

Las eficiencias obtenidas de forma experimental son aproximadamente iguales a la eficiencia deseada de 99%. Esto se debe a que las mangas utilizadas en las pruebas son nuevas, lo cual garantiza una filtración óptima.

4.2.2.6. Cálculo de la Caída de Presión Real

Con los resultados experimentales obtenidos se calcula la caída de presión real que se produce por el efecto solo de la filtración y luego por la combinación de filtración y limpieza.

Para el primer caso se aplica las ecuaciones 2.11 y 4.3 que describen solo el proceso de filtración; reemplazando la ecuación 4.3 en la 2.11 se tiene lo siguiente:

$$\Delta P = (K_e + K_s W)V_f$$
 Ec. 4.15

Reemplazando la ecuación 4.2 en la ecuación 4.15 se tiene:

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$
 Ec. 4.16

Aplicando la ecuación 4.16 para las Combinaciones B1, B2 y B3 se tiene lo siguiente:

Combinación N°4: Harina + Poliéster

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$

$$\Delta P = (5.00 + 0.334x6.30x1.31x30)1.31$$

$$\Delta P = 114.88 Pa$$

$$\Delta P = 0.46 Pulg H_2 O$$

Combinación N°5: Harina + Polipropileno

$$\begin{split} \Delta P &= (K_e + K_s C_e V_f t_f) V_f \\ \Delta P &= (5.00 + 0.335 x 6.29 x 1.31 x 30) 1.31 \\ \Delta P &= 115.03 \, Pa \\ \Delta P &= 0.46 Pulg \, H_2 O \end{split}$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$

$$\Delta P = (5.00 + 0.333x6.31x1.31x30)1.31$$

$$\Delta P = 114.73 Pa$$

$$\Delta P = 0.46 Pulg H_2 O$$

Para el segundo caso se aplica la ecuación 2.15 la cual describe el proceso combinado de filtración y limpieza pulse - jet respetando las unidades americanas por su naturaleza empírica, para lo cual se presenta a continuación las variables V_f, K_s y C_e en las unidades requeridas por la ecuación 2.15:

$$V_f(\frac{ft}{min})$$

$$K_s(\frac{Pulg H_2O}{\frac{ft}{min}\frac{Lb}{ft^2}})$$

$$C_e(\frac{Lb}{ft^3})$$

Aplicando la ecuación 2.15 para las Combinaciones B1, B2 y B3 se tiene lo siguiente:

Combinación N°4: Harina + Poliéster

$$\Delta P = 6.08*V_f * P_j^{-0.65} + K_s * V_f^2 * C_e * t_f$$

$$\Delta P = 6.08*4.30*80^{-0.65} + 1.99*4.30^2 * 3.94x10^{-4} * 30$$

$$\Delta P = 1.950Pulg H_2O$$

Combinación N°5: Harina + Polipropileno

$$\Delta P = 6.08*V_f *P_j^{-0.65} + K_s *V_f^2 *C_e *t_f$$

$$\Delta P = 6.08*4.30*80^{-0.65} + 2.00*4.30^2 *3.93x10^{-4} *30$$

$$\Delta P = 1.951Pulg H_2O$$

Combinación N°6: Harina + Homopolímero

Acrílico

$$\begin{split} \Delta P &= 6.08*V_f * P_j^{-0.65} + K_s * V_f^2 * C_e * t_f \\ \Delta P &= 6.08*4.30*80^{-0.65} + 1.99*4.30^2 * 3.94x10^{-4} * 30 \\ \Delta P &= 1.950 Pulg \ H_2O \end{split}$$

Comparando estos resultados con el obtenido de forma teórica se aprecia que son aproximadamente iguales.

Por tanto los resultados experimentales anteriores definen completamente al filtro diseñado en cuanto a la obtención de la calibración del tiempo de filtración y de limpieza, de las eficiencias de recolección y de colección total de las constantes en el proceso de filtración y por consiguiente en la ratificación de la potencia real necesaria para el ventilador de succión.

CAPÍTULO 5

5. GUÍA EXPERIMENTAL PARA PRÁCTICAS DE LABORATORIO.

- 5.1. Práctica No 1: Prueba de Filtración para determinar las Constantes de Filtración.
 - Como paso previo a la determinación de las Constantes de Filtración, se debe determinar la Concentración de Entrada C_e del filtro como se muestra a continuación.
 - 2. Encender el banco de pruebas.
 - Poner una manga de cualquiera de los tres tipos de tela dentro del filtro. Ver el Apéndice E.
 - Poner unos 5 Kg de cemento, harina o cualquier otro polvo en el tanque de agitación y mezcla.

- 5. Poner una mascarilla de papel filtro (0.035oz=0.99g) en el tubo de entrada al filtro; este tubo se encuentra firmemente unido al tanque de agitación y mezcla por lo que forman un solo cuerpo. Para evitar que el papel filtro se separe del tubo, utilizar una liga de goma. Ver el Apéndice E.
- Conectar el tubo de entrada con la boca de entrada del filtro,
 con el papel filtro adherido al tubo. Ver el Apéndice E.
- 7. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo a la pared interna del tanque en su parte superior y ayudará a empujar el polvo hacia el tubo de entrada). Ver el Apéndice E.
- Poner la tapa transparente en la boca del tanque para que no salga el polvo. Ver el Apéndice E.
- Ingresar los parámetros de funcionamiento del PLC sin limpieza de manga (Programación).
 - a. Ingresar el tiempo de mezclado inicial B5 (min)
 (Funcionamiento de los dos ventiladores pequeños).
 Este valor normalmente es de 1 minuto. Ver Apéndice E.
 - b. Ingresar el tiempo de filtración B7 (min) (Funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando). Este valor normalmente es de 10 minutos. Ver el Apéndice E.

- c. Ingresar el tiempo de encendido del timbre B13 (min) =
 B7; este timbre sonará en el inicio y fin del tiempo de filtración B7. Ver el Apéndice E.
- 10. En la tapa del panel de control se encuentra ubicado el switch que enciende al PLC y la opción de encendido a seguir es la siguiente:
 - a. Abre y cierra, que permite la secuencia de filtración sin activación de la electroválvula (sin limpieza de la manga). Ver el Apéndice E.
- 11.El PLC enciende los ventiladores pequeños con lo cual se inicia la agitación y mezclado del polvo del tanque; al terminar el tiempo B5, el PLC enciende el ventilador de succión con lo cual se inicia el tiempo de filtración de aire que durará el tiempo B7. Los ventiladores pequeños siguen funcionando y el equipo dejará de funcionar al término del tiempo B7.
- 12. En todo momento, durante el tiempo B5 + B7 se debe mantener manualmente en movimiento el ventilador móvil, por medio de dos cables conectados a él, para que este ventilador levante el polvo continuamente dentro del tanque y facilite la succión del ventilador.
- 13. Una vez terminado el tiempo B5 + B7, el PLC apaga el equipo, entonces se retira el conjunto tanque + tubo de entrada + polvo

- del filtro teniendo cuidado de que el papel filtro no se separe del tubo par evitar que el polvo colectado en él se salga.
- 14. Se retira el conjunto papel filtro + polvo del tubo cuidadosamente y se pesa la masa de papel filtro + polvo (onzas) en la balanza electrónica y restando la masa del papel filtro previamente pesada se obtiene la masa de polvo que entra al sistema y que fue retenida por el papel filtro. Este valor se lo convierte en gramos. Ver el Apéndice E.
- 15. Este procedimiento se lo realiza cinco veces para obtener una masa promedio de entrada de polvo al filtro.
- 16. Este valor promedio de masa se lo divide para el tiempo B7 (min) de filtración y se obtiene un flujo de masa de entrada promedio por minuto M_e (g/min).
- 17. Luego se divide este valor M_e para el caudal de entrada Q_e =0.92 m^3 /min del ventilador. Este valor del caudal es una constante del equipo ya que el ventilador de succión tiene una sola velocidad. Entonces se obtiene la Concentración de Entrada C_e (g/ m^3) con que ingresa polvo al filtro. Esto se lo calcula con la siguiente ecuación:

$$C_e = \frac{M_e}{Q_e}$$

- 18. Se debe limpiar los dos ventiladores pequeños con una brocha antes de iniciar una nueva prueba.
- 19. Se aclara que no hay cambio de manga durante el desarrollo de las distintas partes de esta prueba.
- 20. Para la entrada de datos y obtención de resultados de esta parte de la práctica se utiliza la hoja electrónica siguiente:

 Ingreso de Datos de Medición de la Masa Promedio en Papel
 Filtro para el Cálculo de la Concentración a la Entrada del Filtro. Ver el Apéndice K.
- 21. Una vez determinada la Concentración de Entrada $C_{\rm e}$ se procede a obtener las Constantes de Filtración como sigue:
- 22. Ingresar los parámetros de funcionamiento del PLC sin limpieza de manga (Programación).
 - a. Ingresar el tiempo de mezclado inicial B5 (min)
 (Funcionamiento de los dos ventiladores pequeños).
 Este valor normalmente es de 1 minuto. Ver el Apéndice
 E.
 - b. Ingresar el tiempo de filtración B7 (min) (Funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando). Este valor normalmente es de 30 minutos. Ver el Apéndice E.

- c. Ingresar el tiempo de encendido del timbre B13 (min) < B7. Este timbre sonará una vez cumplido el intervalo de tiempo B13, e inmediatamente se procede a tomar la presión en Pulg H₂O en los tubos de entrada (P_e) y de salida (P_s) del filtro para lo cual se utiliza el velómetro. Es decir, el timbre sonará cada T13 min durante los B7 min que dure la prueba. El valor de B13 normalmente es de 5 minutos. Ver el Apéndice E.
- 23. Usar el selector de rangos con letras negras (escala 0 a 1 Pulg H₂O) del velómetro y acoplar la Sonda de Presión Estática para medir presiones.
- 24. Encerar el medidor del velómetro con el tornillo de ajuste en la posición que leerá las presiones (posición horizontal, vertical o inclinada).
- 25. Con las dos mangueras conectar el medidor con el selector de rangos del velómetro con polaridad invertida, por tratarse de mediciones de presión negativa.
- 26. Después que se ha iniciado el tiempo de filtración y para cada tiempo B13 se ubica la Sonda de Presión Estática sobre el orificio practicado en el tubo de entrada y se lee en el dial del velómetro la presión de entrada P_e en Pulg H₂O (leer en la escala 0 a 1 Pulg H₂O).

- 27. Inmediatamente se ubica la Sonda de Presión Estática sobre el orificio practicado en el tubo de salida y se lee en el dial del velómetro la presión de salida P_s en Pulg H₂O (leer en la escala 0 a 1 Pulg H₂O).
- 28. La Sonda de Presión Estática debe permanecer en posición perpendicular en ambos tubos al momento de hacer las lecturas.
- 29. Para una descripción detallada del manejo del velómetro consultar el Apéndice J.
- 30. Las lecturas de presión en Pulg H₂O tomadas en cada intervalo de filtración con el velómetro se las convierte a Pascales (Pa).
- 31. Se calcula la caída de presión en el filtro con la siguiente ecuación:

$$\Delta P = P_s - P_e$$

32. Se calcula la densidad de área W (g/m²) para cada intervalo por medio de la siguiente ecuación:

$$W = C_e * V_f * t_f$$

33. C_e se lo obtiene según el procedimiento descrito en esta práctica.

- $34.V_f = 1.31$ m/min = 4.30ft/min. Este valor de la velocidad de filtración es una constante del equipo ya que el ventilador de succión tiene una sola velocidad a la entrada del filtro.
- 35. T_f = B13 (min) es el valor del tiempo de filtración.
- 36. Se calcula el arrastre del filtro S (Pa-min/m) para cada intervalo por medio de la siguiente ecuación:

$$S = \frac{\Delta P}{V_f}$$

- 37. Se procede a elaborar el gráfico S vs W con los puntos obtenidos. En el eje Y se pone los valores de S y en el eje X los valores de W.
- 38. Se traza una recta representativa de los puntos graficados; la intersección con el eje Y (arrastre S) es el valor de K_e (Pamin/m) y la pendiente de la recta es K_s (Pa-min-m/g).
- 39. Se aclara que no hay cambio de manga durante el desarrollo de las distintas partes de esta prueba.
- 40. Para la entrada de datos y obtención de resultados de esta parte de la práctica se utiliza la hoja electrónica siguiente: Ingreso de Datos de Caída de Presión para elaborar el Gráfico S vs W. Ver el Apéndice K.
- 41. El Gráfico S vs W se elabora automáticamente en la hoja electrónica correspondiente diseñada para tal efecto, conforme

se van calculando los valores de S y W en la hoja electrónica anterior. Ver el Apéndice K.

5.2. Práctica No 2: Determinación de la Eficiencia Promedio de Recolección y Tiempo de Filtración.

- Se determina primero la Eficiencia Promedio de Recolección de materia prima como se muestra a continuación.
- 2. Encender el banco de pruebas.
- Poner unos 8 Kg de cemento, harina o cualquier otro polvo en el tanque de agitación y mezcla.
- El conjunto tanque + polvo + tubo de entrada se pesa en la balanza mecánica para obtener la masa inicial del conjunto (gramos).
- 5. Conectar el tubo de entrada con la boca de entrada del filtro.
- 6. Encender el compresor de aire.
- 7. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo a la pared interna del tanque en su parte superior y ayudará a empujar el polvo hacia el tubo de entrada). Ver el Apéndice E.
- Poner la tapa transparente en la boca del tanque para que no salga el polvo. Se deberá poner unos contrapesos para

- contrarrestar los pulsos de aire de la electroválvula y evitar que el polvo salga. Ver el Apéndice E.
- Ingresar los parámetros de funcionamiento del PLC con limpieza de manga (Programación).
 - a. Ingresar el tiempo de mezclado inicial B5 (min)
 (Funcionamiento de los dos ventiladores pequeños).
 Este valor normalmente es de 1 minuto.
 - b. Ingresar el tiempo de filtración B7 (min) (Funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando). Este valor normalmente es de 30 minutos.
 - c. Ingresar el tiempo de encendido del timbre B13 (min) =
 B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.
 - d. Ingresar el tiempo de activación de la electroválvula B9 (seg) que producirá el pulso de aire comprimido de 80psi
 (P_j) durante 250ms. Este valor normalmente está entre 1 y 30 seg.
- 10. En la tapa del panel de control se encuentra ubicado el switch que enciende al PLC y la opción de encendido a seguir es la siguiente:

- a. Abre, que permite la secuencia de filtración con activación de la electroválvula (con limpieza de la manga).
- 11. El PLC enciende los ventiladores pequeños con lo cual inicia la agitación y mezclado del polvo del tanque; al terminar el tiempo B5 el PLC enciende el ventilador de succión con lo cual se inicia el tiempo de filtración de aire que durará el tiempo B7. Los ventiladores pequeños siguen funcionando y el equipo dejará de funcionar al término del tiempo B7. La electroválvula se activará cada B9 segundos enviando un pulso de aire comprimido a la manga.
- 12. En todo momento, durante el tiempo B5 + B7 se deberá mantener manualmente en movimiento el ventilador móvil, por medio de dos cables conectados a él, para que este ventilador levante el polvo continuamente dentro del tanque y facilite la succión del ventilador.
- 13. Una vez terminado el tiempo B5 + B7 el PLC apaga el equipo, entonces se retira el conjunto tanque + tubo de entrada + polvo final.
- 14. Se pesa la masa final del conjunto tanque + tubo de entrada + polvo en la balanza mecánica y restando la masa inicial del

- mismo conjunto se obtiene la masa de polvo $M_{\rm e}$ que entra al sistema. Ver el Apéndice E.
- 15. Dentro de la tolva se encuentra el polvo que estaba adherido a la manga y que fue aflojado por los pulsos de aire comprimido de la electroválvula, entonces se abre la tapa de la tolva y el polvo cae en un recipiente plástico que se pone debajo de la tolva; este polvo se lo deposita en otro recipiente plástico más pequeño, y que es previamente pesado en la balanza mecánica; se pesa el conjunto recipiente + polvo y luego se resta el peso del recipiente solo, por lo que se obtiene la masa de polvo recolectado en tolva Mt que se ha recuperado.
- 16. Luego se divide la masa colectada en la tolva M_t para la masa de entrada al sistema M_e y se obtiene la Eficiencia de Recolección E_r de materia prima. Por lo tanto, se emplea la siguiente ecuación:

$$E_r = \frac{M_t}{M_e} x 100$$

17. Este procedimiento se lo realiza cinco veces teniendo en cuenta que el tiempo de activación de la electroválvula B9 debe incrementarse a partir de la segunda prueba. Este incremento puede ser de 5 seg. Por ejemplo B9=0, 5, 10, 15, 20 seg.

- 18. Se debe limpiar los dos ventiladores pequeños con una brocha antes de iniciar una nueva prueba.
- 19. Con estos cinco valores de eficiencia de recolección calculados se calcula el promedio, con lo cual se obtiene la Eficiencia Promedio de Recolección de materia prima del equipo.
- 20. Con los cinco valores de eficiencia de recolección de materia prima calculados se procede a elaborar el Gráfico E_r vs T_c, donde T_c es el tiempo de limpieza en que la electroválvula envía un pulso de aire comprimido a la manga (T_c=B9) y que para cada prueba de 30 minutos (B7) si así se desea, este valor se lo incrementa en un valor de 5 minutos por ejemplo, para la siguiente prueba.
- 21. Luego entrando al gráfico con la Eficiencia Promedio de Recolección se obtiene el Tiempo Óptimo de Filtrado o Tiempo Promedio de Limpieza.
- 22. Se aclara que no hay cambio de manga durante el desarrollo de las distintas partes de esta prueba.
- 23. Para la entrada de datos y obtención de resultados de esta parte de la práctica se utiliza la hoja electrónica siguiente: Ingreso de Datos de Pesaje de Masa en Tanque y Tolva y Resultados de Eficiencias. Ver el Apéndice K.

24. El Gráfico E_r vs T_c se elabora automáticamente en la hoja electrónica diseñada para tal efecto, conforme se van calculando los valores de E_r y T_c de cada intervalo. Ver el Apéndice K.

5.3. Práctica No 3: Determinación de la Eficiencia de Colección Total y Caída de Presión Real.

- Como paso previo a la determinación de la Eficiencia de Colección Total del equipo, se debe determinar la Concentración de Salida C_s del filtro como se muestra a continuación.
- Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 3. Encender el banco de pruebas.
- 4. Poner una mascarilla de papel filtro (0.035oz=0.99g) en el tubo de salida del filtro (abertura de 2mm aprox.); para evitar que el papel filtro se separe del tubo, utilizar cinta adhesiva. Ver el Apéndice E.
- 5. Poner unos 5 Kg de cemento, harina o cualquier otro polvo en el tanque de agitación y mezcla.
- Conectar el conjunto tanque + tubo de entrada + polvo con la boca de entrada del equipo.

- 7. Encender el compresor de aire.
- 8. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo a la pared interna del tanque en su parte superior y ayudará a empujar el polvo hacia el tubo de entrada). Ver el Apéndice E.
- 9. Poner la tapa transparente en la boca del tanque para que no salga el polvo. Se deberá poner unos contrapesos para contrarrestar los pulsos de aire de la electroválvula y evitar que el polvo salga. Ver el Apéndice E.
- 10. Ingresar los parámetros de funcionamiento del PLC con limpieza de manga (Programación).
 - a. Ingresar el tiempo de mezclado inicial B5 (min)
 (Funcionamiento de los dos ventiladores pequeños).
 Este valor normalmente es de 1 minuto.
 - b. Ingresar el tiempo de filtración B7 (min) (Funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando). Este valor normalmente es de 10 minutos.
 - c. Ingresar el tiempo de encendido del timbre B13 (min) =
 B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.

- d. Ingresar el tiempo de activación de la electroválvula B9
 (s) que producirá el pulso de aire comprimido de 80 PSI durante 250 ms. Este valor será el Tiempo Óptimo de Filtrado determinado en la Práctica N°2 de esta Guía.
- 11. En la tapa del panel de control se encuentra ubicado el switch que enciende al PLC y la opción de encendido a seguir es la siguiente:
 - a. Abre, que permite la secuencia de filtración con activación de la electroválvula (con limpieza de la manga).
- 12. El PLC enciende los ventiladores pequeños con lo cual inicia la agitación y mezclado del polvo del tanque; al terminar el tiempo B5 el PLC enciende el ventilador de succión con lo cual se inicia el tiempo de filtración de aire que durará el tiempo B7. Los ventiladores pequeños siguen funcionando y el equipo dejará de funcionar al término del tiempo B7. La electroválvula se activará cada T9 segundos enviando un pulso de aire comprimido a la manga.
- 13. En todo momento, durante el tiempo B5 + B7 se debe mantener manualmente en movimiento el ventilador móvil, por medio de dos cables conectados a él, para que este ventilador

- levante el polvo continuamente dentro del tanque y facilite la succión del ventilador.
- 14. Una vez terminado el tiempo B5 + B7 el PLC apaga el equipo, entonces se retira el papel filtro del tubo de salida teniendo cuidado de no dejar caer el polvo colectado.
- 15. Se pesa la masa de papel filtro + polvo (onzas) en la balanza electrónica y restando la masa del papel filtro previamente pesada se obtiene la masa de polvo que sale del sistema y que fue retenida por el papel filtro. Este valor se lo convierte a gramos. Ver el Apéndice E.
- 16. Este procedimiento se lo realiza cinco veces para obtener una masa promedio de salida de polvo del filtro.
- 17. Este valor promedio de masa se lo divide para el tiempo B7 de filtración y se obtiene un flujo de masa de salida promedio por minuto M_s (g/min).
- 18. Luego se divide este valor M_e para el caudal de salida Q_s =1.32 m^3 /min del ventilador. Este valor del caudal es una constante del equipo ya que el ventilador de succión tiene una sola velocidad. Entonces se obtiene la Concentración de Salida C_s (g/ m^3) con que ingresa polvo al filtro. Esto se lo calcula con la siguiente ecuación:

$$C_s = \frac{M_s}{Q_s}$$

- 19. Se debe limpiar los dos ventiladores pequeños con una brocha antes de iniciar una nueva prueba.
- 20. Se aclara que no hay cambio de manga durante el desarrollo de las distintas partes de esta prueba.
- 21. Con los valores de la Concentración de Entrada C_e y Concentración de Salida C_s determinados anteriormente en esta Guía se aplica la siguiente ecuación con lo que se obtiene la Eficiencia de Colección Total del equipo:

$$\eta = \frac{C_e - C_s}{C_e} x100$$

- 22. Para la entrada de datos y obtención de resultados de esta parte de la práctica se utiliza la hoja electrónica siguiente: Ingreso de Datos de Medición de la Masa Promedio en Papel Filtro para el Cálculo de la Concentración a la Salida del Filtro. Ver el Apéndice K.
- 23. Con los resultados experimentales obtenidos anteriormente se calcula la caída de presión real en el filtro la misma que es de dos tipos:
 - a. Solo de la filtración (sin limpieza de la manga) y,

- b. Por la combinación de filtración y limpieza pulse jet de la manga.
- 24. Para el cálculo de la caída de presión sólo por efecto de la filtración se aplica la siguiente ecuación donde todos los parámetros involucrados ya han sido calculados previamente.

