

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2015 - 2S

TERCERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN COMERCIAL **GUAYAQUIL, 14 DE MARZO DE 2016** HORARIO: 11H30 - 13H30 **VERSIÓN CERO**

Dadas las proposiciones simples:

a: Yo me esfuerzo.

b: Yo alcanzo mis sueños.

c: Yo lo hago de corazón.

d : Yo encuentro el camino del éxito.

La traducción al lenguaje simbólico de la proposición compuesta:

"Si me esfuerzo, alcanzo mis sueños; pero, sólo si lo hago de corazón, encuentro el camino del éxito. Encuentro el camino del éxito si me esfuerzo. Por lo tanto, encuentro el camino del éxito y alcanzo mis sueños cuando me esfuerzo."

es:

a)
$$\left[(a \to b) \land (d \to c) \land (a \to d) \right] \to \left[a \to (d \land b) \right]$$

b)
$$[(a \rightarrow b) \land (c \rightarrow d) \land (a \rightarrow d)] \rightarrow [(d \land b) \rightarrow a]$$

c)
$$[(a \rightarrow b) \land (d \rightarrow c) \land (d \rightarrow a)] \rightarrow [a \rightarrow (d \land b)]$$

d)
$$[(a \rightarrow b) \land (d \rightarrow c) \land (a \rightarrow d)] \rightarrow [(d \land b) \rightarrow a]$$

e)
$$[(a \rightarrow b) \land (c \rightarrow d) \land (a \rightarrow d)] \rightarrow [a \lor \neg (d \land b)]$$

Dado el conjunto $\operatorname{Re} = \mathbb{Z} - \mathbb{N}$ y el predicado de una variable p(x): |x| = -x

Identifique la proposición FALSA:

a)
$$\forall xp(x) \rightarrow \exists xp(x)$$

b)
$$\exists x p(x) \lor \forall x p(x)$$

c)
$$\exists x p(x) \lor \forall x \neg p(x)$$

d)
$$\exists x \neg p(x) \lor \forall x p(x)$$

e)
$$\exists x \neg p(x) \lor \forall x \neg p(x)$$

Eduardo dicta clases particulares en dos lugares diferentes. En el segundo lugar le pagaron $\frac{5}{8}$ de lo que le pagaron en el primer lugar. Si él gastó $\frac{3}{4}$ de lo que le pagaron en el primer lugar y aún le quedan \$35, entonces él ganó en total:

- a) \$25
- b) \$40
- c) \$65
- d) \$ 70 e) \$ 75

4) Sea el conjunto referencial $Re = \mathbb{R}$ y el predicado de una variable:

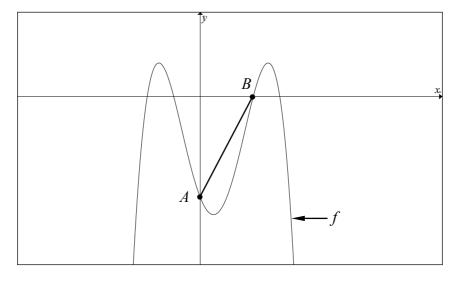
$$p(x)$$
: $\frac{\sqrt[3]{x}+1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1} = \frac{1}{\sqrt[3]{x}-1}$

El elemento de Ap(x) pertenece al intervalo:

- a) (-10,-5]
- b) (-5,0]
- c) (0,5]
- d) (5,10]
- e) (10,15]
- 5) Sea el conjunto referencial $\operatorname{Re} = \mathbb{N}$ y el predicado p(n): $\frac{C_2^n}{P_1^n} = \frac{C_1^n}{4}$

El número de elementos del conjunto de verdad Ap(n) es:

- a) 0


- e) 4
- 6) La cifra de las unidades que resulta de (1 + 5 + 9 + 13 + ... + 397) es:
 - a) 0
- b) 2
- c) 4
- d) 6
- e) 8

- que el siguiente conjunto $\left\{ \! \left(3,6\right),\! \left(-2,-10\right),\! \left(3,a-b\right),\! \left(-2,b-2a\right) \! \right\} \text{ son elementos de una función, entonces el } \right.$ valor de (a+b) es:
 - a) 2
- b) 3

