

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Dimensionamiento de Sistema Centralizado de Almacenamiento y Distribución de Gas Licuado de Petróleo para Planta Metalúrgica"

TRABAJO FINAL DE GRADUACIÓN

PROYECTO DE GRADUACIÓN

Previo a la obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

César Augusto Cepeda Morales

GUAYAQUIL - ECUADOR

Año: 2014

AGRADECIMIENTO

A Dios, por permitir concluir este proyecto de vida, a mis padres y quienes hermanos con su incondicional apoyo motivaron a desmayar en mis metas no propuestas. Al ingeniero Manuel Helguero colaboración por la recibida para realizar este trabajo. Finalmente todos а quienes conforman la planta docente de la enseñanzas carrera por sus impartidas

DEDICATORIA

A mis padres, por todo el esfuerzo realizado tanto para mí como para mis hermanos en salir adelante. A mis profesores por toda la enseñanza recibida. A mis amigos.

TRIBUNAL DE SUSTENTACIÓN

Ing. Jorge Duque R. DECANO DE LA FIMCP PRESIDENTE	Ing. Manuel Helguero G. DIRECTOR DEL TFG
Ing.	Mario Patiño A.
VO	CAL PRINCIPAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Trabajo Final de Graduación, me corresponde exclusivamente; y el patrimonio intelectual del mismo a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

César Augusto Cepeda Morales

RESUMEN

Durante los últimos años el alta demanda de los productos de acero tanto para el sector de la construcción como metalmecánico ha sido considerable, obligando a las plantas productoras a optimizar sus procesos, adquiriendo equipos eficientes y materia prima de calidad

La planta en la que se basó el desarrollo de este proyecto es la mayor productora de acero para la construcción y se encuentra en Guayaquil, debido al proceso de ampliación que llevaron a cabo adquirieron nuevos equipos y reubicaron otros ya existentes, gran parte de estos requieren para su funcionamiento el uso de Gas Licuado de Petróleo (GLP)

El objetivo de este proyecto consistió en el dimensionamiento de la Estación Centralizada de GLP y su posterior montaje, tomando en consideración el consumo proyectado de la planta además de un margen de reserva para una ampliación futura.

Para el dimensionamiento se estimó los consumos del GLP requerido por los equipos, se estableció de manera preliminar las capacidades de almacenamiento de los depósitos estacionarios así como también sus

capacidades de vaporización, se estableció la autonomía necesaria para finalmente definir los depósitos a utilizar.

Una vez conocida la capacidad de almacenamiento de los tanques estacionarios, los equipos de bombeo y de vaporización se definió la ubicación de la estación basándose en los parámetros indicados por la normativa.

Se definió el trazado y dimensionamiento de las tuberías, válvulas y demás accesorios según las condiciones del fluido, se estableció el sistema de llenado de los tanques y se seleccionó el equipo de compresión.

Partiendo de los niveles de caudal y presión del GLP requeridos en cada equipo, se seleccionó el sistema de regulación y el dimensionamiento de los tanques precipitadores.

Como parte de los sistemas complementarios que requieren este tipo de instalaciones se identificaron los sistemas contra incendios, eléctricos y de enfriamiento de los tanques

Una vez definido de manera técnica los equipos, tuberías y accesorios para la instalación se lograron obtener un análisis de costos y cronograma tentativo de ejecución.

Finalmente con el desarrollo de este trabajo se logró obtener un esquema tentativo recomendado para la elaboración de este tipo de proyectos con costos y tiempos de ejecución reales.

ÍNDICE GENERAL

	Pág.
RESUMEN	ii
ÍNDICE GENERAL	٧
ABREVIATURAS	viii
SIMBOLOGÍA	Х
ÍNDICE DE FIGURAS	хi
ÍNDICE DE TABLAS	xiii
ÍNDICE DE PLANOS	ΧV
INTRODUCCIÓN	1
CAPÍTULO 1	
1. ANTECEDENTES	4
1.1. Análisis del Problema	4
1.2. Identificación de la Necesidad	5
1.3. Propiedades de los GLP'S	6
1.4. Utilización de los GLP'S	10
1.5. Estructura del Proyecto	10

CAPÍTULO 2

2. ESTIMACIÓN DE LA CAPACIDAD DE ALMACENAMIENTO DE LA

	INST	ALACIÓN	13
	2.1.	Normativa a Implementarse para el Dimensionamiento	13
	2.2.	Proyección del Consumo en la Planta	15
	2.3.	Capacidades de Depósitos Estacionarios de GLP Existentes	
		en el Mercado	16
	2.4.	Capacidades Mínimas de Vaporización Natural de los	
		Depósitos de Almacenamiento	18
	2.5.	Selección de Equipos de Vaporización Forzada y de Bombeo	23
	2.6.	Autonomía Esperada de la Instalación	36
	2.7.	Ubicación de la Instalación Centralizada de GLP	38
CA	APÍTU	LO 3	
3.	DISE	ÑO DE REDES DEL SISTEMA DE GLP	43
	3.1.	Diseño de Recorrido de la Red de GLP	43
	3.2.	Selección de Materiales, Tuberías y Accesorios a Utilizar	55
	3.3.	Selección de Compresor para GLP	108
	3.4.	Selección de Válvulas de Regulación de Gas GLP	112
	3.5.	Diseño de Tanques de Precipitación	114
CA	APÍTU	LO 4	
4.	SIST	EMAS COMPLEMENTARIOS	117

	4.2. \$	Sistema Contra Incendios y de Enfriamiento	119
	4.3.	Sistema Eléctrico de la Instalación	124
CA	PÍTU	LO 5	
5.	ANÁI	LISIS DE COSTOS	127
	5.1.	Cronograma de Trabajo	127
	5.2.	Costos de Materiales y Equipos	129
	5.3.	Costos de Montaje e Instalación de Equipos, Tubería y	
		Accesorios	130
	5.4.	Utilidad Esperada	132
CA	PÍTU	LO 6	
6.	CON	ICLUSIONES Y RECOMENDACIONES	134
	6.1.	Conclusiones	134
	6.2.	Recomendaciones	136
	,		
AP	ÉNDI	CES	

ANEXOS

BIBLIOGRAFÍA

ABREVIATURAS

Ton/Año Toneladas por año

GLP Gas Licuado de Petróleo

psi Pounds per square inch (libras por pulgada cuadrada)

kj/kg Kilojoule por kilogramo
NTE Norma Técnica Ecuatoriana

INEN Instituto Nacional de Estandarización y Normalización

NFPA National Fire Protection Association

ASME American Society of Mechanical Engineers

BCBG Benemérito Cuerpo de Bomberos de Guayaquil

ARCH Agencia de Regulación y Control Hidrocarburífero

kg/h Kilogramos por hora kg/dia Kilogramos por día

mm Milímetros m^3 Metros cúbicos m^2 Metros cuadrados

 Kg/cm^2 Kilogramos por centímetros cuadrados

°C Grados centígrados gph Galones por hora MBTU/h Mega BTU por hora

kw Kilowatt gal Galones

°F Grados Fahrenheit

bar Bares

RPM Revoluciones por minuto

Hz Hertz

Hp Caballos de fuerza gpm Galones por minuto

cm centímetros

WOG Water, oil and gas, (agua, aceite, combustible)

ANSI American National Standards Institute

kpa Kilo pascales

m/s Metro por segundo

 m^3/s Metros cúbico spor segundo

pulg Pulgadas

Re Número de Reynolds

BTU/h BTU por hora

 BTU/m^3 BTU por metro cúbico

BTU British Thermal Unit (Unidad Térmica Británica)

LPM Litros por minuto

 m^3/h Metros cúbicos por hora

OPSO Over pressure shut off (Bloqueo para sobre presión)
UPSO Under pressure shut off (Bloqueo por baja presión)

PQS Polvo químico seco l/min Litros por minuto

v Voltios amp Amperios ohm ohmios Gbl Global

P/U Precio unitario

USD United States Dollar (Dólar de los Estados Unidos)

Cant Cantidad

ESPOL Escuela Superior Politécnica del Litoral

FIMCP Facultad de Ingeniería en Mecánica y Ciencias de la

Producción

Ing. Ingeniero sch. Cédula

SIMBOLOGÍA

Q	Capacidad de vaporización natural del depósito
a	Factor proporcional al llenado del deposito
S	Superficie Total del depósito
K	Coeficiente para dimensionar kilocalorías
T_e	Temperatura exterior mínima prevista en depósito
T_i	Temperatura en el interior del depósito
С	Calor de vaporización del combustible
Ε	Energía
E_p	Energía potencial del fluido
$\dot{E_c}$	Energía cinética del fluido
E_f	Energía o trabajo del fluido
w	Peso del elemento a analizar
Z	Altura desde el punto de referencia
v	Velocidad
p	Presión
γ	Peso específico del fluido
h_L	Energía ocasionada por fricción y accesorios
h_{pump}	Energía suministrada por la bomba al fluido
h_f	Pérdida de carga ocasionada por fricción
h_n	Pérdida de carga ocasionada por accesorios
k_n	Coeficiente de resistencia de cada accesorio
L_e	Longitud equivalente
f_T	Factor de fricción en la tubería
A	Área
Q	Caudal
R_e	Número de Reynolds
o	Densidad del fluido
и	Viscosidad dinámica
ε	Coeficiente de Rugosidad
$NPSH_D$	Carga de succión neta positiva disponible
$NPSH_R$	Carga de succión neta positiva disponible
h_{vp}	Carga de presión de vapor de líquido a
_	temperatura de bombeo
h_{sp}	Carga de presión estática sobre el fluido en el
d	depósito Densidad aparente o ficticia
d_s	Densidad aparente o noticia

ÍNDICE DE FIGURAS

		Pág.
Figura 2.1	Vaporización Natural	19
Figura 2.2	Vaporizador Alternate Energy WB-1005	25
Figura 2.3	Bomba Rotatoria de Aspas Deslizantes	29
Figura 2.4	Bomba de Turbina Regeneradora (TR)	31
Figura 2.5	Bomba de Engranajes	32
Figura 2.6	Funcionamiento Bomba Engranajes	33
Figura 2.7	Bomba Blackmer LGLD2	35
Figura 2.8	Esquema de Trazado de Distancias de Seguridad en	
	Tanques Estacionarios Aéreos	40
Figura 2.9	Esquema de Trazado de Distancias de Seguridad en	
	Tanques Estacionarios Aéreos	41
Figura 2.10	Esquema de Trazado de Distancias de Seguridad para	
	Varios Tanques Estacionarios Aéreos	42
Figura 3.1	Esquema de Llenado de Depósito Mediante Uso de	
	Compresor	45
Figura 3.2	Esquema de Vaciado de Depósito Mediante Uso de	
	Compresor	45
Figura 3.3	Esquema de Recuperación de Gas Despresurizado	
	Mediante Uso de Compresor	46
Figura 3.4	Correcta Ubicación de Bomba de GLP	47
Figura 3.5	Reducción en la Succión de Bombas	48
Figura 3.6	Colocación de Tubería de Succión de Bombas	49
Figura 3.7	Colocación de Accesorios en Tubería de Succión de	
	Bombas	50
Figura 3.8	Instalación de Tubería de Retorno de Líquido	50
Figura 3.9	Instalación de Tubería de Retorno de Vapor	51
Figura 3.10	Detalle de Tubería Enterrada	54
Figura 3.11	Válvulas de Globo	56
Figura 3.12	Válvulas de Bola	57
_	Válvulas de Alivio Hidrostática	58
Figura 3.14	Filtro en Y	59
Figura 3.15	Juntas de Expansión	60
Figura 3.16	Manómetro	61
Figura 3 17	Vályula de Retención	61

Figura 3.18	Válvula de Desprendimiento de Emergencia	62
Figura 3.19	Indicador de Flujo de Visor	63
Figura 3.20	Válvula de Presión Diferencial	64
Figura 3.21	Mangueras para GLP	65
Figura 3.22	Acoples Acme	65
Figura 3.23	Tapón Acme	66
Figura 3.24	Brida Tipo Deslizable	67
Figura 3.25	Tubería de Retorno de Líquido	84
Figura 3.26	Compresor Blackmer Modelo LB361B	110
Figura 4.1	Sistema de Enfriamiento y Rociador	122
Figura 4.2	Rótulos de Seguridad	123
Figura 4.3	Identificación del Riesgo del Material Peligroso	124
Figura 4.4	Materiales y Accesorios para Instalaciones Eléctricas a	
	Prueba de Explosión	125
Figura 5.1	Análisis de Costos	133

ÍNDICE DE TABLAS

		Pág.
Tabla 1	Constantes Físicas de los Principales Componentes del	9
Tabla 2	GLP Consumos Estimados de GLP en Equipos	16
Tabla 3	Capacidades y Dimensiones de Tanques Estacionarios	. •
	Existentes en el Mercado	17
Tabla 4	Valores de a según el % de llenado	20
Tabla 5	Características Principales del Vaporizador Seleccionado.	25
Tabla 6	Características Principales de Bombas Seleccionadas	35
Tabla 7	Capacidad Útil de los Depósitos Según % Almacenado	37
Tabla 8	Distancias de Seguridad de los Tanques de	
	Almacenamiento	39
Tabla 9	Distancias Mínimas Entre Tuberías	53
Tabla 10	Materiales Tubería de Abastecimiento a Vaporizadores	72
Tabla 11	Valores Hidráulicos Tubería de Abastecimiento a	
	Vaporizadores	77
Tabla 12	Pérdidas de Presión Tubería de Abastecimiento a	
	Vaporizadores	78
Tabla 13	Valores Hidráulicos Tubería de Retorno de	
	Líquido	85
Tabla 14	Pérdidas de Presión Tubería de Retorno de Líquido	85
Tabla 15	Valores Hidráulicos Tubería de Llenado de Depósitos	
T 11 40	Estacionarios	88
Tabla 16	Pérdidas de Presión Tubería de Llenado de Depósitos	
Table 47	Estacionarios.	89
Tabla 17	Valores Hidráulicos Tubería de Retorno de Vapor Tramo	0.4
Toble 10	Compresor – Camión Cisterna.	94
Tabla 18	•	0.4
Tabla 19	Compresor – Camión Cisterna Valores Hidráulicos Tubería de Retorno de Vapor Tramo	94 97
Tabla 19	Compresor – Depósito Estacionario	91
Tabla 20	Pérdidas de Presión Tubería de Retorno de Vapor Tramo	
i abia 20	Compresor – Depósito Estacionario	97
Tabla 21	Valores de T	99
	Valores de d_s	104

Tabla 23	Presiones de GLP en Equipos	105
Tabla 24	Pérdidas de Presión en Tuberías Desde Tren de	
	Regulación hasta Equipos	107
Tabla 25	Tubería de Distribución de GLP Hacia Equipos	108
Tabla 26	Características Principales de Compresor Seleccionado	111
Tabla 27	Rangos de Presión de Calibración	112
Tabla 28	Características Principales de Reguladores de Presión	113
Tabla 29	Especificaciones Eléctricas de Equipos	125
Tabla 30	Resumen de Costos de Materiales a Utilizar	129
Tabla 31	Costos de Equipos a Utilizar	130
Tabla 32	Costos de Montaje	131
Tabla 33	Análisis de Costos	132

ÍNDICE DE PLANOS

Plano 1	Distancias de Seguridad de Tanques de Almacenamiento.
Plano 2	Plano Isométrico de Tubería de Alimentación a Vaporizadores
Plano 3	Plano Isométrico de Tubería de Llenado de Tanques.
Plano 4	Plano Isométrico de Tubería de Retorno de Vapor.
Plano 5	Plano Isométrico de Tubería de Suministro GLP Vapor.
Plano 6	Plano Isométrico General de la Instalación.
Plano 7	Plano Unifilar de la Instalación.
Plano 8	Plano de Red de Suministro de GLP hacia los Equipos.
Plano 9	Plano Detalle de Tanque 50m3

INTRODUCCIÓN

La planta metalúrgica referida se encuentra en la ciudad de Guayaquil, posee como objetivo estratégico la disminución de la dependencia de palanquilla importada a través de la producción de palanquilla local, motivo por el cual se decide ampliar la capacidad de producción en su Planta de Acería tomando en consideración la capacidad instalada de su Tren de Laminación (220.000 Ton / Año), bajo esta premisa se elabora un proyecto de ampliación de la capacidad instalada de su horno de fundición.

Como parte del desarrollo de este proyecto denominado "Aumento de producción de Acería a 220.000 Ton / Año" se generan Sub Proyectos que son necesarios, uno de ellos es la Instalación de una Estación Centralizada de Almacenamiento y Distribución de Gas Licuado de Petróleo (GLP) que garantice principalmente el eficiente suministro de este combustible a los nuevos equipos a instalar en la planta.

El presente proyecto consistió en el dimensionamiento de un sistema de GLP que permita el correcto funcionamiento de estos equipos, que cumpla con todas las normativas de seguridad que este tipo de instalaciones demanda y con una adecuada autonomía de funcionamiento.

Capítulo 1: Se analiza el problema y se identifican las necesidades de la planta basados en los equipos que consumen GLP, brevemente se describen las propiedades del combustible y finalmente se indica cómo se encuentra estructurado el proyecto.

Capítulo 2: Se estiman las capacidades de almacenamiento que se requieren según los consumos reales de los equipos y la disponibilidad de los tanques estacionarios existentes en el mercado, se define la normativa a implementarse durante el proceso de diseño, se calcula la vaporización natural que se obtiene de los tanques previamente seleccionados y según la factibilidad se establece la utilización de equipos de vaporización y bombeo, autonomía de funcionamiento esperada y la respectiva ubicación de la instalación.

Capítulo 3: Se procede al diseño de la red de GLP, se establecen las operaciones a realizar en el sistema de almacenamiento, equipos y accesorios a utilizar, se realiza el trazado de recorrido de las tuberías y el cálculo de pérdidas para su dimensionamiento.

Capítulo 4: Se analizan los sistemas complementarios que requiere la instalación y los riesgos asociados existentes, el sistema contra incendios,

sistema de enfriamiento de los tanques, sistema eléctrico y conexiones a tierra.

Capítulo 5: Se realiza un análisis de costos en el que se detallan costos de materiales y equipos, ingeniería, montaje y la utilidad esperada en este tipo de proyectos, además se especifican consideraciones en la cual se basa el cronograma de trabajo.

Capítulo 6: Se centra en las conclusiones a las que se han obtenido tras la realización del proyecto de graduación, con importantes recomendaciones a considerar para realizar obras similares.

CAPÍTULO 1

1. ANTECEDENTES

1.1. Análisis del Problema.

La planta en la cual se basará el estudio se encuentra ubicada en la ciudad de Guayaquil, es la principal productora a nivel nacional de productos de acero tanto para el sector metalmecánico como para el de la construcción.

Debido al surgimiento de nuevas empresas competidoras, el aumento considerable de la demanda de acero en el mercado local e internacional, además de disminuir la dependencia de palanquilla importada a través del procesamiento local y así maximizar las utilidades de la Empresa se llega a la conclusión de que es

necesario estructurar un proyecto para aumentar su capacidad de producción en su Planta de Acería de 135.000 Ton / Año a 220.000 Ton / Año siendo este último valor la capacidad instalada de su Tren de Laminación.

Como parte del Mega Proyecto de Aumento de Producción Acería a 220.000 Ton/ Año se provee la instalación de un moderno Horno de Arco Eléctrico capacidad 25 toneladas que posee un quemador de GLP. Adicionalmente se reubicará la tubería de suministro de GLP hacia los Precalentadores de Cuchara para el proceso de colada continua y se ampliará el área de oxicorte utilizada para el corte de las palanquillas

1.2. Identificación de la Necesidad.-

Conociendo del proceso de ampliación que tiene la planta y una vez identificados los equipos que consumen GLP, sus ubicaciones definitivas y sus demandas tentativas del combustible durante su proceso productivo, es necesario fijar ciertas condiciones que permita un constante suministro de este hidrocarburo y que cumpla con las normas de seguridad requeridas.

Definir la capacidad máxima de almacenamiento de GLP,
 considerando una autonomía que permita a la Planta tener

combustible de manera permanente como también dar facilidad a la empresa comercializadora del mismo cargar con la menor frecuencia posible.

- Seleccionar el o los tanques estacionarios de almacenamiento, así
 como los equipos y accesorios que se utilizarán en la estación
 centralizada de GLP (compresor, bombas, vaporizadores,
 decantadores, sistemas de regulación, válvulas, etc.).
- Asignar un espacio físico a la Estación Centralizada de Almacenamiento, respetando las distancias de seguridad exigidas por la normativa implementada en el país, dicha ubicación no deberá interferir con las áreas asignadas a ampliaciones futuras en la planta y debe de brindar facilidades de acceso para los camiones cisternas para las operaciones de llenado.
- Dimensionar y trazar el recorrido óptimo de las tuberías, desde la Estación Centralizada de Almacenamiento hasta los puntos de consumo.

1.3. Propiedades de los GLP'S

Los Gases Licuados de Petróleo son una mezcla de materias que contienen hidrógeno y carbono (hidrocarburos). Sus componentes principales son propano y butano en una proporción del 70 y 30% respectivamente a nivel local, contando además con pequeñas

cantidades de otros componentes (etano, etileno, propileno, etc.), las principales variaciones dependen de la fuente de obtención del gas.

Tanto el propano como el butano se obtienen mediante una operación llamada destilación de la cual del petróleo extraído se separan ordenadamente según sus densidades y puntos de ebullición estos productos además de gasolinas ligeras, kerosenos, butano, gas-oil, fuel-oil y aceites pesados.

Este tipo de combustibles a temperatura ambiente y a presión atmosférica se presentan en estado gaseoso, sin embargo cuando son sometidos a una baja presión (60-120 psi dependiendo de la mezcla propano-butano) cambia a estado líquido, facilitando su almacenamiento y transporte tanto en cilindros como en depósitos.

Los GLP's poseen las siguientes propiedades, las mismas que se deben de considerar para el correcto manejo de los mismos:

 Densidad: Son más ligeros que el agua en estado líquido y más pesado que el aire en estado gaseoso, por lo cual tiende a acumularse en las partes bajas.

- Odorización: Tanto el propano como el butano, principales componentes del GLP son inodoros e incoloros en estado puro, motivo por el cual resulta difícil detectarlos al presentarse una eventual fuga, por esta razón se agregan sales de azufre llamadas mercaptanos, el cual le da el olor característico.
- Corrosión: El acero, sus aleaciones y el cobre no sufren efectos de corrosión al entrar en contacto con el GLP, por lo cual estos materiales usualmente son utilizados en las instalaciones.
- Toxicidad: No es tóxico, pero puede ser asfixiante si su concentración en el ambiente es elevada.
- Poder disolvente: Este hidrocarburo en estado líquido es disolvente de pinturas, aceites, grasas, caucho natural, no así con el caucho sintético, esta propiedad debe de ser considerada en la selección del material para su uso en las instalaciones.
- Contaminación: Este combustible es ecológicamente respetuoso con la naturaleza, su combustión es limpia, no produce olores ni residuos como hollín y humos. No se disuelve en el agua evitando su contaminación por lo que puede ser utilizado en embarcaciones.

A continuación se describen las características principales de los dos gases componentes en mayor proporción de GLP

TABLA 1.CONSTANTES FÍSICAS DE LOS PRINCIPALES COMPONENTES
DEL GLP

Descripción	PROPANO	BUTANO	
Fórmula	C_3H_8	$C_{4}H_{10}$	
Punto de ebullición inicial °C	(-42)	(-1)	
Gravedad específica de líquido (Agua=1.0) a 15.56 °C	0.504	0.582	
Peso por metro cúbico de líquido a 15.56 °C (kg)	504	582	
Calor específico de líquido kilojoule/kilogramo a 15.56 °C	1.464	1.276	
Metros cúbicos de vapor por litro a 15.56 °C	0.271	0.235	
Metros cúbicos de vapor por kilogramo a 15.56 °C	0.539	0.410	
Gravedad específica del vapor (Aire=1.0) a 15.56 °C	1.500	2.010	
Temperatura de ignición en el aire, °C	493-509	482-538	
Máxima temperatura de llama en el aire, °C	1.980	2.008	
Metros cúbicos de aire requeridos para la combustión de un metro cúbico de gas	0.676	0.878	
Expansión de líquido a vapor	De 600 a 1	De 122 a 138	
Límites de flamabilidad en el aire, % de vapor en la mezcla gas/aire			
(a) Más bajo	2.15	1.55	
(b) Más alto	9.60	8.60	
Calor latente de vaporización al punto de ebullición			
(a) Kilojoule por kilogramo	428	388	
(b) Kilojoule por litro	215	226	
Valor total de calor después de la vaporización			
(a) Kilojoule por m²	92.430	121.280	
(b) Kilojoule por kilogramo	49.920	49.140	
(c) Kilojoule por litro	25.140	28.100	
*Fuente: Catálogo Comercial: especificaciones técnicas del GLP			

1.4. Utilización de los GLP'S.

Usualmente es empleado como combustible en el sector doméstico, comercial, agrícola e industrial, como materia prima en procesos químico-industriales y en combustibles para motores.

En este proyecto industrial constará de los siguientes equipos que utilizan este combustible:

- 1 Máquinas de oxicorte
- 3 Quemadores de precalentadores de cuchara
- 1 Quemador de horno.

1.5. Estructura del proyecto.

Como paso inicial para desarrollar este tipo de proyectos es necesario estimar el consumo tentativo del combustible en la planta por lo cual se debe analizar:

- El consumo nominal de GLP de cada equipo
- La presión y caudal que requieren los equipos
- El tiempo de operación estimado.

Con un consumo diario definido se procede a estimar el o los depósitos estacionarios de almacenamiento del combustible basándose adicionalmente en condiciones de:

- Autonomía
- Vaporización

En caso de que la vaporización resulte insuficiente pese a una autonomía considerable, se selecciona el uso de equipos llamados vaporizadores y los equipos adicionales que estos requieran (bombas, decantadores).

Una vez definidos los depósitos de almacenamiento y equipos de vaporización se selecciona el lugar donde se ubicará la estación centralizada considerando:

- Distancias de seguridad según lo establece la respectiva norma.
- Accesibilidad tanto para que los camiones cisterna puedan abastecerlos de combustible como también para garantizar el rápido ingreso de los equipos de bomberos en caso de un siniestro.

Posteriormente se realiza el trazado del recorrido de tuberías, dimensionamiento y posterior selección de materiales, accesorios y equipos a utilizar en la estación centralizada divididos en tramos:

• Tubería de alimentación a vaporizadores.

- Tubería de retorno de líquido
- Tubería de llenado de tanques
- Tubería de Retorno de vapor
- Tubería de distribución de GLP hacia equipos

Se analiza los sistemas complementarios que se requieren, basados siempre en los posibles riesgos a los que se pueden encontrar este tipo de instalaciones:

- Sistema de enfriamiento y contra incendios.
- Sistema eléctrico, de iluminación y conexión a tierra

Finalmente se desarrolla el análisis de costos del proyecto, el mismo que consta de un cronograma de trabajo, costos de materiales, equipos, accesorios, infraestructura complementaria, montaje y la utilidad esperada por el constructor.

CAPÍTULO 2

2. ESTIMACIÓN DE LA CAPACIDAD DE ALMACENAMIENTO DE LA INSTALACIÓN,

Fundamentalmente se requiere para el cálculo de la capacidad de instalación de GLP la real necesidad de los equipos a los que se suministrará gas, así como también hay que remitirse a las normativas y especificaciones técnicas vigentes en el país, las mismas que serán inspeccionadas por instituciones de control y por la empresa comercializadora del producto tanto en la fase de proyecto como previo a la puesta en funcionamiento.