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$

25. Para el cálculo de la caída de presión por efecto combinado de filtración + limpieza pulse – jet se utiliza la siguiente ecuación:

$$\Delta P = 6.08 * V_f * P_j^{-0.65} + K_s * V_f^2 * C_e * t_f$$

Debido a la naturaleza empírica de esta ecuación, se deben respetar las unidades americanas de los parámetros involucrados.

26. Para la entrada de datos y obtención de resultados de esta parte de la práctica se utiliza la hoja electrónica siguiente: Cálculo de la Caída de Presión en el Filtro sin Limpieza y con Limpieza Pulse – Jet de la Manga. Ver el Apéndice K.

CAPÍTULO 6

6. CONCLUSIONES Y RECOMENDACIONES.

Se presenta a continuación las conclusiones, ventajas y desventajas encontradas en el equipo después de realizadas las pruebas, por lo que se establecen algunas recomendaciones a implementar en el equipo para mejorar su desempeño.

1. CONCLUSIONES

a. Unas vez realizadas las pruebas experimentales en el equipo, se puede establecer que verifica de manera aceptable los parámetros de diseño involucrados en el dimensionamiento de un filtro de mangas o aplicarlo a un filtro ya construido, por lo

- que se lo recomienda sea utilizado en otras combinaciones polvo tela.
- b. A través del desarrollo experimental de estas pruebas se llega a constatar que la eficiencia de operación del filtro es aproximadamente del 99% tanto para cemento como para harina empleando los tres tipos de tela, por lo que se puede concluir que es un equipo de eficiencia constante, mostrando una excelente filtración de partículas con los tres tipos de manga utilizados, lo que determina por tanto un adecuado control de emisión de partículas hacia la atmósfera.
- c. El valor de K_s encontrado experimentalmente para ambos polvos, es alrededor de un 15% menor al calculado teóricamente, por lo cual se establece que con dicho banco de pruebas se puede verificar experimentalmente los parámetros involucrados en el diseño de filtros.
- d. Se tiene una eficiencia promedio de recolección en la tolva del 70% para cemento y 80% para harina, lo cual indica una muy buena recuperación de materia prima que puede ser reutilizado en el proceso de producción.
- e. La caída de presión real del equipo es aproximadamente 2 Pulg
 H₂O, lo cual está dentro del rango típico de caída de presión
 para este tipo de equipos. En cuestiones de diseño, esto afecta

favorablemente la utilización de un ventilador de menor potencia, aunque se utilizará un mayor número de mangas para filtrar aire, pero por el contrario, se garantizará una mejor distribución del caudal de entrada al equipo.

2. VENTAJAS

- a. Con la implementación del PLC, ya no es necesario el uso de una computadora, lo cual redunda en una mayor eficiencia en el uso de los equipos disponibles.
- b. El PLC cumple de manera muy satisfactoria los procedimientos experimentales requeridos en las pruebas además de que es muy versátil, puesto que no está sujeto a un solo valor de los tiempos de agitación y mezcla, tiempos de filtración y de limpieza, activación de la electroválvula, sino según lo requiera el usuario.
- c. Los dos ventiladores pequeños colocados en el tanque de agitación y mezcla, ayudan de manera muy favorable a mantener al polvo en continuo movimiento lo cual facilita la tarea de succión del ventilador.
- d. La electroválvula funciona en óptimas condiciones por cuanto limpia muy bien la manga, lo cual se ve reflejado en las eficiencias de recolección y colección total calculadas. Como

se había mencionado anteriormente, se deben poner unos contrapesos en la tapa del tanque, debido a que los pulsos de aire comprimido tienden a levantarla.

3. DESVENTAJAS

- a. La agitación y mezcla del polvo dentro del tanque se lo hace moviendo manualmente uno de los ventiladores pequeños, puesto que el otro ventilador está fijo y ayuda a empujar al polvo en suspensión hacia el tubo de entrada.
- b. La tapa transparente de plástico no ofrece la debida hermeticidad al tanque de agitación y mezcla por cuanto el polvo se sale cuando la electroválvula envía los pulsos de aire comprimido, por lo que se puso contrapesos encima de la tapa.
- c. La lectura de presiones a la entrada y salida del filtro se las efectuó manualmente con la ayuda del velómetro.
- d. El uso del velómetro para determinar las presiones a la entrada y salida del filtro hasta cierto punto no fueron muy precisas, debido a que su uso es manual y la dificultad en mantener en una misma posición la probeta, ya que el indicador del dial no se mantenía muy estable. Adicionalmente, este instrumento de medición necesita que se lo calibre por cuanto para los dos diferentes rangos de presión (0-1 Pulg H₂O y 1-10 Pulg H₂O) y

- tomando en consideración las escalas respectivas, las lecturas no tenían la suficiente precisión.
- e. Inicialmente se dispuso que la prueba para determinar las constantes de filtración sea de 30 minutos lo cual implicaba usar el velómetro para determinar las presiones en ese lapso de tiempo, pero debido a la falta de calibración de este instrumento, este tiempo fue reducido a 18 minutos puesto que el velómetro no podía leer más allá de cierto valor de presión a partir de los 20 minutos de empezada la prueba.

4. RECOMENDACIONES

a. Automatizar el proceso de agitación y mezcla del polvo en el tanque para así garantizar un caudal y concentración de entrada de polvo al filtro constante, puesto que actualmente los ventiladores pequeños, aunque son controlados por el PLC, deben ser movidos de manera manual, lo que afecta la continuidad del proceso, además de que no será necesario que una persona esté permanentemente en esta labor. Esta es la parte fundamental del equipo, por cuanto, la concentración de entrada se la utiliza en todos los cálculos relacionados con el diseño de filtros.

- Reemplazar la tapa transparente de plástico del tanque por una hermética, para evitar que el polvo se salga debido a los pulsos de aire comprimido de la electroválvula.
- c. Automatizar el proceso de lectura de presiones en el tubo de entrada y de salida del equipo para luego hacer el gráfico S vs W y así encontrar las Constantes de Filtración Ke y Ks. Se pueden utilizar sensores de presión, los mismos que a través de un dial y con la ayuda de un PLC de mejores características técnicas que el actual sea posible leer los valores de las presiones en ambos puntos de manera directa. En el presente trabajo, esta tarea se la realizó manualmente con la ayuda del velómetro, por lo que fue complicado leer las presiones para un mismo tiempo en ambos puntos. Adicionalmente, se ganará una mayor precisión y rapidez en la lectura de dichas presiones.
- d. Considerando las eficiencias obtenidas, se recomienda el uso de este tipo de equipo de control durante el proceso de producción como medio de recuperación y control para cualquier tipo de industria productora de polvos como por ejemplo cemento, harinas, arenas (canteras), etc. y también en otras empresas que no producen polvos pero que generan material particulado como son las acerías (partículas

- metálicas), papeleras, etc. en las cuales el uso del filtro es recomendado para el control de emisión de dichas partículas.
- e. El uso eficiente del aire comprimido y un caudal de entrada constante, garantizará las condiciones óptimas de trabajo para la manga.
- f. Es fundamental garantizar que la temperatura de operación sea muy superior a la de rocío, dado que no es recomendable que ingrese humedad o se produzca condensación al interior del mismo para un adecuado funcionamiento del equipo.

APÉNDICE A TABLA DE FACTORES DE CONVERSIÓN

TABLA A

MAGNITUD	SISTEMA	
	AMERICANO	INTERNACIONAL
Longitud	1 pie (pie)	0,3048 m
	1 pulgada (plg)	0,0254 m
Área	1 pie ²	0,0929 m ²
	1 plg ²	6,454x10 ⁻⁴ m ²
Volumen	1 pie ³	0,0283 m ³
	1 galón (gal)	3,7854x10 ⁻³ m ³
Masa	1 libra (lb)	453,6 gramos (g)
	1 tonelada (ton)	907,18 Kg
Presión	1 lbf/plg ² (psi)	6,89 KPa
	1 Pulg H₂O	248,92 Pa
Temperatura	1°F	-17,22°C
Potencia	1 caballo (Hp)	746 watts (W)

OTROS FACTORES DE CONVERSIÓN:

 $1 \mu g = 10^{-6} g$

1 Lb = 7000 granos (gr)

1 hora = 60 minutos (min) = 3600 segundos (s)

 $1 \min = 60 s$

APÉNDICE B TABLAS DE TEJIDOS Y SUS COSTOS

TABLA B

Materiales usados para las Mangas

TABLE 2.2 Filter Media Selection

Metodel	Temperature	Chemistry	Residual	lual	Ser	25	eth	Filtration		Permeability,	7, D	Drag, in	Cost,
Makerian	mmt, r	acid/base	moisture	ure	Flexibility		Cleaning	efficiency		(ft./min)/ft.	W	WG/(ft/min)	\$/R2
Falts													
2010	*	200			5		,						
rolypropylene	DAT	EVE	1		ā		5	H		30+		0.5	1.00
Polyester	275	G/F	Œ		í.		田	124		30+		0.5	8
Acrylic	260	VÆ	田	-	C		G.	Œ		30+		200	90
Nomex	400	0/0			0			1 6			ř	9	800
Buton	975	2/4	9 6		3 5		5 6	4 1		+00		0.0	3.00
TO CA	000	200	41		41		41	2		30+		0.5	3.20
F84	460	E/P	2		田		M	×		30+		0.5	3.30
Teflon	475	E/E	Ω		Œ,		Ь	H		30+		0.5	5.20
Woven													
Fiberglass	200	G/P	3		Çie.		Д	2		00		20	04.0
Caramic	1200	E/C	10				, 2	, 13		100		50	00.7
Metals	2000		9 6		9 0		4 6	4		+00		0.0	3.
Metals	7000	FA	EI.		•		শ্ৰ	٥		20+		0.7	6.50
Membrane (expand porous surface filtration coating)	porous surface fil	Itration coati	ng)										
PTFE	200	EÆ			H		E		-	30+		90	9 50
Acrylic	275	V/F	B		C		0	1 2		30+		0.5	1.00
Finishes (thermally sing	singed or chemical finish	cal finish)											
Graphite	500	E/E	Œ		c			2		30+		9.0	1 50
grounding			ı Ç)		3	•		5		25	7.00
Silicone	200	RÆ	Œ	_	2		2			30.		20	8
Teflon	200	EAR			9 0		9 0	1 12		30+		200	1.50
Ground wires	200	0/0	10		9 6		9 00	1 1=		AN	-	N N	0.50
Epitropic	400	0,0	0		0								0.50
grounding		i			•		•		1				
Die. 1 13													
Kigid cartridge										*			
Cellulose													
synthetic	240	F/F	£,		Ċ		M	Ċ		15+		6.0	2.00
Polyester	275	G/G	9		Ċ		Ö	E		30		0.5	2.50
Nomex	400	9/9	9		Ċ		9	图		30		0.5	5.50
PTFE	400	EÆ	Œ		Ċ		Ö	H		25		0.7	2.50
membrane													

TABLA C

PROPIED	ADES D	E RESIST	ENCIA EN M	ATERIALES D	E TEJIDO
TE UDO	ТЕМРЕ	RATURA	RESIS	TENCIA	ABRASIÓN
TEJIDO	°F	°C	ÁCIDA	ALCALINA	FLEXIBLE
Algodón	180	82	Pobre	Muy bueno	Muy bueno
Dacrón (poliéster)	275	135	Buena con minerales ácidos	Bueno - Regular en alcalinidad fuerte	Muy bueno
Fiberglas	500	260	Más o menos bueno	Regular a bueno	Regular
Nextel	1400	760	Muy bueno	Bueno	Bueno
Nomex	375	191	Regular	Excelente a baja temperatura	Excelente
Nylon	200	93	Regular	Excelente	Excelente
Orlón	260	127	Bueno a excelente		
P84*	475	246	Bueno	Bueno	Bueno
Polipropileno	200	93	Excelente	Excelente	Excelente
Ryton	375	191	Excelente	Excelente	Bueno
Teflón	450	232	Inerte excepto para flour	Inerte excepto para trifluoruro, cloruro y metales alcalinos	Regular
Lana	200	93	Muy bueno	Pobre	Regular a bueno

Fuente [5]

• Inspec Fibres Registered Trademark

TABLA D

			PREC	CIO DI	E MAI	NGAS	;				
		2do C	CUAR	TO D	E 199	8 EN	\$/pie ²				
TIPO DE LIMPIEZA	DIÁMETRO DE MANGA				7	ΓΙΡΟ Ι	DE TE	LA			
	pulg	PE	PP	NO	HA	FG	CO	TF	P8	RT	NX
	4-1/2 a 5-1/8	0,75	0,81	2,17	1,24	1,92	NA	12,20	4,06	2,87	20,60
Dulas Ist	6 a 8	0,67	0,72	1,95	1,15	1,60	NA	9,70	3,85	2,62	NA
Pulse-Jet	4-1/2 a 5- 1/8	0,53	0,53	1,84	0,95	1,69	NA	12,90	3,60	2,42	16,70
	6 a 8	0,50	0,60	1,77	0,98	1,55	NA	9,00	3,51	2,30	NA
Pulse-Jet	4-7/8	2,95	NA	6,12	NA	NA	NA	NA	NA	NA	NA
(cartucho)	6-1/8	1,53	NA	4,67	NA	NA	NA	NA	NA	NA	NA
Sacu	5	0,63	0,88	1,61	1,03	NA	0,70	NA	NA	NA	NA
dimiento	5	0,61	1,01	1,53	1,04	NA	0,59	NA	NA	NA	NA
	8	0,63	1,52	1,35	NA	1,14	NA	NA	NA	NA	NA
Aire	11-1/2	0,62	NA	1,43	NA	1,01	NA	NA	NA	NA	NA
reverso	8	0,44	NA	1,39	NA	0,95	NA	NA	NA	NA	NA
	11-1/2	0,44	NA	1,17	NA	0,75	NA	NA	NA	NA	NA

Fuente [5]

NA = No aplicable

MATERIALES

PE = 16 oz de poliéster CO = 9 oz de algodón

PP = 16 oz de polipropileno TF = 22 oz de teflón afelpado

NO = 14 oz de nomex P8 = 16 oz de p84

HA = 15 oz de homopolímero acrílico RT = 16 oz de rytón

FG = 16 oz de fiberglas con 10% de teflón NX = 16 oz de nextel

APÉNDICE C TABLAS PARA OBTENER LA VELOCIDAD DE FILTRACIÓN

TABLA E

Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9	FACTORE	ES PARA LA	RELACIÓN GAS	- TELA EN SISTE	MA PUL	SE - JET
Mezcla de pastel Asbesto Alúmina Amonio Carbón activado carbón negro fosfáticos Polvo de cartón En pulición Aspirina Fertilizantes fosfáticos Carbón negro (molecular) Cocoa Celuloso Carbón negro Petroquímicas secas Detergentes y otros dispersar Productos director de reacción de polvo de tocad leche y jabón Granos Perlita Pigmentos Ceniza volátil Polvo de cuero Caucho Cerámica Óxidos metálicos Polvo en acerríos Arena Arcillas Pigmentos metálicos y sintéticos Tabaco Sal Ladrillo Plásticos Talco Carbón de piedra Resinas Polvo de rocas y minerales Silicatos Sílica Almidones Acido sórbico Acido tánico FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. 1,0 Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9	FACTOR D	E MATERIAL	: A			
Polvo de cartón En pulición Aspirina Fertilizantes fosfáticos (molecular) Cocoa Celuloso Carbón negro Petroquímicas secas Productos directes y otros dispersar Productos directes y jabón Granos Perlita Pigmentos Ceniza volátil Polvo de cuero Caucho Cerámica Óxidos metálicos Polvo en acerríos Arena Arcillas Polvo de rocas y minerales y minerales Polvo de rocas y minerales Silicatos y minerales Polvo de tocad leche y jabón FACTOR DE APLICACIÓN: B Resinas Carbón de productos: transporte de aire, molinos, clasificadores, conducción rápida Fertilizantes Carbón negro (carbón negro (molecular) Petroquímicas carbón Detargentes y otros dispersar Productos directe de reacción de polvo de tocad leche y jabón Carbón negro (molecular) Petroquímicas petroquímicas productos directes y otros dispersar Productos de reacción de polvo de tocad leche y jabón Carbón negro (molecular) Petroquímicas petroquímicas productos de reacción de polvo de tocad leche y jabón Carbón negro (molecular) Potroquímicas petroquímicas productos de reacción de polvo de tocad leche y jabón Carbón negro (molecular) Potroquímicas petroquímicas productos de reacción de polvo de tocad leche y jabón Carbón negro (molecular) Potroquímicas petroquímicas petros dispersar de reacción de polvo de tocad leche y jabón Carbón negro (molecular) Potros dispersar productos directes y otros dispersar de reacción de polvo de tocad leche y jabón Carbón de reacción de polvo de tocad leche y jabón Carbón de reacción de polvo de tocad leche y jabón Carbón de reacción de polvo de reacción de reacción de polvo	15	12	10	9		6
cartón En pulicion Aspirina fosfáticos (molecular) Cocoa Celuloso Carbón negro Petroquímicas secas Detergentes y otros dispersar Productos directe de reacción de polvo de tocad leche y jabón Granos Perlita Pigmentos Ceniza volátil Polvo de cuero Caucho Cerámica Óxidos metálicos Polvo en acerríos Arena Arcillas Pigmentos metálicos y sintéticos Tabaco Sal Ladrillo Plásticos Talco Carbón de piedra Polvo de rocas y minerales Silicatos Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. 1,0 Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida		Asbesto	Alúmina	Amonio	Carbón	activado
Harina Fundición Cemento Tintura Productos directe de reacción de polvo de tocad leche y jabón Granos Perlita Pigmentos Ceniza volátil Polvo de cuero Caucho Cerámica Óxidos metálicos Polvo en acerríos Arena Arcillas Pigmentos metálicos y sintéticos Tabaco Sal Ladrillo Plásticos Talco Carbón de piedra Resinas Polvo de rocas y minerales Silicatos y sintéticos Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. 1,0 Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida		En pulición	Aspirina			•
Harina Fundición Cemento Tintura de reacción de polvo de tocade leche y jabón Granos Perlita Pigmentos Ceniza volátil Polvo de cuero Caucho Cerámica Óxidos metálicos Polvo en acerríos Arena Arcillas Pigmentos metálicos y sintéticos Tabaco Sal Ladrillo Plásticos Talco Carbón de piedra Resinas Polvo de rocas y minerales Silicatos Sílica Almidones Acido sórbico Acido tánico FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. 1,0 Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida Tintura de reacción de polyo de tocade leche y jabón Oxidos metálicos Pigmentos metálicos Pigmentos metálicos Silicatos Plásticos Resinas Silicatos Almidones Acido tánico 1,0 Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida	Cocoa	Celuloso	Carbón negro	•	otros di	spersantes
Polvo de cuero Caucho Cerámica Óxidos metálicos Pigmentos metálicos y sintéticos Tabaco Sal Ladrillo Plásticos Talco Carbón de piedra Polvo de rocas y minerales Sílica Acido sórbico Acido sórbico Acido tánico FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida Öxidos metálicos Pigmentos metálicos Plásticos Silicatos Silicatos Silicatos Almidones Acido tánico Azúcar 1,00	Harina	Fundición	Cemento	Tintura	de reac polvo de	ción de e tocador,
Cuero Arena Arcillas Cuero Pigmentos metálicos y sintéticos Plásticos Carbón de piedra Polvo de rocas y minerales Silicatos Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida Oxidos metalicos Pigmentos metálicos Pigmentos metálicos Pigmentos metálicos Pigmentos metálicos Acidos y sintéticos Acidos Mesinas Acidos Silicatos Almidones Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. 1,00	Granos	Perlita	Pigmentos	Ceniza volátil		
Arena Arcillas metálicos y sintéticos Tabaco Sal Ladrillo Plásticos Talco Carbón de piedra Resinas Polvo de rocas y minerales Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida		Caucho	Cerámica	Óxidos metálicos		
Talco Carbón de piedra Polvo de rocas y minerales Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida Resinas Silicatos Silicatos Almidones Acido tánico Azúcar 1,00		Arena	Arcillas	metálicos y		
Polvo de rocas y minerales Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida Resinas Silicatos Silicatos Acido tánico Azúcar 1,00	Tabaco	Sal	Ladrillo	Plásticos		
y minerales Sílica Almidones Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida		Talco	_	Resinas		
Acido sórbico Acido tánico Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9				Silicatos		
Azúcar FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9			Sílica	Almidones		
FACTOR DE APLICACIÓN: B Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9			Acido sórbico	Acido tánico		
Refiere a puntos de transferencia, estaciones de parqueo, etc. Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9			Azúcar			
Colección de Productos: transporte de aire, molinos, clasificadores, conducción rápida 0,9	FACTOR D	E APLICACIÓ	N: B			
conducción rápida	Refiere a pu	ıntos de trans	ferencia, estacior	nes de parqueo, etc) .	1,00
Filtración de mon conducción de envey barras resolvers etc.			transporte de aire	e, molinos, clasifica	dores,	0,90
Filtración de gas: conducción de spray, hornos, reactores, etc. 0,8	Filtración de	gas: conduc	ción de spray, ho	rnos, reactores, etc	;_	0,80