- c) 5 d) -6 e) -4

- 8) Sea la función cuadrática $f: \mathbb{R} \mapsto \mathbb{R}$ definida por $f(x) = x^2 + 9x + 20$. Identifique la proposición VERDADERA:
 - a) f es estrictamente decreciente en el intervalo (2,3)
 - b) f es estrictamente creciente en el intervalo $\left(-3,-2\right)$
 - c) f es estrictamente decreciente en el intervalo $\left(-2,-1\right)$
 - d) f es estrictamente decreciente en el intervalo ig(0,1ig)
 - e) f es estrictamente creciente en el intervalo $\left(-6,-5\right)$
- 9) Dada la gráfica de la función polinomial $f: \mathbb{R} \mapsto \mathbb{R}$ cuya regla de correspondencia es f(x) = -(x+1)(x+2)(x-2)(x-3).

El segmento de recta \overline{AB} , en u , mide:

- a) $2\sqrt{35}$
- b) 7
- c) 14
- d) $\sqrt{37}$
- e) $2\sqrt{37}$
- 10) Sea la función de variable real biyectiva definida por $f(x) = 2 e^{-x}$, la regla de correspondencia de su inversa es:
 - a) $f^{-1}(x) = \ln(x-2), \forall x \in (2,+\infty)$
 - b) $f^{-1}(x) = -\ln(2-x)$, $\forall x \in (-\infty,2)$
 - c) $f^{-1}(x) = -\ln(2-x), \forall x \in (-\infty,1)$
 - d) $f^{-1}(x) = -\ln(x-1)$, $\forall x \in (1,+\infty)$
 - e) $f^{-1}(x) = -\ln(1-x), \forall x \in (-\infty,1)$

11) Si los números a y b se obtienen así:

$$a = \frac{\operatorname{sen}\left(\frac{\pi}{4}\right)}{\operatorname{cos}\left(\frac{\pi}{3}\right)}$$

$$b = \frac{\csc\left(\frac{\pi}{6}\right)}{\tan\left(\frac{5\pi}{4}\right)}$$

El valor de a^b es igual a:

- 12) Sea el conjunto referencial $Re = \begin{bmatrix} 0,2 \end{bmatrix}$ y el predicado de una variable:

$$p(x)$$
: $\operatorname{sen}(2\pi x) + \operatorname{sen}(\pi x) = 0$

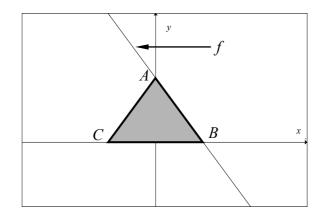
La SUMA de los elementos del conjunto de verdad Ap(x) es igual a:

- a) 3
- b) 4 c) 5
- d) 6
- 13) Sean las matrices $A = \begin{pmatrix} 2 & 2 \\ -1 & 4 \end{pmatrix}$ y $B = A^{-1}$. El valor de $\begin{pmatrix} b_{11} + b_{12} + b_{21} + b_{22} \end{pmatrix}$ es:
 - a) $-\frac{1}{10}$ b) $\frac{1}{10}$ c) $-\frac{1}{2}$ d) $\frac{1}{2}$ e) $\frac{1}{5}$

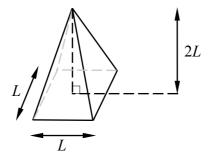
- 14) Sea el conjunto $\operatorname{Re} = \mathbb{R}$ y el predicado p(x): $\begin{vmatrix} x & x+3 \\ 1 & x-1 \end{vmatrix} < 0$

El conjunto de verdad $\mathit{Ap}(x)$ es el intervalo:

- a) (-3,4)
- b) (-6,-2) c) (-6,8) d) (-6,-4) e) (-1,3)