2.1. Normativa a Implementarse para el Dimensionamiento

La normativa a utilizar para el diseño de la instalación de esta instalación son las siguientes:

- NORMA TÉCNICA ECUATORIANA NTE INEN 440:1984
 Primera Revisión. Colores de Identificación de Tuberías.
- NORMA TÉCNICA ECUATORIANA NTE INEN 1 533:2005
 Primera Revisión. Prevención de Incendios. Requisitos para el Transporte de Gas Licuado de Petróleo (GLP) en Vehículo Cisterna (Tanqueros).
- NORMA TÉCNICA ECUATORIANA NTE INEN 1 537:2001
 Primera Revisión. Prevención de Incendios. Requisitos de Seguridad para Operaciones de Trasvase de Gas Licuado de Petróleo (GLP).
- NORMA TÉCNICA ECUATORIANA NTE INEN 2 260:2010
 Segunda Revisión. Instalaciones de Gases Combustibles para
 Uso Residencial, Comercial e Industrial. Requisitos.
- NORMA TÉCNICA ECUATORIANA OBLIGATORIA NTE INEN
 2 261: 2001. Tanques para Gases a Baja Presión. Requisitos e Inspección.
- NORMA TÉCNICA ECUATORIANA NTE INEN 2 494:2009
 Gasoductos. Sistema de Distribución de Gases Combustibles por Medio de Ductos. Requisitos.
- NORMA NFPA 58 Código del Gas Licuado del Petróleo. Edición 2004.

- NORMA NFPA 13 Standard for the Installation of Sprinkler Systems. 1999 Edition.
- NORMA NFPA 15 Norma para Sistemas Fijos Aspersores de Agua para Protección Contra Incendios.
- NORMA ASME SECCIÓN VIII DIVISIÓN 1. Diseño, Fabricación e Inspección de Recipientes de Presión.

A nivel local, la institución encargada de otorgar la factibilidad del proyecto y su posterior certificación del cumplimiento de las normativas en las obras previo a su funcionamiento es el Benemérito Cuerpo de Guayaquil. (BCBG) y sus criterios se basarán aplicando las Normas INEN 2 260:2010 Y NFPA 58, mientras que la Agencia de Regulación y Control Hidrocarburífero (ARCH) certificará el correcto uso del producto.

2.2. Proyección del Consumo en la Planta.

Los equipos que utilizan GLP para su funcionamiento son los siguientes:

- 1 Máquina de oxicorte industrial para el área de palanquillas.
- 3 Quemadores de precalentadores de cuchara.
- 1 Quemador horno de fusión.

Estos equipos trabajarán de manera continua durante 16 horas al día y requieren del 50% del consumo nominal según datos proporcionados por los proveedores de los mismos, a continuación se muestra el consumo global de la instalación.

TABLA 2
CONSUMOS ESTIMADOS DE GLP EN EQUIPOS

Equipos	Cant	Pot. Nom. (kg/h)	% Requerido	Consumo Total (kg/h)	Horas	Consum o Total (kg/día)
Máquina de Oxicorte	1	93.27	50%	46.64	16.00	746.16
Quemador de Precalenta dor de Cuchara	3	169.58	50%	254.37	16.00	4.069.92
Quemador Horno	1	1.165.88	50%	582.94	16.00	9.327.04
Total		1.767.89		883.95		14.143.12

Fuente: Departamento de producción de Planta Metalúrgica

Partiendo de este consumo se procederá al dimensionamiento de los tanques requeridos.

2.3. Capacidades de Depósitos Estacionarios de GLP Existentes en el Mercado.

Para determinar la capacidad de los tanques estacionarios de almacenamiento, se necesita conocer tanto el consumo diario

estimado como las potencias máximas de cada equipo. Se considera además el requerimiento máximo de vaporización natural de los depósitos a elegir, partiendo de las dimensiones de los tanques que existen en el mercado.

Toda la instalación posee un consumo de $883,95\,kg/h$. y un consumo diario estimado total de las máquinas de $14.143,12\,kg/dia$.

A continuación se detalla una lista con los tanques estacionarios utilizados por la empresa comercializadora, los mismos que están fabricados bajo norma ASME Sección VIII y NTE INEN 2 261.

TABLA 3.
CAPACIDADES Y DIMENSIONES DE TANQUES

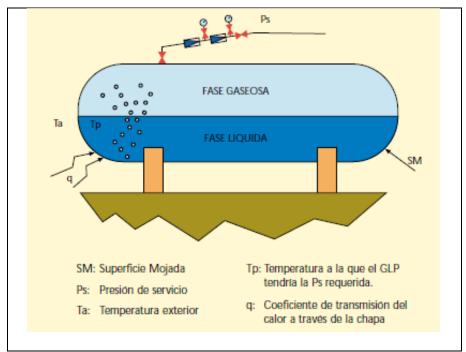
ESTACIONARIOS EXISTENTES EN EL MERCADO

DIÁMETRO (mm)	CAPACIDAD (m³)	LOGITUD (mm)	AREA (m²)
615	0.30	1.111	2.50
770	0.45	1.190	3.44
1143	2.00	2.080	8.70
1143	3.60	3.580	14.09
2170	50.00	14.270	102.86

*Fuente: Repsol Duragas

Preliminarmente se selecciona el tanque de mayor capacidad para continuar con el análisis.

2.4. Capacidades Mínimas de Vaporización Natural de los Depósitos de Almacenamiento.


Los gases licuados de petróleo son almacenados y transportados en estado líquido, pues así ocupa 250 veces menos el volumen que en estado gaseoso. Dentro de los tanques, la fase líquida se encuentra en la parte inferior y en la superior en vapor, manteniendo una igualdad de presiones.

Generalmente los equipos consumen este hidrocarburo en forma de vapor, por lo cual es necesario lograr un cambio de estado por medio de un proceso denominado vaporización, que puede ser natural o forzada.

Vaporización Natural

Cuando se extrae gas desde el depósito, se reduce la presión de la fase de vapor, rompiendo el equilibrio con la fase líquida, como consecuencia, la fase líquida trata de evaporar hasta lograr el equilibrio nuevamente.

La ebullición del GLP se logra aprovechando el calor que el fluido toma del ambiente por conducción a través de las paredes del depósito, logrando así la vaporización natural.

*Fuente: Manual de Formación Técnica para Instaladores de GLP Repsol

FIGURA 2.1.- VAPORIZACIÓN NATURAL

Conociendo esto se puede indicar que la vaporización natural depende de:

- Superficie en contacto con el líquido (Superficie Mojada)
- Temperatura exterior
- Temperatura del GLP

- Tipo del GLP utilizado y su mezcla comercial.
- Tipo del depósito (aéreo o enterrado).

Para determinar la cantidad máxima que un depósito puede vaporizar naturalmente se utiliza la expresión:

$$Q = \frac{a * S * K * (T_e - T_i)}{c}$$

Donde:

Q: Capacidad de vaporización natural del depósito $\lfloor kg/h \rfloor$.

a: Factor proporcional al llenado del depósito según se indica en la tabla siguiente:

TABLA 4
VALORES DE a SEGÚN EL % DE LLENADO

Grado de llenado (%)	а
10	0.25
20	0.33
30	0.39
40	0.45

Fuente: Manual de formación técnica para instaladores GLP REPSOL

S: Superficie total del depósito $[m^2]$ ($102,86\ m^2$ para un tanque de $50\ m^3$, en este caso se usará un área de $205,72\ m^2$ para su análisis posterior con 2 tanques de $50\ m^3$)

K: Coeficiente para dimensionar las kilocalorías, que por cada metro cuadrado de superficie del tanque, en contacto con el líquido, son capaces de atravesar la chapa por unidad de tiempo y de la temperatura exterior y de la masa del líquido. Se tiene como referencias válidas los valores de $8 a 12 \ kcal/h * m^2 * °C$ para tanques aéreos y de $5 a 7 \ kcal/h * m^2 * °C$ para tanques enterrados.

 T_e : Temperatura exterior mínima prevista a la que estará expuesto el tanque en el sitio de su instalación [°C] (20°C).

 T_i : Temperatura en el interior del tanque, se adopta la temperatura del GLP líquido; relacionado con la presión de servicio de la red y al tipo de la mezcla del GLP (se utiliza 35% Butano y 65% Propano) $[{}^{\circ}C]$ (9°C).

C: Calor de vaporización del combustible, dependerá de la temperatura de ebullición y de la mezcla comercial del GLP, para esta tabla se tomó $94\,kcal/kg$.

$$Q = \frac{0,33 * 205,72 * 12 * (20 - 9)}{94}$$
$$Q = 95,33 \ kg/h$$

Según el cálculo realizado, con dos tanques de $50\,m^3$ de capacidad cada uno, a un 20% de capacidad de llenado, con una temperatura

ambiente exterior de 20°C y con una presión de servicio de 4.4 bares se obtiene una vaporización natural de 95,33 kg/h.

Al comparar la potencia nominal de los equipos, $1.767,89 \ kg/h$ con la vaporización natural de dos tanques de $50m^3$ la cual es de $95,33 \ kg/h$ se tiene como resultado que se necesitarían 37 tanques estacionarios de igual capacidad para abastecer a la instalación, lo cual no sería técnica ni económicamente razonable, concluyendo de esta manera que la instalación no podrá depender de vaporización natural de los depósitos de almacenamiento, por lo cual es necesario considerar vaporización forzada.

Vaporización Forzada.

Se produce cuando mediante adición de calor a la fase líquida del GLP se produce la vaporización requerida. Puede ser necesaria en casos como:

- Cuando el caudal requerido de gas es mayor al que se produce por vaporización natural.
- Cuando las temperaturas ambientales son tan bajas que impiden que se vaporice lo requerido.

La vaporización forzada se logra mediante intercambiadores de calor llamados vaporizadores, en los cuales el fluido transmisor del calor hacia la fase líquida generalmente es agua la misma que es calentada por una caldera o resistencia eléctrica.

2.5. Selección de Equipos de Vaporización Forzada y de Bombeo.

Para seleccionar los vaporizadores de GLP se toma en consideración la potencia nominal de la instalación, para esta forma determinar la cantidad de kg/h de vapor de GLP que deberán de suministrar los mismos.

Vaporización Forzada = Potencia Nominal $\lfloor kg/h \rfloor$ Vaporización Forzada = 1.767,89 kg/h

De acuerdo con lo analizado se requiere equipos de vaporización que suministre $1.767,89 \ kg/h$ de GLP. Conociendo las capacidades de vaporización de los equipos que hay en el mercado se seleccionan dos, uno operativo y otro en stand-by que suministren cada uno los kg/h totales que requiere la instalación.

Características de Vaporizadores

La normativa implementada localmente establece ciertos parámetros que deben de tener los equipos vaporizadores para su funcionamiento:

- Cumplir con los requisitos de diseño de la NFPA 58
- El intercambiador de calor del vaporizador será diseñado y construido cumpliendo con lo establecido bajo la Norma ASME, Sección VIII, División 1.
- Tanto el cableado como controles y demás componentes eléctricos cumplirán con las especificaciones referidas en la norma NFPA 58 y 70.
- Deben de poseer un medio automático adecuado (flotador) que evite el paso de líquido a través del vaporizador hacia la tubería de descarga de vapor.
- El intercambiador de GLP estará diseñado a una presión nominal de 250 PSIG a 650°F (17,6 kg/cm² a 343°C).
- Deben de estar equipados con una válvula de alivio de presión a resorte cargado, con una tasa mínima de descarga del 150 por ciento de la capacidad de vaporización nominal.

Selección de Vaporizadores

Para la selección de los equipos de vaporización se realizó una matriz de decisión con todas las características técnicas y demás aspectos importantes. Este detalle se lo observa en apéndice A.

Fuente: Catálogo Equipos Alternate Energy

FIGURA 2.2.- VAPORIZADOR ALTERNATE ENERGY WB-1005

En la tabla siguiente se detallan las características principales del vaporizador seleccionado:

TABLA 5

CARACTERISTICAS PRINCIPALES DEL

VAPORIZADOR SELECCIONADO

País de origen:	EEUU			
Fabricante/Proveedor:	ALTERNATE ENERGY SYSTEMS / POISON			
Marca de fábrica:	ALTERNATE ENER	GY SYSTEMS		
Modelo:	WB- 1005			
Capacidad Nominal	gph	1005		
Capacidad Hominai	kg/h	1929		
Capacidad del Quemador	MBTU/h	1200		

	Kw	352
Capacidad del Tanque de	gal	495
Agua	m³	1.87
Temperatura de Diseño	°F	650
Temperatura de Diseno	°C	343
Presión de Diseño	psi	250
i resion de Diseno	bar	17.2

Fuente: Catálogo Equipos Alternate Energy

Un aspecto que hay que considerar es la forma de transferir GLP líquido desde los tanques estacionarios de almacenamiento hacia los vaporizadores, los mismos que requieren un suministro tanto a presión como a caudal constante del producto a vaporizar, motivo por el cual resulta necesaria la utilización de equipos de bombeo.

Características de Bombas

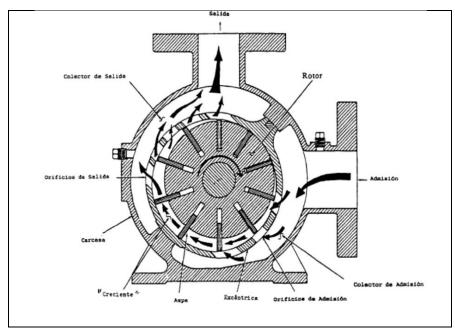
Se utiliza bombas para suministrar GLP a los equipos de vaporización cuando la presión de vapor en el depósito de almacenamiento es inferior a la mínima presión requerida en la entrada del vaporizador, asegurando de esta manera su funcionamiento y desempeño.

Las bombas de GLP succionan además de líquido una cierta cantidad de vapor, producto de su formación en la tubería de

aspiración y del que se genera en el interior del depósito de almacenamiento llamado vapor de arrastre. Para mantener el vapor de arrastre a un nivel lo suficientemente bajo a fin de proteger el funcionamiento de la bomba, los fabricantes recomiendan no remover más del 2 al 3% del volumen del tanque por minuto.

Por lo tanto las bombas de GLP para su correcto funcionamiento deben de cumplir dos requisitos importantes:

- La formación de vapor en el interior de la bomba no debe ser significativa en comparación con el vapor formado en la línea de succión.
- La bomba debe ser capaz de tener una operación confiable considerando cierta cantidad de vapor en el líquido, máximo un 20% del mismo.


Las bombas que cumplen con estos requisitos son aquellas bombas rotatorias con características de operación similares a las de desplazamiento positivo por cuanto comprimen el fluido sin la aceleración que tienen las bombas centrífugas además de:

Posee amplios orificios de succión sin restricciones

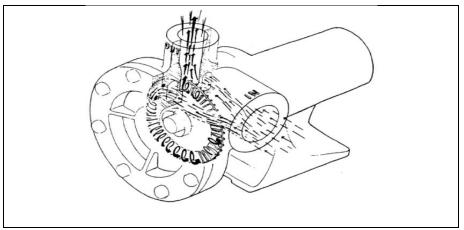
- Movimiento giratorio genera flujo continuo y uniforme a diferencia del flujo pulsátil de las bombas de movimiento alternativo.
- Permite bombear tanto vapor como líquido.

Este tipo de bombas se clasifican en tres grandes familias:

1. Bombas rotatorias de aspas (paletas) deslizantes. – Son las más utilizadas para la obtención de caudales altos (20 GPM o más). Son altamente confiables, de bajo costo y sencillo mantenimiento. Trabaja con un rotor ranurado en donde se encuentran sus aspas, todo esto dentro de una cavidad excéntrica. Las aspas se deslizan a través de las ranuras al rotar logrando formar un espacio entre el rotor, la cavidad excéntrica y la placa lateral. El líquido ingresa por medio de los orificios de la carcasa hacia la cámara de bombeo. Las aspas desplazan el fluido hacia el extremo opuesto de la cámara de bombeo y es expulsado a través de orificios de salida de la excéntrica hasta que el aspa se llegue al final de la cámara.

*Fuente: Guía de los Equipos Corken Para el Trasiego de los Gases Licuados

FIGURA 2.3.-BOMBA ROTATORIA DE ASPAS DESLIZANTES


2. Bombas de turbina regeneradora (TR).- Son consideradas como las más eficientes de las Bombas paras GLP que hay en el mercado, llegando tener hasta 25 años de vida útil.

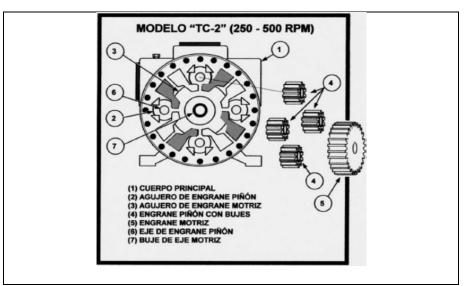
Su funcionamiento es similar al de las bombas centrífugas, la bomba de TR comprime el fluido y lo acelera convirtiendo la energía cinética en energía potencial al igual que lo hace una bomba centrífuga. La diferencia radica en que la bomba de TR el proceso de aceleración/compresión en docenas de pasos separados. En cada paso el fluido es acelerado y comprimido ligeramente.

Al ingresar el fluido a la bomba, es recogido por el impulsor y se desplaza en espiral alrededor de la circunferencia de cada lado del mismo, cada espiral representa un ciclo de aceleración/compresión. El impulsor posee dientes incrustados por ambos lados y gira a 3600 RPM para motores de 60 Hz, 2880 RPM para motores de 50 RPM.

Como el fluido es acelerado hasta lograr una velocidad ligeramente superior a la velocidad de succión de la bomba la formación de vapor en la succión la bomba son muy bajos. La tolerancia existente entre el impulsor y la carcasa son muy ajustadas que evitan muy poca fuga a través de los dientes.

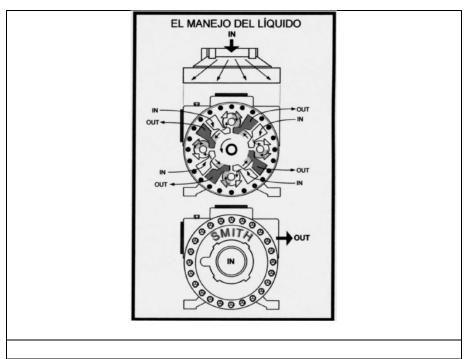
Este tipo de bomba usualmente es utilizada para el llenado de cilindros, se las utilizan cuando se requieren bajas potencias (10 Hp o menos).

Fuente: Guía de los Equipos Corken Para el Trasiego de los Gases


FIGURA 2.4 BOMBA DE TURBINA REGENERADORA (TR)

3. Bombas de engranajes.- este tipo de bombas poseen en su interior cámaras de bombeo en las cuales ingresa el líquido de alimentación de manera simultánea, cada cámara se encuentra ubicada estratégicamente a fin de lograr el equilibrio de fuerzas axiales y radiales, reduciendo también la resistencia al flujo.

El fluido ingresa a la bomba y se direcciona entre los conductos de suministro. Cada conducto suministra el líquido a dos cámaras movedizas de bombeo ubicadas entre el borde del agujero y los dientes del engrane piñón, y otra entre el borde del agujero y los dientes del engrane motriz, finalmente el fluido recorre por las ocho


cámaras de salida que lo dirigen hacia cuatro conductos de descarga direccionados hacia la salida de la bomba.

Una de las ventajas de este tipo de bombas de GLP es que en su interior genera mínimas cargas axiales y radiales durante la conducción del líquido, evitando la necesidad de conductos internos de enfriamiento, equipos especiales de lubricación, orificios de equilibrio de presión, etc.

Fuente: Catálogo Bombas Smith

FIGURA 2.5.-BOMBA DE ENGRANAJES

*Fuente: Catálogo Bombas Smith

FIGURA 2.6.-FUNCIONAMIENTO BOMBA ENGRANAJES

Selección de Bombas.

Generalmente los fabricantes de vaporizadores y bombas recomiendan utilizar equipos de bombeo con un caudal bajo su presión de operación en descarga de 2 ½ a 3 veces la capacidad de operación nominal del vaporizador, por las siguientes razones:

 Los equipos de vaporización operan de forma cíclica, arrancando la bomba cuando la cámara de líquido está vacía y parando cuando se encuentre llena. Para evitar interrupciones en el suministro en los equipos, la cámara de líquido del vaporizador debe ser llenado lo más rápido posible.

Al sobredimensionar la bomba se logra también levantar una mayor presión diferencial. Si se selecciona una bomba con el mismo caudal que la capacidad nominal del vaporizador, se tendría una presión diferencial mínima necesaria para vencer las pérdidas en la tubería que normalmente están entre los 5-10 PSI, pudiendo ser insuficiente la presión requerida a la entrada del vaporizador.

Para este caso se considera que el vaporizador a utilizar requiere de un caudal de 1005 gph (16.75 gpm), preliminarmente se selecciona una bomba con un caudal de 57 gpm, caudal que se encuentra dentro del rango indicado además está dentro del 3% de la capacidad por minuto de cada tanque de almacenamiento.

Finalmente se utilizarán dos equipos de bombeo, una operativa y otra en stand by, marca Blackmer modelo LGLD2-VB, son de tipo paletas, cada una está montada sobre una base metálica junto con el motor eléctrico a utilizarse a prueba de explosión. La transmisión de potencia entre el motor y bomba será por medio de poleas y

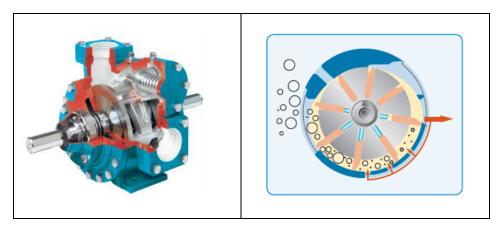
bandas, para su selección se utiliza las curvas de eficiencia que se encuentran en el apéndice B.

En la tabla siguiente se detallan las características principales de los equipos de bombeo seleccionado:

TABLA 6.

CARACTERÍSTICAS PRINCIPALES DE BOMBAS

SELECCIONADAS


País de origen:	EEUU				
Fabricante/Proveedor:	PUMP S HIDROI	_		ROUP / IDINA	
Marca de fábrica:	BLACKMER				
Modelo:	LGLD2 VB				
Ajuste de fábrica de válvula de	Psi			150	
alivio	Bar			10.34	
Velocidad de la Bomba rpm (Usando un motor de 1750rpm)	rpm	rpm			
Entrega aproximada de propano a presión diferencial y velocidad de	Psi 115 g		gpm	57	
la bomba mostrada¹	Bar	7.93	l/min	215.77	
Presión Diferencial Máxima ²	Psi	150			
Fresion Diferencial Maxima -	Bar	10.34			
Proción do Trabajo Máxima	Psi	350			
Presión de Trabajo Máxima	Bar	24.13			
Tasa de operación (Máxima potencia en hp que la unidad necesita transmitir) ³	8 – 24 F Servicio		e	7.8	

*Fuente: Catálogo de equipos PSG DOVER-BLACKMER

- Valor obtenido de la curva de eficiencia de la bomba (ver apéndice)
 - Máxima presión de trabajo permitida es 350 psi (24.13 Bar) para
 GLP y NH3 (establecido por U.L. y N.F.P.A. 58)
- 3. Máxima Potencia que la unidad estándar (correas, poleas y base) deberá transmitir.

Entre las ventajas que ofrece bomba:

- Posee supresor de cavitación en la camisa de la Bomba, evitando una implosión violenta de las burbujas de vapor al hacerlas colapsar de manera gradual.
- Posee una válvula de alivio interno regulada a 150 psig.

*Fuente: Catálogo Equipos Blackmer 2012

FIGURA 2.7.- BOMBA BLACKMER LGLD2

2.6. Autonomía Esperada de la Instalación.

La siguiente expresión permite determinar la autonomía de las depósitos:

$$Autonomía (días de reserva) = \frac{Capacidad almacenada [kg]}{Consumo \left[\frac{kg}{día}\right]}$$

Adicionalmente es necesario tomar en cuenta que cada depósito se llena al 85% de su capacidad como máximo y se deja un margen mínimo del 20% de reserva, con una densidad absoluta de $530 \ kg/m^3$ para el GLP en fase líquida se obtiene para dos tanques de $50 \ m^3$ una capacidad útil de:

TABLA 7

CAPACIDAD ÚTIL DE LOS DEPÓSITOS SEGÚN %

ALMACENADO

Capac.		os depósito: o a la capac	`
m³	50%	65%	85%
100	26500	34450	45050

Finalmente se tiene una capacidad almacenada de 34.450 kg.

$$Autonomía (días de reserva) = \frac{Capacidad almacenada [kg]}{Consumo \left[\frac{kg}{día}\right]}$$

$$Autonomía \left(\text{días de } reserva \right) = \frac{34.450 \; kg}{14.143,12 \; kg \, / \text{día}}$$

Autonomía (días de reserva) = 2.44 días

2.7. Ubicación del Sistema Centralizado de GLP.

Conociendo finalmente las capacidades de los tanques aéreos a utilizar, se procede a determinar el área mínima que se debe destinar para su construcción.

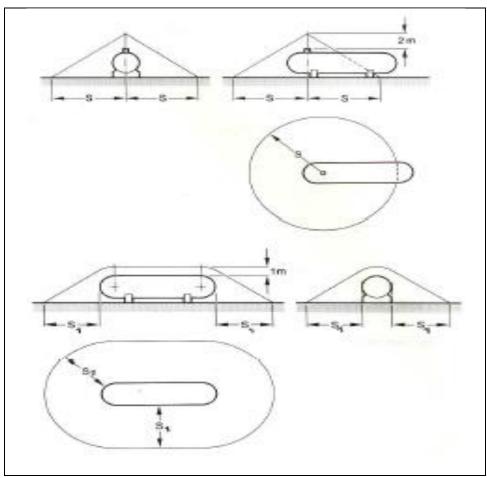
Se debe de contemplar ciertos parámetros básicos para la selección del lugar:

- Los depósitos de almacenamiento de GLP deben ser ubicados en un sitio accesible para su llenado y eventuales mantenimientos, alejados del tráfico vehicular, animales y medio ambiente.
- Los tanques deben de estar alejados de las aberturas de edificios, proyección de líneas de tendido eléctrico, equipos eléctricos no protegidos, focos de inflamación, sótanos, alcantarillas y desagües.
- El lugar debe de poseer cerramiento a fin de restringir el acceso a personas no autorizadas además de disponer en lo posible de ventilación natural.

 La toma de llenado de los depósitos de almacenamiento, independiente de sus capacidades, debe de estar alejados por lo menos de 3 metros de cualquier fuente de ignición externa.