Fuente [5]

TABLA F

	TELA EN COMBINACIÓ	
POLVO	SACUDIMIENTO / TEJIDO TRAMADO AIRE REVERSO / TEJIDO TRAMADO	PULSE-JET / TEJIDO FIELTRO AIRE REVERSO / TEJIDO FIELTRO
Alúmina	2,50	8,00
Asbesto	3,00	10,00
Bauxita	2,50	8,00
Carbón negro	1,50	5,00
Cal	2,50	8,00
Cocoa, chocolate	2,80	12,00
Cemento	2,00	8,00
Cosméticos	1,50	10,00
Esmalte	2,50	9,00
Granos	3,50	14,00
Feldespato	2,20	9,00
Fertilizantes	3,00	8,00
Flour	3,00	12,00
Ceniza volátil	2,50	5,00
Grafito	2,00	5,00
Oxido de hierro	2,50	7,00
Sulfato de hierro	2,00	6,00
Mica	2,70	9,00
Pigmentos de pintura	2,50	7,00
Papel	3,50	10,00
Plástico	2,50	7,00
Arena	2,50	10,00
Sílica	2,50	7,00
Detergente	2,00	5,00
Azúcar	2,00	13,00
Talco	2,50	5,00
Tabaco	3,50	-
Oxido de zinc	2,00	-

Fuente [2]

APÉNDICE D TABLAS DE PROPIEDADES DE TELAS SELECCIONADAS

TABLA G

Av. Colon 3844 - Tel/Fax (02284) 425919 / 443642 (7400) Olavarria - Pcia.Bs.As - Rca Argentina Info@rmseguridad.com.ar - www.magnatema.com.ar

Ficha de Especificaciones Tecnicas

Codigo		P	E-W-050	•	
Fibra punzonada		► P	ollester		
Fibra de respado (scrim)		► P	ollester		
Tratamiento		► A	nticolmante		
		► A	ntlabrasión		
		► A	nttadherente		
		•			
		•			
		•			
Propledades Fisicas				Tolerancia	Unidades
Peso por unidad de area			500	+/-20,00	g/m²
Permeabilidad	a 2 mbar (20 mm ca)		160	+/-20,00	L / dm2. min
Espesor			1,7	+/-0,10	mm
Densidad			0,29		g/cm³
Resistencia a la traccion	a lo largo	▶	80	+/-5,00	daN / 5 cm
	a lo ancho	▶	80	+/-5,00	daN / 5 cm
Elongación	a lo largo	▶		menos de	%
	a lo ancho	▶		menos de	%
Resistencia a la presion				+/-10,00	kg/m²
Temperatura de operación continua	calor seco	•	130		°C
	calor hûme	do			°C
Temperatura maxima de operación	Instantanea	4 ₽	150		°C
Resistencia superficial			10*12		≤ / m²
""Resistencia superficial convencional (sin trat)			10^12		21/ m²
Propiedades Químicas					
Resistencia a los ácidos		•	Muy Bueno		
Resistencia a los alcalis		•	Bueno		
Resistencia a la hidrólisis		•	Pobre		

TABLA H

Av. Colon 3844 - Tel/Fax (02284) 425919 / 443642 (7400) Olavarria - Pcla.Bs.As - Rca Argentina Info@rmseguridad.com.ar - www.rmagnaterra.com.ar

Ficha de Especificaciones Tecnicas

Codigo			PP-050	•	
Fibra punzonada		۰	Palipropileno		
Fibra de respado (scrim)		۰	- Palipropileno		
Tratamiento			- Anticolmante		
		-	Antiabrasión		
		۰	- Antiadherente		
		١			
		١			
Propledades Fisicas		١	•	Tolerancia	Unidades
Peso por unidad de area			500	+/-20,00	g/m²
Permeabilidad	a 2 mbar (20 mm ca)		120	+/-20,00	L/dm². min
Espesor			1,8	+/-0,10	mm
Densidad			0,28		g/cm³
Resistencia a la traccion	a lo largo	۰	150	+/-5,00	daN / 5 cm
	a lo ancho	۰	150	+/-5,00	daN / 5 cm
Elongación	a lo largo	۰		menos de	%
	a lo ancho	۰		menos de	%
Resistencia a la presion				+/-10,00	kg/m²
Temperatura de operación continua	calor seco	_	90		°C
	calor hûme				°C
Temperatura maxima de operación	Instântanea	•	110		°C _
Resistencia superficial					د / m²
"Resistencia superficial convencional (sin trat)			10^12		21 / m ₅
Propiedades Químicas					
Resistencia a los ácidos		۰	Bueno		
Resistencia a los alcalis		۰	- Bueno		
Resistencia a la hidrólisis		•	Bueno		

TABLA I

Av. Colon 3844 - Tel/Fax (02284) 425919 / 443642 (7400) Olavarria - Pcla.Bs.As - Rca Argentina Info@rmseguridad.com.ar - www.rmagnatema.com.ar

Ficha de Especificaciones Tecnicas

	•				
Codigo			W-ACR-056	•	
Fibra punzonada		► I	Poliacrilonitrilo + Membrana	a Si	
Fibra de respado (scrim)		► I	Poliacriionitriio Homopolime	ero	
Tratamiento			Anticolmante Antiabrasión		
		> /	Antiadherente		
		>	Antihumedad		
		۰			
		۰			
Propiedades Fisicas				Tolerancia	Unidades
Peso por unidad de area			550	+/-20,00	g/m²
Permeabilidad	a 2 mbar (20 mm ca)		150	+/-20,00	L / dm². min
Espesor			2,3	+/-0,10	mm
Densidad			0,24		g/cm³
Resistencia a la tracción	a lo largo ▶		60	+/-5,00	daN / 5 cm
	a lo ancho 🕨		60	+/-5,00	daN / 5 cm
Elongación	a lo largo ▶			menos de	%
-	a lo ancho 🕨	-		menos de	%
Resistencia a la presion				+/-10,00	kg/m²
Temperatura de operación continua	calor seco ▶		110		°C
Tomporabus marina de operación	caior húmedo Instántanea ▶		420		°C
Temperatura maxima de operación Resistencia superficial	iliolaticalled F		130		sy/m²
"Resistencia superficial convencional (sin trat)					22/m²
The state of the s					2271111
Propiedades Químicas					
Resistencia a los ácidos		۰	Muy Bueno		
Resistencia a los alcalis		۰	Bueno		
Resistencia a la hidrólisis		۰	Excelente		
Folleto Tecnico	10/03/2009				
I dieto i edillo	10/05/2008				

APÉNDICE E FOTOS DEL EQUIPO

Vista Frontal

Vista Lateral

Vista Posterior Derecha

Manómetro de Presión y Timbre

Tanque de Agitación y Ventiladores

Tanque + Tubo + Papel Filtro

Papel Filtro

Tanque sobre Balanza Mecánica

Ventilador de Succión

Balanza Mecánica

Balanza Electrónica

Velómetro y Accesorios

Electroválvula

Medidor Venturi de la Canastilla

Canastilla de la Manga

Manga + Canastilla

Balanza Electrónica + Polvo

Visor del Filtro para ver la Manga

Papel Filtro en Tubo de Entrada

Ventiladores de Agitación y Mezcla

Tolva y Recipiente Plástico

Manómetro de Presión y Timbre

Medidor Venturi de la Canastilla

Mangas para el Filtrado

Tubo de Entrada con Polvo

Manga después del Filtrado

Papel Filtro en Tubo de Salida

Parte Superior de la Canastilla

Base de Asiento del Tanque

Switch del PLC – Cierra

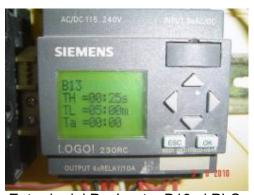
Switch del PLC - Abre

Ventiladores después de una Prueba

Abertura en Tubo de Salida

Tapa Transparente de Plástico

Recipiente de Plástico para Tolva


Entrada del Parámetro B5 al PLC

Entrada del Parámetro B7 al PLC

Entrada del Parámetro B9 al PLC

Entrada del Parámetro B13 al PLC

Ventilador de Succión

Desmontaje de Tubo de Salida

Llave de Paso de Aire Comprimido

Manómetro y Timbre

Salida de Manga del Filtro

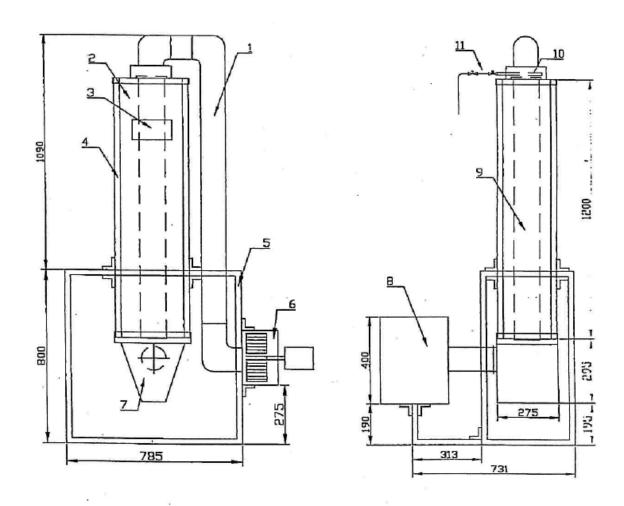
Manga para el Filtrado

Panel de Control

Tanque conectado al Filtro

PLC y Accesorios

Compresor



Vista Interior del Filtro

Vista Superior del Filtro

APÉNDICE F PLANO DE DIMENSIONES GENERALES DEL FILTRO DE MANGAS PULSE - JET

11	Electroválvula		VXF2160	pulso de 80 ==
10	Tubo Inyector		galvnizado 1/2"	L= 200mm
9	Manga-Canastilla		polyester	de 16 onzas
8	Camara de Polvo		tanque de pvc	
7	Tolva de Colección		110 de 1/8**	
6	Ventilador		1/4 Hp	centrifuge
5	Base de Filtro	L 25×2		
4	Estructura		L 25×2	
3	Visor		transparente	130×100
2	Cuerpo Principal		1010 de 1/8**	36
1	Tubo de Succión		pvc de 110mm	
ITEM	NUMBRE	No	MATERIAL	DETALLE

FACULTAD DE INGENIERIA EN MECANICA CIENCIA DE LA PRODUCCION

552	FECHA	NOMBRE	DENDM	INACION	ı	,	EZZ:
Dib.							
Rev.			7 24			LTRO DE	
Apro.			7	MANG	S PULSE	-JE1	
F	SP		PLAND	No	01		
-	-01	\neg					

APÉNDICE G DATOS TÉCNICOS DEL PLC SIEMENS LOGO 230 RC

PLC SIEMENS LOGO 230 RC

¿Qué es LOGO!?

LOGO! es el módulo lógico universal de Siemens.

LOGO! lleva integrados

- Control
- Unidad de operación y visualización
- Fuente de alimentación
- Interfase para módulos de programa y cable de PC
- Ciertas funciones básicas usuales en la práctica, p.ej. para activación/desactivación retardada y relé de impulsos
- Reloj temporizador
- Marcas binarias
- Determinadas entradas y salidas según el tipo del equipo

¿Qué ofrece LOGO!?

Mediante LOGO! se solucionan cometidos en la técnica de instalaciones en edificios (p.ej. alumbrado de escaleras, luz exterior, toldos, persianas, alumbrado de escaparates, etc.), así como en la construcción de armarios de distribución, de máquinas y de aparatos (p.ej. controles de puertas, instalaciones de ventilación, bombas de aguas residuales, etc.).

LOGO! puede utilizarse asimismo para los controles especiales de invernaderos o invernáculos, para procesar previamente señales en controles y –mediante la variante ASi– para el control descentralizado "in situ" de máquinas y procesos.

Para las aplicaciones en serie en la construcción de máquinas pequeñas, aparatos y armarios de distribución, así como en el sector de instalaciones, se prevén variantes especiales sin unidad de operación.

¿Qué tipos de equipo existen?

LOGO! se prevé para 12 V c.c., 24 V c.c., 24 V c.a. y 230 V c.a. como

- Variante estándar con 6 entradas y 4 salidas, integrada en 72 x 90 x 55
 mm
- Variante sin display con 6 entradas y 4 salidas, integrada en 72 x 90 x 55
 mm

- Variante con 8 entradas y 4 salidas, integrada en 72 x 90 x 55 mm
- Variante larga con 12 entradas y 8 salidas, integrada en 126 x 90 x 55
 mm
- Variante de bus con 12 entradas y 8 salidas, así como conexión de bus adicional de interfase AS, a través de la que hay disponibles en el sistema bus otras 4 entradas y otras 4 salidas. Todo ello integrado en 126 x 90 x 55 mm.

Todas las variantes incluyen 29 funciones básicas y especiales listas para la redacción de programas.

A Datos técnicos

A.1 Datos técnicos generales

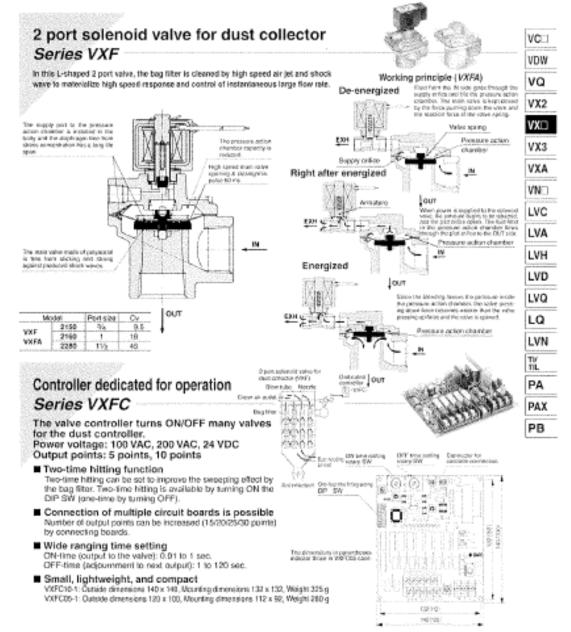
Criterio	Verificación según	Valores
Dimensiones (AxAxP)		72 x 90 x 55 mm
Peso		aprox. 190 g
Montaje		en perfil soporte de 35 mm ancho: 4 unidades de divi- sión
LOGO!L:		
Dimensiones (AxAxP)		126 x 90 x 55 mm
Peso		aprox. 360 g
Montaje		en perfil soporte de 35 mm ancho: 7 unidades de divi- sión
Condiciones ambientale	s climáticas	
Temperatura ambiente montaje horizontal montaje vertical	Frío según IEC 68-2-1 Calor según IEC 68-2-2*	0 55° C 0 55° C
Almacenaje/transporte		−40° C +70° C
Humedad relativa	IEC 68-2-30	de 5 a 95 % sin formación de rocío
Presión atmosférica		795 1080 hPa
Sustancias nocivas	IEC 68-2-42	SO ₂ 10 cm ³ /m ³ , 4 días
	IEC 68-2-43	H ₂ S 1 cm ³ /m ³ , 4 días
Condiciones ambientale	s mecánicas	
Tipo de protección		IP 20
Vibraciones	IEC 68-2-6	10 57 Hz (amplitud constante 0,15 mm)
		57 150 Hz (aceleración constante 2 g)
Choque	IEC 68-2-27	18 choques (semisenoidal 15g/11ms)

^{*}IEC 68 contiene VDE 0631

Criterio	Verificación según	Valores
Caída ladeada	IEC 68-2-31	Altura de caída 50 mm
Caída libre, embalado	IEC 68-2-32	1 m
Compatibilidad electrom	agnética (CEM)	
Descarga electrostá-	IEC 801-2	8 kV descarga al aire
tica	grado de intensi- dad 3	6 kV descarga por contacto
Campos electromag- néticos	IEC 801-3	Intensidad de campo 10 V/m
Supresión de radioin-	EN 55011	Case valor límite B grupo 1
terferencias		Clase valor límite A en ope- ración ASi
Emisión de perturba- ciones CEM	EN 50081-2	
Inmunidad a interfe- rencias	EN 50082-2	
Impulsos en ráfagas	IEC 801-4	2 kV (conductores de ali-
	grado de intensi- dad 3	mentación y de señaliza- ción)
		Variantes B11: según <i>ASi-</i> Complete Specification V 2.0 del 27-11-95
Impulso individual de	IEC 801-5	0,5 kV (conductores ali-
gran energía (surge)	grado de intensi-	mentación) simétrico
(sólo para LOGO! 230)	dad 2	1 kV (conductores alimen- tación) asimétrico
Indicaciones concernier	ites a la seguridad CE	I / VDE
Dimensionamiento de los entrehierros y las fugas	IEC 664, IEC 1131, EN 50178 Entw. 11/94 UL 508, CSA C22.2 No 142 Para LOGO! 230R/RC también VDE 0631	se cumple
Rigidez dieléctrica	IEC 1131	se cumple

A.2 Datos técnicos: LOGO! 230...

	LOGO! 230RC LOGO! 230RCo	LOGO! 230RCL LOGO! 230RCLB11		
Fuente de alimentación				
Tensión de entrada	115/230 V c.a.	115/230 V c.a.		
Margen admisible	85 253 V c.a.	85 253 V c.a.		
Frecuencia de red admisible	47 63 Hz	47 63 Hz		
Consumo de corriente				
• 115 V c.a.	10 30 mA	15 65 mA		
• 230 V c.a.	10 20 mA	15 40 mA		
Compensación de fallos de tensión				
• 115 V c.a.	típ. 10 ms	típ. 10 ms		
• 230 V c.a.	típ. 20 ms	típ. 20 ms		
Potencia disipada en caso de				
• 115 V c.a.	1,1 3,5 W	1,7 7,5 W		
• 230 V c.a.	2,3 4,6 W	3,4 9,2 W		
Respaldo en tampón del reloj a 25° C	típ. 80 h	típ. 80 h		
Exactitud del reloj de tiempo real	máx. ±5 s / día	máx. ±5 s / día		
Entradas digitales				
Cantidad	6	12		
Separación galvánica	no	no		
Tensión de entrada L1				
 señal 0 	<40 V c.a.	<40 V c.a.		
señal 1	>79 V c.a.	>79 V c.a.		
Intensidad de entrada para				
 señal 0 	<0,03 mA	<0,03 mA		
señal 1	>0,08 mA	>0,08 mA		


	LOGO! 230RC LOGO! 230RCo	LOGO! 230RCL LOGO! 230RCLB11		
Tiempo de retardo para				
cambio de 0 a 1	típ. 50 ms	típ. 50 ms		
cambio de 1 a 0	típ. 50 ms	típ. 50 ms		
Longitud del conductor (sin blindaje)	100 m	100 m		
Salidas digitales				
Cantidad	4	8		
Tipo de las salidas	Salidas a relé	Salidas a relé		
Separación galvánica	sí	sí		
En grupos de	1	2		
Activación de una entrada di- gital	sí	sí		
Corriente permanente I _{th} (por cada borne)	máx. 10 A	máx. 10 A		
Carga de lámparas incandes- centes (25.000 maniobras) en caso de				
230/240 V c.a.	1.000 W	1.000 W		
115/120 V c.a.	500 W	500 W		
Tubos fluorescentes con adaptador eléctr. (25.000 ma- niobras)	10 x 58 W (para 230/240 V c.a.)	10 x 58 W (para 230/240 V c.a.)		
Tubos fluorescentes compensados convencionalmente (25.000 maniobras)	1 x 58 W (para 230/240 V c.a.)	1 x 58 W (para 230/240 V c.a.)		
Tubos fluorescentes no com- pensados (25.000 manio- bras)	10 x 58 W (para 230/240 V c.a.)	10 x 58 W (para 230/240 V c.a.)		
Resistencia a cortocircuitos cos 1	Contactor potencia B16 600 A	Contactor potencia B16 600 A		

	LOGO! 230RC LOGO! 230RCo	LOGO! 230RCL LOGO! 230RCLB11	
Resistencia a cortocircuitos cos 0,5 a 0,7	Contactor potencia B16 900 A	Contactor potencia B16 900 A	
Derating	ninguna; en todo el margen de tempera- tura	ninguna; en todo el margen de tempera- tura	
Conexión de las salidas en paralelo para aumentar la po- tencia	no admisible	no admisible	
Protección de un relé de sa- lida (si se desea)	máx. 16 A, característica B16	máx. 16 A, característica B16	
Frecuencia de conmutación			
Mecánica	10 Hz	10 Hz	
Carga óhmica/carga de lám- paras	2 Hz	2 Hz	
Carga inductiva	0,5 Hz	0,5 Hz	
Conexión de esclavo ASi (sólo	LOGO! 230RCLB11)		
Perfil ASi		7.F	
I/O Config		7 _h	
ID Code		F _h	
Cantidad de entradas digita- les virtuales		4	
Cantidad de salidas digitales virtuales		4	
Alimentación de tensión		Fuente de alimenta- ción ASi	
Consumo de corriente		típ. 30 mA	
Separación galvánica		sí	
Protección contra inversión de polaridad		sí	

APÉNDICE H DIAGRAMAS DE SELECCIÓN DE VÁLVULAS SOLENOIDE VXF

2 Port Solenoid Valve For Dust Collector Series VXF

How to Order

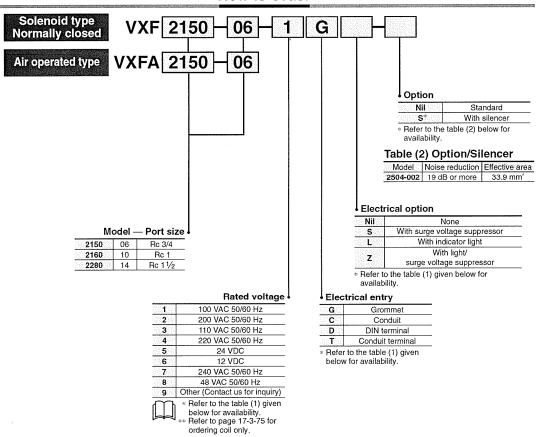
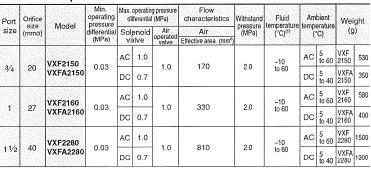


Table (1)
Rated Voltage-Electrical Entry-Electrical Option

Insulatio	n type	Class B			
Electrica	l entry	G C D,T			
Electrica	l option	S Note)		S L,Z	
	1 (100 V)	•	•	•	•
	2 (200 V)	•	•	•	•
	3 (110 V)	•	•	•	•
AC -	4 (220 V)	•	•	•	•
	7 (240 V)	•	•	•	_
Ī	8 (48 V)	•	•	•	_
DC -	5 (24 V)	•	•	•	•
PC	6 (12 V)	•	•	•	

) Note) Surge voltage suppressor is attached in the middle of a lead wire.