- 15) Considere el número $z \in \mathbb{C}$. Identifique la proposición VERDADERA:
 - a) $\operatorname{Im}(z) = \operatorname{Im}(\overline{z})$
 - b) $\operatorname{Re}(z) = -\operatorname{Re}(\overline{z})$
 - c) $\neg (|z| = |\overline{z}|)$
- 16) La cantidad total de diagonales que se pueden trazar en un endecágono es:
 - a) 27
 - b) 35

 - d) 54
 - e) 65
- 17) Se tiene un cuarto de circunferencia y una semicircunferencia inscrita en él, tal como se muestra en la figura. Si $\it T$ es un punto de tangencia, la longitud del arco $\it AB$, en radianes, es igual a:
- 18) La distancia del punto P(2,-1) a la recta con ecuación L: 3x+4y+18=0 tiene el mismo valor numérico que el perímetro de una circunferencia. Entonces, el diámetro de dicha circunferencia, en $\it u$, es igual a:


2R

- c) $\frac{6}{\pi}$ d) $\frac{8}{\pi}$ e) $\frac{10}{\pi}$

19) Dada la gráfica de la función lineal $f: \mathbb{R} \mapsto \mathbb{R}$ definida por f(x) = 1 - 3x. El área de la superficie del triángulo isósceles ABC, en u^2 , es igual a:

- a) $\frac{1}{4}$
- b) $\frac{1}{3}$
- c) $\frac{1}{2}$
- d) $\frac{2}{3}$
- e) $\frac{4}{3}$
- 20) En la siguiente figura se muestran la longitud de la arista de la base y la longitud de la altura de la pirámide recta cuadrangular. Por lo tanto, el área de la superficie lateral de la pirámide, en u^2 , es igual a:
 - a) $L^2\sqrt{17}$
 - b) $2L^2\sqrt{17}$
 - c) $3L^2\sqrt{17}$
 - d) $4L^2\sqrt{17}$
 - e) $8L^2\sqrt{17}$

- 21) La longitud de la altura de un cono es el triple de la longitud del radio de su base. Si el cono tiene un volumen de $216\pi~cm^3$, entonces la longitud de la altura del cono, en cm, es igual a:
 - a) 3
 - b) 6
 - c) 9
 - d) 12
 - e) 18

- 22) La ecuación de la recta que contiene el punto de intersección entre las funciones de variable real f(x) = 3 y $g(x) = \log_2(x+2)$, $\forall x \in (-2,+\infty)$; y, que a su vez es paralela a la recta de ecuación L: 3x + 6y - 7 = 0, es:
 - a) x+2y-3=0
 - b) x + 2y 9 = 0
 - c) x + 2y + 9 = 0
 - d) x + 2y 12 = 0
 - e) x + 2v + 12 = 0
- 23) El vértice de la parábola $P: y = -4x^2 + 8x 6$ es el centro de la hipérbola H. Esta hipérbola H tiene un vértice en $V_1(3,-2)$ y excentricidad igual a $\frac{3}{2}$.

La ecuación de H es:

a)
$$\frac{(x-1)^2}{4} - \frac{(y+2)^2}{5} = 1$$

b)
$$\frac{(y+2)^2}{5} - \frac{(x-1)^2}{4} = 1$$

c)
$$(y+2)^2 - \frac{(x-1)^2}{5/4} = 1$$

d)
$$\frac{(x-1)^2}{5} - \frac{(y+2)^2}{5/4} = 1$$

e)
$$\frac{(x-1)^2}{5} - (y+2)^2 = 1$$

24) Dado el siguiente sistema de inecuaciones: $\begin{cases}
-1 \le \operatorname{sgn}(x) \le 1 \\
y \le (x+1)^2 - 4
\end{cases}$

Identifique el punto en el plano cartesiano que satisface este sistema:

- a) (-1,-1) b) (-1,1) c) (-2,-1)
- 25) Se tiene un grupo de 5 mujeres y 4 hombres para la exposición de un trabajo. Por falta de tiempo del profesor, él debe escoger solamente a 5 estudiantes para evaluar este grupo de trabajo. La probabilidad de que el profesor elija por lo menos a 4 mujeres es igual a:
- b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{2}{3}$ e) $\frac{2}{9}$