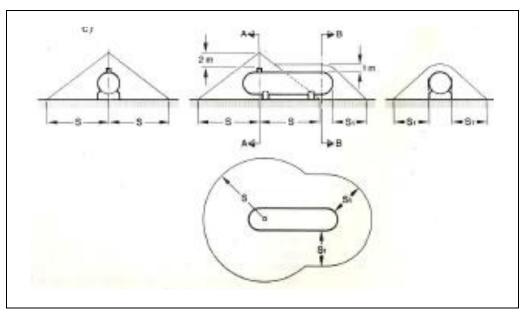
Para determinar el espacio óptimo requerido se toma en consideración la normativa INEN 2260:2010, Tabla 8, "Distancias mínimas de seguridad – Instalaciones sobre el nivel del terreno"

TABLA 8


DISTANCIAS DE SEGURIDAD DE LOS TANQUES DE ALMACENAMIENTO

Clasifi- cación				INSTA	LACIO	NES S	OBR	E NI\	/EL D	EL TE	RRE	10					ALACIO	100	
-2-20/2000-0-2000-0-0	A-	Α	Α	-0	Α	-1	A	-2	Α	-3	Α	-4	Α	-5	E-E	E-0	E-1	E-2	E-3
Volúmen V m ³	0,11<	V≤1	1<\	/≤ 5	5 <v< th=""><th>≤10</th><th>10 < \</th><th>/≤20</th><th>20 < \</th><th>/≤100</th><th>100<\</th><th>/≤500</th><th>500<v< th=""><th>′≤2000</th><th>0,11< V<1</th><th></th><th>5<v≤10< th=""><th>10<v <100</v </th><th>100<v±< th=""></v±<></th></v≤10<></th></v<></th></v<>	≤10	10 < \	/≤20	20 < \	/≤100	100<\	/≤500	500 <v< th=""><th>′≤2000</th><th>0,11< V<1</th><th></th><th>5<v≤10< th=""><th>10<v <100</v </th><th>100<v±< th=""></v±<></th></v≤10<></th></v<>	′≤2000	0,11< V<1		5 <v≤10< th=""><th>10<v <100</v </th><th>100<v±< th=""></v±<></th></v≤10<>	10 <v <100</v 	100 <v±< th=""></v±<>
Distancias (S o S1)	S	SI	S	S1	S	S1	S	S1	S	S1	S	S1	S	S1	ΛZI			2100	
Referencia 1	-	-	-	0,6	-	0,6	-	1,0		1,0	-	1,0		2,0	-	0,8	0,8	0,8	0,8
Referencia 2	- 1	-	-	1,3	-	1,3	-	1,3	15-5	20	-	5,0	-	15,0	-	1,5	2,5	5,0	7,5
Referencia 3	-	-	-	0,6	-	0,6	-	1,0	-	5,0	-	5,0	-	10,0	-	0,8	1,0	25	5,0
Referencia 4	3,0	-	3,0	2,0	5,0	3,0	7,5	5,0	10,0	7,5	15,0	10,0	30,0	20,0	3,0	3,0	4,0	5,0	10,0
Referencia 5	6.0	100	60	-	10.0	-	15.0		200	4	300	-	600	-	60	6.0	8.0	100	200
		-		121		_		_				_		_				30	
Referencia 6	3,0 ancia	- des	30 de vál	- vula d	3,0 e alivio	de pre	3,0 sión o	-	3,0	-	30		30	-	3,0	3,0	3,0	30	3,0
Referencia 6 S: Dist	3,0 cancia cancia cia 1	deso	30 de vál de las spaci	vula de pared o libre	30 e alivio les del alrede errami	de pre	30 esión o (s). la pro e la es	del tar	3,0 nque. ón sol n.	- bre el t	3,0		3,0	-				3,0	
S: Dist S1: Dist Reference Reference	3,0 cancia cancia cia 1 cia 2	desd desd	30 de vál de las spaci- istano istano istano istano xplosi	vula de pared o libre cia al cias al c	30 e alivio les del alrede cerrami nuros o l linder	de pre tanque dor de ento de parede	sión o (s). la pro e la es es cie a pro erreas	del tar yecci stació gas (l pieda o flu	30 nque. ón sol n. RF-12 id, ab	0).	30 terren	o del c	30 depósi bles,	to.	30 fijos d	30		motor	30 es de
S: Dist S1: Dist Reference Reference Reference	3,0 tancia tancia cia 1 cia 2 cia 3	described descri	30 de vál de las spaci istano	vula de pared o libre cia al cias al cón, vía egidos cias a áculo,	alrede eerrami nuros o linder as públ s, sótar abert acuart	de pretanque dor de ento de parede o de l iicas, fé nos, alo	sión de (s). la prode la esciena proderreas cantarios, de edontos, de sión de edontos, de	del tar yecci stació gas (l pieda o flu illas y ificios centro	on sol on. RF-12 d, ab oviales desa s para os con	0). erturas gües. a uso	30 terren	inmue inde lín	30 depósi bles, neas a sanitar	focos éreas	fijos d de alta ospeda o luga	30 de inflan i tensión	30	motoros eléc	30 es de tricos

Fuente: Norma NTE INEN 2 260-2010


Para la aplicación de esta tabla se requiere conocer la capacidad volumétrica total de los depósitos, además de identificar qué referencia se adapta más al lugar en el que se desea ubicar la estación.

El gráfico siguiente ilustra la correcta ubicación de las distancias de seguridad que se indican en la tabla.

*Fuente: Norma NTE INEN 2 260:2010

FIGURA 2.8.- ESQUEMA DE TRAZADO DE DISTANCIAS DE SEGURIDAD EN TANQUES ESTACIONARIOS AEREOS

*Fuente: Norma NTE INEN 2 260:2010

FIGURA 2.9 ESQUEMA DE TRAZADO DE DISTANCIAS DE SEGURIDAD EN TANQUES ESTACIONARIOS AEREOS

Cuando se disponen de dos o más depósitos de almacenamiento, las distancias de separación mínima entre ellos es igual a la mitad de la suma de sus radios además de mantener las distancias de seguridad para cada válvula de alivio y pared de tanque, tal como lo indica el gráfico siguiente:

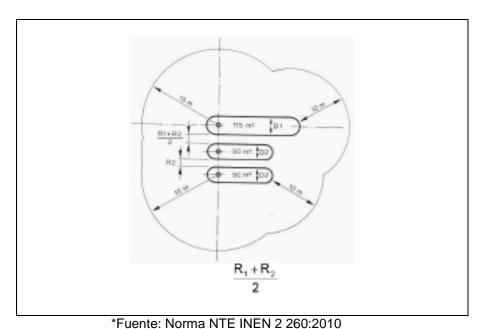


FIGURA 2.10.- ESQUEMA DE TRAZADO DE DISTANCIAS DE SEGURIDAD PARA VARIOS TANQUES ESTACIONARIOS AEREOS

En este proyecto se almacena un volumen total de $100 \ m^3$ divididos en dos tanques de $50 \ m^3$ y se cataloga como una instalación del tipo A-3, se utiliza la referencia 5, finalmente indica una distancia de $20 \ m$ alrededor de la válvula de alivio del tanque.

Definidas las distancias de seguridad se procede a la implantación de la estación centralizada de glp en el lugar que ofrece las condiciones mencionadas anteriormente, tal como lo indica el plano 1, cabe señalar que esta ubicación debe pasar a revisión del BCBG para su aprobación y posterior emisión del permiso de factibilidad de la instalación, requisito fundamental para iniciar su construcción.

CAPÍTULO 3

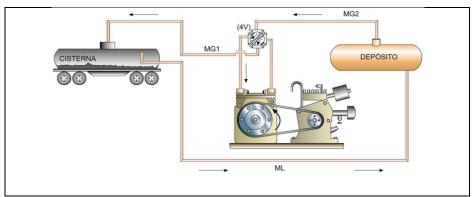
3. DISEÑO DE REDES DEL SISTEMA DE GLP.

En este capítulo se detalla el procedimiento óptimo utilizado para dimensionar, seleccionar el material idóneo y trazar el recorrido de tubería por la que circulará el GLP, tanto en fase líquida como gaseosa, prestando especial atención en los cruces con otros servicios, vías de acceso y equipos.

3.1 Diseño de Recorrido de la Red de GLP.

De manera preliminar se tiene que definir las operaciones que se van a realizar en el sistema de almacenamiento, de esta forma se determina el tipo de tubería a utilizar y su respectivo criterio de diseño.

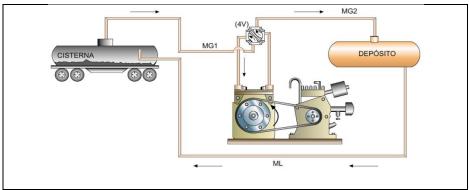
 La operación de llenado (trasvase) de los tanques estacionarios se la va a realiza mediante la utilización de compresor.


- La operación de suministro de GLP líquido desde los depósitos hasta los vaporizadores se la prevé realizar mediante la utilización de bombas.
- La operación de suministro de GLP en fase gaseosa desde los vaporizadores hasta los puntos de consumo deben de contar con reguladores de presión de primera etapa al inicio de la red y de segunda etapa al pie de los equipos.

Diseño de Red de Llenado de Tanques.

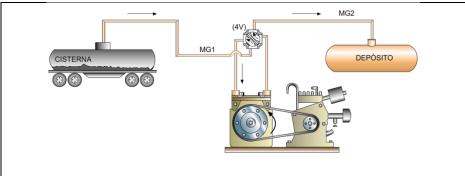
El trasvase consiste en el llenado o vaciado de los depósitos estacionarios.

El trasvase de GLP se realiza creando una diferencia de presión entre ambos recipientes, esto se lo realiza utilizando una bomba aceleradora en el caso de desplazar líquido o mediante un compresor – aspirador para desplazar GLP en fase de vapor.


Para realizar el trasvase por compresor se aspira la fase de vapor del depósito y se la impulsa hacia la cisterna, simultáneamente, producto del aumento de presión de la cisterna se logra transportar líquido en la tubería de retorno hacia el depósito.

*Fuente: Manual de Instalaciones de GLP, CEPSA

FIGURA 3.1 ESQUEMA DE LLENADO DE DEPÓSITO MEDIANTE USO DE COMPRESOR


También para efectos de mantenimiento en los depósitos resulta necesario vaciarlos, mediante el movimiento de una válvula de 4 vías en el colector admisión del compresor, logrando invertir el sentido del flujo, es decir aspirar vapor de la cisterna hacia el depósito y el líquido de desplaza hacia la cisterna en la otra tubería.

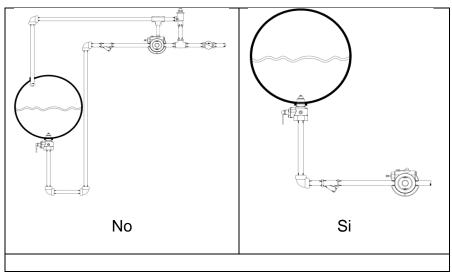
*Fuente: Manual de Instalaciones de GLP, CEPSA

FIGURA 3.2.- ESQUEMA DE VACIADO DE DEPÓSITO MEDIANTE USO DE COMPRESOR

El compresor permite además despresurizar el depósito o cisterna hasta una presión manométrica menor o igual a 0.3 bar (4.35 psi), logrando recuperar una cantidad considerable de GLP. En esta maniobra no se utiliza la tubería de circulación de GLP líquido.

*Fuente: Manual de Instalaciones de GLP, CEPSA

FIGURA 3.3.- ESQUEMA DE RECUPERACIÓN DE GAS DESPRESURIZADO MEDIANTE USO DE COMPRESOR

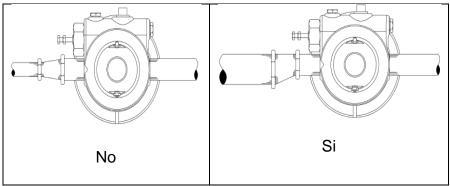

Tomando en cuenta las múltiples operaciones que se pueden realizar se define utilizar el sistema de trasvasado de los depósitos utilizando compresor, considerando adicionalmente que la tubería de circulación de líquido será de color blanco y la de circulación de vapor será de color amarillo de conformidad con la norma INEN 440:1984.

Diseño de Tubería de Abastecimiento de GLP a Vaporizadores.

El correcto diseño y dimensionamiento estos tramos de tubería son importantes para el buen funcionamiento de los equipos de bombeo que abastecen de GLP a los vaporizadores además de considerar el uso de una válvula de presión diferencial (by pass) con su respectiva tubería de retorno hacia los depósitos.

Por este motivo se debe tener en cuenta lo siguiente:

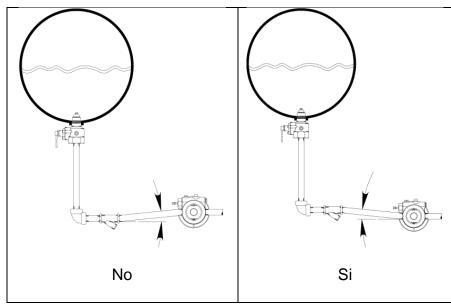
 Cuando se utiliza tanques aéreos se debe colocar la bomba por debajo del nivel de líquido del tanque.



*Fuente: Guía de Instalación Para Bombas de Gas Licuado, BLACKMER

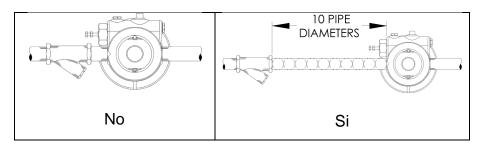
FIGURA 3.4. CORRECTA UBICACIÓN DE BOMBA DE GLP

La tubería de aspiración debe ser calculada de tal forma que sus pérdidas de carga sean mínimas, motivo por el cual se tiene que reducir al mínimo su longitud, el uso de codos, curvas, válvulas, filtros, acoples flexometálicos, bridas y demás accesorios.


 Usar en la línea de admisión tubería de mayor diámetro que el ingreso de la bomba tomando en cuenta la utilización de reducciones excéntricas, esta consideración hay que tenerla presente cuando la bomba se encuentra muy alejada del tanque.

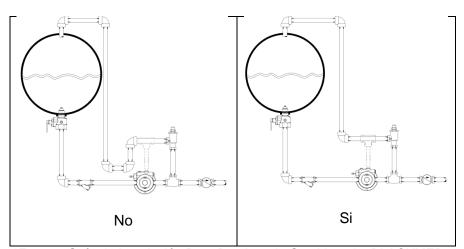
*Fuente: Guía de Instalación Para Bombas de Gas Licuado, BLACKMER

FIGURA 3.5.- REDUCCIÓN EN LA SUCCIÓN DE BOMBAS


Se recomienda inclinar levemente la tubería de succión hacia
 la bomba, caso contrario mantenerla en posición horizontal.

*Fuente: Guía de Instalación Para Bombas de Gas Licuado, BLACKMER

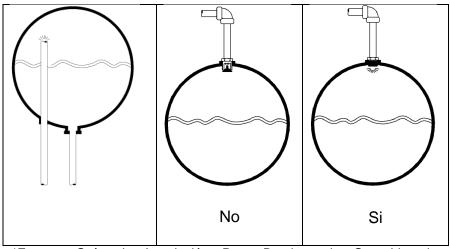
FIGURA 3.6.- COLOCACIÓN DE TUBERÍA DE SUCCIÓN
DE BOMBAS


- Debido a que los gases licuados desprenden óxidos tanto de las tuberías como de los tanques, debe de colocarse filtros adecuados que se deben de limpiar periódicamente.
- Cualquier válvula o accesorio instalado en la línea de succión deberá de estar alejado mínimo diez veces el diámetro de la tubería de la boca de la bomba.

*Fuente: Guía de Instalación Para Bombas de Gas Licuado, BLACKMER

FIGURA 3.7.- COLOCACIÓN DE ACCESORIOS EN TUBERÍA DE SUCCIÓN DE BOMBAS

 Colocar la línea de retorno de la válvula bypass al tanque, asegurándose que esta pueda transportar el flujo a la máxima capacidad de la bomba sin que la presión aumente de forma excesiva, esta tubería debe de mantenerse por encima del nivel de la válvula bypass.



*Fuente: Guía de Instalación Para Bombas de Gas Licuado, BLACKMER

FIGURA 3.8 INSTALACIÓN DE TUBERÍA DE RETORNO

DE LÍQUIDO

 Según el modelo del tanque la línea de retorno de bypass puede proyectarse hacia la parte superior o inferior, dependiendo de la ubicación de la toma donde se las coloca.
 En la toma seleccionada del tanque se debe de colocar una válvula de exceso de flujo y no una válvula de retención.

*Fuente: Guía de Instalación Para Bombas de Gas Licuado, BLACKMER

FIGURA 3.9.- INSTALACIÓN DE TUBERÍA DE RETORNO
DE VAPOR

 Entre la descarga de la bomba y la entrada al vaporizador es necesario colocar una válvula de retención a fin de evitar un retorno de vapor hacia la bomba cuando no opere. Diseño de Tubería de Abastecimiento de GLP de Vaporizador hacia Equipos de Consumo.

La tubería de abastecimiento de GLP en estado gaseoso hacia los equipos será instalada sobre superficie, de manera que sea visible y que brinde las facilidades para eventuales mantenimientos a excepción de los cruces que existen en calles y aceras en los cuales se necesita que sea enterrado estos tramos.

El recorrido de la instalación de gas hacia los equipos está sujeto a restricciones como:

- Evitar que quede expuestas a choques o deterioros, en caso de que no sea posible se debe colocar una protección.
- No puede estar enterrada bajo cimientos de edificaciones
- Prohibido su colocación en huecos de ascensores o montacargas.
- No se pueden colocar dentro de locales que contengan transformadores eléctricos de potencia ni combustibles líquidos.
- Evitar colocar en el interior de ductos de aireación, ventilación, evacuación de basura, productos residuales o de combustión y chimeneas.

Dentro de la planta se tendrá como restricciones para instalar la tubería otras instalaciones de servicio como de agua caliente, aire comprimido, etc., por lo cual se establecen distancias mínimas entre tuberías que se presentan en la siguiente tabla:

TABLA 9

DISTANCIAS MÍNIMAS ENTRE TUBERÍAS

TUBERÍA PARA OTROS SERVICIOS	CURSO PARALELO (cm)	CRUCE (cm)
Conducción agua caliente	3	1
Conducción eléctrica	3	1
Conducción de Vapor	5	5
Chimeneas y ductos de extracción de gases de combustión	40	40
Suelo por donde discurren	5	Ninguno

Fuente: Norma NTE INEN 2 260:2010

La tubería enterrada que se empleará en la instalación es plástica (polietileno PE) y se debe de toman las siguientes recomendaciones:

- Evitar la presencia de objetos duros en el fondo de la zanja que pudiera dañar la tubería, caso contrario se rellena el fondo con arena compactada.
- Se debe de instalar de manera holgada, a fin de evitar deformaciones del material y facilitar movimientos de tierra.

- El relleno debe de realizarse inmediatamente después de su colocación y pruebas de presión respectivas
- Los primeros 20cm de relleno y compactación deben de realizarse con precaución, colocando sobre esta capa una cinta amarilla de advertencia con la leyenda "PELIGRO TUBERÍA DE GAS".
- Las tuberías que crucen por vías de circulación vehicular deben de ser enterradas a una profundidad mínima de 80cm.

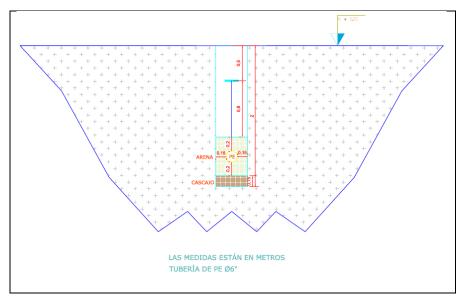


FIGURA 3.10.- DETALLE DE TUBERÍA ENTERRADA

3.2 Selección de Materiales, Tuberías y Accesorios a Utilizar.

Accesorios a Utilizar

Todos los accesorios que se consideran para realizar este tipo de proyecto deben de satisfacer los estrictos requerimientos que indiquen la normativa existente para la industria del GLP.

• Válvulas de Globo.- Se colocan en las salidas de los tanques de almacenamiento de GLP y en las conexiones finales en las tuberías para llenado de tanques y recuperación de vapor, pueden ser rectas o angulares, bridadas o roscadas, sus cuerpos son de hierro dúctil con presión de trabajo de hasta 400 psi WOG y temperaturas de trabajo de -40 hasta 160°F (-40 hasta 71°C).

En este proyecto se utilizaran válvulas de globo roscadas y bridadas, partiendo de las especificaciones de las conexiones de los tanques, equipos y de las dimensiones finales de las tuberías de llenado y de recuperación de vapor.

*Fuente: Catálogo Rego

FIGURA 3.11.- VÁLVULAS DE GLOBO

 Válvulas de Bola.- Llamadas también de cierre rápido, su cuerpo serán solamente de hierro dúctil o acero fundido.

Deben de disponer de un sello metal – metal adicional al sello inicial de material elástico. En caso de válvulas de 6" o mayores deben de poseer operadores de engranajes de accionamiento manual.

En este proyecto se utilizan válvulas de bola en diferentes tamaños para diversas aplicaciones:

1/4" -1" 1000 WOG, extremos roscados, carcasa de acero al carbono, apertura total, bola y vástago de acero inoxidable 316,

operación con palanca, uso para GLP en fase líquida en aplicaciones de drenaje de filtros y tuberías y venteos.

1-1/4" — 4" ANSI 300/ANSI 150 extremos roscados o bridados según aplicación, carcaza de acero al carbono, apertura total, bola y vástago de acero inoxidable 316, operación con palanca, ANSI 300 para uso GLP en fase líquida y ANSI 150 para uso GLP en fase de vapor.

6" ANSI 150 Extremos bridados, carcasa de acero al carbono, apertura total, operación con engranajes, bola y vástago de acero inoxidable 316, uso para GLP en fase de Vapor

*Fuente: Catálogo de Válvulas Worcester

FIGURA 3.12.- VÁLVULAS DE BOLA

 Válvulas de alivio de presión hidrostática.- Son utilizadas para proteger tuberías y válvulas de cierre donde se pudiese presentar GLP líquido a una presión mayor a la proyectada, es roscada, su cuerpo es de latón, con una conexión roscada de ½" y se colocan en las tuberías de succión y descarga de la bomba, además en la tubería de llenado de los tanques calibradas a una presión de 250 Psi (11.97 KPa)

Fuente: Catálogo de Válvulas Worcester

FIGURA 3.13.- VÁLVULAS DE ALIVIO HIDROSTÁTICA

 Filtro en Y.- Diseñadas para retener y purgar impurezas que pudiesen existir en las tuberías de succión de las bombas o en la de llenado de tanques, su cuerpo es de acero al carbono, son de clase 300 en caso de ser bridados o NPT-F con mallas de 1/16"con canasta de acero inoxidable removible y su instalación es horizontal.

*Fuente: Catálogo Imfluid www.imfluid.cl

FIGURA 3.14.-FILTRO EN Y

Juntas de expansión.- Son utilizadas como prevención ante fisuras que se pudiesen presentar en las tuberías como consecuencias de movimientos vibratorios o la contracción o dilatación de las mismas, son de acero inoxidable trenzado, pueden tener acoples bridados o roscados.

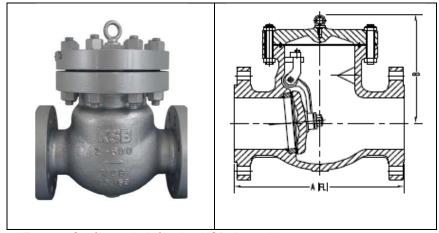
Se utilizan juntas de expansión de una longitud de 0.4 m con bridas clase 300 y 150 para las entradas y salidas de los equipos de bombeo, compresión, vaporización, conexiones de tuberías hacia los tanques y llenado.

*Fuente: Catálogo INRIOCH

FIGURA 3.15.- JUNTAS DE EXPANSIÓN

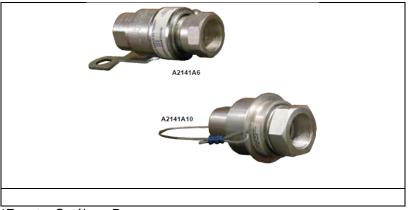
 Manómetros.- Son colocados para monitorear la presión que circula el GLP en estado líquido y vapor en las diversas tuberías.

Se colocan manómetros de 0-300 Psi en las entradas y salidas de las bombas y vaporizadores, en la tubería de llenado y en la entrada al tren de regulación.


Se colocan manómetros de 0 - 100 Psi a la salida del tren de regulación, en tanques decantadores y junto con los reguladores de segunda etapa al pie de los equipos a suministrar el combustible.

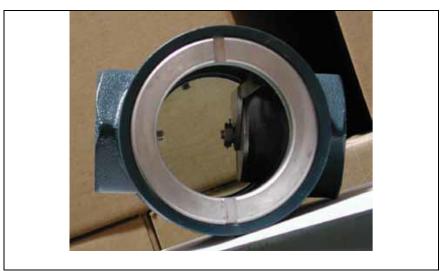
*Fuente: Catálogo INRIOCH

FIGURA 3.16.- MANÓMETRO


Válvulas de Retención.- Permiten el flujo en un solo sentido,
 evitando un posible retorno, su cuerpo es de acero al carbono y para este proyecto serán del tipo bridadas, clase
 150 y se las colocan aguas arriba de los tanques precipitadores.

*Fuente: Catálogo de Válvulas KSB Argentina 2012

FIGURA 3.17.- VÁLVULA DE RETENCIÓN


Válvula de desprendimiento de emergencia "Pull Away".Diseñada para brindar protección ante una separación súbita
por el arranque de la manguera de llenado hacia los tanques,
evitando derrame de glp tanto en la tubería de llenado de la
planta como en la manguera de los camiones cisterna. Su
selección será acorde el diámetro de la tubería de llenado
dimensionada.

*Fuente: Catálogo Rego

FIGURA 3.18.- VÁLVULA DE DESPRENDIMIENTO DE EMERGENCIA

 Indicador de Flujo de Visor.- Permiten inspeccionar el sentido y las condiciones del flujo.

*Fuente: Catálogo Rego

FIGURA 3.19.- INDICADOR DE FLUJO DE VISOR

 Válvula de Presión Diferencial (By – Pass).- Utilizada para proteger el sistema de tuberías de una sobrepresión, se la coloca en la descarga de las bombas, logrando limitar la presión evitando que la bomba entregue mayor presión que la necesaria, derivando parte del fluido hacia los tanques de almacenamiento.

La selección de esta válvula se la realiza considerando el flujo nominal de la bomba y la presión diferencial requerida. Para una presión diferencial de 125 Psi (861.84 kPa) y un caudal de 57 GPM (3.6*10⁻³m/s) se selecciona una válvula Backmer BV1.5 con conexiones roscadas 1 ½ NPT.

*Fuente: Catálogo Rego

FIGURA 3.20.- VÁLVULA DE PRESIÓN DIFERENCIAL

 Manguera para GLP.- Manguera diseñada exclusivamente para la operación de llenado en cualquiera de sus estados, posee presión de trabajo de 350 Psi (16.76 kPa), está construida con nitrilo y textil sintético trenzado o alambre de acero inoxidable.

Para la conexión e con la fase de vapor se utiliza 6m de manguera de 1 1/4" de diámetro y para la conexión en la tubería de llenado utilizará 6m de manguera de diámetro 2".

*Fuente: Catálogo Egsa - Gates

FIGURA 3.21.- MANGUERAS PARA GLP

 Acoples Acme.- Son utilizados en los extremos de las mangueras de GLP para la conexión con las válvulas de globo del camión cisterna y de la instalación, pueden ser de latón o acero, se utilizará acoples acme con conexión a manguera NPT diámetro 1 ¼" y de 2" respectivamente.

*Fuente: Catálogo Rego

FIGURA 3.22.- ACOPLES ACME

 Tapon Acme.- Utilizado en los extremos de los acopladores de mangueras a fin de evitar el ingreso de tierra, polvo, lluvia, y demás agentes contaminantes, es fabricado en nylon y posee cadena y anillo para su fijación a la tubería, en su exterior posee nervaduras que permiten colocarlo manualmente.

*Fuente: Catálogo Rego

FIGURA 3.23.- TAPON ACME

Bridas.- En el proyecto se utilizan del tipo deslizable (slip on),
 clase 300 en la tubería que transporte fase líquida y clase 150 en la de vapor.

*Fuente: Catálogo Bridas Cifunsa

FIGURA 3.24.- BRIDA TIPO DESLIZABLE

Dimensionamiento de Tubería de Abastecimiento de GLP a Vaporizadores.

Este tramo de tubería consiste desde el punto de descarga de los tanques de almacenamiento hasta las succiones de las bombas y desde las descargas respectivas hacia los vaporizadores, incluyendo las múltiples conexiones de tuberías para combinar la utilización de estos equipos, tal como lo indica el plano No 2 adjunto.

Para efectos demostrativos se selecciona un recorrido del flujo de glp que incluye la utilización de una bomba y un equipo de

68

vaporización, las demás combinaciones se calculan en una hoja

electrónica que se encuentran en el apéndice D.

Se tomarán en cuenta las siguientes condiciones iniciales:

• 10% de GLP en fase líquida almacenado en cada tanque

(condición más crítica).