⚠ Caution Selection

When selecting the air operated type VXFA, select 2 port solenoid valves (with orifice dia. of o3 or more and effective area of 6 mm² or more) in order to maintain the pilot valve performance.

2 Port Solenoid Valve For Dust Collector Series VXF

Model/Valve Specifications

Note 1) Dew point shall be -10°C or less. No condensation allowed.

Air operated type

Solenoid Specifications

Model	Power source	Frequency (Hz)	Apparent power VA		Power consumptions	Temperature rise (°C)	voltage	Pilot exhaust noise (dB)	
			Inrush	Holding	W (Holding)	(Rated voltage)	fluctuation (%)	Without silencer	With silencer
VXF 2150	AC	50	20 11		4.5	45	Rated value ±10	104	83
		60		11		35			
	DC	_	_		6	55			
VXF 2160	AC	50	60 20 11 4.5 35 Vi			45	Rated		
		60		4.5	35	value	105	85	
2100	DC			±10					
VXF 2280	AC	50	40	18	7.5	60	Rated value ±10		
		60	40	18		50		108	85
	DC	_			8	60			

VC□

VDW ۷Q

VX2

 $VX\square$

VX3

VXA $VN\square$

LVC LVA

LVH

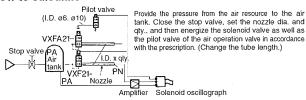
LVD LVQ

LQ

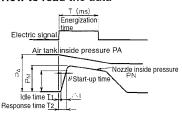
LVN

PA

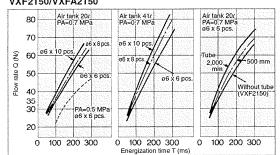
PAX

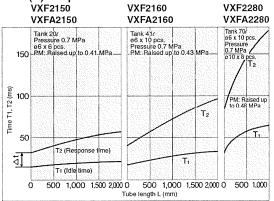

РΒ

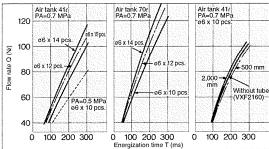
Model Selection (In the case of using as a bag filter)


Model selection

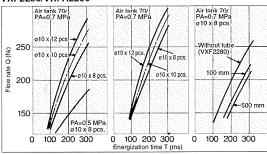
The deterrioration of VXF/VXFA properties due to the tube length from data B (response time/idle time) and data C (start-up speed), can be measured. Refer to this data to set energization time. Use data A (flow rate characteristics) to calculate the flow rate for each loading time separately in relation to the nozzle dia./qty., pressure, and tube. The data does not correspond to the actual bag filter operation. (In the data: "Without tube" and Tube length \emptyset =

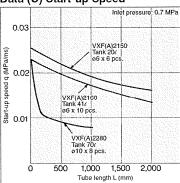

How to calculate


How to read the data


Data (A) Flow Characteristics VXF2150/VXFA2150

Data (B) Response Time/Idle Time


VXF2160/VXFA2160


How to read the graph

The longer the tube length, the longer the response time and wasted time. If longer than the length in the diagram, the valve might not open due to the tube resistance.

VXF2280/VXFA2280

Data (C) Start-up Speed

How to read the graph

The start-up speed stands for the degree of the nozzle inside pressure rise per the unit of time. The greater it is, the stronger the shock wave from the nozzle becomes. It also means that the closing speed increases and consumption of air can be used

Start-up speed
$$\theta = \frac{PM \times 0.9}{\Delta t} MPa/ms$$

How to read the graph

Even if the energizing time is constant, a greater amount of air flows when the PA is at 0.7 MPa than at 0.5 MPa. Moreover, the greater the air tank capacity, the greater the amount of airflow. Furthermore, the greater the nozzle's total cross sectional area, the greater the amount of airflow, While the flow volume changes according to the length of the tube, be aware that a wasted flow volume is involved during a return.

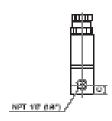
APÉNDICE I ESPECIFICACIONES TÉCNICAS DE LAS VÁLVULAS SOLENOIDE AIRTAC

SERIE 2V - PILOTADAS - AIRE, AGUA, ACEITE

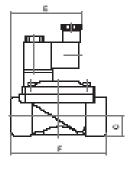
Especificaciones Técnicas				
Fluidos Aire , Agua, Aceite				
Posición	Normalmente Cemadas			
Presión de operación 1/8" - 1/4"	0~150 PSI (0~10 Kg./cm²)			
Presión de operación 3/8" ~ 2" 7 ~ 100 PSI (0,5 ~ 7 K g/cm				
Tempe mt um de operación	-10 ~80 °C			
Variación de l voltaje	±10%			
Protección Bebina	IP65 - Conector DIN			
Consumo de petencia AC: 7VA/66Hz DC				
Tiempo de res puesta	0,05 Seg.			
Cuerpo	Bronce			
Sellos	XNBR			

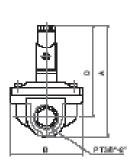
Código	NPT	Referencia	CV	Voltaje
A10006	1/8"	2V-025-06-DC12V	0,23	12 V DC
A10010	1/8*	2V-025-06-DC24V	0,23	24 V DC
A10015	1/8*	2V-025-06-AC110V	0,23	110 V AC
A10020	1/8*	2V-025-06-AC220V	0,23 0,23	220 V AC
A10025	1/4"	2V-025-08-DC12V	0,23	12 V DC
A10030	1/4"	2V-025-08-DC24V	0,23	24 V DC
A10035	1/4*	2V-025-08-AC110V	0,23	110 V AC
A10040	1/4*	2V-025-08-AC220V	0,23	220 V AC
A10045	3/8"	2V-130-10-DC24V	6,2	24 V DC
A10050	3/8"	2V-130-10-AC110V	6,2 6,2	110 V AC
A10055	3/8*	2V-130-10-AC220V	6,2	220 V AC
A10060	1/2*	2V-130-15-DC24V	6,2 6,2 6,2	24 V DC
A10065	1/2*	2V-130-15-AC110V	6,2	110 V AC
A10070	1/2*	2V-130-15-AC220V	6,2	220 V AC
A10075	3/4"	2V-250-20-DC24V	23	24 V DC
A10080	3/4"	2V-250-20-AC110V	23	110 V AC
A10085	3/4"	2V-250-20-AC220V	23	220 V AC
A10090	1"	2V-250-25-DC24V	23	24 V DC
A10095	1"	2V-250-25-AC110V	23	110 V AC
A10100	1"	2V-250-25-AC220V	23	220 V AC
A10105	1 1/2"	2V-400-40-AC110V	23	110 V AC
A10110	1 1/2"	2V-400-40-AC220V	23	220 V AC
A10115	2.	2V-500-50-AC110V	31	110 V AC
A10120	2*	2V-500-50-AC220V	31	220 V AC

SERIE 2V - PILOTADAS


Código	K it de reparación	Referencia
A10140	Kit para 2V130 (3/8" - 1/2")	2V130-15-d
A10145	Kit para 2V250 (3/4" - 1")	29/250-25-d
A10150	Kit para 2V400 (1 1/2*)	29/400-40-d
A10155	Kit para 2V500 (2')	2V500-50-d
A16300	Bobina 12 VDC para 2V	2V250-25-co DC12V
A16305	Bobina 24 VDC para 2V	2V250-25-co DC24V
A16315	Bobina 110 VAC para 2V	2V250-25-co AC110V
A16320	Bobina 220 VAC para 2V	2V250-25-co AC220V
A16325	Bobina 110 VAC para (1 1/2" - 2")	2V500-50-co AC110V
A16330	Bobina 220 VAC para (1 1/2" - 2")	2V500-50-co AC220V

ACCION DIRECTA





2V130 2V250

PILOTADAS

NPT	A	В	C	D	Е	F
1/8" - 1/4"	76,2	22	9,5	63,8	67,5	30
3/8" - 1/2"	103,2	49	15	88,2	70	72
3/4" - 1"	119,2	77,5	21	98,2	78	102
1.1/2"	1 10	76	28	82	-	97
2"	130	96	35	95	-	113

APÉNDICE J MANUAL DE MANEJO DEL VELÓMETRO ALNOR SERIE 6000

OWNER'S MANUAL

Velometer[®] Series 6000

TABLA DE CONTENIDOS

Aviso de Seguridad	.23
Descripción General	.24
Medidor	
Selector de Rangos	
Sonda Pitot	
Sonda Low Flow	
Sonda Difusora	
Sonda de Presión Estática	
Preparación para Su Uso	
Sonda Difusora	.28
Sonda de Presión Estática	
Sonda Pitot	
Sonda Low Flow	.30
Operación	.31
Procedimiento para Tomar Mediciones	
Con la Sonda Low Flow	.31
Velocidades en Orificios de Succión—Excepto en	
Difusores o Parrillas	
En Ruedas Pulidoras	
En Casetas de Dispersión	
Velocidades en Tanques de Chapeado	.31
Procedimiento para Tomar Mediciones de Velocidad	
En Difusores, Registradores y Parrillas Con	
la Sonda Difusora	.32
Procedimiento de Medición de Flujo de Aire	
En un Difusor Típico	.32
Procedimiento para Tomar Mediciones de	
Presión Estática	. 34
Procedimiento para Tomar Mediciones de Presión	
Estática en Ductos	.34
Medición de la Velocidad del Aire en un Ducto	
Problemas, Soluciones y Mantenimiento	.37
Investigación de Fallas	
Mantenimiento	
General	
Limpieza del Velometer	
Reemplazo de Partes y Accesorios Reemplazo del Filtro del Selector de Rango	.38
Reemplazo de los Anillos en forma de "O"	.38
	40
en las Sondas Reemplazo de los Anillos en forma de "O"	.40
en el Medidor	40
Calibración	
Apéndice A: Correcciones de Temperatura y Presión	.41
Instrucciones para Devoluciones	.42

ESPECIFICACIONES

Precision Velocidad \pm 2% de la escala completa, todos los rangos. Presión Estática \pm 5% de la escala completa, todos los rangos. $6\% \times 6 \times 2\%$ pulgades Dimensiones (Medidor) Rango: (Marca: de Escala) 6006-AP 0 a 300, 1250, 2500, 5000, 10000 ppm (0 a 1.5, 6.25, 12.5, 25, 60 metroa/seg) 0 a 1.0, 10.0 pulgadas agua (0 a 25, 250 mm) Velocidad Presión Estática

Lista de Modelos

Modelo	Descripcion	No. de Parte
6000AP	Estuche Multiusos	634-090-010
6000APA03	Estuche Métrico Multimos	634-091-016

Accesorios de las Series 6000

Modelo	Descripcion	No. de Parte
6006AP	Velometer para Estuche A ¹	634-010-014
6006AP-M/8	Velometer para Estuche A-M/S	634-011-010
6030CP	Selector de Rango (0-1,250/2,500 + 0-1* H ₂ O)l	634-020-033
6030DP	Selector de Rango (0-5,000/10,000 + 0-10* H ₂ O)1	634-020-040
6030CP-M/S	Selector de Rango (0-6.25/12.5 MPS + 0-25 mm H ₂ O)	634-021-039
6030DP-M/8	Selector de Rango (0-25/50 MPS + 0-250 mm H ₂ O)	634-021-046
6050P-1	Sonda Low Flow1	634-030-020
6060P-12	Sonda Pitot de 12º (305 mm) ⁵	634-031-019
6060AP-24	Sonda Pitot de 24º (610 mm)	634-031-026
6060BP-36	Sonda Pitot de 36° (915 mm)*	634-031-033
6070P	Sonda Difusora, 7º Largo—90°	634-032-014
6070P36	Sonda Difusora, 36º Largo—90°	634-032-021
6070P36S	Sonda Troffer, 36" Largo-derecha	634-032-039
6080AP	Sonda Estática (0-10° H ₂ O) ¹	634-033-010
6080CP	Sonda Estática (0-1" H ₂ O) ²	634-033-034
6080AP-mmW	Sonda Estática (0-250 mm H ₂ O)	634-033-041
6080CP-mmW	Sonda Estática (0-25 mm H ₂ O) Manguera individual, 24° Largo l Estuche	634-033-066 634-040-018 534-090-001

Incluido en el Estuche 6000AP o 6000AP-M/S, con dos mangueras.

^{*}La Sonda Pitot de 36°, hará que el Velometer tome lecturas 100 pies por minuto por debajo de la escala entera, debido a la fricción del aire en un tubo más largo.

AVISO DE SEGURIDAD

Deben tomarse todas las precauciones necesarias al utilizar el Velometer alrededor de maquinaria en movimiento, tal como motores y ventiladores. El usuario debe cerciorarse de que la sonda o el intrumento no interfiera con ninguna maquinaria en movimiento.

La temperatura máxima a la cual se puede usar el Velometer es de 250°F (120°C). La diferencia de presiones máxima entre la parte interna del intrumento y el medio ambiente no debe exceder 4.2 ps. (8.6 gm/cm²). El Velometer NO fue diseñado para mezclas de gases que no sean de aire.

Cualquier uso que sobrepase los límites de temperatura o presión, o en gases que sean combustibles o que puedan deteriorar los componentes del Velometer no es recomendable y se hará bajo el riesgo y responsabilidad del usuario.

AVISO

Abrir el instrumento o proporcionar cualquier tipo de servicio o reparación al mismo, anulará la garantía. Por favor lea las cláusulas de garantía cuidadosamente.

DESCRIPCIÓN GENERAL

El Velometer es un instrumento de lecturas directas para medir velocidades de aire. Fue diseñado para medir velocidades de aire dentro de ductos de calefacción y ventilación, o en áreas abiertas como campanas de succión, rejillas, difusores de aire, tanques ventilados de chapeado, etc. También puede ser usado para medir presiones estáticas en ductos.

El Velometer consiste del medidor, los selectores de rango de velocidad y presión estática, sondas de medición y mangueras conectoras.

El Velometer es principalmente un medidor de flujo de aire que proporciona lecturas en pies por minuto (o metros por segundo).

El Velometer tiene una banda medidora fija, que ha sido cuidadosamente balanceada de tal manera que puede sostener el medidor en cualquier posición normal y obtener lecturas precisas. Todos los Velometers son uniformemente calibrados a estándares de fábrica; y por lo tanto, solo se debe usar los accesorios del mismo juego para obtener precisión óptima. El medidor se debe usar en una posición horizontal.

Antes de usar su Velometer por primera vez, lea cuidadosamente el manual de operaciones y procedimientos, para asegurarse del debido uso del instrumento para la obtención de resultados precisos.

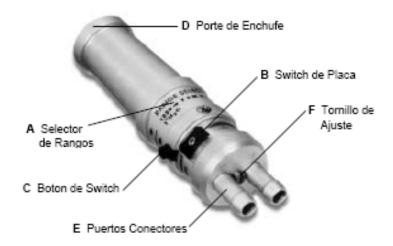
El medidor es la parte fundamental de su Velometer. El medidor recibe aire mediante sus puertos sensores. La fuerza del aire medida por el vano del medidor se traduce a una lectura final.

En la carátula del medidor se encuentran una serie de escalas de rangos (A) las cuales le permitirán leer con precisión el valor obtenido o medido. Debido a que existen varios rangos, es de suma importancia que la lectura en la escala del medidor corresponda al rango de velocidad o presión estática que se ha seleccionado en el Selector de Rangos.

En la parte posterior del medidor se encuentran dos puertos sensores (conecciones) (B) los cuales se emplean para conectarse a uno de los dos Selectores de Rango con las mangueras. Un puerto está marcado como positivo (+) y el otro como negativo (-).

Se proporcionan protecciones para los puertos sensores y debe colocarlos en los puertos sensores cuando el medidor no esté en uso.

Verifique que el indicador señale cero cada vez que prenda el medidor. El tornillo de ajuste a cero (C) le permitirá hacer dicho ajuste. Con las protecciones puestas sobre los puertos sensores, utilize un desarmador para ajustar el indicador a cero. Deberá señalar cero en cualquier posición: sobre alguna superficie, parado, o en cualquier posición intermedia entre éstas dos, incluyendo la posición en donde un extremo de la escala esté más abajo que la otra.


Selector de Rangos

El Selector de Rangos (A) le permitirá cambiar a cualquiera de los dos rangos de velocidades o al rango de presión estática, mediante switch de placa (B).

Un switch en forma de botón (C) se proporciona para cambiar el uso del Velometer con una Sonda Pitot, ya sea una Sonda Difusora o una Sonda de Presión Estática.

Cuando este empleando la Sonda Pitot, el boton (c) debe estar hacia afuera; cuando se empleen cualquiera de las sondas difusoras o las de presion estatica, presione el boton y dele vueltas para asegurarlo en dicha posicion. En esta posicion el boton debe estar en forma vertical (alineado con las flechas en la etiqueta) para una operacion adecuada.

No bloquee el botón durante operación.

El Selector de Rangos tiene un porte de enchufe (**D**) el cual acepta las variadas sondas y le permite rotarlas 360°. Los puertos positivo y negativo (**E**) se emplean para conectar el Selector de Rangos al medidor mediante mangueras.

Dependiendo del modelo que tenga, el estuche incluirá uno o dos Selectores de Rangos que se podrán identificar con letras rojas o negras. Esta codificación por color es relacionada a la misma codificación empleada en las escalas del medidor.

El Selector de Rangos con las letras negras tiene los siguientes rangos:

Velocidad: 0 a 1250 ppm (0-6 metros/seg)

0 a 2500 ppm (0-12 metros/seg)

Presión Estática: 0 a 1 pulgadas de agua (0-20 mm)

El Selector de Rangos con las letras rojas tiene los siguientes rangos:

Velocidad: 0 a 5000 ppm (0-22.5 metros/seg)

0 a 10,000 ppm (0-45 metros/seg)

Presión Estática: 0 a 10 pulgadas de agua (0-200 mm)

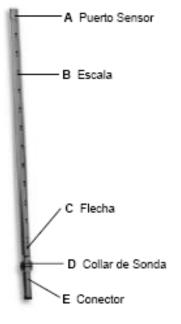
El switch de placa tiene un tornillo de ajuste (F) para apretar el switch que puede aflojarse con el uso. La facilidad de girar dicho tornillo le indicará qué tan ajustado se encuentra el switch.

Sonda Pitot

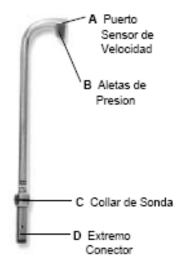
La Sonda Pitot está diseñada para medir la velocidad del aire en ductos y también en áreas no-restringidas tales como succionadoras de aire en pulidoras o en los orificios de ventilación en tanques de chapeado. Si desea saber el procedimiento de medición de velocidad en ductos, vea la página 34 y 35; para cualquier otra aplicación ver pagina 31.

El puesto sensor de la sonda se localiza en (A). La sonda debe ser sostenida en ángulos rectos al flujo del aire, una flecha en la base de la sonda (C) debe de acomodarse de forma tal que señale en la dirección del flujo del aire.

La sonda está marcada en incrementos de una pulgada (B) para facilitar la introducción de la sonda dentro de ductos.


El Collar de la Sonda (D) actua como un tope cuando se inserta la Sonda en el Selector de Rangos; un anillo en forma de O actua como sello cuando se inserta el extremo conector (E) dentro del Selector de Rangos.

Sonda Low Flow


La Sonda Low Flow fue diseñada para tomar mediciones de la velocidad del aire menores a 300 pies por minuto en espacios abiertos, se conecta directamente al Medidor sin el uso de mangueras conectoras.

Una Flecha (A) en la sonda sirve como recordatorio de la dirección en la que debe orientar la sonda y el Medidor cuando tome mediciones.

Vea la página 31 para los procedimientos adecuados de medición de velocidades.

Sonda Difusora

La Sonda Difusora fue diseñada para tomar mediciones de velocidad en difusores, registradores y parrillas. El volúmen de aire de entrada o salida puede ser determindado multiplicando la velocidad medida por un factor de flujo de aire.* Vea la página 32 para obtener los procedimientos de medición adecuada en difusores, registradores y parillas.

El puerto sensor de velocidad (A), mide la velocidad del aire en el difusor, registrador o parilla.

Las aletas de presión (B) le permitirán colocar la sonda en una forma vertical, horizontal o radialmente apropiada.

El collar de la sonda (C) funciona como tope al conectar la sonda al Selector de Rangos, y el anillo en forma de O actua como sello.

El extremo conector (D) se debe insertar en el Selector de Rangos.

*Los factores del flujo del aire, también conocidos como factores "K," se encuentran disponibles generalmente del fabricante de la parilla o difusor.

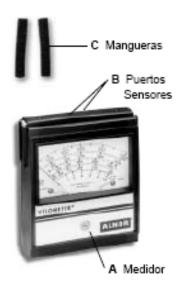
Sonda de Presión Estática

La Sonda de Presión Estática fue diseñada para tomar mediciones de presiones estáticas en ductos.

La tapa de hule (A) proporciona un sellado alrededor del orificio de 1/4" (en el ducto) donde se van a tomar las mediciones.

