

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS CURSO DE NIVELACIÓN DE CARRERA 2S-2015

SEGUNDA EVALUACIÓN DE QUÍMICA PARA NUTRICIÓN GUAYAQUIL, 08 DE MARZO DE 2016 HORARIO: 14H00 a 16H00 VERSIÓN 0

N° Cédula Estudiante:		Paralelo:
		COMPROMISO DE HONOR
esferog cualqui frontal consult desarro	presente examen es gráfico; que sólo pue ier instrumento de del aula, junto cor car libros, notas, ni a ollarlos de manera o	al firmar este compromiso, reconozco etá diseñado para ser resuelto de manera individual, que puedo usar un lápiz o edo comunicarme con la persona responsable de la recepción del examen; y, comunicación que hubiere traído, debo apagarlo y depositarlo en la parte n algún otro material que se encuentre acompañándolo. No debo además, epuntes adicionales a las que se entreguen en esta evaluación. Los temas debo redenada. Iniso, como constancia de haber leído y aceptar la declaración anterior.
	aspirante a la ESPOI io ni dejo copiar".	L me comprometo a combatir la mediocridad y actuar con honestidad, por eso

INSTRUCCIONES

- 1. Abra el examen una vez que el profesor de la orden de iniciar.
- Escriba sus datos de acuerdo a lo solicitado en la hoja de respuestas, incluya su número de cédula y la VERSIÓN
 O del examen.
- 3. Verifique que el examen consta de 20 preguntas de opción múltiple.
- 4. El valor de cada pregunta es de 0.50 puntos.
- 5. Cada pregunta tiene una sola respuesta correcta.
- 6. Desarrolle todas las preguntas del examen en un tiempo máximo de 2 horas.
- 7. En el cuadernillo de preguntas, escriba el DESARROLLO de cada tema en el espacio correspondiente.
- 8. Utilice lápiz # 2 para señalar el ítem seleccionado en la hoja de respuestas, rellenando el correspondiente casillero tal como se indica en el modelo.
- 9. Está permitido el uso de calculadora para el desarrollo del examen.
- 10. No consulte con sus compañeros, el examen es estrictamente personal.
- 11. En caso de tener alguna consulta, levante la mano hasta que el profesor pueda atenderlo.

Responsable: Ing. Quím. John Daniel Fajardo Contreras

- 1. Elija la opción incorrecta en las siguientes proposiciones:
 - A. El ácido fórmico es un ejemplo de ácido orgánico.
 - B. El 1-buteno cuya fórmula molecular es C₄H₈, corresponde a un hidrocarburo insaturado.
 - C. La combustión completa de los hidrocarburos produce CO₂ y H₂O.
 - D. El propanal es un ejemplo de compuestos cetónicos.
 - E. Todos los compuestos orgánicos contienen carbono en su estructura.
- 2. Señale la alternativa con el nombre correcto de los siguientes compuestos orgánicos:

CH₃(CH₂)₂CHO; CH₃CH₂CH₂OH; COOHCOOH.

Entonces podemos decir que:

- A. butanal; 1-propanol; ácido etanodioico
- B. 1-butanona; 1-propanal; ácido oxálico
- C. butanal; 1-propanona; ácido etanoico
- D. 1-butanol; 1-propanol; ácido oxálico
- E. 1-butano; 1-propanal; ácido etanodioico
- 3. Determinar el literal que contenga el menor porcentaje de nitrógeno:
 - A. Una molécula de nitruro de calcio.
 - B. Una molécula de nitrato de amono.
 - C. 50 g de amoniaco.
 - D. 3 moléculas de ácido nítrico.
- 4. Determinar el número de átomos de oxígenos contenidos en 250 mg de oxalato de potasio:
 - A. 3,6 x 10²⁷ átomos de oxígeno.
 - B. 6,0 x 10⁻³ átomos de oxígeno.
 - C. 9,1 x 10²⁰ átomos de oxígeno.
 - D. 2,7 x 10³ átomos de oxígeno.
 - E. 3,63 x 10²¹ átomos de oxígeno.

- 5. Señale la alternativa incorrecta sobre el tipo de ecuaciones químicas:
 - A. $SO_2 + H_2O \rightarrow H_2SO_3$ (síntesis)
 - B. $CuNO_3 + KCl \rightarrow KNO_3 + CuCl$ (doble sustitución)
 - C. $H_2SO_4 + Ni \rightarrow NiSO_4 + H_2$ (simple desplazamiento)
 - D. $NaNO_3 \rightarrow Na_3N + O_2$ (descomposición de nitratos)
 - E. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (combustión completa)
- 6. Señale la alternativa correcta que indique las moles de agua que se obtiene cuando reaccionan 0,50 kg de una muestra que contiene un 45% de impurezas de hidróxido de sodio con sulfuro de hidrógeno si se obtiene además sulfuro de sodio.
 - A. 5,63 moles.
 - B. 7,0 moles.
 - C. 12,5 moles.
 - D. 2,8 moles.
 - E. 96 moles.
- 7. Señale la alternativa correcta al balancear la siguiente ecuación química por el método de óxido reducción:

Ácido yodhídrico + KMnO₄ + H₂SO₄ → MnSO₄ + yodo molecular + Sulfato de potasio + H₂O.