• El caudal necesario para abastecer a los vaporizadores es de

57 GPM (3.6*10⁻³ m³/s).

Luego de definir el trazado de la tubería, se establecen los puntos

de referencia para el cálculo, el punto inicial se fijará a la altura del

GLP existente cuando los tanques se encuentren al 10% de

capacidad y el punto final se fijará en el ingreso de la tubería al

vaporizador.

Basándose en la conservación de energía la ecuación a utilizar:

$$E = E_p + E_c + E_f$$

Donde

 E_p = Energía potencial del fluido

 E_c = Energía cinética del fluido

 E_f = Energía o trabajo del flujo.

Convirtiendo la ecuación:

$$E = w * z + w * \frac{v^2}{2g} + w * \frac{p}{\gamma}$$

Donde:

w =Peso del elemento a analizar

z = Altura desde un punto de referencia

v = Velocidad.

p = Presión.

 γ = Peso específico del fluido.

Al igualar las condiciones de energía entre el punto 1 y 2 se logra expresar la ecuación de Bernoulli:

$$w * z_1 + w * \frac{v_1^2}{2g} + w \frac{p_1}{\gamma} = w * z_2 + w * \frac{v_2^2}{2g} + w \frac{p_2}{\gamma}$$
$$z_1 + \frac{v_1^2}{2g} + \frac{p_1}{\gamma} = z_2 + \frac{v_2^2}{2g} + \frac{p_2}{\gamma}$$

En esta ecuación adicionalmente se debe agregar las pérdidas de energía ocasionada por la fricción y accesorios h_L y la energía adicional que suministra la bomba al fluido h_{pump} .

$$z_1 + \frac{v_1^2}{2g} + \frac{p_1}{\gamma} + h_{pump} - h_L = z_2 + \frac{v_2^2}{2g} + \frac{p_2}{\gamma}$$

Conociendo el caudal se procede a determinar el diámetro de la tubería tanto para la succión como la descarga de la bomba, el proceso de cálculo es iterativo hasta lograr una eficiente selección, sin embargo se puede iniciar partiendo de los diámetros requeridos por la bomba preseleccionada, diámetro de salida del tanque y el ingreso al vaporizador.

Calculando las pérdidas por fricción en la tubería y accesorios:

$$h_L = h_f + \sum h_n$$

$$h_f = f * \frac{l}{\emptyset} * \frac{v^2}{2g}$$

$$h_n = K_n * \frac{v^2}{2g}$$

Donde:

 $h_f=$ Pérdida de carga ocasionada por la fricción del fluido en la tubería expresada en términos de cabezal de altura

 h_n =Pérdida de carga ocasionada por los accesorios y las contracciones o expansiones del fluido durante su recorrido.

 k_n =Coeficiente de resistencia de cada accesorio, contracción o expansión del fluido.

Las pérdidas de energía por válvulas y accesorios se expresan como:

$$K = (L_e/D)f_T$$

Siendo la expresión L_e/D una relación de longitud equivalente, considerado un valor constante para determinado tipo de válvula o acoplamiento por lo que se encuentra debidamente tabulado en el apéndice C f_T Es el factor de fricción en la tubería en la que se encuentre conectado y se lo obtiene mediante el Diagrama de Moody.

Las contracciones o expansiones son consideradas al ingreso o salida de un fluido desde una tubería hacia un depósito o un cambio de sección de tubería, pueden ser contracciones o expansiones súbitas – cuando existe un cambio brusco de sección - o graduales – cuando existe un cambio menos abrupto por medio de una sección cónica entre dos tuberías de diferente diámetro-. El coeficiente de resistencia en estos casos son calculadas mediante curvas y tablas creadas en función de la relación entre diámetros

 D_2/D_1 , la velocidad v del fluido, y por el ángulo θ de conicidad en el caso de las contracciones o expansiones graduadas, tal como se puede observar en el apéndice C adjunto.

Los materiales que se utilizan en este tramo de tubería son los siguientes:

TABLA 10

MATERIALES TUBERÍA DE ABASTECIMIENTO A

VAPORIZADORES

Tramo	Descripción	Cant.	Ø int. (m)
	Tubería Ø3" sch 80 (m)	23.23	0.074
	Tee 3" Sch 80 Ramificada	4	0.074
_	Codo 3" sch 80	2	0.074
ció	Válvula de Globo 3" completamente abierta	2	0.074
Succión	Reducción (Contracción gradual) Ø 3" @ 2"	2	0.074
S	Contracción Tanque-Tubería	2	0.074
	Tubería Ø 2" Sch 80(m)	2.216	0.049
	Válvula de retención	1	0.049
	Tubería 2"sch 80 (m)	3.755	0.049
	Codo 2" sch 80	2	0.049
	Válvula de Globo 2" completamente abierta	2	0.049
ga	Reducción (expansión gradual) Ø 3"@ 2"	1	0.074
Descarga	Reducción (Contracción gradual) Ø 3" @ 2"	1	0.074
086	Tubería 3" sch 80 (m)	10.4	0.074
ď	Codo 3" sch 80	2	0.074
	Tee 3" sch 80 Lineal	1	0.074
	Tee 3" sch 80 Ramificada	2	0.074
	Válvula de Globo 3" completamente abierta	1	0.074

Una vez seleccionado preliminarmente accesorios, válvulas y tubería en 2" y 3" se procede al calcular:

Tubería de 3"

$$A = \frac{\pi * \emptyset^2}{4} = \frac{\pi * 0.074^2}{4}$$
$$A = 4.300 * 10^{-3} [m^2]$$

Para un caudal Q de 57 GPM $(0.0036 m^3/s)$

$$Q = A * v \rightarrow v = \frac{Q}{A}$$

$$v = \frac{0.0036}{4.30 * 10^{-3}}$$

$$v = 0.837 \left[\frac{m}{s}\right]$$

Se procede a calcular el Número de Reynolds a fin de poder analizar el comportamiento del fluido

$$R_e = \frac{\rho * \emptyset * v}{\mu}$$

Donde:

 ρ = Densidad del fluido=530 $\left[\frac{kg}{m^3}\right]$

 μ =Viscosidad dinámica = 0.00015 $\left[\frac{kg}{m*s}\right]$

$$R_e = \frac{530 * 0.074 * 0.837}{0.00015}$$

$$Re = 218847.6$$

Como se observa, el número de Reynolds es mucho mayor a 4000, por lo tanto el glp está en régimen turbulento.

A continuación se evalúa la rugosidad relativa \emptyset/ε siendo ε la rugosidad del acero que es $4.6*10^{-5}$ m.

$$\frac{\emptyset}{\varepsilon} = \frac{0.074}{4.6 * 10^{-5}}$$

$$\frac{\emptyset}{\varepsilon} = 1608.695$$

Conociendo tanto el Número de Reynolds como la rugosidad Relativa se procede mediante el diagrama de Moody o con la ecuación de régimen Turbulento de P.K. Swamee y A. K. Jain a encontrar el factor de fricción respectivo:

$$f = \frac{0.25}{\left[\log\left(\frac{1}{3.7 \left(\frac{\emptyset}{\varepsilon}\right)} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Esta ecuación se utiliza para valores de rugosidad relativa \emptyset/ε de entre $100\ y\ 1*10^6$ y para números de Reynolds entre $5*10^3\ y\ 1*10^8$ con un error de $\pm1\%$:

$$f = \frac{0.25}{\left[\log\left(\frac{1}{3.7(1608.695)} + \frac{5.74}{218847.6^{0.9}}\right)\right]^2}$$
$$f = 1.9409 * 10^{-2}$$

Se aplica el mismo procedimiento para obtener factor de fricción en tubería de 2":

El área de tubería:

$$A = \frac{\pi * \emptyset^2}{4} = \frac{\pi * 0.049^2}{4}$$
$$A = 1.885 * 10^{-3} [m^2]$$

Para un caudal Q de 57 GPM $(0.0036 m^3/s)$

$$Q = A * v \rightarrow v = \frac{Q}{A}$$
$$v = \frac{0.0036}{1.885 * 10^{-3}}$$

$$v = 1.909 \left[\frac{m}{s} \right]$$

Se procede a calcular el Número de Reynolds:

$$R_e = \frac{\rho * \emptyset * v}{\mu}$$

$$R_e = \frac{530 * 0.049 * 1.909}{0.00015}$$

$$Re = 330511.533$$

Como se observa, el número de Reynolds nuevamente es mucho mayor a 4000, por lo tanto el glp está en régimen turbulento.

A continuación se evalúa la rugosidad relativa \emptyset/ε siendo ε la rugosidad del acero que es $4.6*10^{-5}$ m.

$$\frac{\emptyset}{\varepsilon} = \frac{0.049}{4.6 * 10^{-5}}$$

$$\frac{\emptyset}{\varepsilon} = 1065.217$$

Aplicando la ecuación de régimen Turbulento de P.K. Swamee y A. K. Jain para encontrar el factor de fricción:

$$f = \frac{0.25}{\left[\log\left(\frac{1}{3.7(1065.217)} + \frac{5.74}{330511.533^{0.9}}\right)\right]^2}$$
$$f = 2.0398 * 10^{-2}$$

En resumen los valores obtenidos en las tuberías de 2" y 3":

TABLA 11

VALORES HIDRÁULICOS TUBERÍA DE ABASTECIMIENTO

A VAPORIZADORES

Tubería Ø [pulg]	Velocidad $v\left[\frac{m}{s}\right]$	Reynolds Re	$\frac{\emptyset}{arepsilon}$	Factor de fricción f
3	0.836	213363.590	1608.695	$1.7547 * 10^{-2}$
2	1.907	322222.560	1065.217	$1.9337 * 10^{-2}$

Con la ayuda de una hoja electrónica (ver apéndice D) se realiza el cálculo de pérdidas, en la succión y descarga se determinan las tuberías y accesorios respectivos.

TABLA 12
PÉRDIDAS DE PRESIÓN TUBERÍA DE ABASTECIMIENTO A
VAPORIZADORES

Tramo	Descripción	Cant.	$L_e./\emptyset$	k	h _L [m]	$h_{L\ TOTAL}$ $[m]$
	Tubería Ø3" sch 80 (m)	23.23	313.919	-	-	0.196
	Tee 3" Sch 80 Ramificada	4	60.000	1.053	0.037	0.150
	Codo 3" sch 80	2	30.000	0.526	0.019	0.037
u u	Válvula de Globo 3" completamente abierta	3	340.000	5.966	0.213	0.637
Succión	Reducción (Contracción gradual) Ø 3" @ 2"	1	-	0.200	0.007	0.007
	Contracción Tanque- Tubería	1	-	1.000	0.036	0.036
	Tubería Ø 2" Sch 80(m)	2.216	45.224	-	-	0.162
	Válvula de retención	1	100.000	1.934	0.359	0.358
	Subtotal succión					
	Tubería 2"sch 80 (m)	3.755	76.632	-	-	0.274
	Codo 2" sch 80	2	30.000	0.580	0.107	0.215
	Válvula de Globo 2" completamente abierta	2	340.000	6.574	1.218	2.437
	Reducción (expansión gradual) Ø 3"@ 2"	1	-	0.560	0.019	0.019
arga	Reducción (Contracción gradual) Ø 3" @ 2"	1	-	0.200	0.007	0.007
Descarga	Tubería 3" sch 80 (m)	10.4	140.540	-	-	0.087
	Codo 3" sch 80	2	30.000	0.526	0.018	0.037
	Tee 3" sch 80 Lineal	1	20.000	0.350	0.012	0.012
	Tee 3" sch 80 Ramificada	2	60.000	1.052	0.037	0.075
	Válvula de Globo 3" completamente abierta	1	340.000	5.965	0.212	0.212
	Subtotal Descarga					

Se procede a calcular la energía suministrada por la bomba siendo el punto 1 el nivel del líquido del tanque y el punto 2 el ingreso al vaporizador:

$$z_1 + \frac{v_1^2}{2g} + \frac{p_1}{\gamma} + h_{pump} - h_L = z_2 + \frac{v_2^2}{2g} + \frac{p_2}{\gamma}$$

$$h_{pump} = z_2 - z_1 + \frac{v_2^2}{2g} - \frac{v_1^2}{2g} + \frac{p_2}{\gamma} - \frac{p_1}{\gamma} + h_L$$

Siendo:

 $z_2 - z_1 = 0.24 \, [m]$ Diferencia de altura entre el nivel del líquido al 10% de capacidad y el ingreso al vaporizador.

 $v_1 = 0$ $\left[\frac{m}{s}\right]$ Velocidad a un nivel del 10% de capacidad del tanque.

 $v_2 = 1.909 \left[\frac{m}{s} \right]$ Velocidad del GLP al ingreso del vaporizador.

 $p_1 = 106.7 \ [psia] = 735.671 \ [kPa]$ Presión crítica en los depósitos al 10%

 $p_2=215\ [psi]=1482.373\ [kPa]$ Presión al ingreso del vaporizador. $h_L=5.707[m]$ Pérdidas totales en las tuberías y accesorios de

succión y descarga calculados con un factor de seguridad de 1.15.

$$h_{pump} = 0.24 + \frac{1.909^2}{2 * 9.81} + \frac{1482.373 * 10^3}{530 * 9.81} - \frac{735.671 * 10^3}{530 * 9.81} + 5.707$$

$$h_{pump} = 149.748 [m]$$

 $h_{pump}\,$ Es la presión diferencial expresada en cabezal de glp $\,$ que debe de entregar la bomba al fluido.

Expresando en unidades de presión:

$$P_{d \ pump} = \rho * g * h_{pump}$$

$$P_{d \ pump} = \frac{530 \left[\frac{kg}{m^3} \right] * 9.81 \left[\frac{m}{s^2} \right] * 149.748 [m]}{1000}$$

$$P_{d \ pump} = 778.584 \ [kPa]$$

$$P_{d \ pump} = 112.924 \ [psi]$$

La presión diferencial obtenida se encuentra dentro del rango establecido en la bomba preseleccionada anteriormente.

Para garantizar definitivamente la funcionabilidad de la bomba seleccionada en el sistema sin cavitar es comparando cuan mayor es la carga de succión neta positiva disponible $(NPSH_D)$, con respecto a la carga de succión neta positiva requerida $(NPSH_R)$.

$$NPSH_D > 1.10 NPSH_R$$

 $NPSH_R$ Es un valor proporcionado por el fabricante de la bomba, en este caso indican que es 0 por cuanto el modelo seleccionado posee un diseño supresor de cavitación, válvula de alivio de presión interna, además de poder transportar hasta un 20% de vapor.

El valor del $NPSH_D$ se expresa:

$$NPSH_D = h_{sp} \pm h_s - h_f - h_{vp}$$

Siendo

 h_{sp} .-Carga de presión estática (absoluta) sobre el fluido en el depósito expresado en metros del líquido.

 h_s .- Diferencia de elevación desde el nivel del fluido en el depósito y la línea de centro de la succión de la bomba expresado en metros, si la bomba se ubica bajo el depósito su valor es positivo; si se ubica sobre el depósito es negativo.

 h_f .- Pérdida de carga en la tubería de succión, producto de la fricción y pérdidas menores; se expresa en m.

 h_{vp} .- Carga de presión de vapor de líquido a la temperatura de bombeo; se expresa en m.

La instalación va a estar ubicada a nivel del mar y se considera una temperatura promedio de 25°C, la presión atmosférica considerada es de 14.7 Psi (101.353 kPa) y los tanques de GLP bajo estas condiciones el rango de presión crítica se encuentra entre 90 y 110 Psi (620.528 y 758.423 kPa).

Conociendo estas condiciones se procede a calcular:

$$h_{sp} = \frac{P_{sp} + P_{atm}}{\rho g}$$

$$h_{sp} = \frac{(620.528 + 101.353) * 10^{3} \left[\frac{N}{m^{2}}\right]}{530.00 \left[\frac{kg}{m^{3}}\right] * 9.810 \left[\frac{m}{s^{2}}\right]}$$

$$h_{sp} = 138.842[m]$$

$$h_{s} = 1.200 [m]$$

$$h_{f} = 1.584[m]$$

La carga de presión de vapor de líquido se obtiene mediante un gráfico en el cual se presentan diversas combinaciones de propano y butano además de los posibles rangos de temperaturas que pudieran presentarse el GLP en fase líquida. En el análisis se considera una mezcla del 70% de propano y 30% de butano en una temperatura estándar de 25°C (véase apéndice E)

$$P_{vp} = 91.8 \ [psi] = 632.939 \ [kPa]$$

$$h_{vp} = \frac{632.939 * 10^{3} \left[\frac{N}{m^{2}}\right]}{530 \left[\frac{kg}{m^{3}}\right] * 9.81 \left[\frac{m}{s^{2}}\right]}$$

$$h_{vp} = 121.735 \ [m]$$

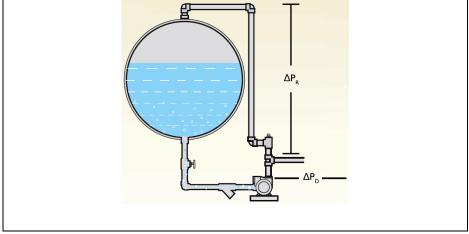
Se remplaza los valores obtenidos en la ecuación del $NPSH_d$:

$$NPSH_d = 138.842 + 1.20 - 1.584 - 121.735$$

 $NPSH_d = 16.723 [m]$

Por lo tanto:

$$NPSH_D > NPSH_R$$


Esto confirma que tanto la tubería de succión como la bomba seleccionada son las idóneas para la instalación.

Dimensionamiento de Tubería de Retorno de Líquido desde La Válvula de Presión Diferencial Hacia los Tanques.

La válvula de presión diferencial seleccionada (Blackmer BV1.5) puede trabajar a un máximo de 120 Psi (827.371 kPa) con un caudal máximo de 125 gpm ($8*10^{-3} \, m^3/s$), con conexiones de 1½ pulg. En el diseño planteado se considera un caudal de 3.6*

 $10^{-3}\,m^3/s$ siendo este el máximo caudal debe de circular en la tubería de retorno.

La condición que se debe de cumplir para el óptimo diseño de este tramo consiste en que las pérdidas de presión de las tubería de retorno ΔP_R deben ser menor o igual a la presión diferencial de descarga de la bomba ΔP_D .

*Fuente: Revista México Gas, Edición N°21

FIGURA 3.25.- TUBERÍA DE RETORNO DE LÍQUIDO

$$\Delta P_D \geq \Delta P_R$$

El diseño planteado se utiliza tubería y accesorios de 2 pulg. Además de un pequeño tramo para conexión con la válvula de 1 1/2 pulg (plano N°2)

Se aplica el procedimiento utilizado anteriormente para calcular las pérdidas de presión en tuberías y se obtuvo:

TABLA 13.

VALORES HIDRÁULICOS TUBERÍA DE RETORNO DE LÍQUIDO

Tubería Ø [pulg]	Velocidad $v\left[\frac{m}{s}\right]$	Reynolds <i>Re</i>	$\frac{\phi}{\varepsilon}$	Factor de fricción <i>f</i>
2	1.909	322566.032	1065.217	$0.0193 * 10^{-2}$
11/2	3.174	415940.410	826.087	$0.0205 * 10^{-2}$

Se obtiene las pérdidas por accesorios mediante el uso de hojas electrónica (ver apéndice F):

TABLA 14
PÉRDIDAS DE PRESIÓN TUBERÍA DE RETORNO DE LÍQUIDO

Tramo	Descripción	Cant .	$L_e./\emptyset$	k	$egin{aligned} oldsymbol{h}_L \ [oldsymbol{m}] \end{aligned}$	$egin{aligned} h_{L\ TOTAL} \ [m] \end{aligned}$
Retorno de líquido	Tubería 1 1/2"sch 80 (m)	1.0	26.315	ı	ı	0.278
	Codo 1 1/2" sch 80	2	30.000	0.617	0.317	0.634
	Reducción (expansión gradual) Ø 1 1/2"@ 2"	1	-	0.450	0.231	0.231
	Reducción (Contracción gradual) Ø 2" @ 1 1/2"	1	-	0.160	0.029	0.029
	Tubería 2" sch 80 (m)	18.8	383.673	-	-	1.378

Subtotal					6.577
Expansión Tubería- Tanque	1	-	1.000	0.185	0.185
Válvula de Globo 2" completamente abierta	2	340.000	6.574	1.221	2.442
Tee 2" sch 80 Ramificada	4	60.000	1.160	0.215	0.862
Codo 2" sch 80	5	30.000	0.580	0.107	0.538

Expresando en términos de altura del fluido:

$$\Delta h_D \geq \Delta h_R$$

Siendo Δh_D la diferencia entre el cabezal proporcionado por la bomba y la pérdida en la tubería de descarga por fricción, válvulas y accesorios:

$$\Delta h_D = h_{pump} - h_{LD.}$$

$$\Delta h_D = 149.748 - 3.678 [m]$$

$$\Delta h_D = 146.0.70 [m]$$

Comparando con las pérdidas en la tubería de retorno de líquido:

$$146.0.70 [m] \ge 6.577 [m]$$

De esta manera se confirma que la selección de tuberías y accesorios para este tramo cumple con el requerimiento.

Dimensionamiento de Red de Llenado de tanques

La empresa comercializadora del GLP dispone de camiones cisternas con una máxima capacidad de 20 toneladas, siendo este valor el más crítico para analizar el tiempo de llenado de la instalación, considerando experiencias de descarga de estos camiones en estaciones similares se estima un tiempo de 120 minutos, de esta manera:

$$\rho = \frac{m}{V} \rightarrow V = \frac{m}{\rho}$$

$$V = \frac{20000[kg]}{530\left[\frac{kg}{m^3}\right]}$$

$$V = 37.736 [m^3]$$

$$Q_{LL} = \frac{Capacidad\ de\ Tanquero}{Tiempo\ de\ Llenado}$$

$$Q_{LL} = \frac{37.736 [m^3]}{2.000\ [hr]}$$

$$Q_{LL} = 18.868 \left[\frac{m^3}{hr}\right] = 0.00524 \left[\frac{m^3}{s}\right]$$

Conociendo las capacidades de los camiones cisterna a utilizar se concluye de que se requerirán realizar tres operaciones de carga a los depósitos estacionarios para lograr su total llenado.

Con un trazado del recorrido previamente definido (plano N°3) se dimensionan las tuberías y accesorios a utilizar, por el cual se procede a iterar con diferentes diámetros y con la ayuda de una hoja electrónica se obtienen las pérdidas posibles:

Aplicando nuevamente el procedimiento utilizado:

TABLA 15.

VALORES HIDRÁULICOS TUBERÍA DE LLENADO DE

DEPÓSITOS ESTACIONARIOS

Tubería Ø [pulg]	Velocidad $v\left[\frac{m}{s}\right]$	Reynolds Re	$\frac{\emptyset}{\varepsilon}$	Factor de fricción <i>f</i>
2	2.779	481196.108	1065.217	$2.0108 * 10^{-2}$
3	1.219	318629.856	1608.696	$1.8925 * 10^{-2}$

Se obtiene las pérdidas por accesorios mediante el uso de hojas electrónicas (ver apéndice G):

TABLA 16

PÉRDIDAS DE PRESIÓN TUBERÍA DE LLENADO DE

DEPÓSITOS ESTACIONARIOS

Tramo	Descripción	Cant.	$L_e./\emptyset$	k	$egin{array}{c} oldsymbol{h_L} \ [oldsymbol{m}] \end{array}$	$\begin{bmatrix} h_{L\ TOTAL} \\ [m] \end{bmatrix}$
	Tubería Ø 2"sch 80 (m)	11.5	234.694	-	-	1.858
	Filtro Tipo Y Ø 2" sch 80	1	100.000	2.011	0.792	0.792
	Visor Ø 2" sch 80	1	100.000	2.011	0.792	0.792
arios	Codo Ø 2" sch 80	2	30.000	0.603	0.238	0.475
stacion	Tee Ø 2" sch 80 Ramificada	4	60.000	1.207	0.475	1.900
itos es	Válvula de Globo Ø 2" Complet. Abierta	4	340.000	6.837	2.692	10.767
depós	Tubería Ø 3"sch 80 (m)	1.2	16.216	ı	-	0.023
Lenado de depósitos estacionarios	Reducción (expan. gradual) Ø 3"@ 2".	1	-	0.560	0.220	0.220
Llen	Codo Ø 3" sch 80	1	30.000	0.568	0.043	0.043
	Válvula de Globo Ø 3" Complet. Abierta	1	340.000	6.434	0.487	0.487
	Expansión Súbita Ø 3" Tubería-Tanque	1	-	0.860	0.065	0.065
	Subtotal[m]					17.423

$$P_{Ll} = \frac{530 \left[\frac{kg}{m^3}\right] * 9.81 \left[\frac{m}{s^2}\right] * 17.423[m]}{1000}$$

$$P_{Ll} = 90.587[kPa]$$

$$P_{Ll} = 13.139[psi]$$

Con tuberías y accesorios de 2" se tienen velocidades que generan pérdidas que se aproximan al 11% de la presión en los depósitos, si se considera utilizar tuberías y accesorios en 3" sus pérdidas disminuyen a 4.137 psi (ver apéndice G), aproximándose a un 4%, sin embargo resulta costoso en comparación con el beneficio, por lo tanto se define la implementación de tubería de 2".

Como se explica anteriormente, la operación de llenado de los tanques se realizará con la ayuda de un compresor y de una red de retorno de vapor en la cual se desplazará inicialmente GLP en estado de vapor desde el depósito estacionario hacia el camión cisterna que a su vez está interconectado en su salida de líquido con la tubería de llenado, al aumentar la presión en el camión cisterna desplazará el GLP líquido en la tubería de llenado de los tanques estacionarios logrando así su llenado. El vapor de GLP que se encuentra en el camión se lo traslada nuevamente a los depósitos invirtiendo el sentido de recorrido de la tubería de retorno de vapor por medio de una válvula de cuatro vías instalada en el compresor, luego de haber desacoplado la tubería de llenado.

La tubería de retorno de vapor es el tramo comprendido entre el tanque estacionario y el compresor y su dimensionamiento difiere del cálculo utilizado para el GLP en estado líquido debido a su cambio en sus propiedades físicas.

Para el dimensionamiento, la red de retorno de vapor se divide en dos tramos, el primero que consiste desde el compresor hasta el ingreso de vapor del camión cisterna, el otro consiste desde el compresor hasta cada tanque estacionario, en ambos casos se analiza el desplazamiento del GLP gaseoso desde el compresor hacia los depósitos fijos y móviles, por cuanto en estas condiciones las tuberías soportan la mayor presión de servicio que garantiza las operaciones de llenado y vaciado de los depósitos estacionarios.

Adicionalmente se deben de asumir las siguientes condiciones iniciales para el análisis:

- Se considera constante el peso específico del gas pese al cambio de presión a la que se encuentra.
- Los fabricantes de compresores recomiendan que para efectos de dimensionamiento de las tuberías el caudal de GLP en fase de vapor tiene que ser 1.3 veces mayor al caudal de GLP líquido considerado en la tubería de llenado.

 Adicionalmente se considera que uno de los recipientes debe estar lleno, con una presión de vapor de 7.7 bar abs. más un diferencial de 1.0 bar, es decir 8.7 bar (870 kPa, 126.18 psi).

Conociendo todas las condiciones se procede a dimensionar el tramo comprendido entre el compresor y camión cisterna.

Aplicando la ecuación de energía entre los dos puntos señalados:

$$\frac{p_1}{\gamma_1} + z_1 + \frac{v_1^2}{2g} - h_L = \frac{p_2}{\gamma_2} + z_2 + \frac{v_2^2}{2g}$$

Siendo:

 p_1 = Presión del compresor requerida.

 z_1 = Altura a la salida del compresor con respecto al nivel del suelo.

 v_1 = Velocidad del fluido a la salida del compresor.

