

## ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

## FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

| AÑO:        | 2016             | PERIODO:    | PRIMER TÈRMINO                                                                                            |
|-------------|------------------|-------------|-----------------------------------------------------------------------------------------------------------|
| MATERIA:    | Cálculo Integral | PROFESORES: | R. Díaz, J. Castro, N. Córdova, M. Pastuizaca,<br>D. Pinzón, M. Ramos, S. Solís, X. Toledo, L.<br>Vargas. |
| EVALUACIÓN: | PRIMERA          | FECHA:      | Lunes, 27 de junio de 2016                                                                                |

| COMPROMISO DE HONOR                                                                                                          |                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
| Yo,                                                                                                                          |                      |  |  |
| "Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar". |                      |  |  |
| Firma                                                                                                                        | NÚMERO DE MATRÍCULA: |  |  |

1. Califique como Verdadera o Falsa cada una de las siguientes proposiciones. Justifique su respuesta formalmente. (15puntos)

a) 
$$\int_{-1}^{1} (|x| - x)^2 dx = \frac{4}{3}$$
.

b) Considere 
$$A \in \Re$$
. Si  $\int_{-\pi}^{\pi} \left( A + xe^{x^4} \right) dx = 2$ , entonces  $A = 1$ 

c) La potencia instantánea de un circuito eléctrico está dada por  $p(t)=\frac{1}{T^2}I^2Rt^2;$   $0\leqslant t\leqslant T,$  donde T, I y R son constantes. Entonces la potencia promedio del circuito es  $\overline{p}=\frac{2}{3}I^2RT$ .

d) Si  $f(x) = \int_1^x (3t^2 + 4t) dt$ , entonces la pendiente de la recta tangente a f(x) en x = 1 es 7.

e) Si f(x) es continua en [a,b], entonces:  $\int_a^b f(x)dx = (b-a)\int_0^1 f[a+(b-a)x]dx$ 

2. Obtenga las siguientes antiderivadas:

$$a) \int \frac{x}{\sin^2(x)} dx$$

b) 
$$\int sec^{3/2}(x)tan^3(x)dx$$

$$c) \int \frac{1+e^x}{1-e^x} dx$$

$$d) \int \frac{x^4}{\sqrt{(1-x^2)^3}} dx$$

$$e) \int \frac{dx}{(x-2)\sqrt{x+2}}$$

3. Suponga que un objeto está viajando a lo largo del eje x, de tal manera que su rapidéz a los t segundos está dada por  $v(t)=10-2t+\frac{1}{2}t^2$  pies por segundo. ¿Qué distancia recorre entre t=0 y t=3 segundos? Utilice la definición de Integral Definida para resolver este problema.

(10 puntos)