- A. El yodo se oxida ganando electrones
- B. La suma de los coeficientes de los reactivos es 16
- C. El manganeso pierde electrones al reducirse
- D. La suma de los coeficientes de la reacción es 31
- E. La ecuación química no es del tipo redox.
- 8. Analice los siguientes enunciados y encierre la alternativa incorrecta:
 - A. El reactivo limitante me genera el rendimiento teórico de la reacción.
 - B. Los valores obtenidos con la ecuación química son valores reales, no teóricos.
 - C. El reactivo excedente al final de la reacción es el que no se combina.
 - D. Una reacción química de descomposición también es llamada análisis
 - E. Para que una reacción de combustión se realice se requiere de oxígeno molecular.

9.		hace calentar 140 g de carbonato de calcio hidratado y se observa que se libera 90 g de agua. n estos datos determinar el número de moléculas de agua por molécula de hidrato.			
	B. C. D.	5 moléculas de agua. 6,022 x 10 ²⁴ moléculas de agua. 6,022 x 10 ²³ moléculas de agua. 7 moléculas de agua. 10 moléculas de agua.			
10.	pai	el laboratorio a través de una reacción química se logró descomponer 0,45lb de nitrato de sodio, ra obtener nitrito de sodio y oxígeno molecular. Si la eficiencia de la reacción fue del 70% terminar el rendimiento real para el oxígeno molecular.			
	B. C. D.	77,00g de O ₂ . 26,95g de O ₂ . 0,085g de O ₂ . 85,10g de O ₂ . 38,50g de O ₂ .			
11.	COI	spués de balancear la ecuación iónica en medio ácido, sume los coeficientes y escoja la opción rrecta: MnO4 - → Mn²+ 23 19. 13			
4.2	E.	17 20			
12.		ñale la alternativa correcta sobre las soluciones:			
	A.	La concentración de una solución es la cantidad de soluto presente en una determinada cantidad de solución.			
	В.	Se suele llamar al agua soluto universal debido a que disocia muchas de las sales inorgánicas en sus respectivos iones.			
	C.	Una solución es una mezcla heterogénea de dos o más sustancias llamadas soluto y solvente.			

D. La molaridad se refiere al número de moles de soluto disuelto en un litro de solución.

13. Señale el enunciado correcto:

- A. En estequiometría aplicamos operaciones matemáticas para comprobar la ley de la conservación de la masa en una reacción química.
- B. Un mol es una unidad derivada de las unidades fundamentales.
- C. Una relación estequiométrica y cualitativa puede ser mol-masa.
- D. Un mol de iones posee 6,02*10²³ átomos de iones.
- 14. Un compuesto está constituido sólo por carbono e hidrógeno, con una relación de masas de 4 a 1 respectivamente. Cuál será la fórmula molecular del compuesto, si tiene una masa molar equivalente al valor positivo de la incógnita de la sig. ecuación matemática: X² 28 X 60 = 0
 - A. H_3C_2 .
 - B. H₄C.
 - C. H₁₈C.
 - D. H_6C_2 .
 - E. C_6H_2 .
- 15. Si tenemos una disolución acuosa al 50 % en masa de hidróxido de calcio, y la densidad de la misma es 1,40 g/cm³; señale la alternativa correcta:
 - A. La molaridad de la disolución es 9,46.
 - B. Por cada 50 gramos de soluto, tenemos 100 gramos de agua
 - C. La molaridad de la disolución es 6,62.
 - D. La normalidad es 6,62
 - E. La fracción molar del agua es 0,79.
- 16. El pH del agua lluvia recolectada en determinada región del noreste de Estados Unidos en un día particular fue de 4.82 , calcule la concentración del ion H⁺ del agua lluvia.
 - A. 1.8 x 10⁻⁴
 - B. 1.5 x 10⁻⁵
 - C. 4.5 x 10⁻⁷
 - D. 2.5 x 10⁻⁴
 - E. 9.5×10^{-3}

- 17. El pH de una disolución de ácido fórmico 0.10 M es de 2,39. ¿Cuál es la Ka del ácido?
 - A. 1.3 x 10⁻⁴
 - B. 4.8 x 10⁻⁴
 - C. 5.8×10^{-4}
 - D. 1.8 x 10⁻⁴
 - E. 1.8 x 10⁻⁸
- 18. Son propiedades de las bases, excepto:
 - A. De acuerdo a Bronsted-Lowry las bases son sustancias que aceptan protones.
 - B. Su sabor es caustico, amargo.
 - C. Tienen un rango de pH que va de 7,1 a 14,0
 - D. Sus disoluciones al agregarle 3 gotas de fenolftaleína se tornan de color purpura rosada.
 - E. En sus disoluciones la [H⁺] > [OH⁻]
- 19. Calcule el pH de una disolución de ácido acético 0,20 M sabiendo que su Ka = 1.8 x 10⁻⁵.
 - A. pH = 3,00.
 - B. pH = 2,92.
 - C. pH = 2,72.
 - D. pH = 5,72.
 - E. pH = 1.02.
- 20. Cuál es el pH de un sistema amortiguador de Na_2HPO_4 0.10 y KH_2PO_4 0.15M? La Ka del $H_2PO_4^{-1}$ es 6.2 x 10^{-8} .
 - A. pH = 11.03
 - B. pH = 7.03
 - C. pH = 2.01
 - D. pH = 8.05
 - E. pH = 2.09