 $h_L=$ Pérdidas totales en las tuberías y accesorios del tramo a analizar

 p_2 = Presión al ingreso del tanque estacionario

 $z_2 = \text{Altura al ingreso del camión cisterna con respecto al nivel del suelo.}$

 $v_2=$ Velocidad del GLP en estado gaseoso al ingreso del camión cisterna.

 $\gamma_1 = \gamma_2 =$ Peso específico del vapor de GLP tanto en la salida del compresor como en el ingreso del camión cisterna.

El caudal de descarga de vapor de GLP que se requiere:

$$Q_{D} = 1.3 * Q_{Ll}$$

$$Q_{D} = 1.3 * 18.868 \left[\frac{m^{3}}{hr} \right]$$

$$Q_{D} = 1.3 * 18.868 \left[\frac{m^{3}}{hr} \right]$$

$$Q_{D} = 24.528 \left[\frac{m^{3}}{hr} \right] = 0.00681 \left[\frac{m^{3}}{s} \right]$$

Con un trazado del recorrido previamente definido (plano N°4) se dimensionan las tuberías y accesorios a utilizar, hay que tomar en cuenta que tanto el camión cisterna como los tanques estacionarios poseen salidas y entradas de vapor de diámetro de 2" al igual que las conexiones de ingreso y salida del compresor. Además de esto los camiones cisterna utilizan para el llenado mangueras de 1 ¼" con sus respectivos acoples, motivo por el cual hay que considerar reducciones, tubería y válvula de globo de llenado de igual

dimensión. Aplicando el procedimiento similar de cálculo con la ayuda de una hoja electrónica (apéndice H) se obtienen las pérdidas posibles:

TABLA 17.

VALORES HIDRÁULICOS TUBERÍA DE RETORNO DE

VAPOR TRAMO COMPRESOR – CAMIÓN CISTERNA

Tubería Ø [pulg]	Velocida d $v\left[\frac{m}{s}\right]$	Reynolds <i>Re</i>	$\frac{\emptyset}{\varepsilon}$	Factor de fricción f
1 1/4	6.954	61639.883	767.826	2.44 * 10 ⁻²
1 ¼ flex.	6.954	61639.883	23546.666	2.00 * 10 ⁻²
2	3.088	41077.748	1152.173	2.45 * 10 ⁻²

TABLA 18

PÉRDIDAS DE PRESIÓN TUBERÍA DE RETORNO DE VAPOR

TRAMO COMPRESOR – CAMIÓN CISTERNA.

Tramo	Descripción	Cant.	L_e ./Ø	k	$egin{aligned} oldsymbol{h_L} \ [oldsymbol{m}] \end{aligned}$	$egin{array}{c} oldsymbol{h_{L\ TOTAL}} \ [oldsymbol{m}] \end{array}$
ırna	Tubería Ø 2"sch 40 (m).	3	56.604	-	-	0.674
Retorno de vapor tamo npresor - Camión Cisterna	Reducción (contracción gradual) Ø 2"@ 1 1/4".	2	-	0.280	0.136	0.272
vapor amiór	Codo Ø 2" sch 40	7	30.000	0.735	0.357	2.501
no de or - C	Válvula de Globo Ø 2" Completamente Abierta	2	340.000	8.329	4.049	8.098
Retorno	Tee Ø 2" sch 80 Ramificada	1	60.000	1.470	0.715	0.715
Cor	Tubería Ø 1 1/4"sch 40 (m)	0.5	14.156	-	-	0.852

				Total	62.880
anguera para GLP Ø 1/4" (m)	6	169.875	-	-	8.379
rpansión Súbita Ø2" Ibería-Tanque	1	-	0.910	0.442	0.442
álvula de Globo Ø 1 4" Completamente	2	340.000	8.307	20.473	40.947

$$P_D = h_L * \gamma_v = h_L * \rho_v * g$$

$$P_D = 62.880 [m] * 2.090 \left[\frac{kg}{m^3} \right] * 9.81 \left[\frac{m}{s^2} \right] * 0.001$$

$$P_D = 1.289 [kPa]$$

Se procede a determinar la presión que debe de entregar el compresor utilizando la ecuación de energía:

$$\frac{p_1}{\gamma_1} + z_1 + \frac{v_1^2}{2g} - h_L = \frac{p_2}{\gamma_2} + z_2 + \frac{v_2^2}{2g}$$

$$\frac{p_1}{\gamma_1} = \frac{p_2}{\gamma_2} + (z_2 - z_1) + \frac{(v_2^2 - v_1^2)}{2g} + h_L$$

$$\frac{p_1}{\gamma_1} = \frac{870 * 10^3 [Pa]}{20.502 \left[\frac{N}{m^3}\right]} + (1.3 - 0.9)[m] + 62.880 [m]$$

$$\frac{p_1}{\gamma_1} = 42434.884[m] + 0.40[m] + 62.880 [m]$$

$$p_1 = 42498.164[m] * 20.502 \left[\frac{N}{m^3}\right] * 0.001$$

$$p_1 = 871.297[kPa]$$

$$p_1 = 126.371[psi]$$

Siendo esta la presión que debe de generar el compresor para vaciar un recipiente lleno, conforme disminuya el nivel del depósito también disminuye la presión, por lo cual el compresor puede entregar hasta una presión diferencial mayor a 1.7 bar* (24.656 psi, 170kPa) con respecto al depósito que se desea vaciar.

Partiendo del trazado de tubería correspondiente al tramo comprendido entre el compresor y los depósitos de almacenamiento se procede a dimensionar, cabe señalar que la operación de llenado se realiza de manera individual cada tanque, evitando siempre que sea de manera simultánea.

El cálculo se realiza desde la salida del compresor hasta la entrada de vapor de un depósito estacionario, las tuberías están trazadas de manera simétrica (Plano N°4), difiriendo solamente en un accesorio (apéndice H).

TABLA 19

VALORES HIDRÁULICOS TUBERÍA DE RETORNO DE

VAPOR TRAMO COMPRESOR – DEPÓSITO

ESTACIONARIO.

Tubería Ø [pulg]	Velocida d $v\left[\frac{m}{s}\right]$	Reynolds Re	$\frac{\emptyset}{\varepsilon}$	Factor de fricción f
2	3.088	41077.748	1152.174	2.45 * 10 ⁻²

TABLA 20
PÉRDIDAS DE PRESIÓN TUBERÍA DE RETORNO DE VAPOR
TRAMO COMPRESOR – DEPÓSITO ESTACIONARIO

Tramo	Descripción	Cant.	L_e ./Ø	k	$egin{aligned} oldsymbol{h}_L \ [oldsymbol{m}] \end{aligned}$	$egin{array}{c} h_{L\ TOTAL} \ [m] \end{array}$
	Tubería Ø 2"sch 40 (m).	19	358.491	ı	ı	4.269
tamo oósito	Codo Ø 2" sch 40	7	30.000	0.735	0.357	2.501
vapor tamo Depósito ionario	Válvula de Globo Ø 2" Complet. Abierta	3	340.000	8.329	4.048	12.147
no de vapor oresor - Dep estacionario	Tee Ø 2" sch 80 Ramificada	4	60.000	1.470	0.714	2.858
Retorno de v Compresor - estacic	Expansión Súbita Ø2" Tubería-Tanque	1	ı	0.910	0.442	0.442
					Total	22.217

$$P_{D} = h_{L} * \gamma_{v} = h_{L} * \rho_{v} * g$$

$$P_{D} = 22.217 [m] * 2.09 \left[\frac{kg}{m^{3}} \right] * 9.81 \left[\frac{m}{s^{2}} \right] * 0.001$$

$$P_{D} = 0.455 [kPa]$$

Se procede nuevamente a determinar la presión que debe de entregar el compresor utilizando la ecuación de energía:

$$\frac{p_1}{\gamma_1} + z_1 + \frac{v_1^2}{2g} - h_L = \frac{p_2}{\gamma_2} + z_2 + \frac{v_2^2}{2g}$$

$$\frac{p_1}{\gamma_1} = \frac{p_2}{\gamma_2} + (z_2 - z_1) + \frac{(v_2^2 - v_1^2)}{2g} + h_L$$

$$\frac{p_1}{\gamma_1} = \frac{870 * 10^3 [Pa]}{20.502 \left[\frac{N}{m^3}\right]} + (1.3 - 0.9)[m] + 22.217 [m]$$

$$\frac{p_1}{\gamma_1} = 42434.884[m] + 0.40[m] + 22.217 [m]$$

$$p_1 = 42457.501[m] * 20.502 \left[\frac{N}{m^3}\right] * 0.001$$

$$p_1 = 870.463[kPa]$$

$$p_1 = 126.25[psi]$$

Finalmente al comparar ambos tramos de tubería de retorno de vapor se observa que la presión requerida por el compresor difiere de manera mínima, por lo cual para objeto de selección de este equipo se toma en cuenta el mayor valor obtenido.

Dimensionamiento de Tubería de GLP desde Vaporizadores hasta equipos de Consumo

Para dimensionar este tramo se aplican las fórmulas de Renouard, utilizadas en el diseño de instalaciones de consumo de GLP en fase de vapor y son válidas si se cumplen las siguientes condiciones:

- La relación caudal Q diámetro D (Q/D) debe ser menor a 150.
- El número de Reynolds Re debe ser igual o inferior a $2*10^6$ y está dado por la ecuación:

$$R_e = T * \frac{Q}{D}$$

Donde T es un valor obtenido experimentalmente para cada hidrocarburo, aire o mezclas de gases de combustión.

TABLA 21
VALORES DE T

Clase	Т
Para gas de la primera familia	16000
Para gas metano y gas natural	22300
Para aire	24300
Para GLP	55200
Para propano	72000

^{*}Fuente: Los Gases Licuados de Petróleo

La ecuación de Renouard para presiones medias y altas (de 0.05 a más de 4 bar):

$$P_A^2 - P_B^2 = 48600 * d_s * L * \frac{Q^{1.82}}{D^{4.82}}$$

Para presiones bajas (hasta 0.05 bar)

$$P_{A\ baja} - P_{B\ baja} = 232000000 * d_s * L * \frac{Q^{1.82}}{D^{4.82}}$$

Donde:

 $P_A - P_B$: Presiones absolutas en bar, en el origen y el extremo, respectivamente, de la tubería cuya pérdida de presión se desea analizar.

 $P_{A\;baja}-P_{B\;baja}$: Presiones expresadas en mm. De columnas de agua tanto en el origen como el extremo, respectivamente, se diferencia de la anterior es el valor buscado de pérdidas de cargas o diferencia de presiones.

 d_s : Densidad aparente o ficticia, depende de la densidad relativa del gas a analizar, su viscosidad y compresibilidad:

TABLA 22 VALORES DE d_s

Tipo de Gas	d_s
Gas ciudad	0.50
Gas natural	0.54 -0.61
Aire butanado (6300 $kcal/N m^3$)	0.94
Aire propanado (6300 kcal/N m ³)	1.00
Aire propanado (13500 $kcal/N m^3$)	1.11
Gas propano	1.16
Gas GLP	1.27
Gas propano	1.44

Para calcular la velocidad del GLP se utiliza la siguiente expresión utilizada para una temperatura de 18°C a presión atmosférica:

$$U = 378.04 \; \frac{Q}{D^2 * H}$$

Donde:

 $Q = \text{Caudal expresado en } m^3/h$

D = Diámetro interior de la tubería expresado en <math>mm.

H =Semisuma de la presión inicial y final P_A y P_B :

$$H = \frac{P_A + P_B}{2}$$

Adicionalmente se limita por efectos de ruido la velocidad (U) del fluido hasta un máximo de 20 m/s y una disminución hasta el 20% de la presión en los puntos de consumo con respecto a la presión de salida en el tren de regulación de primera etapa.

Se detalla un cálculo modelo para determinar el diámetro óptimo del tramo comprendido entre un vaporizador y el tren de regulación de primera etapa, el trazado propuesto se puede observar en el plano 5:

$$P_{B(T.R.-abs)} = \sqrt{P_{A(Vap-abs)}^2 - 48.6 * d_s * L_{neta} * \frac{Q^{1.82}}{D^{4.82}}}$$

$$P_{A(Vap)}=10.342\,[Bar]$$

$$P_{A(Vap-abs)} = 10.342 + 1.033 [Bar] = 11.375 [Bar]$$

$$d_s = 1.27$$

 $L_{neta} = 1.2 * 18.6 = 22.320 \ [m]$ Por pérdida de accesorios como válvulas, codos, tees, bridas y reducciones.

$$Q = 1005 \ gph = 3.804 \left[\frac{m^3}{h} \right]$$

 $D=78.00[mm]\,$ Diámetro interno de tubería de 3" ASTM A53 sch 40

Aplicando la relación Q/D:

$$\frac{3.804}{78.00} < 150$$

La relación si se cumple.

Se obtiene el número de Reynolds:

$$R_e = T * \frac{Q}{D} \le 2 * 10^6$$

$$R_e = 55200 * 0.048 \le 2 * 10^6$$

 $2649.6 \le 2 * 10^6$; cumple

Remplazando los valores en la ecuación de Renouard:

$$P_{B(T.R.)} = \sqrt{11.375^2 - 48.6 * 1.27 * 22.320 * \frac{3.804^{1.82}}{78.00^{4.82}}}$$

$$P_{B(T.R.-abs)} = 11.3749 [Bar]$$

$$P_{B(T.R.)} = 11.3749 - 1.033 = 10.3419 [Bar]$$

Se comprueba si la pérdida de presiones no sea mayor del 20%:

$$\frac{P_{A(Vap)} - P_{B(T.R.)}}{P_{A(Vap)}} * 100\% = 0.00096\%$$
; cumple

Se verifica si la velocidad del fluido es menor a 20 m/s:

$$U = 378.04 * \frac{Q}{D^2 * H} < 20 \left[\frac{m}{s} \right]$$

Donde:

$$H = \frac{P_{A(Vap)} + P_{B(T.R.)}}{2} = \frac{10.342 + 10.3419}{2} = 10.34195 \ bar$$

Entonces:

$$U = 378.04 * \frac{3.804}{78.00^2 * 10.34195} = 0.02285 \left[\frac{m}{s} \right]$$
$$0.02285 \left[\frac{m}{s} \right] < 20 \left[\frac{m}{s} \right]$$

Cumpliendo también con la condición.

Al seleccionar una tubería de 3" en este tramo se logra tener una pérdida de presión despreciable, además de una baja velocidad, por lo cual la elección de la misma resulta adecuada.

Para el tramo de tubería comprendido desde el tren de regulación hasta los puntos de consumo de los equipos se analiza partiendo de la suma total de la potencia requerida de cada uno, expresada en BTU/h, además de la presión que ellos demandan, puesto que la ecuación de Renouard requiere conocer del caudal Q, se debe de aplicar las siguientes ecuaciones para obtener el caudal:

Pot.
$$req. \left[\frac{BTU}{h} \right] = Pot. req. \left[\frac{kg}{h} \right] * 47222 \left[\frac{BTU}{kg} \right]$$

$$Q = \frac{Pot. Req. \left[\frac{BTU}{h} \right]}{Poder \ calorifico \ \left[\frac{BTU}{m^3} \right]}$$

De donde el poder calorífico del GLP a

$$T = 15[^{\circ}C] \text{ y } P = 1013 [mbar]$$
:

$$Poder\ calor\'ifico = 98963.64\ \left[\frac{BTU}{m^3}\right]$$

Para seleccionar la tubería en este tramo se toman en cuenta las siguientes condiciones:

- Los equipos de consumo funcionan de forma simultánea y a plena carga, en este caso, para la tubería principal se calcula el caudal Q en base a la sumatoria de las potencias de consumo de los equipos que es de 1767.89 kg/h.
- Se selecciona una presión de calibración basado en la mayor presión de servicio que puede requerir uno de los equipos; dicha presión de calibración es la que ofrece el tren de regulación de primera etapa:

TABLA 23
PRESIONES DE GLP EN EQUIPOS

Equipo	Presión(Bar)
Máquina de oxicorte	1.0
Precalentador de cuchara	2.5
Horno de fusión	4.0

La presión a la salida del tren de regulación de primera etapa seleccionado previamente es de 4.4 Bar por lo cual esta es la

presión inicial, con el trazado establecido en el, plano N°8 y con la ayuda de una hoja electrónica (apéndice I) se obtienen las pérdidas posibles.

TABLA 24
PÉRDIDAS DE PRESIÓN EN TUBERÍAS DESDE TREN DE REGULACIÓN HASTA
EQUIPOS

Tramo	Potencia (BTU/h)	Caudal (m³/h)	Presión inicial (Bar)	Longitud (m)	Tubería Ø nominal	Ø nominal (mm)	Presión final (Bar)	Δ (Bar)	%	<20%	Q/D < 150	U<=20 (m/s)
A-B	83,483,301	866.48	4.40	9.50	3" Ac 40	77.90	4.39	0.011	0.25%	Cumple	Cumple	Cumple
B-C	83,483,301	866.48	4.39	12.50	6" Ac 40	154.10	4.39	0.00	0.26%	Cumple	Cumple	Cumple
C-D	83,483,301	866.48	4.39	143.50	6" PE	135.86	4.38	0.011	0.51%	Cumple	Cumple	Cumple
D-E	83,483,301	866.48	4.38	97.00	3" Ac 40	77.90	4.27	0.112	3.06%	Cumple	Cumple	Cumple
E-BAJANTE 1	8,007,907	83.11	4.27	6.00	3" Ac 40	77.90	4.27	0.000	3.06%	Cumple	Cumple	Cumple
BAJANTE 1 - PRECAL. 1	8,007,907	83.11	4.27	27.50	2" Ac 40	52.50	4.26	0.003	3.13%	Cumple	Cumple	Cumple
E-F	75,475,394	783.37	4.27	70.00	3" Ac 40	77.90	4.20	0.068	4.61%	Cumple	Cumple	Cumple
F- BAJANTE 2	4,404,396	45.71	4.20	6.00	3" Ac 40	77.90	4.20	0.000	4.61%	Cumple	Cumple	Cumple
BAJANTE 2 - MAQ OXICORTE	4,404,396	45.71	4.20	17.50	1 1/2" Ac 40	40.90	4.19	0.002	4.66%	Cumple	Cumple	Cumple
F-G	71,070,998	737.65	4.20	20.00	3" Ac 40	77.90	4.18	0.018	5.01%	Cumple	Cumple	Cumple
G - BAJANTE 3	8,007,907	83.11	4.18	6.00	3" Ac 40	77.90	4.18	0.000	5.01%	Cumple	Cumple	Cumple
BAJANTE 3 - PRECAL 2	8,007,907	83.11	4.18	30.00	2" Ac 40	52.50	4.18	0.003	5.09%	Cumple	Cumple	Cumple
G- H	63,063,092	654.54	4.18	18.25	3" Ac 40	77.90	4.17	0.013	5.31%	Cumple	Cumple	Cumple
H- PRECAL 3	8,007,907	83.11	4.17	10.00	2" Ac 40	52.50	4.17	0.001	5.33%	Cumple	Cumple	Cumple
H- QUEMADOR HORNO	55,055,185	571.42	4.17	33.00	3" Ac 40	77.90	4.15	0.018	5.72%	Cumple	Cumple	Cumple

Finalmente con los cálculos obtenidos se define las dimensiones y cantidades de tuberías de distribución de GLP a utilizar:

TABLA 25
TUBERÍA DE DISTRIBUCIÓN DE GLP HACIA EQUIPOS

Tipo de tubería	Diámetro (pulgadas)	Longitud (m)
	6	12.50
A O.T. A . 50 . O.U. 40	3	265.75
ASTM A 53 SCH 40	2	67.50
	1 1/2	17.50
POLIETILENO ASTM PE 80	6	143.50

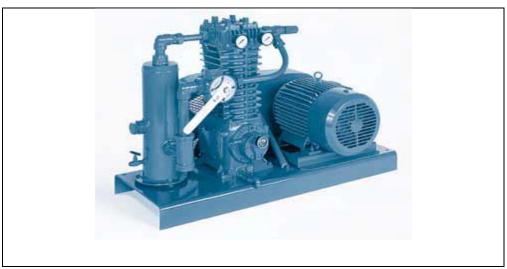
3.3 Selección de Compresor para GLP.

Seleccionar un compresor para GLP resulta un proceso complejo debido a que se toman en cuenta diversas variables que dificultan el cálculo exacto del posible desempeño del equipo elegido. Las empresas proveedoras de los mismos ofrecen tablas de selección en los que se consideran los principales aspectos:

- Tipo de combustible (propano, butano, mezcla de ambos, gas natural).
- Aplicación del equipo (planta de llenado de cilindros, operación de llenado – recuperación de vapor).
- Presión requerida por el sistema.

- Caudal de GLP líquido a trasegar durante la operación de llenado.
- Temperatura de Transferencia de Líquido con o sin recuperación de vapor.

La estación de GLP almacena una mezcla de 70% propano – 30% butano, la aplicación del compresor es para operación de llenado y posterior recuperación del vapor remanente, además la presión requerida para el compresor es de 880.155 kPa (127.656 psi, 8.802 Bar) a un caudal de 24.528 m³/h (107.994c U.S. GPM, 408.800 LPM) a temperatura ambiente 25°C.


Para esta aplicación se recomienda un compresor del tipo pistones con trampa de líquido, la empresa proveedora posee varios modelos de este tipo (apéndice J,) por lo cual aún se vuelve inexacto la selección, sin embargo se puede determinar la eficiencia de cada modelo por medio de una validación en la cual se analizan las siguientes condiciones:

- Volumen del tanque a descargar.
- Porcentaje Máximo y mínimo de GLP en el tanque a descargar.

Cantidad máxima de vapor a recuperar (25 – 30%)

Para el llenado se utiliza un camión cisterna de 37.8 m³ de capacidad, con un 90% de GLP, se espera vaciarlo hasta un 1%, además de obtener hasta un 27% de vapor de GLP en la operación de recuperación de vapor.

El modelo más eficiente de compresor a utilizar según la validación (apéndice K) proporcionada por el fabricante es Blackmer modelo LB361B, que permite realizar el llenado de líquido y la recuperación de vapor en un tiempo de entre 1.9 – 2.0 horas, requiriendo una potencia máxima de 8 kw.

*Fuente: Catálogo de Equipos Blackmer

FIGURA 3.26.- COMPRESOR BLACKMER MODELO LB361B

En la tabla siguiente se detallan las características principales del equipo de compresión seleccionado:

TABLA 26

CARACTERÍSTICAS PRINCIPALES DE COMPRESOR

SELECCIONADO

País de origen:	EEUU			
Fabricante/Proveedor:	PUMP SOLUTION HIDROMECÁNION			
Marca de fábrica:	BLACKMER			
Modelo:	LB361B			
No de Pistones		2		
Diámetro de émbolo	Pulg.	4.0		
Diametro de embolo	mm.	101.6		
Carrera	Pulg.	3.0		
Carrera	mm.	76.2		
Desplazamiento del pistón @	35.5			
825 rpm	60.3			
Velocidad del Compresor	Mínimo rpm	350		
velocidad dei Compresor	Máximo rpm	825		
Presión de Trabajo Máxima	Psi	350		
Tresion de Trabajo Maxima	Bar	24.13		
Máxima Potencia al Freno	h.p.	15		
maxima i otencia ai i reno	kw	11		
Máxima Temperatura de	°F	350		
Descarga	°C	177		
Conexiones de entrada /salida	Pulg.	2.0		
Contexiones de cititada /sanda	mm.	50.8		

3.4 Selección de Válvulas de Regulación de Gas GLP.

En esta instalación se debe de implementar dos etapas de regulación, permitiendo una presión moderada en la red principal además de suministrar el GLP a los equipos de consumo con la presión necesaria para que logren un correcto funcionamiento.

TABLA 27

RANGOS DE PRESIÓN DE CALIBRACIÓN

Etapa de Regulación		Presión de Calibración (bar)	Ubicación
Primera	V. Natural	4.4	Estación de Gas LP
Filliela	V. Forzada	4.4	LStacion de Gas Er
		1	Junto a máquina oxicorte
Segunda		2.5	Junto a precalentadores de
Coganaa		2.0	cuchara
		4	Junto al horno de fusión

Para la selección de reguladores se deben considerar la potencia nominal más un 50% de factor de seguridad. En la primera etapa de regulación se instalan dos trenes de regulación, el principal que es utilizado para la vaporización forzada, y otro para la vaporización natural, en este caso será la alternativa.

Cada tren de regulación está compuesto por un filtro tipo cartucho, regulador calibrable y un limitador con bloqueo por altas presiones

OPSO (Over Pressure Shut Off) y por bajas presiones UPSO (Under Pressure Shut Off), ambos bloqueos son aguas arriba además de poseer válvulas de alivio de presión en los mismos.

En los trenes de regulación se utilizan reguladores marca Pietro Fiorentini, modelo Reval y limitador modelo Aperval, sus especificaciones técnicas se detallan a continuación:

TABLA 28.

CARACTERÍSTICAS PRINCIPALES DE REGULADORES DE PRESIÓN.

Ubicación		Tren de regulación primera etapa		
Marca de Regulador		Pietro Fiorentini Reval 182	Pietro Fiorentini Aperval	
Capacidad max. (kg/h)		3350		
Conexión de entrada		Brida deslizante clase 150 RF 2"		
y descarga				
Rango de presión de		0.5 – 25 bar		
ingreso		(7.25- 362.5 Psig)		
Rango de presión de		0.007 – 12 bar	0.005 - 9.5 bar	
descarga		(0.10 – 174.04 Psig)	(0.073 - 137.786 Psig)	
Presión de Calibración		4.4 bar (63.817 Psig)		
Calibración	OPSO	N/A	5.4 bar (78.320 psig)	
Bloqueo	UPSO	IN/A	4.3 bar (62.366 psig)	

*Fuente: Catálogo Reguladores Pietro Fiorentini

Los reguladores de segunda etapa se encuentran al pie de los equipos y forman parte de los mismos, por lo cual en este proyecto no se realiza su selección.

3.5 Diseño de Tanques de Precipitación.

Los tanques precipitadores, llamados también decantadores son colocados a la salida de la fase gaseosa de los vaporizadores y aguas abajo del tren de regulación con el objetivo de captar los condensados y residuos pesados que se pueden forman en su interior. Estos tanques deben de estar dotados de una válvula de purga y un orifico para una limpieza en su interior.

El diseño se basa en la norma ASME, 2007 Sección VIII Div. 1 para el cálculo del espesor adecuado, mientras que para su procedimiento de soldadura se utiliza la Sección IX del mismo código.

Las dimensiones de los tanques recomendada por el fabricante de los vaporizadores es de 16 pulg. (0.406 m) de diámetro con una altura de 60 pulg. (1.524 m) y debe de soportar una máxima presión de 250 psi.

$$P = 275 [psi]$$

Las tapas son semielipticas y se obtienen mediante el proceso de troquelado, cuyo perfil posee una aproximación a una elipse relación 2:1, la ecuación a utilizar del subcapítulo UG32 "Cabezas

formadas, y secciones sometidos a presión en lado cóncavo", para determinar su espesor:

$$t = \frac{P * D}{2S * E - 0.2P}$$

Siendo:

t: Espesor mínimo de cabeza (pulg)

P: Presión Interna de diseño (psi)

D: Diámetro interior de la cabeza (pulg)

S: Esfuerzo máximo a la tensión permitido por el material, en este caso se utiliza Acero ASTM A36.

E: Eficiencia de junta soldada para junta no radiografiadas = 0.7

$$t = \frac{250 * 16}{2 * 13800 * 0.7 - 0.2 * 250}$$

$$t = 0.208[pulg] = 5.283[mm]$$

El espesor mínimo comercial es de 6 mm o 1/4"

Para diseñar el cuerpo del tanque se utiliza la ecuación del subcapítulo UG 27 "Espesores de recipientes sometidos a presión interna, para esfuerzos circunferenciales":

$$t = \frac{P * R}{S * E - 0.6P}$$

Siempre que se cumpla:

$$P < 0.385 * S * E$$

Aplicando:

$$P < 0.385 * 13800 * 0.7 [psi]$$

P < 3719; si cumple la condición.

$$t = \frac{250 * 8}{13800 * 0.7 - 0.6 * 250}$$

$$t = 0.2103[pulg] = 5.334[mm]$$

El espesor mínimo comercial es de 6 mm o 1/4"

Finalmente los decantadores serán de acero ASTM A 36 de 6mm o ¼ de pulgada de espesor, con conexiones bridadas de entrada y salida de 2" clase 150, abertura para limpieza con brida ciega clase 150 de 4", purga en la parte inferior con válvula de bola tipo WOG ½" NPT, (plano 5).