El collar de la sonda (B) funciona como tope cuando se conecta la sonda al Selector de Rangos; y el anillo en forma de O actua como sello.

El extremo conector (C) se debe insertar en el Selector de Rangos.


Vea la página 29 para obtener los procedimientos adecuados de medición de presión estática.

de Placa

Sonda Difusora

Paso 1: Remueva las protecciones de los puertos sensores.

Paso 2: Conecte las dos mangueras conectoras (C) a los puertos sensores (B).

Paso 3: Seleccione el Rango adecuado en el Selector de Rangos (D).

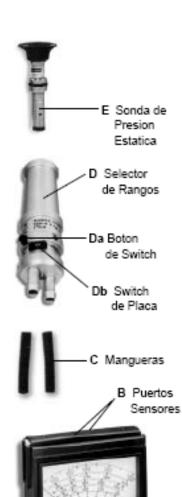
Nota: Para velocidades menores a 2,500 pies por minuto, utilize el Selector de Rangos con letras negras; para velocidades mayores a 2,500 pies por minuto, emplee el Selector de Rangos con letras rojas.

Paso 4: Conecte el Selector de Rangos (D) a las mangueras conectoras (C) que ya están conectadas al medidor (A) de la siguiente manera:

Para Mediciones de Aire de Entrada

Conecte el puerto sensor positivo (+) del medidor al puerto sensor positivo (+) del Rango Selector, y el puerto sensor negativo (-) del medior al puerto sensor negativo (-) del Selector de Rangos.

Para Medicones de Aire de Salida y Regreso


Conecte el puerto sensor positivo (+) del medidor al puerto sensor negativo (-) del Rango Selector, y el puerto sensor negativo (-) del medior al puerto sensor positivo (+) del Selector de Rangos.

Paso 5: Inserte la Sonda Difusora (E) en el Selector de Rangos (D). Empuje la Sonda Difusora hasta que el collar de la sonda descanse firmemente sobre la parte superior del Selector de Rangos.

Paso 6: Verifique la posición del botón (Da) en el Selector de Rangos (D). Debe estar oprimido y girado para asegurar la posición.

Paso 7: Verifique la posición del switch de placa (Db) en el Selector de Rangos (D). Debe estar posicionado en el rango de velocidad adecuado.

Paso 8: Prosiga a tomar las mediciones necesarias de velocidad del aire; ver página 32 para obtener los procedimientos adecuados.

A Medidor

Sonda de Presión Estática

Paso 1: Remueva las protecciones de los puertos sensores.

Paso 2: Conecte las dos mangueras conectoras (C) a los puertos sensores (D).

Paso 3: Seleccione el Rango adecuado en el Selector de Rangos (D).

Nota: Para presiones estáticas de 0–1", emplee el Selector de Rangos con las letras negras; Para presiones estáticas de 1–10", emplee el Selector de Rangos con las letras rojas.

Paso 4: Conecte las mangueras del Selector de Rangos (D) de la siguiente manera:

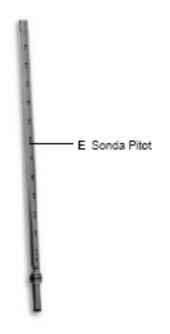
Para Mediciones de Presión Positiva

Conecte el puerto sensor positivo (+) del medidor al puerto sensor positivo (+) del Rango Selector, y el puerto sensor negativo (-) del medior al puerto sensor negativo (-) del Selector de Rangos.

Para Mediciones de Presión Negativa

Conecte el puerto sensor positivo (+) del medidor al puerto sensor negativo (-) del Rango Selector, y el puerto sensor negativo (-) del medior al puerto sensor positivo (+) del Selector de Rangos.

Paso 5: Seleccione la Sonda de Presión Estática adecuada (E).


Nota: Para presiones estáticas de 0-1", emplee la Sonda de Presión Estática con las letras negras; Para presiones estáticas de 1-10", emplee la Sonda de Presión Estática con las letras rojas.

Paso 6: Inserte la Sonda de Presión Estática (E) en el Selector de Rangos (D). Empuje la sonda firmemente hacia abajo hasta que el collar de la sonda descanse contra la parte superior del Selector de Rangos.

Paso 7: Verifique la posición del botón (Da) en el Selector de Rangos (D). Debe estar oprimido y girado para asegurar su posición.

Paso 8: Verifique la posición del switch de placa (Db) en el Selector de Rangos (D). Debe estar en el extremo izquierdo.

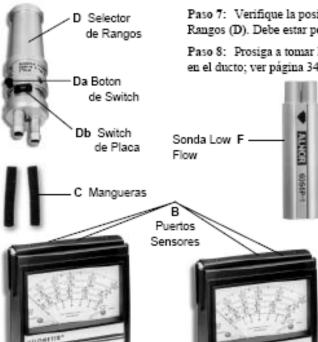
Paso 9: Prosiga a tomar las mediciones de presión estática en el ducto. Vea página 34 para obtener los procedimientos adecuados.

Paso 1: Remueva las protecciones de los puertos sensores.

Paso 2: Conecte las dos mangueras conectoras (C) a los puertos sensores (B).

Paso 3: Seleccione el Rango adecuado en el Selector de Rangos (D).

Nota: Para velocidades menores a 2,500 pies por minuto, utilize el Selector de Rangos con letras negras; para velocidades mayores a 2,500 pies por minuto, emplee el Selector de Rangos con letras rojas.


Paso 4: Conecte las mangueras al Selector de Rangos (D) de la siguiente manera: Conecte el puerto sensor positivo (+) del medidor al puerto sensor positivo (+) del Rango Selector, y el puerto sensor negativo (-) del medior al puerto sensor negativo (-) del Selector de Rangos.

Paso 5: Inserte la Sonda Pitot (E) en el Selector de Rangos (D). Empuje la Sonda Difusora firmemente hacia abajo hasta que el collar de la sonda descanse sobre la parte superior del Selector de Rangos.

Paso 6: Verifique la posición del botón (Da) en el Selector de Rangos (D). No debe estar oprimido y debe permanecer en dicha posición.

Paso 7: Verifique la posición del switch de placa (Db) en el Selector de Rangos (D). Debe estar posicionado en el rango de velocidad adecuado.

Paso 8: Prosiga a tomar las mediciones necesarias de velocidad del aire en el ducto; ver página 34 para obtener los procedimientos adecuados.

Medidor

AUNI

Sonda Low Flow

Paso 1: Remuevalas protecciones de los puertos sensores.

Paso 2: Conecte directamente la Sonda Low Flow (F) al Medidor (A), colocándola en los puertos sensores (B); no se requieren mangueras conectoras. Solamente existe una posición en el Medidor, con la flecha señalando hacia la izquierda cuando se ve el medidor por la parte delantera.

OPERACIÓN

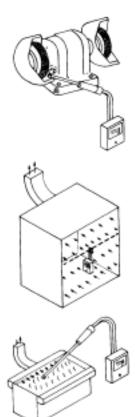
Después de ensamblar la sonda correcta al Velometer, tal como se describe en las páginas 28 a 30, ya se pueden tomar las mediciones necesarias. Enseguida se muestran aplicaciones típicas y precausiones que se deben tomar cuando se empleen las diferentes sondas. Cuando se emplee el Velometer para medir velocidades de aire en condiciones diferentes a .075 libras/pie¹, vea la gráfica de corrección en la página 41 para mayor precisión.

Procedimiento para Tomar Mediciones Con la Sonda Low Flow

- Coloque el medidor donde desee tomar las mediciones del flujo de aire. Si usted va a sostener el instrumento, manténgalo con el brazo extendido y párese de tal manera que no obstruya el flujo libre del aire por el Medidor.
- Sostenga el Medidor de tal manera que la flecha en la sonda señale en la dirección del flujo del aire; si no conoce la dirección, apague el Medidor hasta que observe la deflección máxima del indicador.
- Tome las mediciones de la velocidad del aire en la escala de 0 a 300 pp. 6
- Registre la lectura en las hojas de cálculo.

Velocidades en Orificios de Succión—Excepto en Difusores o Parrillas

En Ruedas Pulidoras:


Cuando tome mediciones en ruedas pulidoras o desgastadoras, emplee la Sonda Pitot o la Sonda Low Flow. La cabeza de la sonda debe ser sostenida en un plano definido por la orilla externa de la capa protectora.

En Casetas de Dispersión:

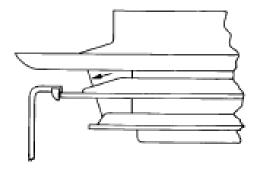
Cuando tome mediciones de la velocidad en casetas de dispersión, debe emplear la Sonda Low Flow. La cabeza de la sonda debe acomodarse en un plano definido por la orilla externa de la caseta de dispersión.

Velocidades en Tanques de Chapeado:

Para tomar mediciones de velocidad en tanques de chapeado, debe utilizar la Sonda Pitot. La sonda debe ser sostenida cerca al puerto de salida del tanque, con la flecha que está impresa en la sonda señalando hacia el puerto de salida.

Procedimiento para Tomar Mediciones de Velocidad en Difusores, Registradores y Parrillas Con la Sonda Difusora

Para calcular el volúmen del aire que pasa por un difusor, registrador o parrilla de salida, mida la velocidad del aire de salida, aplique el factor del flujo de aire que se proporciona por el fabricante del difusor, registrador o parrilla, y emplee la siguiente ecuación:


 $Q = \mathbb{K} \times \mathbb{V}$

<u>Donde</u>	Unidades Inglesas	Unidades Métricas
Q = Flujo de Volumen	pies cúbicos/minuto	metros cúbicos/segundo
K = Factor de Flujo del Fabricante	_	_
V = Promedio de Velocidades Medidas	pies/min	metros/segundo

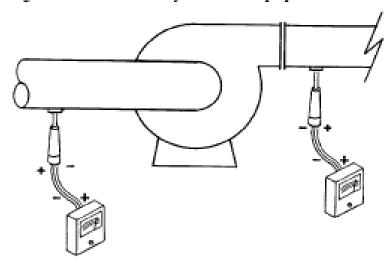
Procedimiento de Medición de Flujo de Aire en un Difusor Típico

Para determinar el volúmen de salida, se debe usar un Velometer con una Sonda Difusora, de la siguiente manera:

Observe que el fondo de las aletas de presión en la sonda se encuentren al mismo nivel con (y en contacto) el fondo de la varilla intermedia del difusor. La sonda se debe sostener verticalmente. Los factores de flujo que se presentan en la siguiente tabla se deben aplicar a un promedio de seis lecturas de velocidad, tomadas en posiciones a distancias iguales, alrededor de la periferia del difusor.

Tamano	Factor
10	0.42
12	0.66
14	0.9
17	1.3
20	1.8
24	2.8
32	4.9
40	7.7

Para mayor precisión tome en cuenta las siguientes precauciones:


- Utilice únicamente los procedimientos de medición sugeridos por el fabricante de los difusores, registradores o partillas.
- 2. Tome lecturas completas y precisas de la velocidad.
- Registre las lecturas de la velocidad del aire en el difusor en la hoja de cálculos, como se muestra a continuación:

B NAM	E THOS	REAL	I MY	C. C	<u>O5/5</u>	TEM BLDG	4.2	
	1	2 (0.000)		4.	- 1		7	
900 04 0	U LOCATION OFFLIRE NO.	0.00	PACIFICAN COMPANIA COMPANIA COMPANIA	DESIGN AND PLOTE COM	DESHON DEFENDE VOLUMENT PPM	MIASURED AVERAGE HELDCETT READING - MIN	MEXICAED AIR FLORE CPM	REMARKS
		imille.						
Α	¥-16	37.18	1802.	62.0	1067	1210	703	
9	P.1.4	16×17.	1665	1100	1287	1350	(154	
ω	¥ 20	12×B	.994	620	1.067	1160	466	
o _i	# 7.1	72-6	.581	630	1047	12.00	697	
9	¥ 2.2	14-112	226.	1100	1393	1340	11.440	
Α	+ 2.3	13-8	*281	خرنها	1067	1200	697	
8	8.24	Deta	.538	980	1304	1450	867	
3	4.2.5	12-10	.596	780		1350	607	
		1.0		1,5,000	1000		C-F I	
A.	# Z.6	12×8	-681	L10	1067	1180	686	
à.	6 2.7	14412	.665	1100	12.87	13.00	1112	
À.	4 28	12× 6	.581	620	1017	1300	155	
Α	최 경역	12×6	.58-1	620	1	1230	TIS	
3,	¥ 30	14-17.	A\$5	1100		1360	1180	
Α	# 31	12× 0	,564	620	1047	1160	474	
6	N 32	V2 +145	,596	760	13-04	1400	837	
8	₩ 33	12:10	,598	780		1450	247	
-				1.4040		1.7		
		S.A.	total	12460			53,563	

- 4. Cuando el procedimiento requiera que aplique un promedio en las lecturas de velocidad obtenidas, divida la abertura en cierto número de áreas iguales y determine el promedio de lecturas individuales tomadas en el centro de dichas áreas.
- Cuando registre las mediciones, incluya la localización de la habitación, el modelo de salida, el factor de flujo, volúmen del aire designado (si se conoce), la velocidad de salida medida y el volúmen del aire calculado.

Procedimiento para Tomar Mediciones de Presión Estática

- Seleccione el lugar en donde va a tomar la medición de la presión estática, y perfore un orificio de 1/4". Puede pintar un circulo alrededor del orificio y numerarlo, para facilitar usos posteriores.
- Ensamble el Velometer para lecturas positivas (o negativas) como se describe con anterioridad.
- Coloque la tapa de hule sobre el orificio, presione firmemente, y tome la lectura de la medición de la presión estática en la escala negra o roja de la escala "Pulgadas de Agua Gauge".
- 4. Registre las lecturas en la hoja de cálculos apropiada.

Procedimiento para Tomar Mediciones de Presión Estática en Ductos

Para calcular el volúmen de aire que pasa a través de un ducto, mida el promedio de la velocidad del aire en el ducto, determine el área transversal del ducto, y aplique la siguiente ecuación:

 $O = A \times V$

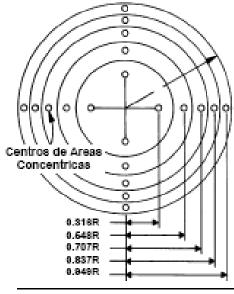
<u>Donde</u>	<u>Unidades Inglesas</u>	<u>Unidades Métricas</u>
Q = Flujo de Volumen cúbicos/segundo	pies cúbicos/minuto	metros
A = Area Transversal	pies cuadrados	metros cuadrados
V = Velocidad	pies/minuto	metros/segundo Promedio del Ducto

Determinación de Areas Transversales

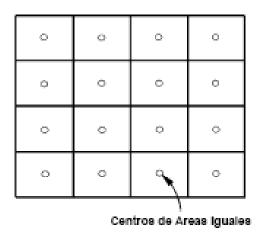
El área transversal de un ducto se basa en el área interna del ducto por la cual fluye el aire. Si el ducto está recubierto con material aislante, se debe tomar en consideración la capa de insulación cuando se calcule el área del ducto.

Ejemplo: Un ducto de 24" de ancho y 12" de altura, sin aislante interno, tiene una área transversal de 2 pies cuadrados.

Un ducto de 38" de ancho y 14" de altura, con 1" de aislante interno, tiene una área transversal de 3 pies cuadrados.


Medición de la Velocidad del Aire en un Ducto

La velocidad en una corriente de aire en un ducto no es uniforme; el aire cerca de las paredes se mueve más despacio debido a la fricción.


Recodos, transiciones y obstrucciones son también causantes de variaciones en la velocidad del aire en cualquier sección de ducto.

Para obtener el promedio de la velocidad en ductos de por lo menos 4" en diámetro, perfore un orificio de por lo menos %" de diámetro en el ducto, y tome una serie de lecturas de la velocidad del aire (comunmente conocido como una traversa), con la Sonda Pitot, en puntos de igual área a lo largo de la sección del ducto. Se recomienda un patrón de puntos de lectura y dichos puntos se conocen como puntos traversos de lectura. A continuación se muestra los puntos recomendados en las tomas de medición de velocidad del aire en ductos cuadrados (o rectangulares) y redondos.

Nota: Estaciones de Sonda Pitot Indicadas Por 4

Puntos en Ductos Cuadrados o Rectangulares

En ductos redondos, tome lecturas de la velocidad del aire en el centro de áreas concéntricas iguales, tomo por lo menos 20 lecturas a lo largo de dos diámetros. En ductos cuadrados o rectangulares, tome un mínimo de 16 lecturas y un máximo de 64 lecturas en los centros de áreas iguales. Calcule el promedio de todas las lecturas.

Para una mayor precisión, tome las siguientes precauciones:

- Tome la traversa en una sección del ducto en donde la corriente del aire sea tan uniforme como práctica. Esto generalmente es en un lugar de por lo menos ocho diámetros de ducto derecho, en favor de la corriente de la localidad de la traversa.
- No tome la traversa cerca a un recodo, transición u obstrucción en el ducto
- Registre cuidadosamente los resultados de la traversa en una hoja de cálculos.

PROBLEMAS, SOLUCIONES Y MANTENIMIENTO

Investigación de Fallas

Sintoma	Causa Posible y Accion Correctiva
Velómetro no indica Cero (antes de uso).	Velometer no está ajustado. Aplique el método de ajuste, pag. 24.
	 Sonda y medidor ensamblados están accidentalmente leyendo presiones o flujode aire. Verifique ajustes con las protecciones de los puertos sensores.
	 Si el Velómetro no permanece en cero en todas la posiciones, debe ser devuelto a la fábrica para su recalibración.
Las lecturas no son iguales en los diferentes rangos.	Se están empleando diferentes sondas. La misma sonda debe emplearse en ambos rangos.
	 Se está empleando la sonda equivocada. Vea pags. 28–30 para obtener la aplicación correcta.
	 Técnica de Medición diferente. Mantenga la sonda en la misma manera, en el mismo lugar del flujo del aire, en todos los rangos.
	 Diferente Selector de Rango en uso. Asegúrese de que los dos Selectores de Rango se encuentren en condiciones de operación: los anillos "O" en buenas condiciones, filtros limpios.
	 El switch del Selector de Rango no se encuentra en la posición de operación. El switch de placa debe encontrarse en cualquiera de sus extremos.

T	_
Lecturas bajas.	 Verifique que se esté empleando la sonda adecuada.
	 Verifique por firgas en los anillos "O" en los puertos senosores, selector de rango y sondas. Reemplace si es necesario.
	 El filtro en el selector de rango necesita limpieza.
	 Se está leyendo la escala equivocada, o el switch del Selector de Rangos no está en la posición adecuada.
	 Las mangueras no son de 24". No emplee mangueras diferentes (más cortas o largas) de las que se proporcionan con el Velometer.
No mide	 Las mano del operador obstruyen el flujo.
	 Hay una mano en el botón de switch del Selector de Rango. (Vea la página 25).
	 Mangueras o sonda no están conectadas.
Lecturas Negativas	No está utilizando la sonda de forma correcta. (Vea la sección describiendo el uso de sondas).
	 Las mangueras están conectadas al revés, sea al Selector de Rango o al medidor.

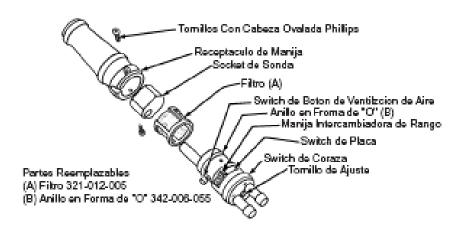
Mantenimiento

General.

Los Velometers de Alnor no requieren de muchos cuidados a excepción del reemplazo de los amillos en forma de O, y la limpieza o reemplazo de los elementos del filtro en los Selectores de Rango. Si se llegaran a presentar dificultades en la operación del Velometer, por favor comuniquese directamente a TSI Incorporated. No devuelva ningún instrumento sin autorización por escrito de TSI Incorporated.

Limpieza del Velometer

En caso de que sea necesario limpiar la parte externa del medidor, utilize un trapo húmedo, puede emplear agua o alcohol, y limpie la parte externa con mucho cuidado. No talle excesivamente. NO UTILIZE TETRACLORURO DE CARBONO.


Reemplazo de Partes y Accesorios

En caso de que requiera de partes adicionales para convertir un juego de Velometer a otro, o en caso de que ciertas partes se rompan o dañen y deban ser reemplazadas, ordene dichas partes de la fábrica. Todas las partes son inter-cambiables y no se requiere de ninguna calibración específica o sonda con ninguno de los instrumentos; simplemente específique a TSI el número de parte o accesorio que necesite.

Reemplazo del Filtro del Selector de Rango

Para reemplazar el filtro del Selector de Rango, siga las siguientes instrucciones:

Remueva los dos tornillos que se encuentran en el collar de la parte superior del switch del Selector de Rango. Aplique una presión ligera para mantener las dos mitades del Selector juntas y poder quitar con mayor facilidad los tornillos. Cuidadosamente separe ambas mitades del Selector de Rango.

Quite el Filtro (No. de parte 321-012-005). Cuidadosamente limpie los elementos del filtro mediante un cepillo o una aspiradora, o lávelo en agua tibia y algún detergente suave. En caso de que el filtro esté dañado, reemplácelo. Limpie cuidadosamente todas las partes del Selector de Rango antes de re-ensamblarlo nuevamente.

Para instalar el filtro limpio o de reemplazo, deslice el orificio del filtro por encima de la protuberancia que se encuentra en la parte inferior del Selector de Rango. Ponga el filtro en la parte inferior del Selector de Rango con la parte abierta hacia abajo. Deslice el socket de la sonda por encima de la protuberancia. Alinee cuidadosamente los tres diámetros externos de la parte inferior del Selector de Rango, el filtro y el socket de la sonda. Deslice las tres partes sobre la parte posterior del Selector de Rango de tal manera que el switch de botón de la parte inferior del Selector de Rango se alinee con el canal en la parte superior del ensamblaje del Selector de Rango. Aplique una presión ligera para poder insertar los tornillos Phillips y apriételos.