Los decantadores deben de someterse a inspección de soldadura a fin de descartar fallas durante su proceso de fabricación, además de prueba hidrostática verificando que no exista fugas en las juntas (cabezas y cuerpo) y uniones con los neplos tal como lo indica la norma ASME sección VIII Div. 1.

CAPÍTULO 4

4. SISTEMAS COMPLEMENTARIOS.

4.1 Riesgos Asociados al Almacenamiento del GLP.

Los riesgos que se pueden generar en este tipo de instalaciones ante una eventual fuga son los siguientes:

- Los GLP al ser más pesados que el aire, sus vapores generados fluyen a ras del suelo.
- Tienden a ingresar por drenajes y tuberías de desagüe.
- Pueden filtrase a través del suelo flojo y permanecer estancado en el lugar.
- Poseen una alta expansión térmica.

Para una adecuada selección de equipos contra incendios es necesario conocer las diferentes clases de fuego que varían según los diversos materiales combustibles y los agentes extintores que actúan ante ellos:

- Fuego clase A.- Se producen materiales combustibles sólidos como carbón, paja, tejidos, madera, etc. El fuego se retiene en su interior formando brasas.
- Fuego clase B.- Se generan en sustancias líquidas inflamables como petróleo, pinturas, aceites, gasolina, alquitrán, etc. Dentro de este grupo se incluyen además los GLP's y ciertas grasas luricantes. Esos arden solamente en su superficie en contacto con el oxígeno del aire.
- Fuego clase C.- Comúnmente denominados "fuegos eléctricos", son aquellos que se generan en redes energizadas o equipos o máquinas cuya fuente de energía sea la electricidad.
- Fuego clase D.- Se producen en polvos o aleaciones de metales livianos como aluminio, magnesio, uranio, etc.

Los agentes extintores comúnmente utilizados:

 Agua.- Su aplicación es ideal para fuegos de clase A. Es aceptable en fuegos de clase B, pero de manera pulverizada a excepción de los líquidos miscibles en agua. No es apto para fuegos del tipo C. Espuma.- Es una masa de burbujas unidas entre sí por un estabilizador con agua, al entrar en contacto con el aire su volumen se incrementa una cantidad determinada de veces conocida como radio o coeficiente de expansión.

Su utilización se limita a los fuegos de clase B, por cuanto al aplicar sobre la superficie de combustible en llamas lo aísla del contacto con el oxígeno del aire, apagando el fuego por sofocación.

 Polvo Químico Seco (PQS).- Formados básicamente por sales amónicas (bicarbonato de sodio) o potásicas (bicarbonato de potasio). Se caracteriza por romper la cadena de reacción aislada del calor formando una pequeña película sobre el combustible logrando aislar del oxigeno del aire, motivo por el cual también son utilizados para extinguir fuegos de clase B.

4.2 Sistema Contra Incendios y de Enfriamiento.

Sistema Contra Incendios

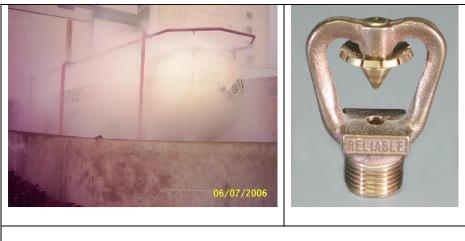
Los objetivos de poseer un sistema contra incendios en una instalación centralizada de GLP son los siguientes:

- Brindar un nivel de protección ante situaciones de incendio o explosión.
- Garantizar y evitar daños a las personas.
- Prevenir da
 ños tanto a sus instalaciones como a propiedades de terceros.

La normativa INEN 2260:2010 en cuanto al suministro de agua para el SCI señala que deben de contar con depósitos de almacenamiento que permita su funcionamiento al menos durante una hora y treinta minutos con una presión mínima de 500 kPa (72.52 psi) y un caudal mínimo de 15 metros cúbicos por hora.

En cuanto al uso de extintores para este tipo de estaciones, la misma normativa indica que deben ser de polvo químico seco, a razón de 1 kg de pqs por cada metro cúbico de volumen geométrico de capacidad de almacenamiento, teniendo como mínimo tres extintores de 9 kg cada uno o su equivalente.

Para el área de bombas y compresores debe de colocar 2.5 kg de pqs por cada metro cúbico por hora de capacidad de trasvase, con un mínimo de 50 kg distribuidos en dos extintores al menos.


En el sector de vaporizadores se debe de colocar al menos un extintor de 18 kg.

Finalmente el sistema contra incendios y los extintores se distribuyen de la siguiente manera:

- Tres extintores de pqs multipropósito portátiles de 10 kg. de capacidad cada uno en el área de tanques.
- Un extintor de pqs multipropósito de 50kg en el área del compresor
- Un extintor de pqs multipropósito de 50kg en el área de bombas
- Dos extintores de pqs multipropósito portátiles de 12 kg. de capacidad cada uno en el área de vaporizadores.
- Un gabinete contra incendios a una distancia no mayor de 6 metros al acceso directo al área de tanques.
- Toma siamesa ubicada a una distancia no mayor de 12 m del acceso directo al área de tanques

Sistema de enfriamiento.

Es un sistema de tuberías por las cuales circula agua y consta de boquillas pulverizadoras de agua (rociadores) los cuales proveen una descarga determinada del líquido sobre las áreas o equipos a proteger.

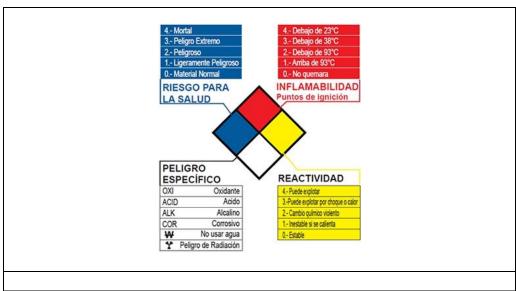
*Fuente: OSINERGMIN

FIGURA 4.1.- SISTEMA DE ENFRIAMIENTO Y ROCIADOR

En las instalaciones centralizadas de GLP se utilizan con el fin de disminuir la temperatura y presión en los depósitos de almacenamiento si llega a incidir una fuente de calor externa sobre ellos.

Las consideraciones que se deben tomar para el diseño son las siguientes:

- La superficie a enfriar debe ser la totalidad de cada depósito.
- El rociador más alejado debe de garantizar una presión dinámica mínima de 1 bar (14.5 psi) y un caudal mínimo de 0.18 m³/h (3 l/min) por m² de la superficie total de los tanques.
- La distancia máxima entre rociadores es de 2.1 m, y al igual que la separación del depósito se adecúan al tipo de rociador


seleccionado a fin de garantizar una nube de agua uniforme alrededor de la superficie del depósito.

- El accionamiento del sistema de enfriamiento del sistema puede ser manual o automático, su válvula de corte se coloca en el acceso al área de tanques.
- Su diseño debe de estar acorde a lo que indica la norma NFPA 15 "Norma para Sistemas Fijos Aspersores de Agua para Protección contra Incendios" y NFPA 13 "Norma para la Instalación de Sistema de Rociadores".

Adicionalmente se deben de instalar rótulos de seguridad en cada uno de los lados del cerramiento con los textos "Gas inflamable", "Prohibido fumar y encender fuego", además del rombo de identificación de riesgos de los materiales respecto al fuego.

FIGURA 4.2.- ROTULOS DE SEGURIDAD

*Fuente: http://www.matpel-hazmat.galeon.com/

FIGURA 4.3 IDENTIFICACIÓN DEL RIESGO DEL MATERIAL
PELIGROSO

4.3 Sistema Eléctrico de la Instalación.

Instalaciones Eléctricas

Las instalaciones eléctricas de iluminación, bombas, compresores y vaporizadores deben ser herméticas y a prueba de explosión por cuanto están ubicados en una zona altamente peligrosa. Los motores eléctricos deben de ser blindados y a prueba de explosión.

*Fuente: OSINERGMIN

FIGURA 4.4 MATERIALES Y ACCESORIOS PARA INSTALACIONES ELÉCTRICAS A PRUEBA DE EXPLOSIÓN

Los interruptores generales de los circuitos eléctricos de bombas, compresores, vaporizadores y alumbrado deben de estar centralizados en un tablero que debe ser colocado en el ingreso de la estación.

Las especificaciones eléctricas de los equipos que se requieren para diseñar la instalación:

TABLA 29
ESPECIFICACIONES ELECTRICAS DE EQUIPOS

	VAPORIZADOR Alternate WB-1005	COMPRESOR Blackmer LB361B	BOMBA Blackmer LGLD2 VB
Potencia (Hp)		15	8
Voltaje (V)	480	480	480
Frecuencia (Hz)	60	60	60
Corriente (amp)	25	14	
Conductor	3F #12 Cu AWG	3F #12 Cu AWG THHN + 1	
	THHN + 1T #10	#12 Cu AWG THHN	
	Cu AWG		

Puesta a tierra

Los depósitos, equipos y camiones cisternas durante la operación de trasvasado tienen que poseer el mismo potencial eléctrico y de esta forma evitar que se genere una chispa. Este riesgo es evitable con una correcta conexión a tierra.

La conexión a tierra de la instalación debe de ser independiente de cualquier otra existente en el lugar. Adicionalmente en la zona de descarga se debe de disponer una toma a tierra para la conexión del camión cisterna, dicha toma consiste en una barra de cobre con borne, con una resistencia máxima de 20 ohmios.

CAPÍTULO 5

5. ANÁLISIS DE COSTOS.

5.1 Cronograma de Trabajo.

Para la elaboración del cronograma de trabajo de este tipo de proyectos se deben de considerar ciertos hechos a fin de establecer un óptimo periodo de tiempo, evitando así paralizaciones innecesarias y atrasos durante su ejecución:

- Los tanques estacionarios de almacenamiento son fabricados localmente y se estiman su entrega 45 días laborables posterior a la compra.
- Las bombas, vaporizadores y compresor seleccionados son importados de Estados Unidos y se estima su entrega en 45 días laborables
- Los reguladores y filtros tipo cartucho son fabricados sobre pedido en Italia y su importación se estima en 60 días laborables.

- Tanto la tubería y accesorios de polietileno como los materiales eléctricos a prueba de explosión su importación se estima en 35 y 30 días laborables respectivamente.
- El proyecto demanda en gran parte de soldadores calificados, siendo su costo relativamente alto, motivo por el cual se deben de planificar tareas que permitan que su trabajo sea continuo, sin interrupciones.
- Como esta planta se encuentra operando y en proceso de ampliación el desarrollo de la obra puede afectar en alguna actividad, por lo cual el cronograma es susceptible a cambios y debe de reestructurarse previa coordinación con los encargados de otros trabajos que se realicen.
- El trámite para la obtención de permisos e inspecciones finales deben de realizarse 30 días antes de la culminación de la obra, y se estima un tiempo adicional en caso de que se requiera hacer un cambio sugerido durante las inspecciones.

Tomando en cuenta lo anterior se elaboró un cronograma con 111 días laborales, el mismo está estructurado en tareas que según su complejidad pueden desarrollarse simultáneamente entre ellas o de manera secuencial. El mismo inicia con la adquisición e importación de materiales, equipos, la obra civil y finaliza con la emisión de los

permisos de funcionamiento respectivos, Este cronograma se puede apreciar en el Apéndice L.

5.2 Costos de Materiales y Equipos

Los costos de materiales a utilizar se dividen en cinco grupos, cabe mencionar que no se incluye el valor de los tanques estacionarios por cuanto son entregados en comodato por la empresa comercializadora del producto, la siguiente tabla se presenta un resumen de los costos indicados.

TABLA 30.

RESUMEN DE COSTOS DE MATERIALES A UTILIZAR

DESCRIPCIÓN	CA	NT.	P/U	TOTAL
Materiales y equipos utilizados en estación centralizada de GLP.	1	Gbl.	144.427,500	144.427,500
Materiales para instalación dentro de Planta hasta puntos de Consumo.	1	Gbl.	16.715,610	16.715,610
Obra Civil.	1	Gbl.	24.372,000	24.372,000
Materiales Eléctricos Explosion Proof.	1	Gbl.	15.948,000	15.948,000
Gastos menores (soldaduras, Empaquetaduras, Soportería)	1	Gbl.	25.101,480	25.101,480
	•	•	Total USD.	226.564,590

Los costos de los equipos que se requieren adquirir se los aprecia en la siguiente tabla:

TABLA 31
COSTOS DE EQUIPOS A UTILIZAR

DESCRIPCION	CA	NT.	P/U	TOTAL
Bomba BLACKMER LGLD2-VB con Conexión de 2" 440 V	2	U.	6.500,00	13.000,000
Vaporizador ALTERNATE ENERGY SISTEMS WB 1005	2	U.	128.136.420	256.272,840
Compresor BLACKMER Mod. LB361 con Conexión de 2" 440 V Motor 5HP	2	U.	21.450.000	21.450,000
			Total USD.	290.722,840

5.3 Costos de Montaje e Instalación de Equipos, Tubería y Accesorios.

El costo del montaje e instalación hace referencia a los pagos que se deben de realizar al personal que desarrolla la ejecución de la obra (dirección técnica y mano de obra calificada), adicionalmente se considera los costos concernientes para la obtención de permisos de funcionamiento e inspecciones por parte del Cuerpo de Bomberos y ARCH, finalmente el rubro varios cubre gastos como seguros, imprevistos, transporte, etc.

El personal que ejecuta la obra está compuesto por dos grupos de trabajo distribuido de la siguiente forma:

- 1 Capataz tubero
- 1 Soldador calificado
- 1 Tubero
- 1 Esmerilador
- 1 Ayudante general
- 1 Pintor
- 1 Ayudante Pintor

En los trabajos de instalación de tubería de polietileno, obra civil y sistema eléctrico el personal es subcontratado y su costo está incluido en sus respectivos rubros. En la siguiente tabla se resumen los costos concernientes al montaje:

TABLA 32
COSTOS DE MONTAJE

DESCRIPCION	CA	NT.	TOTAL
Dirección Técnica	1	Gbl.	8.621,460
Mano de Obra Calificada	1	Gbl	77.593,110
Tasas y Trámites Ante BCBG	1	Gbl	25.864,370
Varios	1	Gbl	17.242,910
	Tota	USD	119332.550

Todos los costos en mayor detalle se encuentran en el apéndice M adjunto

5.4 Utilidad Esperada.

Las ganancias obtenidas por la compañía que realice la ejecución de este proyecto se estiman en un 25% del subtotal del precio final

TABLA 33
ANÁLISIS DE COSTOS

Descripción	% Respecto al Subtotal	Valor (USD.)
Costos de Materiales y Equipos	60%	517.287,430
Tasas y Trámites Ante BCBG	3%	25.864,370
Dirección Técnica	1%	8.621,460
Mano de Obra Calificada	9%	77.593.110
Varios	2%	17.242,910
Ganancia	25	215.536,430
Subtotal	100%	862.145,710
I.V.A.	12%	103.457,49
TOTAL	112%	965.603,20

Tal como se puede apreciar en la tabla anterior este proyecto tiene un valor de 862.145,710 dólares americanos, al incluir el 12% del impuesto al valor agregado se obtiene un valor total de 965.603,20 dólares americanos.

A continuación se muestra un diagrama con un resumen de los costos de la implementación de este proyecto:

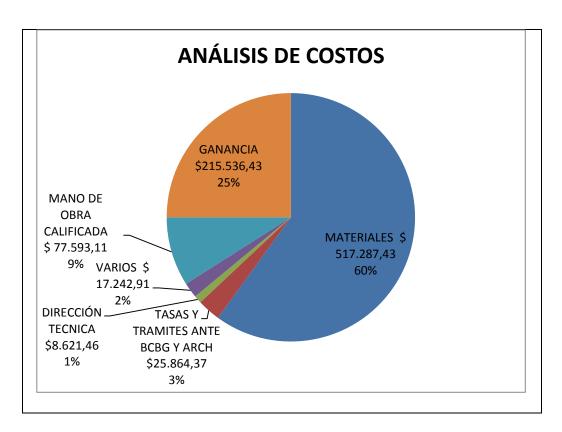


FIGURA 5.1 ANÁLISIS DE COSTOS

CAPÍTULO 6

6. CONCLUSIONES Y RECOMENDACIONES.

6.1 Conclusiones.

- La planta de producción de aceros tiene un consumo estimado de GLP de 14.143,12 kg/dia para lo cual se requiere de dos tanques estacionarios de almacenamiento con capacidad de 50 m³ que brindarán una autonomía de 2.44 días.
- La vaporización natural que ofrece estos tanques es de 95,33 kg/h, mientras que la potencia nominal requerida por los equipos es de 1.767,89 kg/h, para obtener lo requerido se necesitan de equipos de vaporización forzada llamada vaporizadores.
- Los vaporizadores seleccionados son ALTERNATE ENERGY modelo WB-1005, trabajan de manera alterna para garantizar una operación permanente, ambos poseen una capacidad de

- vaporización de 1.929 kg/h de GLP a una presión máxima de 250 psi (17.2 Bar).
- Los tanques de almacenamiento poseen una distancia de seguridad de 20 m tomando como referencia tanto la válvula de alivio como las paredes de los tanques, por lo cual dentro de este perímetro no debe de existir posibles fuentes de ignición, edificios y tráfico de personas y equipos.
- Las operaciones de trasvase de líquido y vapor de GLP entre los depósitos estacionarios y el camión cisterna se realizan con la ayuda de un compresor, el seleccionado es BLACKMER modelo LB361B el cual permite vaciar un camión cisterna de 37.8 m³ de capacidad en un tiempo de entre 1.9-2.0 horas.
- El sistema cuenta con dos trenes de regulación de presión, cada uno compuesto por dos reguladores Pietro Fiorentini, modelo Aperval con bloqueo por alta y baja presión (5.4 y 4.3 bar) y Reval 182 sin bloqueo, ambos calibrados para una descarga de 4.4 bar (63.817 Psi) y una capacidad máxima de 3350 kg/h de GLP, adicionalmente se colocan filtros tipo cartucho antes de los reguladores para evitar cualquier suciedad que los pueda averiar.

- Para prevenir la acumulación de condensados y residuos pesados que se pudiesen formar posterior a la vaporización forzada se colocan tanques decantadores con el objetivo de captar dichos residuos, estos tanques son construidos bajo la normativa ASME 2007 Sección VIII Div 1 y están dotados de válvulas de purga y orificio bridado para su limpieza, estos tanques son colocados a la salida de los vaporizadores y uno posterior a los trenes de regulación,
- Se emplean tubería de acero ASTM A53 de 1 ¼, 2 y 3 pulgadas SCH 80 para la circulación de glp líquido, 2, 3 y 6 pulgadas SCH 40 y polietileno ASTM PE 80 para GLP en estado gaseoso.

6.2 Recomendaciones

En el momento de diseñar y desarrollar este tipo de instalaciones se recomienda lo siguiente:

Tomar en cuenta los criterios tomados en la realización de este proyecto, buscar información adicional en otras fuentes de consulta para de esta manera poder desarrollar un sistema eficiente, económico y con las facilidades necesarias para realizar un mantenimiento futuro.

La factibilidad de este tipo de proyectos debe de ser consultada tanto con la empresa comercializadora del GLP en lo que respecta a la disponibilidad de suministro del combustible, como con el Cuerpo de Bomberos para la ubicación de los tanques de almacenamiento, implementación de sistema contra incendios y recorrido de tuberías en caso de que se requiera.

Seleccionar cuidadosamente los depósitos, bombas, vaporizadores, compresor y sistema de regulación de presión, por cuanto un mal criterio puede ocasionar en adquirir estos equipos con una capacidad inferior o mucho mayor a la requerida, generando problemas técnicos o económicos.

- Se debe de diseñar un sistema de enfriamiento que permita disminuir la temperatura y presión de los depósitos de almacenamiento, que generen una nube de agua uniforme en la superficie, garantizando al rociador más alejado una presión dinámica mínima de 1bar (14.5 Psi) y un caudal mínimo de 0.18 m³/h por cada m² de la superficie total de los tanques.
- Las conexiones eléctricas para los equipos y sistema de iluminación deben ser herméticas, a prueba de explosión, con

los interruptores y botoneras colocados en un tablero centralizado al ingreso de la estación.

- Las conexiones a tierra tanto de la instalación de GLP, como para la conexión del camión cisterna deberán de ser independientes a cualquier otra existente en el lugar.
- Se deben de colocar extintores contra incendio de polvo químico seco (pqs) de diversos tamaños en las zonas señaladas por la norma INEN 2260:2010, como medida de prevención ante un posible riesgo de incendio.
- Programar la ejecución de este tipo de trabajos considerando los tiempos de importación de los equipos y accesorios a utilizar debido a que en su mayoría son difíciles de encontrar de manera local.
- Revisar periódicamente el cumplimiento del cronograma de ejecución de ser posible planificando reuniones quincenales en la obra y coordinando con el cliente los trabajos que interfieran con su proceso de producción.
- Desarrollar un programa de periodicidad de mantenimiento para la instalación, de esta forma se aspira a reducir la cantidad de imprevistos y daños que se pudiesen generar, permitiendo así una operación segura.

BIBLIOGRAFÍA

- Becco Lorenzo, Ing: Los gases Licuados de Petróleo: Dirección de Marketing
 Repsol Butano (1989).
- 2) BLACKMER: Liquefied Gas Handbook. (2008).
- López Sopeña, José Emilio.: Manual de Instalaciones de GLP. CEPSA ELF GAS (2001).
- 4) Mott, Robert L.: Mecánica de Fluidos, Prentice Hall, (2005)
- National Fire Protection Asociation. NORMA NFPA 58.: Código del Gas Licuado de Petróleo (2004).
- 6) NORMA TÉCNICA ECUATORIANA INEN 2260.: Instalaciones de Gases Combustibles para Uso Residencial, Comercial e Industrial. Requisitos. Segunda Revisión (2010).
- National Fire Protection Association. NORMA NFPA 13.: Standard for the Instalation of Sprinkler Systems (1999).
- 8) NORMA TÉCNICA ECUATORIANA INEN 440.: Colores de Identificación de Tuberías.(1984).

- 9) REGO: Catálogo L.102-SV Equipos de Gas LP y Amoníaco Anhidro. (2011).
- REPSOL GAS: Manual de Formación Técnica para Instalaciones de GLP.
 (2005).

Enlaces:

- 1. www.imfluid.cl
- 2. www.matpel-hazmat.galeon.com
- 3. www.engineeringtoolbox.com/propane-butane-mix-d_1043.html

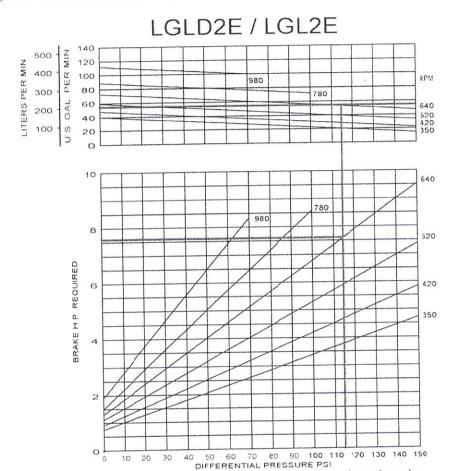
APÉNDICES

APÉNDICE A

MATRIZ DE DECISIÓN PARA SELECCIÓN DE VAPORIZADOR

País de origen:	EEUU	EEUU	COMENIANO
- Cheeves (Constant of the Constant of the Con	NOSIOG > SWEETS > COLUMN TE	Algas SDI /Hidromecánica Andina	
DIICAIIIBILI OVERUOI :	ALTERNATE ENERGY STSTEMS / TOISON	Aguavaire	
Marca de fábrica:	ALTERNATE ENERGY STOLEMS	Q 960V	
Modelo:	WB- 1000	\$ 122,188.24	
Costo:	24.061,021.4	CE TÉCNICAS DEBECIDAS	
	PRINCIPALES ESPECIFICACIONES LECINORS OF NECIDAR	ES IECNICAS OF NECEDAS	
	1005	799.4	
Capacidad Nominal	1929	1840	
u/dx		666	
Capacidad del Quemador		293	
kW		279	
Capacidad del Tanque de gal	CA4	1.056	
Agua m'	1.87	650	
The Dissipation of	nca	343	
	343	250	
psi psi	250	17.2	
	CARACTERÍSTICAS DE SEGURIDAD ESTÁNDAR	GURIDAD ESTÂNDAR	
rotección Electrónica de Segurida	Protección Electrónica de Seguridad de Honeywell serie 7800; entrada el PLC con indicador de estado	īS	
lama	en su interfase de operación, listorico de diaminas		
Quemador de Gas Combustible de baja Preción	Todo los quemadores poseen bloqueo de seguridad; monitores	No especifica	
uemador de Gas Combustible de	Quemador de Gas Combustible de Alta condetectores de fuga de gas, circuitos ESD están coneciados a las entradas del sensor seleccionado. El controlador de	No especifica	
Fresion	seguridad activa los sensores seleccionados por reles de	No especifica	
Corte de Agua de Bajo Nivel			
Límite de Alta Temperatura en Bañera	Nera salidad del PLC. Si el controlador de seguinad detecta di probleme fos malés de expansión se desactivan, de manera	71°C (160°F)	
Monitor de Fuga de Gas en Cuarto de	T	No especifica	
Monitor de Fuga de Gas en Cuarto de Control Problemas	T	No especifica	
		S	
Circuito Dual de Parada de Emergencia	receivement interior of a Transmitor de Presión y Temperatura en	Flotador activa corte de flujo cuando posee alto nivel de GLP	
Protección de Traslado de Liquido	Saida de Vapor, Válvula de Globo para Cierre Manual	lquido	
Valvula de Alivio Para Tubos Donde Vaporizan el Gas	lG Si	No especifica	
Válvula de Alivio de Tren del Quemador	mador Si	No especifica	
de Gas		a diceose on	

Valvada Sueriulo unidade de liquido valvada Sueriulo unidado unidado de salida de Vapor Sarida de Gilodo de Accionamiento Manual. Conexión de Salida de Vapor Sarida de Gilodo de Accionamiento Manual. Siemens S7.1200 PLC con Interfaz Ethemet: LCD color de accionamiento de controla de antos en tarjeta SD estandar y pueden ser mostrados en antos en tarjeta SD estandar y pueden ser mostrados en antos en tarjeta SD estandar y pueden ser mostrados en finos en tarjeta SD estandar y pueden ser mostrados en for most de Manual Monitorear y Controlar todas las Sarváco VNC permita Monitorear y Controlar todas las software de la Vaporizador i lenora imimitada incluída para el Sarváco VNC permita Monitorear y Controlar todas las software dineta VNC y puede ser instalados en múltiples software dineta VNC y puede ser instalados en múltiples software dineta VNC y puede ser instalados en múltiples software dineta VNC y puede ser instalados en múltiples software disputador de asianmento galvánico para el control de Disputador de asianmento galvánico para el control de Disputador de asianmento galvánico para el control de Disputador de Calor para el Calor para GLE disponible (Jercera revisión por TÚV Rheinland / TÚV Pannel de Control en anoma Para por el Calor para para para para para para para pa	Valkuda Suleriouto Unicada 210 pp. Valkuda Gilobo de Accionamiento Manuell. Barda ANSI RF Clase 300 goz "GRIDA DIN DN 80 PN 40) Barda ANSI RF Clase 300 goz "GRIDA DIN DN 80 PN 40) Barda ANSI RF Clase 300 goz "GRIDA DIN DN 80 PN 40) Barchardo Roberto Con Interfaz Elhennet; 50 horas resolución pantalla táctil (800x460); Interfaz Elhennet; 50 horas de grabación. Los atos e información son guardados por dos aldos en tarjeta SD estándar y pueden ser mostrados en formatio Marcosaf Escole. El acceso remoto construido en el servidor VNC permite Monitorear y Controlar todas las servidor VNC permite Monitorear y Controlar todas las software cilente VNC y puede ser insialados en múltiples sociales o PCs. 380/400/480 VAC 50/6044; Circuito 20A, 3 Fases; transformador de alsiamiento galvánico para el control de haraconscria incluída da	No especifica No especifica	
9 00 64 # 500 F # 9 P P P P P P P P P P P P P P P P P P	97 (BRIDA DIN DN 80 PN 40) Interfaz Ethernet, LCD color de alta 0x480); interfaz Ethernet; 95 horas solor); interfaz Ethernet; 95 horas formación son quardados por dos y pueden sor mostrados en acceso remolo constitudo en el acceso remolo constitudo en el tencia iltritada incluida para el te ser instalados en múltiples Circuito 20A. 3 Fases; to galvánico para el control de	No especifica No especifica	
Otras a GLP	Interfaz Ethernet, LCD cofor de alta Rox40); Interfaz Ethernet; 96 horas formación son guardados por dos y pueden ser motistrados en acceso remoto construido en el corea y Controler todas las ticencia limitada incluida para el la ser instalados en multiples Circuito 20A, 3 Fases; circuito 20A, 3 Fases; ci galvánico para el control de	No especifica	
a,6 g d0 0	Circuito 20A, 3 Fases; to galvánico para el control de	Manage in the A Manage in	
r para GLP		120 VAC 50/60 Hz, circuita 13:3 A monorasivo	
or para GLP	Disyuntores automáticos con reposición manual para todos los	No especifica	
dor de Calor para GLP	CRITERIOS DE DISEÑO	E DISEÑO	
dor de Calor para GLP ntrol		Cumple con los requisitos de diseño de la norma NFPA 58	A.E.S ofrece Estampa ASME a praticion del cliente
	-	El intercambiador de calor de GLP está diseñado y constitudo para cumplir con el Código de Recipientes a Presión ASME, Sección VIII, División 1.	
IAMCADIES.	PEU. Cabileado de uso general que cumple con el Código Eléctrico Alacional (NEC. NFPA # 70). UL-508A disponible. Estampa CE. en vaporizadores cumple con las Directivas Europeas	Todos los cables, controles, componentes eféctricos. y su instalación cumplen con las normas reconocidas definidas en la norma NFPA 58 y 70	
2000 00 (0000 30 00 10 10 10 10 10 10 10 10 10 10 10 10	CONSTRUCCIÓN MECÁNICA	N MECÁNICA	
Patin policy contraveshos: Description of Bylición.	to en la placa de 0 mm) Marco de	Cáncamos previstos para facilitar su instalación en el campo.	
1/4-inch (6,35 mm) totalmer refuerzos intemos y apoyos	1/4-inch (6,35 mm) totalmente soldada paredes de acero con refuerzos intemos y apoyos para intercambiador de calor de Ci p	Posee indicador visual de nivel	
Sumergible-lipo Cartucho p Sumergible-lipo Cartucho p Bomba de circulación de agua instalado en el interior de la	Sumergible-lipo Cartucho para Circulación de Agua Callente instalado en el interior de la sala de control del Vaportzador.	Bomba de agua de circulación estandar en todos los modenos par estratificación térmica y aumentar la eficiencia del vaporizador.	
	Difusor en banera. Asiamiento de fibra mineral con respaldo de alumínio en las paredes laterales, placa superior y pared trasera.	Carcasa con recibimiento a base de polvo para mayor durabilidad, bañera completamente aislada para mayor eficiencia.	
Revestimiento: calibre 16 (revestida en polvo - gns (Revestimiento) en polos (Revestiga en	Revestimiento: calibre 16 (1,5 mm) Paneles de chapa metálica, revestida en polvo - gris (RAL 9002); Cubierta Superior: Placa portuga de alumínio.	No especifica	
Chapa metalica calibret 2 Sala de Control	Controgram entálica cambre 12 (2.7 mm) de chapa metálica: Consequent a vintadas azul (RAL 1015) puerta bloqueable	No especifica	
pulg.	78 x 164 x 112	39 × 78 1/4 × /8 1/4 0.991 × 1.988 × 1.988	


umplir con las normas de la ASME y de le norma NFPA \$6 liter técnico que cha de equipos a de por lo menos dos a de por lo menos dos tecnicos de planta namiento de equipo sin pos, diagramas transporte local de los transporte local de los		8000 (3700)	2900 (1.315)	
rados Si fono	Peso de Envio		RVICIOS ADICIONALES	
Hos Si	de fabricación de la ASME y de	mas	NO.	
Si Si Si Si	roveedor facilitară têcnico que upervisară tanto la instalación o mesta en marcha de equipos	ош	55	
Si Si Si	Sarantía técnica de por lo menos sãos		Ϊ́σ	
tronicos, diagramas Si iranicos and a los Si iransporte local de los Si meses 3 meses	Sapacitación a tecnicos de plant sobre el funcionamiento de equi		Θ	
Si 3 meses	lanos de equipos, diagramas	io.	iS	
3 meses	plectricos, electronicos.		ON	
	equipos	3 meses	4 meses	

APENDICE B

CURVAS CARACTERÍSTICAS BOMBA BLACKMER LGLD2E

CHARACTERISTIC CURVES

LG, LGL and TLGL Series Pumps

NOTE: Blackmer Characteristic Curves are based on Brake Horsepower (BHp). To determine Motor Horsepower, drive train inefficiencies must be added to the BHp.

40

30

10

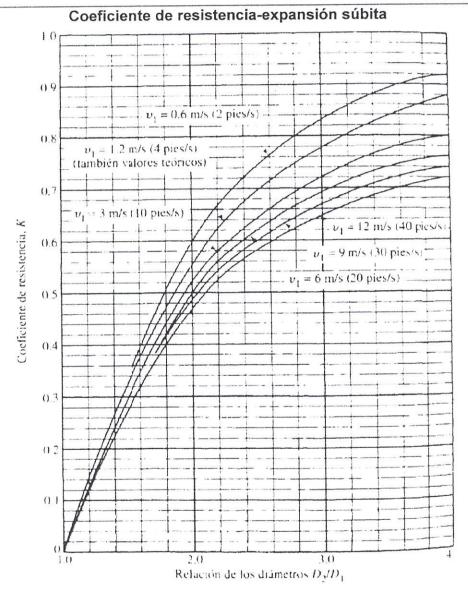
50 60

BAR

70

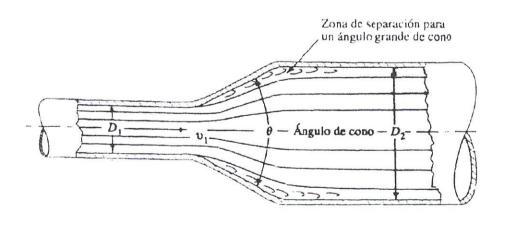
80

90

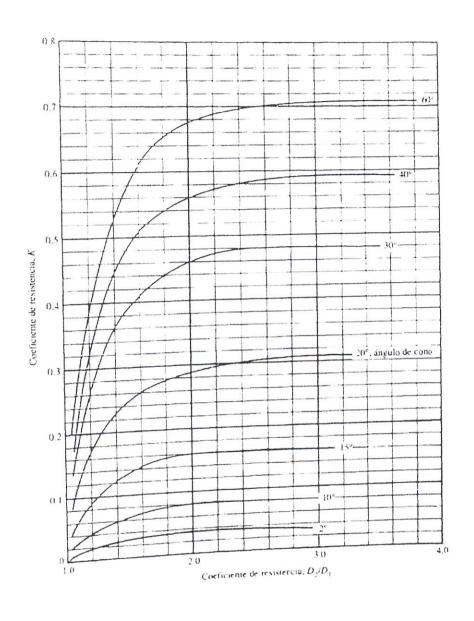

These curves are based on approximate delivery rates when handling propane or anhydrous ammonia at $80^{\circ}F$ ($26.7^{\circ}C$). Line restrictions such as excess flow valves, elbows, etc., will adversely effect deliveries. For propane at $32^{\circ}F$ ($0^{\circ}C$), actual delivery will be further reduced to about $80^{\circ}c$ frominal. Delivery of butane at $80^{\circ}F$: $26.7^{\circ}C$) will be 60 to $70^{\circ}c$ of these values, and may run as low as 35 to $45^{\circ}c$ at $32^{\circ}F$: $10^{\circ}C$). This loss of delivery is not a pump characteristic but is caused by natural thermodynamic phenomena of liquefied gases

APENDICE C COEFICIENTES DE RESISTENCIA PARA VÁVULAS Y DEMÁS ACCESORIOS

	válvulas y acoplamientos*
Tipo	Longitud equivalente en diámetros de tubería Leq/D
Válvula de globo - abierta por completo	340
Válvula de ángulo - abierta por completo	150
Válvula de compuerta - abierta por completo	8
Válvula de compuerta - 3/4 abierta	35
Válvula de compuerta - 1/2 abierta	160
Válvula de compuerta - 1/4 abierta	900
Válvula de verificación -tipo giratorio	100
Válvula de verificación - tipo bola	150
Válcula de mariposa - abierta por completo, 2 a 8 pulg.	45
Válvula de mariposa - 10 a 14 pulg.	35
Válvula de mariposa - 16 a 24 pulg.	25
Válvula de pie - tipo disco de vástago	420
Válvula de pie - tipo disco de bisagra	75
Codo estándar a 90°	30
Codo a 90° de radio largo	20
Codo roscado a 90°	50
Codo estándar a 45°	16
Codo roscado a 45°	26
Vuelta cerrada en retorno	50
Te estándar - con flujo directo	20
Te estándar - con flujo en el ramal	60
*Fuente: Crane Valves, Signal Hill, CA.	



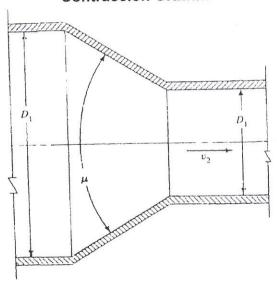
Coeficiente de Resistencia-expansión súbita


			Velocio	lad c _l			
ρ_2/ρ_1	0.6 m/s 2 pies/s	1.2 m/s 4 pies/s	3 m/s 10 ples/s	4.5 m/s 15 ples/s	6 m/s 20 ples/s	9 m/s 30 pies/s	12 m/s 40 pies/s
1.0	0.0	0.0	0.0	(),()	(1,0)	0.0	0.0
1.2	0.11	() 1()	0.09	0.09	0.09	0.09	0.08
1.4	0.26	0.25	0.23	0.22	0.22	0.21	0.20
1.6	0.40	8.6.0	0.35	0.34	0.33	0.32	0.32
1.8	0.51	0.48	0.45	0.43	0.42	0.41	().4()
2.0	0.60	0.56	0.52	0.51	0.50	0.48	() 47
2.5	0.74	0.70	0.65	0.63	0.62	0.60	0.58
3.0	0.83	0.78	0.73	0.70	0.69	0.67	0.65
4.0	0.92	0.87	0.80	0.78	0.76	0.74	0.72
5.0	0.96	0.91	0.84	0.82	0.80	0.77	0.75
10.0	1.00	0.96	0.89	0.86	0.84	0.82	0.80
2	1.00	0.98	0.91	0.88	0.86	0.83	0.81

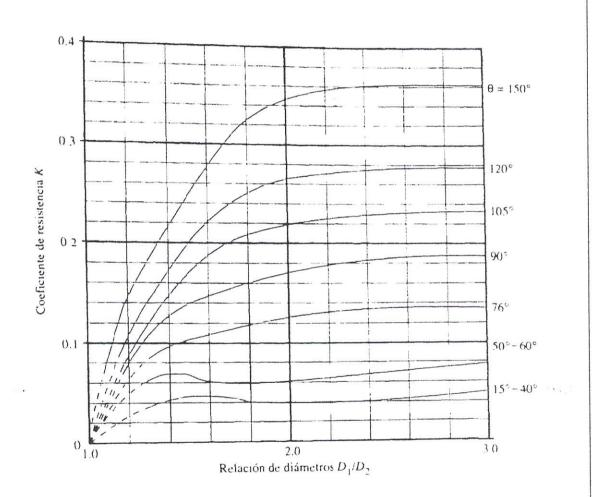
Fuente: King, H. W. y E. F. Brater, 1963. Handbook of Hydraulies, 5a. ed., Nueva York: McGraw-Hill, tabla 6-7.

Expansión Gradual

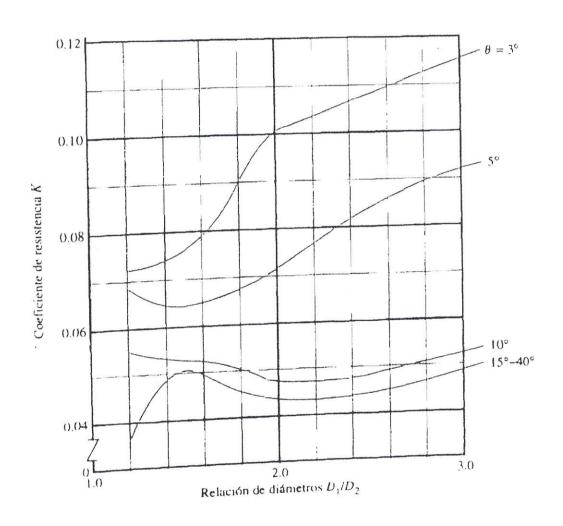
Coeficiente de resistencia – expansión gradual



Coeficiente de resistencia – expansión gradual


						Ángulo d	el cono #					
D_2/D_1	2	6	10"	15"	20	25°	30°	35°	4 0°	45°	50"	60
1.1	0.01	0.01	0.03	0.05	0.10	0.13	0.16	0.18	0.19	0.20	0.21	0.23
1.2	0.02	0.02	0.04	0.09	0.16	0.21	0.25	0.29	0.31	0.33	0.35	0.37
1.4	0.02	0.03	0.06	0.12	0.23	0.30	0.36	0.41	0.44	0.47	0.50	0.53
1.6	0.03	0.04	0.07	0.14	0.26	0.35	0.42	0.47	0.51	0.54	0.57	0.61
1.8	0.03	0.04	0.07	0.15	0.28	0.37	().44	0.50.	0.54	0.58	0.61	0.65
2.0	0.03	0.04	0.07	0.16	0.29	0.38	0.46	0.52	0.56	0,60	0.63	0.68
2.5	0.03	0.04	0.08	0.16	0.30	0.39	0.48	0.54	0.58	0.62	0.65	0.70
4,0	0.03	0.1)4	80.0	0.16	0.31	0.40	0.48	0.55	0.59	0.63	0.66	0.71
y.	0.03	0.05	0.08	0.16	0.31	0.40	().49	0.56	0.60	0.64	0.67	0.72

Fuente: King, H.W., y E. F. Brater. 1963. Handbook of Hydraulicv, 5a, ed., Nueva York: McGraw-Hill, tabla 6-8.


Contracción Gradual

Coeficiente de resistencia – contracción gradual con $\theta \geq 15$

Coeficiente de resistencia – contracción gradual con $\theta < 15$

APENDICE D

PERDIDAS DE PRESIÓN TUBERÍA DE ALIMENTACIÓN A VAPORIZADORES

	215.77	l/min
Caudal Q:	0.0036	m³/s
Gravedad g :	9.81	m/s²
Densidad ρ:	530	kg/m³
Viscosidad Dinámica μ:	0.00015	(kg/(m*s))

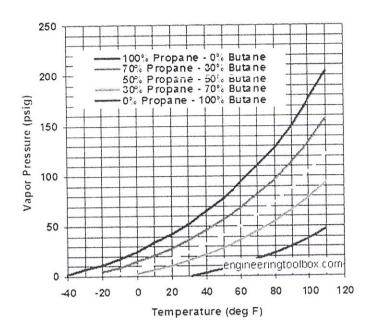
Rugosidad E (m)	4.6*10^(-5
-----------------	------------

		V. November 1980		Cálculo	s hidraulicos	en la tubería d	de succión					
_ , , , , ,	Cantidad	Øi (m)	Area (m²)	v (m/s)	Re	Ø/E	f	Le/D	k	hl (m)	hl Total	hf
Descripción			0.004301	0.836155	213363.59	1608.69565	0.017547					0.1962879
rubería (m) Ø3"	23.23	0.074			213363.59	1608.69565	0.017547	60	1.0528175	0.0375169	0.1500677	0
Tee 3" Sch 80 Ramificada	4	0.074	0.004301				0.017547	30	0.5264088	0.0187585	0.0375169	0
Codo 3" sch 80	2	0.074	0.004301	0.836155	213363.59	1608.69565	0.017547	30	0.3204088	0.0107303	0.0373203	
Válvula de Globo 3"										0.2425050	0.6377878	0
completamente abierta	3	0.074	0.004301	0.836155	213363.59	1608.69565	0.017547	340	5.965966	0.2125959	0.6377676	
Reducción (Contracción									1			
gradual excentrica) Ø 3" @		0.074	0.004301	0.836155	213363.59	1608.69565	0.017547		0.2	0.007127	0.007127	0
2"	1				213363.59	1608,69565	0.017547		1	0.0356348	0.0356348	0
Contracción Tanque-Tubería	1	0.074	0.004301	0.836155	213363.33	1008.05505	0.017547				hsl	1.064422
= 1 / / \dan	2.216	0.049	0.001886	1.907031	322222.56	1065.21739	0.0193376					0.1621038
Tubería (m) Ø2"	2.210			1.907031	322222.56	1065.21739	0.0193376	100	1.9337615	0.3584426	0.3584426	
Válvula de retención	1 1	0.049	0.001886	1.50/051	JEEEEE.SO	2000.22700						0.5205464
							F		TOTAL PER	DIDA EN LA	SUCCIÓN(m)	1.5849685

			Cále	culos hidrau	licos en la tu	bería de desc	arga Vaporiza	dor 1				
- 1 1/-	Cantidad	Øi (m)	Area (m²)		Re	Ø/E	f	Le/D	k	hi (m)	hl Total	hf
Descripción		0.049	0.001886		322222.56	1065,21739	0.0193376					0.2746841
Tubería 2"sch 80 (m)	3.755				322222.56	1065.21739	0.0193376	30	0.5801284	0.1075328	0.2150656	
Codo 2" sch 80	2	0.049	0.001886	1.907031	322222.30	1003.21733	0.0133370					
Válvula de Globo 2"			0.001000	1 007031	322222.56	1065.21739	0.0193376	340	6.5747891	1.2187049	2.4374097	
completamente abierta	2	0.049	0.001886	1.907031	322222.30	1003.21733	0.0133370					
Reducción (expansión			0.004204	0.036155	213363.59	1608.69565	0.017547		0.56	0.0199555	0.0199555	
gradual) Ø 3"@ 2"	1	0.074	0.004301	0.836155	213303.33	1000.05505	0,027011					
Reducción (Contracción					242262 50	1608.69565	0.017547		0.2	0.007127	0.007127	
gradual) Ø 3" @ 2"	1	0.074		0.836155	213363.59		0.017547		0.2			0.0878775
Tubería 3" sch 80 (m)	10.4	0.074	0.004301	0.836155	213363.59	1608.69565			0.5354000	0.0187585	0.0375169	
Codo 3" sch 80	2	0.074	0.004301	0.836155	213363.59	1608.69565		30	0.5264088			
Tee 3" sch 80 Lineal	1	0.074	0.004301	0.836155	213363.59	1608.69565	0.017547	20	0.3509392		0.0125056	
		0.074		0.836155	213363.59	1608.69565	0.017547	60	1.0528175	0.0375169	0.0750339	
Tee 3" sch 80 Ramificada		0.074	0.004303	0.030133								
Válvula de Globo 3"		0.074	0.004301	0.836155	213363 59	1608.69565	0.017547	340	5.965966	0.2125959	0.2125959	
completamente abierta	1	0.074	0.004303	L 0.030133	22303.33				TOTAL PERD	IDA EN LA DE	SCARGA(m)	3.3797716

			Cále	rulos hidrau	ilicos en la tu	bería de desc	arga Vaporia	ador 2				
	10 111-1	di ()	Area (m²)	T	Re	Ø/E	f	Le/D	k	hl (m)	hl Total	hf
Descripción	Cantidad					1065.21739	0.0193376					0.2157971
Tubería 2"sch 80 (m)	2.95	0.049	0.001886		322222.56				0.5801284	0.1075328	0.2150656	
Codo 2" sch 80	2	0.049	0.001886	1.907031	322222.56	1065.21739	0.0193376	30	0.3801284	0.1075520	0.220000	
Válvula de Globo 2"			0.004.000	1 007031	322222.56	1065.21739	0.0193376	340	6.5747891	1.2187049	2.4374097	
completamente abierta	2	0.049	0.001886	1.907031	322222.30	1005.21755	0.0155576					
Reducción (expansión				0.036155	213363.59	1608.69565	0.017547		0.56	0.0199555	0.0199555	
gradual) Ø 3"@ 2"	1	0.074	0.004301	0.836155	213303.33	1008.03303	0,017517					
Reducción (Contracción				0.036155	213363.59	1608.69565	0.017547	,	0.2	0.007127	0.007127	
gradual) Ø 3" @ 2"	1	0.074	0.004301				0.017547					0.0612607
Tubería 3" sch 80 (m)	7.25	0.074		0.836155	213363.59				0.5264088	0.0187585	0.0375169	
Codo 3" sch 80	2	0.074	0.004301	0.836155	213363.59	1608.69565	0.017547					
	2	0.074	0.004301	0.836155	213363.59	1608.69565	0.017547	20		0.0125056	0.0250113	
Tee 3" sch 80 Lineal	- 2		0.004301		213363.59	1608.69565	0.017547	60	1.0528175	0.0375169	0.0750339	
Tee 3" sch 80 Ramificada	2	0.074	0.004303	0.630133	213303.33	2000,000						
Válvula de Globo 3"		0.074	0.004303	0.036155	212263 59	1608.69565	0.017547	340	5.965966	0.2125959	0.2125959	
completamente abierta	1	0.074	0.004301	0.836155	213303.33	1000.05505	0.000.0	1	TOTAL PERD	DA EN LA DE	SCARGA (m)	3.3067735

APENDICE E


TABLA DE PRESIÓN DE EVAPORACIÓN MEZCLA PROPANO – BUTANO*

Vapor	Pressure	(psig)
-------	----------	--------

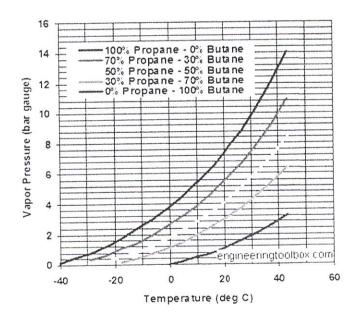

ture	Propane (C₃H ₈) (%)	100	70	50	30	0
Mix	Butane (C ₄ H ₁₀) (%)	0	30	50	70	100
	-44	0	0	0	0	0
	-30	6.8	0	0	0	0
	-20	11.5	4.7	0	0	0
	-10	17.5	9	3.5	0	0
	0	24.5	15	7.6	2.3	0
	10	34	20.5	12.3	5.9	0
<u>(</u>	20	42	28	17.8	10.2	0
Temperature (°F)	30	53	36.5	24.5	15.4	0
mpera	40	65	46	32.4	21.5	3.1
Te	50	78	56	41	28.5	6.9
	60	93	68	50	36.5	11.5
	70	110	82	61	45	17
	80	128	96	74	54	23
	90	150	114	88	66	30
	100	177	134	104	79	38
	110	204	158	122	93	47

Diagrama Mezclas de Vapor Propano y Butano – Psig*

Diagrama Mezclas de Vapor Propano Butano – bar*

*Enlace: http://www.engineeringtoolbox.com/propane-butane-mix-d_1043.html

APENDICE F

PERDIDAS DE PRESIÓN TUBERÍA DE RETORNO DE LÍQUIDO

Rugosidad E (m) |4.6*10^(-5)

	216 I/min
Caudal Q:	0.0036 m³/s
Gravedad g:	9.81 m/s²
Densidad p:	530 kg/m³
Viscosidad Dinámica µ:	0.00015 (kg/(m*s))

				ch	o bideaulicae	de la tuboría de	stirción					
				Calculo	Calculos nigradilicos en la tubella de succion	וו ומ נחחבו ומ חי	Saccion			1	1.1 7.4.4	77
	Contidad	di (m)	Area (m2) v (m/s)	(s/m)	Re	3/Ø	4 -	Le/D	¥	hi (m)	ni lotai	Ē
-	Califican	ī	1 20000	174202	415040 410 826 086957		0.0205821	26.315789				0.2781626
Tubería (m) Ø 1 1/2 SCH 80"	-	0.038	0.001134 3.1/4262	2.1/4282	413340.410		-		00000000	0 24 74 OF A	7017107	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	0.038	0.001134 3.174282	3.174282	415940.410	415940,410 826,086957 0.0205821	0.0205821	30	30 0.61/4639	0.31/1054	0.0342107	
C000 1 1/2 SCH 00	7	2000										
Reducción (expansión	,	0.038	0.001134 3.174282	3.174282	415940.410	415940.410 826.086957 0.0205821	0.0205821		0.45	0.2311024 0.2311024	0.2311024	
pradual) Ø 1 1/2"@ 2"	4		- 11									
Reducción (contracción	-	0.049	0.001886 1.909064	1.909064	322566.032	322566.032 1065.21739 0.0193376	0.0193376		0.16	0.0297209 0.0297209	0.0297209	
pradual) Ø 2"@ 11/2"	₹	;										1 2701076
100100001	10.8	0 0 0	0.001886 1.909064	1.909064	322566.032	322566.032 1065.21739 0.0193376 383.67347	0.0193376	383.67347				1.3/01020
Tuberia (m) Ø 2 SCH 80	10.0	0.0	-	* 00000		37550 0 03710 200 200 200 200	0.0193376	30	30 0.5801284 0.1077621	0.1077621	0.5388107	
Codo 2" sch 80	2	0.049	0.001886 1.909064	1.909064	- 1	1003.21733	0.000000	0 0	0000	2727777	0.00000	
Too 7" Crh 80 Ramificada	4	0.049	0.001886 1.909064	1.909064	322566.032	322566.032 1065.21739 0.0193376	0.0193376	09	1.1602569	0.2155245	0.0020372	
ובב ל סכון פס וימוווויבממס											2007611	
Válvula de Globo 2"	^	0.049	0.001886 1.909064	1.909064		322566.032 1065.21739 0.0193376	0.0193376	340	6.5747888	6.5747888 1.2213044 2.4425087	7.4426087	
completamente ahierta	1										0 40 7 7 7 7 7	
בסוווקובים וובוויב מסובו גם		0.00	1	1 00000	2 2222 1 200064 227566 037 1065 21739	1065 21739	0.0193376		-	1 0.1857557 0.185/557	0.185/55/	
Expansión Tubería-Tanque	1	0.049	_	T.303004	324300.034	2003:5001		TOTAL DE	TOTAL DEPOIDS EN TUBERÍA Y ACCESORIOS (m)	BERÍA Y ACCE	SORIOS (m)	6.5806516
								2 2 2 2				

APÉNDICE G

DIMENSIONAMIENTO TUBERÍA DE ALIMENTACIÓN A TANQUES OPCIÓN TUBERÍA DE 2"