Reemplazo de los Anillos en forma de "O" en las Sondas

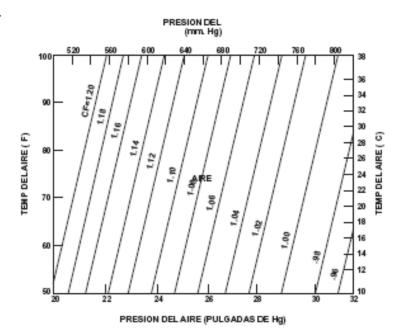
Para reemplazar los anillos en forma de "O" en las sondas, remueva los anillos viejos mediante alguna herramienta en forma de gancho, o apretando. Limpie el lugar en donde van los anillos antes de reemplazarlos. Deslice el anillo nuevo en su lugar y aplique una capa ligera de Silicon, grasa o lubricante en la parte externa. El Anillo en forma de "O" tiene un número de parte 342-006-048 y le queda a todas las sondas del Velometer.

Reemplazo de los Anillos en forma de "O" en el Medidor

Reemplace los anillos en forma de "O" de los puertos de conección del Medidor removiendo los anillos viejos con alguna herramienta en forma de gancho o apretando; limpie el lugar donde van los anillos y deslice el anillo nuevo en su lugar. El número de pieza es 342-006-030.

Calibración

Puede devolver su Velometer a la fábrica para su verificación y/o calibración después de seis meses del primer uso, y después, por lo menos una vez al año, dependiendo de su uso.


Debe empacarlo cuidadosamente de acuerdo a las instrucciones proporcionadas en este manual y enviarlo a:

TSI Incorporated Alnor Products 500 Cardigan Road Shoreview, MN 55126 Attention: Service Department

APENDICE A: CORRECCIONES DE TEMPERATURA Y PRESIÓN

La temperatura máxima de gas o aire que puede ser medida por el Velometer es de 250°F (120°C). Cuando la temperatura del gas dentro de un ducto es apreciablemente diferente de la densidad en la cual se calibró el Velometer, puede necesitarse un factor de corrección para obtener mediciones más precisas. La velocidad real se obtiene multiplicando la velocidad obtenida por un factor de corrección que se muestra en la siguiente figura:

Factores de correccion del velometer

Nota: 1 (pulgada de H_2O) × 7.36 (10⁻²) = 1 pulgada H_2O .

INSTRUCCIONES PARA DEVOLUCIONES

Servicio y Reparación

Por favor devuelva immediatamente su Tarjeta de Registro del Producto. Esto nos permite enviarle recordatorios de servicio, ofertas especiales e información importante sobre el producto.

Antes de enviar su instrumento para calibración o reparación, debe llamar a Servicio a Clientes de TSI. El Departamento de Servicio le dará el costo del servicio o de la calibración, número de Autorización de Devolución de Material (ADM) e instrucciones de embarque.

Por favor tenga la siguiente información a la mano cuando llame:

- Nombre del Propietario, dirección y número telefónico.
- Domicilio de facturación, si es diferente y si aplica.
- Nombre o Modelo del Instrumento
- Número de Serie
- Fecha de Compra
- Lugar de Compra

TSI recomienda que lleve un "registro de calibración" y que conserve todos los registros de servicio a su instrumento.

Instrucciones para Devolución

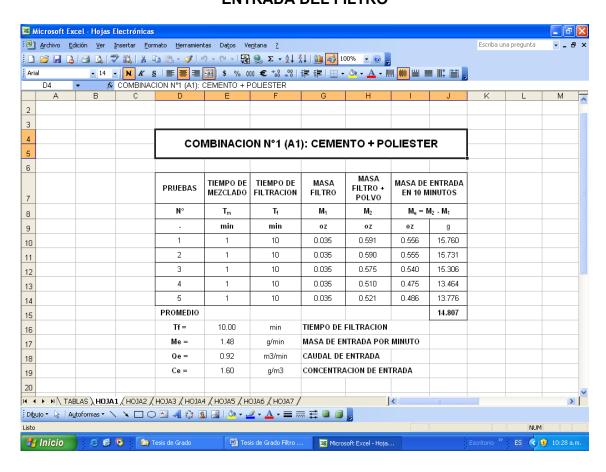
Envie el instrumento con flete pagado. Empaque su instrumento en una caja protegiéndolo con al menos dos pulgadas (5 cm) de un material que amortigüe golpes. Incluya la Orden de Compra con el número de modelo del instrumento, costo del servicio y/o calibración y el número ADM. Marque el exterior de la caja con el número ADM. Esto agilizará el trámite de su instrumento cuando lo recibamos.

Dañado en Tránsito

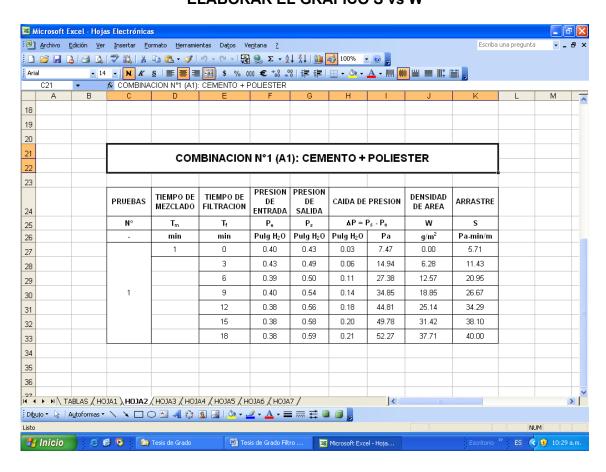
Todos los pedidos para embarque son empacados cuidadosamente. Si al recibirlos nota que el empaque fue dañado durante el embarque, debe inspeccionar a fondo el instrumento. Las notas de entrega del transportista deberán firmarse de recibido si encuentra un daño aparente. NO DESECHE EL EMPAQUE.

Si el instrumento ha sido dañado, el cliente deberá hacer inmediatamente una reclamación contra el transportista. El vendedor ayudará al cliente proporcionándole toda la información pertinente sobre el embarque; sin embargo, la reclamación deberá hacerla el asegurado. Si el instrumento se daña permanentemente, se deberá hacer un nuevo pedido con TSI mientras espera de parte del transportista el reembolso por el instrumento dañado.

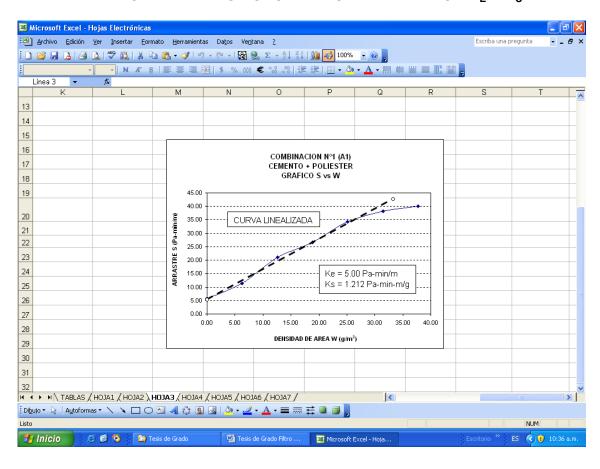
Llame a TSI directamente para obtener ayuda en caso necesario.



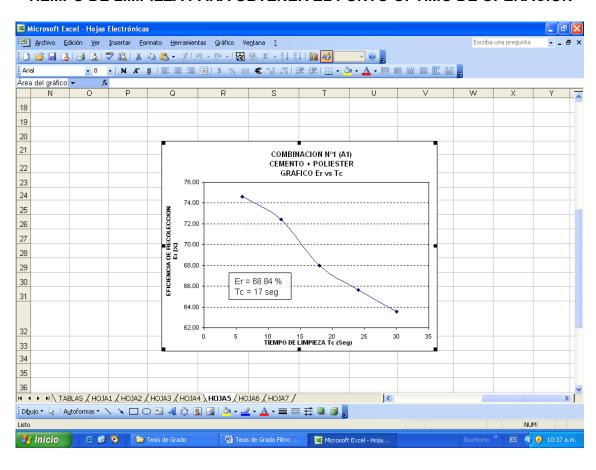
TSI Incorporated
Alnor Products
500 Cardigan Road
Shoreview, MN 55126 USA
Toll Free (800) 424-7427
Telephone (651) 490-2811
Fax (651) 490-3824
www.alnor.com
customerservice@alnor.com


September 2002 Printed in USA Part No. 116-008-020 Rev. 16 © Copyright 1998–2002 TSI Incorporated

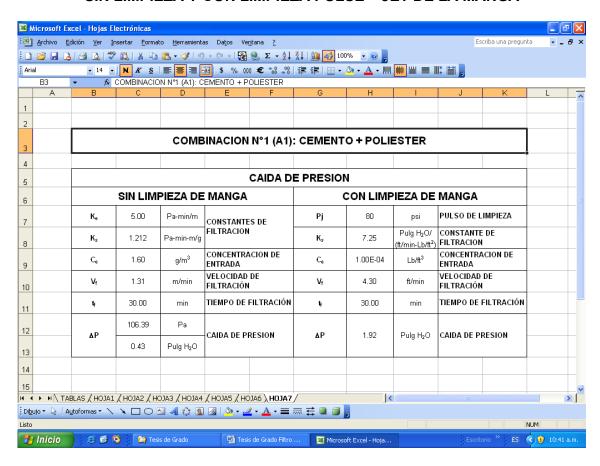
APÉNDICE K HOJAS ELECTRÓNICAS PARA LA OBTENCIÓN DE GRÁFICOS Y RESULTADOS UTILIZADOS EN LA GUÍA EXPERIMENTAL


HOJA ELECTRÓNICA DE INGRESO DE DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO Y CALCULO DE LA CONCENTRACIÓN A LA ENTRADA DEL FILTRO

HOJA ELECTRÓNICA DE INGRESO DE DATOS DE CAÍDA DE PRESIÓN DE LA PRUEBA DE FILTRACIÓN PARA SIETE INTERVALOS DE FILTRACIÓN PARA ELABORAR EL GRÁFICO S vs W



HOJA ELECTRÓNICA DE INGRESO DE DATOS DE PESAJE DE MASA EN TANQUE Y TOLVA Y RESULTADOS DE EFICIENCIAS OBTENIDOS PARA CINCO DIFERENTES TIEMPOS DE LIMPIEZA


HOJA ELECTRÓNICA DEL GRÁFICO EFICIENCIA DE RECOLECCIÓN VS TIEMPO DE LIMPIEZA PARA OBTENER EL PUNTO ÓPTIMO DE OPERACIÓN

HOJA ELECTRÓNICA DE INGRESO DE DATOS DE MEDICIÓN DE LA MASA PROMEDIO EN PAPEL FILTRO Y CALCULO DE LA CONCENTRACIÓN A LA SALIDA DEL FILTRO

HOJA ELECTRÓNICA DE CÁLCULO DE LA CAÍDA DE PRESIÓN EN EL FILTRO SIN LIMPIEZA Y CON LIMPIEZA PULSE – JET DE LA MANGA

APÉNDICE L GUÍA EXPERIMENTAL DE PRÁCTICAS DEL FILTRO DE MANGAS TIPO PULSE – JET DEL LABORATORIO DE CALIDAD DEL AIRE DE LA FIMCP

FACULTAD DE INGENIERÍA EN MECÁNICA Y CIENCIAS DE LA PRODUCCIÓN FIMCP

GUÍA EXPERIMENTAL DE PRÁCTICAS DEL FILTRO DE MANGAS TIPO PULSE – JET DEL LABORATORIO DE CALIDAD DEL AIRE DE LA FIMCP

NOVIEMBRE / 2010

GUAYAQUIL - ECUADOR

PRESENTACIÓN

La presente Guía Experimental tiene como objetivo fundamental servir de orientación y ayuda a los alumnos de la Especialización de Medio Ambiente de la FIMCP interesados en tomar las materias Contaminación y Calidad del Aire y Diseño de Sistemas de Control de la Contaminación del Aire, para que evalúen y certifiquen las condiciones de operación y de diseño para una diversidad de combinaciones tela – polvo, por medio de la experiencia directa en este banco de pruebas, a través de la realización de prácticas de laboratorio.

En la presente guía se describe paso a paso la metodología de trabajo a seguir y la obtención de datos y resultados que le permitan al estudiante desarrollar el pensamiento crítico para discernir sobre los diversos parámetros involucrados en el diseño de filtros de mangas como son caída de presión, caudal, concentración de partículas, eficiencia de filtración, selección de válvulas, potencia del ventilador, etc. o evaluar uno ya existente.

Para un mejor desempeño, a este equipo se le han realizado mejoras mecánicas y tecnológicas para hacer de éste un equipo funcional y didáctico, y que, a través de la automatización de su funcionamiento pueda ser más eficiente y capaz de evaluar los parámetros involucrados en el diseño de cualquier combinación tela - polvo para la filtración de aire.

Tanto esta guía como el Filtro de Mangas del Laboratorio de Calidad del Aire no necesariamente constituyen la última palabra en la materia, sino que están sujetos a la mejora continua de los procesos, por lo que las recomendaciones u observaciones que se hagan llegar serán bien recibidas, lo cual permita desarrollar en forma positiva este banco de pruebas para beneficio directo de los estudiantes.

Por lo tanto, pongo a vuestra disposición esta guía experimental, para ser aprovechada de la mejor manera posible en la realización de las prácticas de laboratorio.

ÍNDICE

PRESENTACIÓN GUÍA PARA LA ELABORACIÓN Y PRESENTACIÓN DE UN INFORME PRÁCTICA # 1: DETERMINACIÓN DEL CAUDAL DE ENTRADA Y DE LA VELOCIDAD DE FILTRACIÓN DEL FILTRO DE MANGAS PRÁCTICA # 2: DETERMINACIÓN DEL CAUDAL DE SALIDA DEL FILTRO DE MANGAS PRÁCTICA # 3: DETERMINACIÓN DE LA CONCENTRACIÓN DE ENTRADA AL FILTRO DE MANGAS DETERMINACIÓN DE LAS CONSTANTES DE PRÁCTICA # 4: FILTRACIÓN PRÁCTICA # 5: DETERMINACIÓN DE LA EFICIENCIA PROMEDIO DE RECOLECCIÓN Y TIEMPO DE FILTRACIÓN PRÁCTICA # 6: DETERMINACIÓN DE LA CONCENTRACIÓN DE SALIDA DEL FILTRO DE MANGAS PRÁCTICA # 7: DETERMINACIÓN DE LA EFICIENCIA DE COLECCIÓN TOTAL Y CAÍDA DE PRESIÓN REAL EN EL FILTRO DE MANGAS

ELABORACIÓN Y PRESENTACIÓN DE UN INFORME

1. PORTADA.

Incluye toda la información básica de presentación de un informe, esto es: nombre de la institución, título del informe, nombre del estudiante, paralelo, fecha de realización de la práctica y entrega del informe, etc. en una sola página.

2. RESUMEN.

Un resumen es una síntesis de todo el trabajo realizado y aunque breve debe informar el método empleado, los resultados más significativos y establecer con claridad las conclusiones a las que se ha llegado. El resumen debe ser redactado al final de la elaboración del informe.

3. ÍNDICE.

Elabore un ordenamiento de las secciones del informe, presentando la numeración respectiva para cada sección.

4. OBJETIVO (S).

Los objetivos de la práctica, deben presentarse en forma clara y concreta, la o las metas propuestas previamente a la ejecución de la experiencia en el laboratorio.

5. FUNDAMENTOS TEÓRICOS.

En esta sección debe presentarse los fundamentos teóricos necesarios para definir el marco científico referencial, dentro del cual se ha efectuado la experiencia y el correspondiente informe, por lo que deberán incluirse las leyes y fórmulas a utilizarse.

6. DESCRIPCIÓN DEL BANCO DE PRUEBAS, MATERIALES Y EQUIPOS UTILIZADOS.

Presentar una breve descripción del equipo, indicando sus características principales, tanto técnicas como de operación, además de la instrumentación utilizada. Presente un esquema si fuera necesario.

7. PROCEDIMIENTO EXPERIMENTAL.

La descripción del procedimiento debe ser breve y en orden cronológico. Se redactará de tal manera que permita una duplicación de la experiencia de laboratorio realizada.

8. PRESENTACIÓN DE DATOS Y RESULTADOS.

Se debe presentar en la medida de lo posible, en una sola tabla, los datos y resultados, puesto que esto ayudaría a un mejor seguimiento de los diferentes parámetros. Cuando no es posible tabular en una sola tabla, en la tabla de resultados se debe incluir los parámetros iniciales, indicando siempre las unidades que se utilizaron para los diferentes parámetros.

9. CÁLCULOS REPRESENTATIVOS.

Cuando un cálculo es repetitivo, se deberá hacer únicamente un cálculo explicativo a manera de ejemplo.

10. GRÁFICOS.

Los gráficos deberán ser presentados en una hoja electrónica y la escala debe ser tal que las curvas dibujadas aprovechan toda la hoja para obtener un gráfico significativo. Los gráficos, en sus ejes de coordenadas, deben mostrar los parámetros a ser representados en el gráfico así como sus respectivas unidades.

Cuando se trate de comparar dos o más curvas de la misma variable observada, experimental vs teórica, estas curvas deben ser presentadas en el mismo gráfico. La escala utilizada debe permitir un fácil acceso cuando se trate de interpolar o extrapolar puntos.

11. ANÁLISIS DE RESULTADOS.

En esta parte del informe, se debe redactar un análisis comparativo de los resultados obtenidos. Además, debe realizarse un análisis de la incertidumbre experimental de los datos y resultados alcanzados.

12. CONCLUSIONES.

En esta sección, se debe informar sobre el cumplimiento o no de los objetivos propuestos. Si se cumplen los objetivos, explicar en que grado se cumplen, de que medios nos valemos. Cuando no se cumplen, se requiere de un razonamiento explicando las posibles causas por las que no se lograron los resultados esperados. Entre las características de una buena conclusión están: orden, claridad, esencialidad, brevedad y personalidad.

13. EVALUACIÓN.

Para completar o profundizar algunos tópicos relacionados con la experiencia realizada, se formularán un conjunto de preguntas, cuyas respuestas deberán concretarse a lo solicitado.

14. REFERENCIAS BIBLIOGRÁFICAS Y BIBLIOGRAFÍA.

Las referencias bibliográficas y la bibliografía, proporciona al lector la información necesaria para localizar una determinada publicación que pueda ser de su interés.

La diferencia radica en que, la lista de referencias bibliográficas incluye únicamente las publicaciones que se citan en el trabajo; en tanto que, la bibliografía incluye las publicaciones que se estima son de interés para el lector, es decir, publicaciones que están relacionadas con el tópico de la experimentación y que puede o no haber sido citadas en el texto.

Una forma como se debe presentar la bibliografía o referencia bibliográfica es la que sigue: primero, el autor de la obra citada o utilizada en el informe, comenzando con sus apellidos; segundo, el título de la obra; tercero, el nombre del capítulo de la obra, el cual trata el tópico considerado; cuarto, el número y año de la edición de la obra; quinto, la editorial de la misma, y por último se debe indicar las páginas donde se encuentra el tema relacionado con la práctica de laboratorio.

FORMATO DEL INFORME: El informe debe ser redactado utilizando Word de Microsoft Office, 2003 o 2007, utilizando el tipo de letra Arial # 11 y para los títulos, # 12 y en mayúsculas, con numeración en todas sus hojas, con 1.5 de espacio entre líneas e impreso en hojas papel bond, tamaño INEN de 75g.

Utilice para la presentación de las fórmulas, un editor de ecuaciones; para los cálculos y gráficos, una hoja electrónica tipo Excel.

PRÁCTICA #1

"DETERMINACIÓN DEL CAUDAL DE ENTRADA Y DE LA VELOCIDAD DE FILTRACIÓN DEL FILTRO DE MANGAS"

OBJETIVO:

Determinar el caudal de entrada Q_e de un flujo de gas con material particulado en suspensión hacia el filtro de mangas para obtener la velocidad de filtración V_f del sistema.

FUNDAMENTOS TEÓRICOS:

La velocidad de filtración utilizada para obtener la caída de presión total se la conoce como la relación gas – tela, que se la define como la razón entre el gas de entrada filtrado de un metro cúbico por minuto y el medio filtrante de un metro cuadrado de área y se la expresa por la siguiente ecuación:

$$V_f = \frac{Q_e}{A_{NETA}}$$

Donde:

V_f = Velocidad de Filtración (Relación Gas – Tela)

Q_e = Caudal de entrada del gas con concentración de partículas

A_{NETA} = Área neta de tela de filtración

Esta relación es un factor importante en el diseño de casas de bolsas (baghouse), ya que determina la cantidad de área de tela necesaria para la filtración. Esta relación varía de acuerdo al tipo de limpieza que se aplique al equipo, que en nuestro caso es pulse - jet.

Para el banco de prueba Q_e es el caudal a determinar, el cual genera el ventilador de succión y A_{NETA} es el área lateral de la manga que se encuentra en el equipo. Por lo tanto, encontrando ambos valores podremos determinar la velocidad de filtración del equipo.

EQUIPOS UTILIZADOS:

- 1. Filtro de Mangas
- 2. Taladro
- 3. Velómetro Alnor

PROCEDIMIENTO EXPERIMENTAL:

- 1. Se practica con un taladro un orificio de Ø=1cm aprox. en la mitad del tubo de entrada al filtro.
- 2. Encender el banco de pruebas.
- 3. Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 4. El tanque de agitación y mezcla no debe contener polvo, para que por el tubo de entrada pase solo aire limpio, debido a que el velómetro sólo mide velocidades en ductos con aire sin concentración de partículas.
- 5. Conectar el conjunto tanque + tubo de entrada con la boca de entrada del filtro.
- 6. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo en la parte superior de la pared interna del tanque.
- 7. Tapar el tanque con la tapa plástica transparente.
- 8. Usar el selector de rangos con letras negras (escala 0 a 1250 ft/min) del velómetro y acoplar la Sonda Pitot para medir velocidades.
- Encerar el medidor del velómetro con el tornillo de ajuste en la posición que leerá las velocidades (posición horizontal, vertical o inclinada).
- 10. Con las dos mangueras conectar el medidor con el selector de rangos del velómetro.
- 11. Ingresar los siguientes parámetros de funcionamiento del PLC sin limpieza de manga.
 - a. Tiempo de mezclado inicial B5 (min) (funcionamiento de los dos ventiladores pequeños), valor recomendable entre 1 y 5 minutos.
 - b. Tiempo de filtración B7 (min) (funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando), valor recomendable entre 10 y 20 minutos.
 - c. Tiempo de encendido del timbre B13 (min) = B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.

- 12. Encender el PLC con el switch ubicado en la tapa del panel de control y la opción de encendido a seguir es la siguiente:
 - a. Abre y cierra, que permite la secuencia de filtración sin activación de la electroválvula (sin limpieza de la manga).
- 13. En cualquier momento, después que se ha iniciado el tiempo de filtración, se introduce la Sonda Pitot por el orificio practicado en el tubo de entrada y por cada centímetro (u otra distancia a elegir) que se introduce en el tubo se leerá en el dial del velómetro la velocidad en ft/min (leer en la escala 0 a 1250 ft/min). El número total de mediciones a realizar es de 5.
- 14. La Sonda Pitot debe permanecer en posición perpendicular al tubo de entrada y contra la dirección del flujo de aire al momento de hacer las lecturas.
- 15. Se calcula el promedio de estas cinco velocidades, con lo cual se obtiene la velocidad promedio de entrada V_e al filtro, el cual servirá para calcular el caudal de entrada Q_e, conociendo primeramente el área circular del tubo de entrada A_e.
- 16. Conociendo el caudal de entrada Q_e y determinando el área lateral de la manga del banco de pruebas A_{MANGA} , se obtiene la velocidad de filtración V_f del equipo.
- 17. Esta prueba no debe tardar más allá de 10 minutos.
- 18. Para una descripción detallada del uso del velómetro consultar el Apéndice J.
- 19. Esta prueba se la realiza una sola vez.

TABLA DE DATOS Y RESULTADOS:

TOMAS N°	VELOCIDAD EN LA ENTRADA
-	ft/min
1	
2	
3	
4	
5	
PROMEDIO	

CÁLCULOS:

1. Datos de entrada del filtro:

$$D_e = 105mm = 0.34ft$$

$$V_e(\frac{ft}{min})$$

2. Se calcula el área de entrada A_e como sigue:

$$A_e = \frac{\pi D_e^2}{4}$$

$$A_e = \frac{\pi * 0.34^2}{4}$$

$$A_e = 0.093 ft^2$$

3. Se calcula el caudal de entrada Qe como sigue:

$$Q_e = V_e * A_e$$

$$Q_e = 0.093 V_e (\frac{ft^3}{min})$$

4. Se calcula el área lateral de la manga del banco de pruebas como sigue:

$$D_{MANGA} = 150 mm = 0.15 m$$

$$L_{MANGA} = 1.50m$$

$$A_{_{MANGA}} = \pi D_{MANGA} L_{MANGA}$$

$$A_{_{MANGA}} = \pi(0.15m)(1.50m)$$

$$A_{MANGA} = 0.71m^2$$

$$A_{_{MANGA}} = 7.64 ft^2$$

5. Se calcula la velocidad de filtración V_f como sigue:

$$V_f = \frac{Q_e}{A_{MANGA}}$$

$$V_f = \frac{0.093 V_e}{7.64} \frac{f t^3 / min}{f t^2}$$

$$V_f = 0.0122 V_e \frac{ft}{min}$$

PREGUNTAS EVALUATIVAS:

- 1. El velómetro ofreció lecturas confiables al momento de hacer las mediciones?
- 2. El indicador del dial del medidor se mantuvo en una sola posición al momento de hacer una lectura o fue inestable?
- 3. Tuvo dificultades al momento de mantener en una posición estable la Sonda Pitot?
- 4. Pudo encerar el medidor del velómetro en la posición requerida?:
- 5. Hubo confusión al momento de leer en la escala correcta la velocidad?

PRÁCTICA#2

"DETERMINACIÓN DEL CAUDAL DE SALIDA DEL FILTRO DE MANGAS"

OBJETIVO:

➤ Determinar el caudal de salida Q_s de un flujo de gas filtrado para obtener la concentración de salida C_s y consecuentemente la eficiencia global del sistema.

FUNDAMENTOS TEÓRICOS:

Para determinar la concentración de salida C_s del aire filtrado del banco de pruebas es necesario obtener el caudal de salida Q_s del filtro, el cual es generado por el ventilador de succión. La ecuación que relaciona el caudal y concentración de salida es la siguiente:

$$C_s = \frac{M_s}{Q_s}$$

Donde:

C_s = Concentración de salida promedio (g/m³)

M_s = Flujo de masa promedio de salida (g/min)

Q_s = Caudal de salida del filtro (1.32m³/min)

Consecuentemente una vez determinada la concentración de salida se puede calcular la eficiencia global del sistema por medio de la siguiente ecuación:

$$\eta = \frac{C_e - C_s}{C_e} \times 100$$

Donde:

 η = Eficiencia de colección global (%)

C_e = Concentración de entrada promedio (g/m³)

C_s = Concentración de salida promedio (g/m³)

EQUIPOS UTILIZADOS:

- 1. Filtro de Mangas
- 2. Taladro
- 3. Velómetro Alnor

PROCEDIMIENTO EXPERIMENTAL:

- 1. Se practica con un taladro un orificio de Ø=1cm aprox. en la mitad del tubo de salida al filtro.
- 2. Encender el banco de pruebas.
- 3. Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 4. El tanque de agitación y mezcla no debe contener polvo, para que por el tubo de entrada pase solo aire limpio, debido a que el velómetro sólo mide velocidades en ductos con aire sin concentración de partículas.
- 5. Conectar el conjunto tanque + tubo de entrada con la boca de entrada del filtro.
- 6. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo en la parte superior de la pared interna del tanque.
- 7. Tapar el tanque con la tapa plástica transparente.
- 8. Usar el selector de rangos con letras negras (escala 0 a 1250 ft/min) del velómetro y acoplar la Sonda Pitot para medir velocidades.
- Encerar el medidor del velómetro con el tornillo de ajuste en la posición que leerá las velocidades (posición horizontal, vertical o inclinada).
- 10. Con las dos mangueras conectar el medidor con el selector de rangos del velómetro.
- 11. Ingresar los siguientes parámetros de funcionamiento del PLC sin limpieza de manga.
 - a. Tiempo de mezclado inicial B5 (min) (funcionamiento de los dos ventiladores pequeños), valor recomendable entre 1 y 5 minutos.
 - b. Tiempo de filtración B7 (min) (funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando), valor recomendable entre 10 y 20 minutos.
 - c. Tiempo de encendido del timbre B13 (min) = B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.

- 12. Encender el PLC con el switch ubicado en la tapa del panel de control y la opción de encendido a seguir es la siguiente:
 - a. Abre y cierra, que permite la secuencia de filtración sin activación de la electroválvula (sin limpieza de la manga).
- 13. En cualquier momento, después que se ha iniciado el tiempo de filtración, se introduce la Sonda Pitot por el orificio practicado en el tubo de salida y por cada centímetro (u otra distancia a elegir) que se introduce en el tubo se leerá en el dial del velómetro la velocidad en ft/min (leer en la escala 0 a 1250 ft/min). El número total de mediciones a realizar es de 5.
- 14. La Sonda Pitot debe permanecer en posición perpendicular al tubo de salida y contra la dirección del flujo de aire al momento de hacer las lecturas.
- 15. Se calcula el promedio de estas cinco velocidades, con lo cual se obtiene la velocidad promedio de salida V_s del filtro, el cual servirá para calcular el caudal de salida Q_s , conociendo primeramente el área circular del tubo de salida A_s .
- 16. Esta prueba no debe tardar más allá de 10 minutos.
- 17. Para una descripción detallada del uso del velómetro consultar el Apéndice J.
- 18. Esta prueba se la realiza una sola vez.

TABLA DE DATOS Y RESULTADOS:

TOMAS	VELOCIDAD EN LA
N°	SALIDA
-	ft/min
1	
2	
3	
4	
5	
PROMEDIO	

CÁLCULOS:

6. Datos de salida del filtro:

$$D_s = 105mm = 0.34ft$$

$$V_s(\frac{ft}{min})$$

7. Se calcula el área de salida A_s como sigue:

$$A_s = \frac{\pi D_s^2}{4}$$

$$A_{s} = \frac{\pi * 0.34^{2}}{4}$$

$$A_s = 0.093 ft^2$$

8. Se calcula el caudal de salida Q_s como sigue:

$$Q_s = V_s * A_s$$

$$Q_s = 0.093V_s(\frac{ft^3}{min})$$

PREGUNTAS EVALUATIVAS:

- 1. El velómetro ofreció lecturas confiables al momento de hacer las mediciones?
- 2. El indicador del dial del medidor se mantuvo en una sola posición al momento de hacer una lectura o fue inestable?
- 3. Tuvo dificultades al momento de mantener en una posición estable la Sonda Pitot?
- 4. Pudo encerar el medidor del velómetro en la posición requerida?:
- 5. Hubo confusión al momento de leer en la escala correcta la velocidad?

PRÁCTICA#3

"DETERMINACIÓN DE LA CONCENTRACIÓN DE ENTRADA AL FILTRO DE MANGAS"

OBJETIVO:

Determinar la Concentración de Entrada Ce de un flujo de gas con material particulado en suspensión hacia el filtro de mangas.

FUNDAMENTOS TEÓRICOS:

La concentración de entrada de un gas es la relación entre el flujo de masa promedio en g/min y el caudal en m³/min de la corriente de gas que se quiere filtrar. Tiene unidades de masa por unidad de volumen y se lo expresa por la siguiente ecuación:

$$C_e = \frac{M_e}{Q_e}$$

Donde:

C_e = Concentración de entrada promedio al filtro (g/m³)

M_e = Flujo de masa promedio de entrada (g/min)

Q_e = Caudal de entrada del filtro (m³/min)

Las concentraciones de entrada más comunes varían de menos de 0.05 a más de 100gr/ft³, sin embargo un rango casi típico es de aproximadamente 0.5 a 10gr/ft³.

DESCRIPCIÓN DEL BANCO DE PRUEBA, MATERIALES Y EQUIPOS UTILIZADOS:

El banco de pruebas consiste de un filtro de mangas el cual dispone de los siguientes elementos:

- 1. Un PLC para la automatización de las rutinas de trabajo,
- 2. Un tanque de agitación y mezcla de polvo,
- 3. Una recámara metálica con su respectiva tolva, para el alojamiento de la manga,

- 4. Una manga de un tipo de tela a escoger,
- 5. Un ventilador de succión,
- 6. Un timbre para ayuda auditiva de las pruebas,
- 7. Dos ventiladores pequeños a ubicar en el tanque de agitación y mezcla,
- 8. Una electroválvula para generar un pulso de aire comprimido de 80 psi,
- 9. Un compresor de aire.

El material a utilizar en las pruebas será cualquiera de los siguientes polvos:

- 1. Cemento,
- 2. Harina.
- 3. Otro de características similares.

Para medir el polvo a utilizar en el tanque de agitación y el polvo colectado en el papel filtro se utilizarán en su orden los siguientes instrumentos:

- 1. Balanza mecánica
- 2. Balanza electrónica

PROCEDIMIENTO EXPERIMENTAL:

- 1. Encender el banco de pruebas.
- 2. Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 3. Colocar 5 Kg aprox. de cemento, harina o un polvo de características similares en el tanque de agitación y mezcla.
- 4. Pesar el papel filtro limpio en la balanza electrónica.
- 5. Poner el papel filtro en la boca de salida del tubo de entrada al filtro.
- 6. Poner una liga de goma para mantener unido el papel filtro al tubo de entrada.
- 7. Conectar el conjunto tanque + tubo de entrada + papel filtro con la boca de entrada del filtro.
- 8. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo en la parte superior de la pared interna del tanque y ayudará a empujar el polvo hacia el filtro).
- 9. Tapar el tanque con la tapa plástica transparente para que no se salga el polvo a agitar.

- Ingresar los siguientes parámetros de funcionamiento del PLC sin limpieza de manga.
 - a. Tiempo de mezclado inicial B5 (min) (funcionamiento de los dos ventiladores pequeños), valor recomendable entre 1 y 5 minutos.
 - b. Tiempo de filtración B7 (min) (funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando), valor recomendable entre 10 y 20 minutos.
 - c. Tiempo de encendido del timbre B13 (min) = B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.
- 11. Encender el PLC con el switch ubicado en la tapa del panel de control y la opción de encendido a seguir es la siguiente:
 - a. Abre y cierra, que permite la secuencia de filtración sin activación de la electroválvula (sin limpieza de la manga).
- 12. Mantener con movimiento manual el ventilador que agita el polvo, durante toda la prueba.
- 13. Una vez terminado el tiempo de filtración, se retira el conjunto tanque + tubo de entrada + papel filtro del equipo.
- 14. Se retira con cuidado el papel filtro con el polvo colectado del tubo de entrada.
- 15. Se pesa el conjunto papel filtro + polvo en la balanza electrónica.
- 16. Por diferencia de pesos se obtiene la masa de polvo colectado en el tiempo de filtración establecido.
- 17. Para realizar un nueva prueba se repiten los pasos 3 al 16.

TABLA DE DATOS Y RESULTADOS:

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	MASA FILTRO	MASA FILTRO + POLVO	MASA ENTRAD TIEMF FILTRA	A EN EL O DE
N°	T _m	T _f	M ₁	M ₂	M _e = N	И ₂ - М ₁
-	min	min	oz	oz	oz	g
1						
2						
3						
4						
5						
PROMEDIO	•					

CÁLCULOS:

1. Se calcula la masa de entrada al filtro para cada intervalo de filtración:

$$M_{ei} = M_2 - M_1(g)$$

2. Se obtiene el promedio de las cinco mediciones de masa de entrada dividido para el tiempo de filtración en minutos:

$$M_{e} = \frac{(M_{e1} + M_{e2} + M_{e3} + M_{e4} + M_{e5})/5}{T_{f}} (\frac{g}{min})$$

- 3. El caudal de entrada del ventilador de succión se lo determina en la Práctica # 1:
- 4. Se calcula la Concentración de Entrada promedio Ce con la siguiente ecuación:

$$C_e = \frac{M_e}{Q_e} (\frac{g}{m^3})$$

PREGUNTAS EVALUATIVAS:

1. La concentración obtenida está dentro del rango típico de concentraciones de entrada?

- 2. La concentración de entrada es independiente de la duración del tiempo de filtración T_f ? y del tiempo de mezclado T_m ?
- 3. El flujo de masa promedio Me es constante o casi constante en la prueba?
- 4. La agitación del polvo fue uniforme durante la prueba?
- 5. La manipulación del ventilador móvil no tuvo problemas?, se atascó?
- 6. El ventilador pequeño que está fijo ayuda de manera importante a la agitación del polvo?; si considera que no, proponer otra ubicación para dicho ventilador.

PRÁCTICA#4

"DETERMINACIÓN DE LAS CONSTANTES DE FILTRACIÓN DEL FILTRO DE MANGAS"

OBJETIVO:

Determinar las Constantes de Filtración K_e y K_s para obtener la caída de presión real de un filtro de mangas sin limpieza.

FUNDAMENTOS TEÓRICOS:

La caída de presión total a través de una casa de bolsas se la puede expresar como:

$$\Delta P = \Delta P_f + \Delta P_p + \Delta P_s$$

Donde:

 ΔP = Caída de presión total

 ΔP_f = Caída de presión a través de la tela limpia

 ΔP_p = Caída de presión a través del pastel

ΔP_s = Caída de presión a través de la estructura

La caída de presión a través de la estructura se la considera despreciable.

La caída de presión para el filtro limpio y la de la capa de polvo se la representa por la ecuación de Darcy, aplicable a flujo de fluidos en medios porosos:

$$\frac{\Delta P}{X} = \frac{V * \mu_g}{K}$$

Donde:

X = Profundidad del filtro o de la capa de polvo

K = Permeabilidad del filtro o de la capa de polvo

 μ_q = Viscosidad del gas

V = Velocidad superficial de filtración

La caída de presión total se la puede escribir en términos de la ecuación de Darcy como:

$$\Delta P = \frac{X_f * \mu_g * V}{K_f} + \frac{X_p * \mu_g * V}{K_p}$$

Donde los subíndices f y p indican la tela limpia y la capa de polvo respectivamente. La caída de presión de la tela limpia ΔP_f debe ser esencialmente constante, por tanto, la caída de presión total depende de la variación en la caída de presión de la capa de polvo según se vaya acumulando ésta sobre la tela; es decir, ΔP_p varía en función del espesor de la capa de polvo X_p , y ésta a su vez en función del tiempo de operación t.

Sin embargo esta masa también equivale a la densidad de la capa sobre la superficie del filtro multiplicado por el volumen de la capa recolectada en el tiempo t. Igualando estas equivalencias se llega a la siguiente expresión:

Masa recolectad
$$a = (V * A)*(t)*C = \rho_L * (A * X_p)$$

Se tiene entonces una expresión para el incremento del espesor X_p:

$$X_p = \frac{C * V * t}{\rho_L}$$

Donde:

C = Carga de polvo o concentración

V = Velocidad superficial de filtración

t = Tiempo de operación

 ρ_L = Densidad de la capa de polvo

Reemplazando y ordenando se obtiene:

$$\Delta P = \frac{X_f * \mu_g}{K_f} * V + \frac{\mu_g}{K_p * \rho_L} * (C * V * t) * V$$

La relación entre la caída de presión total y la velocidad superficial de filtración se conoce como el arrastre a través del filtro; dividiendo la ecuación anterior para la velocidad de filtración, se obtiene:

$$S = K_1 + K_2 W$$

Donde:

S = Arrastre del filtro (Pa-min / m)

 $K_1 = (X_f * \mu_g) / (60 * K_f)$ (Pa-min / m)

 $K_2 = \mu_g / (60 * K_p * \rho_L) (Pa-min-m / kg)$

W = Densidad de área de polvo = C * V * t (g/m²)

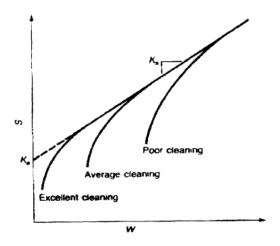
El modelo lineal presentado por la ecuación es llamado también como modelo de arrastre del filtro, la evaluación de los parámetros K₁ y K₂, es inapropiado debido que no se puede obtener tan fácilmente los valores de permeabilidad de la capa de polvo como de la tela limpia.

Experimentalmente, para poder obtener el arrastre en el filtro se escribe la ecuación anterior como:

$$S = K_e + K_s W$$

Donde:

K_e = Valor extrapolado del filtro limpio


K_s = Pendiente, constante de las partículas de polvo, gas y tejido implicados en la filtración

Las constantes K_e y K_s son obtenidas empíricamente en un banco de pruebas durante "la prueba de filtración" en la cual se toman las caídas de presión para diferentes intervalos de tiempos de operación con una concentración determinada.

Aunque hay mucha variabilidad, los valores de K_s se encuentran desde 1.2 a 30 - 40 Pulg H_2O / ft/min-Lb/ft².

Los tiempos de filtración pueden ir de aproximadamente 20 a 90 minutos para filtros de mangas de funcionamiento continuo, pero se encuentran más frecuentemente de 30 a 60 minutos.

La figura siguiente muestra la curva de funcionamiento típica de un filtro de mangas con el arrastre del filtro en función de la densidad de área de polvo;

PROCEDIMIENTO EXPERIMENTAL:

- 1. Encender el banco de pruebas.
- 2. Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 3. Colocar 8 Kg aprox. de cemento, harina o un polvo de características similares en el tanque de agitación y mezcla.
- 4. Conectar el conjunto tanque + tubo de entrada con la boca de entrada del filtro.
- 5. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo en la parte superior de la pared interna del tanque y ayudará a empujar el polvo hacia el filtro).
- 6. Tapar el tanque con la tapa plástica transparente para que no se salga el polvo.
- 7. Usar el selector de rangos con letras negras (escala 0 a 1 Pulg H_2O) del velómetro y acoplar la Sonda de Presión Estática para medir presiones.
- 8. Encerar el medidor del velómetro con el tornillo de ajuste en la posición que leerá las presiones (posición horizontal, vertical o inclinada).

- Con las dos mangueras conectar el medidor con el selector de rangos del velómetro con polaridad invertida, por tratarse de mediciones de presión negativa.
- 10. Ingresar los siguientes parámetros de funcionamiento del PLC sin limpieza de manga:
 - a. Tiempo de mezclado inicial B5 (min) (funcionamiento de los dos ventiladores pequeños). valor recomendable entre 1 y 5 minutos.
 - Tiempo de filtración B7 (min) (funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando). valor recomendable entre 20 y 30 minutos.
 - c. Tiempo de encendido del timbre B13 (min) < B7. Este timbre sonará una vez cumplido el intervalo de tiempo B13, se procede a tomar la presión en Pulg H_2O en los tubos de entrada (P_e) y de salida (P_s) del filtro con el velómetro. El valor de B13 recomendable está entre 3 y 5 minutos.
- 11. Encender el PLC con el switch ubicado en la tapa del panel de control y la opción de encendido a seguir es la siguiente:
 - a. Abre y cierra, que permite la secuencia de filtración sin activación de la electroválvula (sin limpieza de la manga).
- 12. Después que se ha iniciado el tiempo de filtración y para cada tiempo B13 se ubica la Sonda de Presión Estática sobre el orificio practicado en el tubo de entrada y se leerá en el dial del velómetro la presión de entrada P_e en Pulg H₂O (leer en la escala 0 a 1 Pulg H₂O).
- 13. Inmediatamente se ubica la Sonda de Presión Estática sobre el orificio practicado en el tubo de salida y se leerá en el dial del velómetro la presión de salida P_s en Pulg H₂O (leer en la escala 0 a 1 Pulg H₂O).
- 14. La Sonda de Presión Estática debe permanecer en posición perpendicular en ambos tubos al momento de hacer las lecturas.
- 15. Mantener con movimiento manual el ventilador que agita el polvo, durante toda la prueba.
- 16. Para una descripción detallada del manejo del velómetro consultar el Apéndice J.
- 17. Esta prueba se la realiza una sola vez.

TABLA DE DATOS Y RESULTADOS:

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	PRESIÓN DE ENTRADA	PRESIÓN DE SALIDA
N°	T _m	T _f	P_{e}	P_s
-	min	min	Pulg H₂O	Pulg H₂O
1				

PRUEBAS	CAÍDA DE PRESIÓN		DENSIDAD DE ÁREA	ARRASTRE
N°	ΔP = F	P _s - P _e	w	S
-	Pulg H₂O	Pa	g/m²	Pa-min/m
1				

CÁLCULOS:

1. Se calcula la caída de presión en el filtro para cada intervalo con la siguiente ecuación:

$$\Delta P = P_s - P_e$$

2. Se calcula la densidad de área W (g/m²) para cada intervalo por medio de la siguiente ecuación:

$$W = C_e * V_f * t_f$$

Donde:

C_e = Concentración de entrada al filtro (g/m³).

V_f = Velocidad de Filtración (m/min).

 T_f = Tiempo de filtración (min).

3. Se calcula el arrastre del filtro S (Pa-min/m) para cada intervalo por medio de la siguiente ecuación:

$$S = \frac{\Delta P}{V_f}$$

GRAFICO:

- 1. Se procede a elaborar el Gráfico S vs W con los puntos obtenidos. En el eje Y se pone los valores de S y en el eje X los valores de W.
- Se traza una recta representativa de los puntos graficados; la intersección con el eje Y (arrastre S) es el valor de K_e (Pa-min/m) y la pendiente de la recta es K_s (Pa-min-m/g).

PREGUNTAS EVALUATIVAS:

- 1. Demostrar la ecuación S=K₁+K₂W.
- 2. Los valores de K_e y K_s variarán apreciablemente si el intervalo de tiempo para las lecturas de P_e y P_s cambia para otro conjunto de pruebas?
- 3. La curva del Gráfico S vs W cumple con la curva típica de funcionamiento establecida para los filtros de mangas?. Si no cumple, explicar las causas.
- 4. El valor de K_s determinado para el tipo de polvo y tela escogidos para la prueba está en concordancia con el valor de K₂ teórico para esta misma combinación?
- 5. El valor de K_s se encuentra dentro del rango de valores típicos para este tipo de coeficiente?
- 6. El velómetro ofreció lecturas confiables al momento de hacer las mediciones?
- 7. El indicador del dial del medidor se mantuvo en una sola posición al momento de hacer una lectura o fue inestable?
- 8. Pudo encerar el medidor del velómetro en la posición requerida?:
- 9. Hubo confusión al momento de leer en la escala correcta la presión?

PRÁCTICA #5

"DETERMINACIÓN DE LA EFICIENCIA PROMEDIO DE RECOLECCIÓN Y TIEMPO DE FILTRACIÓN"

OBJETIVO:

Determinar la eficiencia promedio de recuperación de materia prima y obtener el tiempo óptimo de limpieza de un filtro de mangas.

FUNDAMENTOS TEÓRICOS:

Para determinar si el equipo de filtración es adecuado para la recuperación de materia prima que es expulsada a la atmósfera durante el proceso de producción, es necesario saber su eficiencia. Por consiguiente se determina la eficiencia de recolección en la tolva utilizando el sistema de limpieza pulse - jet para un tiempo óptimo de filtración dado por el tiempo de limpieza de la válvula regulada por el PLC.

Al término de este tiempo de operación se apaga el equipo y se procede a pesar la masa final de polvo que quedó en el tanque y la masa de polvo recolectada en la tolva que fue desprendida de la manga por el sistema de limpieza para obtener la masa real que ingresa al equipo y con ello calcular su eficiencia de la siguiente forma:

$$E_r = \frac{M_t}{M_e} x 100$$

Donde:

E_r = Eficiencia de recolección en tolva (%)

 M_t = Masa colectada en tolva = $M_2 - M_1$ (g)

 M_1 = Masa del recipiente (g)

M₂ = Masa de recipiente + polvo (g)

 M_e = Masa de entrada = $M_i - M_f$ (g)

 M_i = Masa inicial de tanque + polvo (g)

 M_f = Masa final de tanque + polvo (g)

PROCEDIMIENTO EXPERIMENTAL:

- 1. Encender el banco de pruebas.
- 2. Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 3. Colocar 8 Kg aprox. de cemento, harina o un polvo de características similares en el tanque de agitación y mezcla.
- 4. El conjunto tanque + polvo + tubo de entrada se pesa en la balanza mecánica para obtener la masa inicial del conjunto (gramos).
- 5. Conectar el conjunto tanque + polvo + tubo de entrada con la boca de entrada del filtro.
- 6. Encender el compresor de aire.
- 7. Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo en la parte superior de la pared interna del tanque y ayudará a empujar el polvo hacia el filtro).
- 8. Tapar el tanque con la tapa plástica transparente para que no se salga el polvo a agitar. Se deberá poner unos contrapesos para contrarrestar los pulsos de aire de la electroválvula y evitar que el polvo se salga.
- Ingresar los siguientes parámetros de funcionamiento del PLC con limpieza de manga.
 - a. Tiempo de mezclado inicial B5 (min) (funcionamiento de los dos ventiladores pequeños), valor recomendable entre 1 y 5 minutos.
 - b. Tiempo de filtración B7 (min) (funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando), valor recomendable entre 20 y 30 minutos.
 - c. Tiempo de encendido del timbre B13 (min) = B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.
 - d. Tiempo de activación de la electroválvula B9 = T_c (seg) que producirá el pulso de aire comprimido de 80psi (P_j) durante 250ms. valor recomendable entre 1 y 30 seg.
- 10. Encender el PLC con el switch ubicado en la tapa del panel de control y la opción de encendido a seguir es la siguiente:
 - a. Abre, que permite la secuencia de filtración con activación de la electroválvula (con limpieza de la manga).

- 11. Mantener con movimiento manual el ventilador que agita el polvo, durante toda la prueba.
- 12. Una vez terminado el tiempo de filtración, se retira el conjunto tanque + polvo + tubo de entrada del equipo.
- 13. Se pesa la masa final del conjunto tanque + tubo de entrada + polvo en la balanza mecánica y por diferencia con la masa inicial del mismo conjunto se obtiene la masa de polvo M_e que entra al sistema.
- 14. Pesar en la balanza mecánica el polvo colectado en la tolva M_t.
- 15. Para realizar un nueva prueba se repiten los pasos 3 al 14 con un T_c diferente (puede ser con incrementos de 5 segundos para cada nueva prueba).

TABLA DE DATOS Y RESULTADOS:

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA	MA TANQUE	_
N°	T _m	T _f	Tp	T _c	Mi	M _f
-	min	min	ms	s	g	g
1						
2						
3						
4						
5						

PRUEBAS	MASA DE ENTRADA	MASA RECIPIENTE	MASA RECIPIENTE + POLVO	MASA COLECTADA EN TOLVA	EFICIENCIA DE RECOLECCIÓN
Nº	M _e = M _i - M _f	M ₁	M ₂	$M_t = M_2 - M_1$	$E_r = M_t / M_e$
-	g	g	g	g	%
1					
2					
3					
4					
5					
PROMEDIO					

CÁLCULOS:

1. Se calcula la masa que entra al equipo M_e con la siguiente ecuación:

$$M_e = M_f - M_i(g)$$

2. Se calcula la masa colectada en tolva Mt con la siguiente ecuación:

$$M_t = M_2 - M_I(g)$$

 Se calcula la eficiencia de recolección para cada intervalo de filtración con la siguiente ecuación:

$$E_{ri} = \frac{M_t}{M_e} x 100(\%)$$

4. Se obtiene el promedio de las cinco eficiencias de recolección calculadas para obtener la Eficiencia Promedio de Recolección del equipo:

$$E_{r} = \frac{(E_{r1} + E_{r2} + E_{r3} + E_{r4} + E_{r5})}{5}$$
(%)

GRAFICO:

- 1. Se procede a elaborar el Gráfico E_r vs T_c con los puntos obtenidos. En el eje Y se pone los valores de E_r y en el eje X los valores de T_c .
- Ingresando por la Eficiencia Promedio de Recolección E_r obtenida anteriormente, se llega hasta la curva y luego se dirige hacia el eje X donde se obtiene el Tiempo Óptimo de Limpieza del equipo.

PREGUNTAS EVALUATIVAS:

- La Eficiencia Promedio de Recolección variará si se escogen otros valores de T_c?
 si se cambia la duración del pulso?
- 2. La Eficiencia Promedio de Recolección o el Tiempo Óptimo de Limpieza podrían variar si se alarga o acorta el tiempo de filtración?
- 3. La masa recolectada en la tolva fue constante o describía una tendencia en particular?
- 4. La masa de entrada al sistema era constante o tenía una tendencia en especial?

PRÁCTICA#6

"DETERMINACIÓN DE LA CONCENTRACIÓN DE SALIDA DEL FILTRO DE MANGAS"

OBJETIVO:

Determinar la Concentración de Salida C_s de un flujo de gas con material particulado en suspensión del filtro de mangas.

FUNDAMENTOS TEÓRICOS:

La concentración de salida de un gas es la relación entre el flujo de masa promedio en g/min y el caudal en m³/min de la corriente de gas que se ha filtrado. Tiene unidades de masa por unidad de volumen y se lo expresa por la siguiente ecuación:

$$C_s = \frac{M_s}{Q_s}$$

Donde:

C_s = Concentración de salida promedio del filtro (g/m³)

M_s = Flujo de masa promedio de salida (g/min)

Q_s = Caudal de salida del filtro (m³/min)

DESCRIPCIÓN DEL BANCO DE PRUEBA, MATERIALES Y EQUIPOS UTILIZADOS:

El banco de pruebas consiste de un filtro de mangas el cual dispone de los siguientes elementos:

- 1. Un PLC para la automatización de las rutinas de trabajo,
- 2. Un tanque de agitación y mezcla de polvo,
- 3. Una recámara metálica con su respectiva tolva, para el alojamiento de la manga,
- 4. Una manga de un tipo de tela a escoger,
- 5. Un ventilador de succión,
- 6. Un timbre para ayuda auditiva de las pruebas.
- 7. Dos ventiladores pequeños a ubicar en el tanque de agitación y mezcla,

- 8. Una electroválvula para generar un pulso de aire comprimido de 80 psi,
- 9. Un compresor de aire.

El material a utilizar en las pruebas será cualquiera de los siguientes polvos:

- 1. Cemento,
- 2. Harina,
- 3. Otro de características similares.

Para medir el polvo a utilizar en el tanque de agitación y el polvo colectado en el papel filtro se utilizarán en su orden los siguientes instrumentos:

- 1. Balanza mecánica
- Balanza electrónica

PROCEDIMIENTO EXPERIMENTAL:

- 1. Encender el banco de pruebas.
- 2. Poner una manga de cualquiera de los tres tipos de tela dentro del filtro.
- 3. Colocar 5 Kg aprox. de cemento, harina o un polvo de características similares en el tanque de agitación y mezcla.
- 4. Pesar el papel filtro limpio en la balanza electrónica.
- 5. Poner el papel filtro en el tubo de salida del filtro, en la ranura de 2mm aprox.
- 6. Poner cinta adhesiva para mantener unido el papel filtro con el tubo de salida.
- 7. Conectar el conjunto tanque + tubo de entrada con la boca de entrada del filtro.
- Poner el ventilador móvil dentro del tanque (el otro ventilador está fijo en la parte superior de la pared interna del tanque y ayudará a empujar el polvo hacia el filtro).
- Tapar el tanque con la tapa plástica transparente para que no se salga el polvo a agitar.
- Ingresar los siguientes parámetros de funcionamiento del PLC con limpieza de manga.
 - a. Tiempo de mezclado inicial B5 (min) (funcionamiento de los dos ventiladores pequeños), valor recomendable entre 1 y 5 minutos.

- b. Tiempo de filtración B7 (min) (funcionamiento del ventilador de succión; los ventiladores pequeños siguen funcionando), valor recomendable entre 10 y 20 minutos.
- c. Tiempo de encendido del timbre B13 (min) = B7; este timbre sonará en el inicio y fin del tiempo de filtración B7.
- d. Tiempo de activación de la electroválvula B9 = T_c (seg) que producirá el pulso de aire comprimido de 80psi (P_j) durante 250ms. Este valor será aquel determinado en la Práctica # 3 (Gráfico E_r vs T_c).
- 11. Encender el PLC con el switch ubicado en la tapa del panel de control y la opción de encendido a seguir es la siguiente:
 - a. Abre, que permite la secuencia de filtración con activación de la electroválvula (con limpieza de la manga).
- 12. Mantener con movimiento manual el ventilador que agita el polvo, durante toda la prueba.
- 13. Una vez terminado el tiempo de filtración, se retira el conjunto tanque + tubo de entrada del equipo.
- 14. Se retira con cuidado el papel filtro con el polvo colectado del tubo de salida.
- 15. Se pesa el conjunto papel filtro + polvo en la balanza electrónica.
- 16. Por diferencia de pesos se obtiene la masa de polvo colectado en el tiempo de filtración establecido.
- 17. Para realizar un nueva prueba se repiten los pasos 3 al 16.

TABLA DE DATOS Y RESULTADOS:

PRUEBAS	TIEMPO DE MEZCLADO	TIEMPO DE FILTRACIÓN	TIEMPO DEL PULSO	TIEMPO DE LIMPIEZA
N°	T _m	T _f	Tp	T _c
-	min	min	ms	s
1				
2				
3				
4				
5				

PRUEBAS	MASA FILTRO	MASA FILTRO + POLVO	EL TIE	SALIDA EN MPO DE ACIÓN T _f
N°	M ₁	M ₂	M _s =	M ₂ - M ₁
-	oz	oz	oz	g
1				
2				
3				
4				
5				
PROMEDIO		•	•	

CÁLCULOS:

1. Se calcula la masa de salida del filtro para cada intervalo de filtración:

$$M_{si} = M_2 - M_1(g)$$

2. Se obtiene el promedio de las cinco mediciones de masa de salida dividido para el tiempo de filtración en minutos de la prueba:

$$M_{s} = \frac{(M_{s1} + M_{s2} + M_{s3} + M_{s4} + M_{s5})/5}{T_{f}} (\frac{g}{min})$$

- 3. El caudal de salida del ventilador de succión se lo determina en la Práctica # 2:
- 4. Se calcula la Concentración de Salida promedio C_s con la siguiente ecuación:

$$C_s = \frac{M_s}{Q_s} \left(\frac{g}{m^3}\right)$$

PREGUNTAS EVALUATIVAS:

- 1. La concentración de salida será diferente si se varía el tiempo de limpieza T_c?
- 2. Para otra combinación polvo tela, la concentración de salida será diferente?
- 3. Si aumenta o disminuye la duración del pulso (ms), afectará a la concentración de salida?

PRÁCTICA #7

"DETERMINACIÓN DE LA EFICIENCIA DE COLECCIÓN TOTAL Y CAÍDA DE PRESIÓN REAL EN EL FILTRO DE MANGAS"

OBJETIVO:

Determinar la Eficiencia de Colección Total y la Caída de Presión Real sin limpieza y con limpieza del filtro de mangas.

FUNDAMENTOS TEÓRICOS:

La eficiencia es un parámetro que se emplea para indicar el nivel de operación de un equipo de control para limpieza de aire y se define de acuerdo con la siguiente ecuación:

$$\eta = \frac{C_e - C_s}{C_e} \times 100$$

Donde:

η = Eficiencia de colección global (%)

C_e = Concentración de entrada promedio (g/m³)

C_s = Concentración de salida promedio (g/m³)

Esta eficiencia determina la característica de funcionamiento del filtro, pues depende de la concentración a la entrada y a la salida cuando este funciona completamente (combinación de filtración y limpieza pulse – jet). La operación de filtrado debe estar entre el 99 y 99.9% de eficiencia para satisfacer la necesidad de filtración de aire.

La caída de presión real en un filtro de mangas se produce por el efecto solo de la filtración y luego por la combinación de filtración y limpieza.

Para el primer caso se aplica las siguientes ecuaciones que describen solo el proceso de filtración:

$$\Delta P = (K_e + K_s W) V_f$$

$$W = C_e * V_f * t_f$$

Reemplazando la segunda ecuación en la primera se tiene:

$$\Delta P = (K_e + K_s C_e V_f t_f) V_f$$

Donde:

 ΔP = Caída de presión total del filtro (Pa)

K_e = Valor extrapolado del filtro limpio (Pa-min/m)

K_s = Coeficiente de resistencia específico del polvo (Pa-min-m/g)

C_e = Concentración de polvo a la entrada del filtro (g/m³)

V_f = Velocidad de filtración (m/min)

T_f = Tiempo de filtración (min)

Para el segundo caso se aplica la siguiente ecuación la cual describe el proceso combinado de filtración y limpieza pulse - jet respetando las unidades americanas por su naturaleza empírica:

$$\Delta P = 6.08 * V_f * P_j^{-0.65} + K_s * V_f^2 * C_e * t_f$$

Donde:

 ΔP = Caída de presión total del filtro (Pulg H₂O)

V_f = Velocidad de filtración (ft/min)

P_i = Pulso de limpieza (80psi)

 K_s = Coeficiente de resistencia específico del polvo (Pulg H_2O / ft/min-Lb/ft²)

C_e = Concentración de polvo a la entrada del filtro (Lb/ft³)

t_f = Tiempo de filtración (min)

El valor de caída de presión recomendable para los filtros de mangas está dentro del rango típico de 2 a 10 Pulg H₂O.

PROCEDIMIENTO EXPERIMENTAL:

- 1. Para obtener la Eficiencia de Colección Total del filtro de mangas se deberá:
 - a. Determinar la Concentración de Entrada Ce. Ver Práctica # 3.
 - b. Determinar la Concentración de Salida C_s. Ver Práctica # 6.
- 2. Para obtener la Caída de Presión Real sin limpieza y con limpieza de la manga se deberá determinar adicionalmente:
 - a. Las Constantes de Filtración K_e y K_s del filtro. Ver Práctica # 4.

TABLA DE DATOS Y RESULTADOS:

SIN LIMPIEZA DE MANGA					
K _e		Pa-min/m	CONSTANTES DE		
K _s		Pa-min-m/g	FILTRACIÓN		
C _e		g/m³	CONCENTRACIÓN DE ENTRADA		
V _f		m/min	VELOCIDAD DE FILTRACIÓN		
t _f		min	TIEMPO DE FILTRACIÓN		
4.0		Pa	CAÍDA DE PRESIÓN SIN		
ΔP		Pulg H ₂ O	LIMPIEZA DE MANGA		

	CON LIMPIEZA DE MANGA				
Pj		psi	PULSO DE LIMPIEZA		
K _s		Pulg H ₂ O/ (ft/min-Lb/ft ²)	COEFICIENTE DE FILTRACIÓN		
C _e		Lb/ft ³	CONCENTRACIÓN DE ENTRADA		
V _f		ft/min	VELOCIDAD DE FILTRACIÓN		
t _f		min	TIEMPO DE FILTRACIÓN		
ΔР		Pulg H₂O	CAÍDA DE PRESIÓN CON LIMPIEZA DE MANGA		

PREGUNTAS EVALUATIVAS:

- 1. Las caídas de presión obtenidas están dentro del rango típico de caídas de presión para este tipo de sistemas de filtración?
- 2. Las caídas de presión reales determinadas son iguales o aproximadas a aquellas determinadas en un diseño de filtro de mangas?
- 3. Para otra combinación polvo tela estas caídas de presión reales serán las mismas?

BIBLIOGRAFÍA

- ASABE, Food Powder Delivery Through A Feeder System: Effect Of Physico - Chemical Properties, Paper Number 076189, 2007.
- BENITEZ JAIME, Process Engineering and Design for Air Pollution Control, Ptr Prentice Hall, 1993.
- COOPER, DAVID AND F. ALLEY, Air Pollution Control: A Design Approach, Waveland Press, Prospect Heights, Second Edition, 1994.
- 4. CURTIS KIMBERLY, Tests on Portland Cement, School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 2005.
- EPA, Diseño de Equipos de Control de Contaminación, Capítulo Cinco,
 Filtros de Tejido, 1998.
- FOX Y Mc DONALD, Introducción a la Mecánica de Fluidos, Editorial Mc
 Graw Hill, Segunda Edición, 1995.

- 7. GRANJA PATRICIO, Diseño Mecánico de un Filtro de Mangas Tipo Pulse Jet para Partículas Minerales de Origen Industrial, (Tesis Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, 2001)
- GUÍA DE LABORATORIO DE MECÁNICA DE FLUIDOS, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, 2001.
- PERALTA GERMÁN, Diseño Fluidodinámico de un Filtro de Mangas (Tipo Pulse Jet) para Partículas Minerales de Origen Industrial, (Tesis Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, 2001)
- 10. PLC SIEMENS LOGO 230 RC, Manual del Usuario, 1996.
- 11.R M SEGURIDAD AMBIENTAL S.A., Av. Colón 3844 7400 Olavarría Rca. Argentina, <u>ventas@rmseguridad.com.ar</u>, <u>www.rmseguridad.com.ar</u>., 2009.
- 12.SMC, Diagramas de Selección de Válvulas Solenoide para Colector de Polvos Serie VXF.

- 13.THEODORE L. AND BUONICORE A. J., Industrial Air Pollution Control Equipment for Particulates, Cleveland: CBS Press, 1976.
- 14. VÁLVULAS SOLENOIDE AIRTAC, Manual de Especificaciones Técnicas.
- 15. VELÓMETRO ALNOR SERIE 6000, TSI, Incorporated, Manual del Usuario, 2002.
- 16.WARK, WARNER AND DAVIS, Air Pollution, It's Origin and Control, Editorial Addison Wesley, Third Edition, 1998.