 37.736 CAUDAL Q DE m³/min U.314		120 LLENADO DE MT/S COUSZALL				
37.736		120	530	9.81	0.00015	4.6E-05
m3		min	kg/m³	m/s²	kg/(m*s) 0.00015	ш
TANOLIE CICTEDNA	ACIDAD I ANGOE CISTENIA	TIEMPO DE LLENADO DE 1 TANQUE CAP 50 m min	DENSIDAD GLP ESTADO LIQUIDO		DINAMICA	RUGOSIDAD DEL ACERO

								-			
DESCRIPCION	CANT.	MOM Ø	Ø NOM AREA S.T.	VEL. (m/s)	REYNOLDS RE	3/ø	COEFICIENTE FRICCION f	Le/Ø (m)	×	HL (m)	
	,	7200	0.0000	1 210	318 679 856	1608.6957	0.0189250	16.216	,	0.023	0.023
TUBERÍA Ø 3" SCH 80 (m)	1.2	0.074	0.0045	2770	481 196 108	1065.2174	0.0201085		0.560	0.220	0.220
REDUCCION (EXPANSION GRADUAL) Ø 3" @ 2"	7 -	0.049		1 219	318 679.856	1608.6957	0.0189250	30.000	0.568	0.043	0.043
CODO Ø 3"	1 6	1 70.0		1 219	318 629.856	1608.6957	0.0189250	340.000	6.434	0.487	0.487
VÁLVULA DE GLOBO Ø 3" COMPLET. ABIEKTA	7	0.074		1.4.10	340 630 96	1608 6957	0.0189250		0.860	0.065	0.065
EXPANSIÓN SÚBITA Ø 3" @ TANQUE	1	0.074	0.0043	1.219	310,023.00	1000.000	201010				
							- 1			4 010	1 050
	115	0.049	0.0019	2.779	481,196.108	1065.2174	0.0201085	234.694		1.656	1.000
TUBERIA Ø 2" SCH 8U (m)	1			2779	481 196.108	1065.2174	0.0201085	100.000	2.011	0.792	0.792
FILTRO TIPO Y Ø 2"	7	0.049		0.1.2	404 406 400	1065 2174	1	100.000	2.011	0.792	0.792
VISOR Ø 2"	1	0.049	0.0019	6///7	461,130,100	TOOO. 27.	1	00000	0,603	0.238	0.475
1 2 3000	2	0.049	0.0019	2.779	481,196.108	1065.2174	0.0201085	30.000	0.003	0.230	
C000 Ø 7	1 4			2 779	481.196.108	1065.2174	0.0201085	60.000	1.207	0.475	1.900
TEE Ø 2" RAMIFICADA	4			077.0		1065 2174		340.000	6.837	2.692	10.767
VÁLVULA DE GLOBO Ø 2" COMPLET. ABIERTA	4	0.049	0.0019	61113						TOTAL (m)	17.423
										kPa	90.585
										Psi	13.1383

APÉNDICE G

DIMENSIONAMIENTO TUBERÍA DE ALIMENTACIÓN A TANQUES OPCIÓN TUBERÍA DE 3"

S RE 856 16 108 10 856 16 856 16 9.86 16 856 16 856 16 856 16 856 16	CAPACIDAD TANQUE CISTERNA	m³	37.736	37.736 CAUDAL Q DE	DE	m³/min	0.3145					
12.4 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 1.892 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 0.0560 0.0240 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 0.0560 0.0240 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 0.0560 0.0052 0.0043 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 0.0560 0.0055 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 0.0560 0.0055 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 1.892 0.143 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 1.892 0.143 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 1.892 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.048 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048 0.048 0.0014 0.0043 1.219 318,629.856 1608.6957 0.0189 300.000 0.568 0.048	DE 1 TANQUE CAP 50 m	min	120	LLENADO D	ш	m³/s	0.0052					
m	יס רומחוםס	kg/m³	530									
Kg/(m*s)		m/s ₂	9.81									
March Marc	СА µ		0.00015									
CANT. φ NOM AREA S.T. VEL. REYNOLDS RE φ/E FRICCION f (m) K HL (m) 12.4 0.074 0.0043 1.219 318,629,856 1608.6957 0.0189 167.568 - 0.240 1 0.044 0.0043 1.219 318,629,856 1608.6957 0.0189 30.000 0.560 0.220 1 0.044 0.0043 1.219 318,629,856 1608.6957 0.0189 340.000 0.560 0.020 3 0.074 0.0043 1.219 318,629,856 1608.6957 0.0189 340.000 0.586 0.065 1 0.074 0.0043 1.219 318,629,856 1608.6957 0.0189 30.000 0.860 0.048 0.3 0.043 1.219 318,629,856 1608.6957 0.0189 100.000 1.892 0.143 1 0.074 0.0043 1.219 318,629,856 1608.6957 0.0189 100.000<	RO	ш	4.6E-05									
CANT. \$\phi\$ NOM AREA S.T. \$\mu{E}\$ (m)\$												
12.4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 167.568 - 0.240 1 0.049 0.00143 1.219 318,629.856 1608.6957 0.0189 167.568 - 0.240 1 0.049 0.00143 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 3 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 1 0.074 0.0043 1.219 318,629.86 1608.6957 0.0189 340.000 6.434 0.487 0.3 0.074 0.0043 1.219 318,629.86 1608.6957 0.0189 340.000 0.860 0.048 0.3 0.044 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892	RIPCION	CANT.	MON Ø	AREA S.T.	VEL.	REYNOLDS RE	3/ø	COEFICIENTE FRICCION É	Le/Ø (m)	¥	HL (m)	
12.4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 167.568 - 0.240 1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 0.0560 0.560 0.220 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 1 0.074 0.0043 1.219 318,629.86 1608.6957 0.0189 340.000 6.834 0.487 0.3 0.044 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 2 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892			E)	(III)	(111/5)							
1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 0.0560 0.0500 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 0.3 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 0.860 0.048 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 2 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 </td <td>(m)</td> <td>12.4</td> <td></td> <td></td> <td>1.219</td> <td>318,629.856</td> <td>1608.6957</td> <td>0.0189</td> <td>167.568</td> <td>-</td> <td>0.240</td> <td>0.240</td>	(m)	12.4			1.219	318,629.856	1608.6957	0.0189	167.568	-	0.240	0.240
1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 3 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 0.3 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.00 1.892 0.048 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.00 1.892 0.043 2 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.00 1.892 0.043 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.35 <t< td=""><td>ON GRADUALIO 3" @ 2</td><td></td><td></td><td></td><td>2.779</td><td>481,196.108</td><td>1065.2174</td><td>0.0201</td><td></td><td>0.560</td><td>0.220</td><td>0.220</td></t<>	ON GRADUALIO 3" @ 2				2.779	481,196.108	1065.2174	0.0201		0.560	0.220	0.220
ABIERTA 3 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 340.000 6.434 0.487 0.0 1 0.074 0.0043 1.219 318,629.85 1608.6957 0.0189 0.0860 0.086 0.3 0.04 0.0043 1.219 318,629.856 1608.6957 0.0189 1.00.00 1.892 0.048 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 2 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 ABIERTA 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.335 0.086 ABIERTA 1 0.049 0.0019 2.779 481,196.108 1065.2174			0.074		1.219	318,629.856	1608.6957	0.0189	30.000	0.568	0.043	0.043
1 0.074 0.0043 1.219 318,629.86 1608.6957 0.0189 0.0850 0.065 0.3 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 6.122 - 0.048 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 2 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 ABIERTA 1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692 ABIERTA 1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 <	1 3" COMPLET ARIFRTA	3	0.074		1.219	318,629.856	1608.6957	0.0189	340.000	6.434	0.487	1.461
0.3 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 6.122 - 0.048 1 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 2 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 4 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 ABIERTA 1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692 ABIERTA 1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692	3" @ TANQUE	1			1.219	318,629.86	1608.6957	0.0189		0.860	0.065	0.065
m) 0.3 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 6.122 0.048 0.043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 0.143 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 0.143 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 0.086 0.143 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 0.143 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 0.143 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 0.143 0.0019 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692 0.143 0.14												
7. COMPLET. ABIERTA 1 0.049 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 0.143 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 0.143 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 0.086 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 0.086 0.0074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 0.086 0.0074 0.0043 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692 0.086 0.0074 0.0043 0.0019 0.00	(m)	0.3			2.779	481,196.108	1065.2174	0.0201	6.122		0.048	0.048
2" COMPLET. ABIERTA 1 0.0043 1.219 318,629.856 1608.6957 0.0189 100.000 1.892 0.143 0.143 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043 0.074 0.0043 1.219 318,629.856 1608.6957 0.0189 60.000 1.135 0.086 0.086 0.074 0.0049 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692 0.074 0.0049 0.0019 0	(111)		L		1.219	318,629.856	1608.6957	0.0189	100.000	1.892	0.143	0.143
2" COMPLET. ABIERTA 1 0.043 1.219 318,629.856 1608.6957 0.0189 30.000 0.568 0.043			L		1.219	318,629.856	1608.6957	0.0189	100.000	1.892	0.143	0.143
2" COMPLET. ABIERTA 1 0.049 0.0019 2.779 481,196.108 165.2174 0.0201 340.000 6.837 2.692		1			1.219	318,629.856	1608.6957	0.0189	30.000	0.568	0.043	0.086
2" COMPLET. ABIERTA 1 0.049 0.0019 2.779 481,196.108 1065.2174 0.0201 340.000 6.837 2.692 TOTAL (m) PPa 2 PP		4			1.219	318,629.856	1608.6957	0.0189	60.000	1.135	0.086	0.344
KPa 7	A 2" COMPLET ARIERTA				2.779	481,196.108	1065.2174	0.0201	340.000	6.837	2.692	2.692
2	ב כסואון נבו: שמבונוט										TOTAL (m)	5.486
											kPa	28.524
											Psi	4.137

APÉNDICE H

DIMENSIONAMIENTO TUBERÍA DE RETORNO DE VAPORES DE GLP

CAPACIDAD TANOUE CISTERNA	m ₃	37.736 CAUDAL Q DE	DE	m³/min	0.3145
TIEMPO DE LLENADO DE 1 TANQUE CAP 50 m³	min	120 LLENADO DE	JE J	m³/s	0.0052
DENSIDAD GLP ESTADO LIQUIDO	kg/m³	530 ACTOR DE SEGURIDA	SEGURIDA	1.	3
DENSIDAD GLP ESTADO GASEOSO	kg/m³	2.09 TASA DE TRANSFER.	RANSFER.	m³/min	0.4088
GRAVEDAD	m/s ₂	9.81 PARA LÍQUIDO	OGII	m³/s	0.0068
VISCOSIDAD DINAMICA ESTADO. LIQUIDO µ	kg/(m*s	0.00015 VISCOSIDAD	0	ka/(m*s)	8 378F-06
RUGOSIDAD DEL ACERO	٤	0.000046 DINAM. ESTADO	TADO	/6 III) /9v	201000
RUGOSIDAD DEMANGUERA SINTETICA	٤	1.5E-06			

		TRA	мо сомр	RESOR - CA	TRAMO COMPRESOR - CAMIÓN CISTERNA	₫					
NOIDAIRDEAC	CANT.	MON Ø	AREA S.T.	VEL.	REYNOLDS RE		COEFICIENTE				
		(E)	(m)	(m/s)		3/ø	FRICCION f	Le/Ø (m)	×	Hr (m)	
TIBEBÍA Ø 2" SCH 40 (m)	3	0.053	0.0022	3.088	41,077.748	1152.17391	0.0245	56.604	•	0.674	0.674
PEDITICION (CONTRACCION GRADIIAI) & 2" @ 1 1/4		0.053	0.0022	3.088	41,077.748	41,077.748 1152.17391	0.0245		0.280	0.136	0.272
CODO & 2" SCH 40	7	0.053	0.0022	3.088	41,077.748	1152.17391	0.0245	30.000	0.735	0.357	2.501
COUNTY AS SCIENCE OF STREETS AND ET ANDERTA	2	0.053	0.0022	3.088	41,077.748	1152.17391	0.0245	340.000	8.329	4.049	8.098
VALVOLA DE GLOBO & COMITACIONES	1	0.053	0.0022	3.088	41,077.748	1152.17391	0.0245	000.09	1.470	0.715	0.715
TEE Ø 2 KAIVIITICADA	0.5	0.03532	0.0010	6.954	61.639.883	767.826087	0.0244	14.156		0.852	0.852
IUBERIA W 1 1/4 SCH 40 (III)	0	0.03532	0.0010	6.954	61,639.883	767.826087	0.0244	340.000	8.307	20.473	40.947
VALVOLA DE GLOBO Ø 11/4 COMPLETI. ABIENTA	1	0.053	0.0022	3.088	41,077.748	1152.17391	0.0245		0.910	0.442	0.442
EXPANSION SUBILAR Z C TANGOL	2 4	0.03532	0.0010	6.954	61,639.883	23546.6667	0.0200	169.875	1	8.379	8.379
MANGUERA PARA GLP Ø 1 1/4 (III)		1000								TOTAL	62.880
										kPa	1.289
										Psi	0.18699

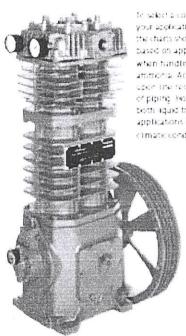
		TRAMO	COMPRES	OR - TANG	TRAMO COMPRESOR - TANQUE ESTACIONARIO 1	RIO 1					
NOIDERCRIPCION	CANT.	MON Ø	AREA S.T.	VEL.	REYNOLDS RE		COEFICIENTE	8			
		Œ	(m)	(m/s)		3/Ø	FRICCION f Le/Ø (m)	Le/Ø (m)	×	HL (m)	
11 DE ED (A 2" SCH 40 (m)	19	0.053	0.0022	3.088	41,077.748	1152.17391	0.0245	358,491	1	4.2691	4.269
108ENIA 2 3CH 40 (III)	7	0.053	L	3.088		1152.17391	0.0245	30.000	0.735	0.3573	2.501
WANTED OF CLOSO A 2" COMPLET ABLERTA	3	0.053		3.088		1152.17391	0.0245	340.000	8.329	4.0489	12.147
VALVOLA DE GLOBO & 2 COMPTENT ASTENTA	4	0.053		3.088	41,077.748	1152.17391	0.0245	000.09	1.470	0.7145	2.858
IEE W Z KAMIFICADA	1	0.053		3.088	41.077.748	41,077.748 1152.17391	0.0245		0.910	0.910 0.4424	0.442
EAPANSION SUBILA & Z (S. LANGUE										TOTAL	22.217
										kPa	0.456
										Psi	0.06607

		TRAMO	COMPRES	OR - TANG	TRAMO COMPRESOR - TANQUE ESTACIONARIO 2	RIO 2					
DESCRIPCION	CANT.	MON Ø	AREA S.T.	VEL.	REYNOLDS RE		COEFICIENTE				
		(m)	(E	(m/s)		3/ø	FRICCION f Le/Ø (m)	Le/Ø (m)	×	HL (m)	
Tiggs (A)" SCH 40 (m)	19		0.0022	3.088	41,077.748	41,077.748 1152.17391	0.0245	358.491	1	4.2691	4.269
108ENIA % 2 3CH 40 (III)	0			3.088		41,077.748 1152.17391	0.0245	30.000	0.735	0.3573	2.858
VÁLVALLA DE CLOBO & 2" COMPLET ABIEBTA	3	0.053		3.088		41,077.748 1152.17391	0.0245	340.000	8.329	4.0489	12.147
VALVOLA DE GLOBO Ø 2 COMITACIONAL) (0.053		3.088		41,077.748 1152.17391	0.0245	60.000	1.470	0.7145	2.144
TEE Ø 2 RAINIFICADA		0.053		3.088	41.077.748	41,077,748 1152,17391	0.0245		0.910	0.910 0.4424	0.442
EXPANSION SUBILA W 2 (# TAINGUE	1									TOTAL	21.860
										kPa	0.448
										Psi	0.065

APENDICE I

CALCULO DE CAÍDAS DE PRESIÓN DESDE TREN DE REGULACIÓN HASTA EQUIPOS DE CONSUMO (0.05 bar -> 4 bar)

	-				The state of the s	
919 del GLP					Total Ir	Total Instalado
		Propano	Butano	GP	Tubería	Cantidad
(605	98	70%	30%	100%	6" Ac 40	12.50
Porcentaje					10 10	442 50
Preside atmosfering	(bar)	1.01			o PC	143.30
Described absolute del age a 159 Cv 1013 mbar	[kg/m³]	1.90	2.55	2.09	3" Ac 40	265.75
Described relative correction		1.16	1.44	1.24	2" Ac 40	67.50
Densitude relative corregion	[MJ/kg]	50.12	49.26	49.86	1 1/2" Ac 40	17.50
Poder calorifico superior másico	Btu/kg	47,500.20	46,686.20	47,256.00	DENOMINACIO	0.00
	[MJ/m³]	93.37	120.97	101.65		
Poder calorífico superior volumétrico a 15ºC y 1013 mbar	Btu/m³	Btu/m³ 88,499.70	114,659.54	96,347.65		


	Potencia	cia	Can	Candal	Presio	Presión de ingreso		Longitud	Tuberia	ia	_	7
Trama	[Btu/h]	[kw]	[m³/h]	[kg /h]	[bar]	[bsi]	[atm]	[m]	Ø nominal ["]	[mm]		[bar
0 4	83 483 301	2444 78	866.48	1766.62	4.40	63.82	4.34	9.50	3" Ac 40	77.90		4.39
Q-W	83 483 301	2444.78	866.48	1	4.39	63.66	4.33	12.50	6" Ac 40	154.10		4.39
٥٠	83 483 301	2444.78	866.48	1	4.39	63.65	4.33	143.50	6" PE	135.86		4.38
0.00	83 483 301	24444.78	866.48	1766.62	4.38	63.49	4.32	97.00	3" Ac 40	77.90		4.27
E GAIANTE 1	8 007 907	2344.80	83.11	169.46	4.27	61.87	4.21	00.9	3" Ac 40	77.90		4.27
BAIANTE 1 - DRECAL 1	8 007 907	2344.80	83.11	169.46	4.27	61.87	4.21	27.50	2" Ac 40	52.50		4.26
בב	75.475.394	22099.98	783.37	1597.16	4.27	61.87	4.21	70.00	3" Ac 40	77.90		4.20
C DAIANTE 2	4 404 396	1289.65	45.71	93.20	4.20	60.88	4.14	00'9	3" Ac 40	77.90		4.20
BAIANTE 2 - MAD OXICO	4 404 396	1289.65	45.71	93.20	4.20	60.87	4.14	17.50	11/2" Ac 40	40.90		4.15
DAUANIE Z - IVIAC ONICO	71 070 998	20810.33	737.65	1503.96	4.20	60.88	4.14	20.00	3" Ac 40	77.90		4.18
C STANTE S	8 007 907	2344.80	83.11	169.46	4.18	60.62	4.12	6.00	3" Ac 40	77.90		4.18
BAIANTE 3 - DRECAL 2	8 007 907	2344.80	83.11	169.46	4.18	60.62	4.12	30.00	2" Ac 40	52.50		4.18
מיטייור איייייייייייייייייייייייייייייייייי	63 063 092	18465.53	654.54	1334.50	4.18	60.62	4.12	18.25	3" Ac 40	77.90		4.17
U DBECAL 3	R 007 907	2344.80	83.11	169.46	4.17	60.43	4.11	10.00	2" Ac 40	52.50	_	4.1
H. OHEMADOR HORNO	55.055.185	16120.73	571.42	571.42 1165.04	4.17	60.43	4.11	33.00	3" Ac 40	77.90		4.1

Pair A [Pair % < 200% Q/D < 150 Vel.	Presión	Presión de salida	Š	Caida de presión	ión	Funcio	Funcionalidad
63.66 0.011 0.25% Cumple Cumple 63.65 0.00 0.26% Cumple Cumple Cumple 63.49 0.011 0.51% Cumple Cumple Cumple 61.87 0.003 3.06% Cumple Cumple Cumple 61.87 0.003 3.13% Cumple Cumple 61.82 0.003 3.13% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.62 0.018 5.01% Cumple Cumple 60.62 0.018 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.63 0.003 5.09% Cumple Cumple 60.64 0.003 5.09% Cumple Cumple 60.65 0.000 5.01% Cumple Cumple 60.64 0.003 5.09% Cumple Cumple 60.64 0.003 5.09% Cumple Cumple 60.43 0.013 5.33% Cumple Cumple 60.41 0.001 6.33% Cumple 60.41	[bar]	[bsi]	A [bar]	%	< 20%	Q/D < 150	Vel. <= 20 m
63.65 0.00 0.26% Cumple Cumple 63.49 0.011 0.51% Cumple Cumple Cumple 61.87 0.003 3.06% Cumple Cumple Cumple 61.87 0.003 3.06% Cumple Cumple 61.82 0.003 3.13% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.88 0.006 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.87 0.000 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.63 0.003 5.09% Cumple Cumple 60.64 0.001 5.31% Cumple Cumple 60.65 0.000 5.01% Cumple Cumple 60.65 0.000 5.01% Cumple Cumple 60.64 0.001 5.33% Cumple Cumple 60.43 0.013 5.33% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple	4.39	63.66	0.011	0.25%	Cumple	Cumple	Cumple
63.49 0.011 0.51% Cumple Cumple 61.87 0.102 3.06% Cumple Cumple Cumple 61.82 0.003 3.13% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.87 0.000 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.63 0.003 5.09% Cumple Cumple 60.64 0.003 5.09% Cumple Cumple 60.65 0.003 5.09% Cumple Cumple 60.65 0.003 5.09% Cumple Cumple 60.64 0.013 5.33% Cumple Cumple 60.43 0.013 5.33% Cumple Cumple 60.41 0.001 6.33% Cumple 0.001 6.	4.39	63.65	0.00	0.26%	Cumple	Cumple	Cumple
61.87 0.112 3.06% Cumple Cumple 61.87 0.000 3.06% Cumple Cumple 61.82 0.003 3.13% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.88 0.000 4.61% Cumple Cumple 60.84 0.000 4.61% Cumple Cumple 60.62 0.0018 5.01% Cumple Cumple 60.62 0.0018 5.01% Cumple Cumple 60.65 0.001 5.33% Cumple Cumple 60.65 0.001 5.33% Cumple Cumple 60.65 0.001 5.33% Cumple Cumple 60.64 0.001 5.33% Cumple Cumple 60.41 0.001 6.72% 60.41 6.72% Cumple 60.41 0.001 6.72% 60.41 6.72% Cumple 60.41 6.72% 60.41 6.72% 60.41 6.72% 60.41 6.72% 60.41 6.72% 60.41 6.72% 6	4.38	63.49	0.011	0.51%	Cumple	Cumple	Cumple
61.87 0.000 3.06% Cumple Cumple 61.82 0.003 3.13% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.87 0.000 4.66% Cumple Cumple 60.87 0.000 5.01% Cumple Cumple 60.62 0.001 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.65 0.001 5.01% Cumple Cumple 60.65 0.000 5.01% Cumple Cumple 60.65 0.001 5.33% Cumple Cumple 60.41 0.001 5.33% Cumple C	4.27	61.87	0.112	3.06%	Cumple	Cumple	Cumple
61.82 0.003 3.13% Cumple Cumple 60.88 0.068 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.62 0.018 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.67 0.000 5.01% Cumple Cumple 60.67 0.001 5.31% Cumple Cumple 60.67 0.003 5.09% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.41 0.001 6.40 0.40 0.001 6.40 0.001 6.40 0.001 6.40 0.001 6.40 0.001 6.40 0.001	4.27	61.87	0.000	3.06%	Cumple	Cumple	Cumple
60.88 0.066 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.87 0.000 4.61% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.65 0.000 5.01% Cumple Cumple 60.57 0.003 5.09% Cumple Cumple 60.57 0.003 5.09% Cumple Cumple 60.43 0.013 5.33% Cumple Cumple 60.43 0.013 5.33% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.41 0.001 8.33% Cumple 60.41 0.00	4.26	61.82	0.003	3.13%	Cumple	Cumple	Cumple
60.87 0.000 4.61% Cumple Cumple 60.84 0.002 4.66% Cumple Cumple 60.62 0.018 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.57 0.003 5.09% Cumple Cumple 60.43 0.013 5.33% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.45 0.018 5.72% Cumple Cumple	4.20	60.88	0.068	4.61%	Cumple	Cumple	Cumple
60.84 0.002 4.66% Cumple Cumple 60.62 0.018 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.57 0.003 5.09% Cumple Cumple 60.43 0.013 5.31% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.41 0.031 5.72% Cumple Cumple 60.41 0.018 5.72% Cumple Cumple	4.20	60.87	0.000	4.61%	Cumple	Cumple	Cumple
60.62 0.018 5.01% Cumple Cumple 60.62 0.000 5.01% Cumple Cumple 60.57 0.003 5.09% Cumple Cumple 60.43 0.013 5.31% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.41 0.018 5.73% Cumple Cumple	4.19	60.84	0.002	4.66%	Cumple	Cumple	Cumple
60.62 0.000 5.01% Cumple Cumple 60.57 0.003 5.09% Cumple Cumple 60.43 0.013 5.31% Cumple Cumple 60.44 0.001 5.33% Cumple Cumple 60.45 0.018 5.72% Cumple Cumple	4.18	60.62	0.018	5.01%	Cumple	Cumple	Cumple
60.57 0.003 5.09% Cumple Cumple 60.43 0.013 5.31% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.45 0.018 5.72% Cumple Cumple	4.18	60.62	0.000	5.01%	Cumple	Cumple	Cumple
60.43 0.013 5.31% Cumple Cumple 60.41 0.001 5.33% Cumple Cumple 60.16 0.018 5.72% Cumple Cumple	4.18	60.57	0.003	5.09%	Cumple	Cumple	Cumple
60.41 0.001 5.33% Cumple Cumple 60.16 0.018 5.72% Cumple Cumple	4.17	60.43	0.013	5.31%	Cumple	Cumple	Cumple
60.16 0.018 5.72% Cumple Cumple	4.17	60.41	0.001	5.33%	Cumple	Cumple	Cumple
	4.15	60.16	0.018	5.72%	Cumple	Cumple	Cumple

APENDICE J

SELECCIÓN DE COMPRESOR*

To salect a compression that best fits your application regularments, use the chains shown. The data provided is based on approximate delivery rates when handline propans or anhydrous ammonia. Actual capacities will depend upon the restrictions, size and length of piping. Horsepower requirements for both liquid transfer and vapor recovery applications are based on moderate climatic conditions.

Engineering Specifications

SEASON STORY	the property of the property o						
		第一個	1				
han-index (ma)	DE J	() (1)()	52.5 577.6	€±2°* p.:- €			
Skreder - Inches (mon)	21 825	11 0625	4.8 707.0	(C)			
Pietas Displacement CN (16/0) a 160 spm	2.5 12.5;	61 03	11	45 2- M			
* 125 pm	% 1 DN D	ELS SEAR	67.5 730'-8	200			
Compressor by end. Electronic spins Business riper.	20	tă L:	750 CD1	22.5			
Eartes a Worting Processor pain (In)	DE 10	## 0415	250 2512	24.ft 353			
Manhana Brahv Sampenov (bal)	7.1 69	Ar- is	40 (30)	× ×			
Bizz, Shuttarge Temperature (1(10)		F.0 + 19	U.D.D. 500	750 1771			
Biza, Compression Bude ² Continuous Delty ² resentations Delty ²	<u>.</u>	1	÷				

- mage files as least pricing suprocess relations and the beaver area some some set in an

Compressor Selection Data Propane and Anhydrous Ammonia

						••••					este grada Latenta
	SAME DEED	20000 C SCHOOL	William Ministry	HORE SHEET	湖湖 · 柏柳	\$600 JODE	新居所 西田新	STREET VOCASION	3665 3665	Mark White	386 36
200 200	95	Κ :	185	T.	14.6			t	ži.	2	v
	SAC	ŧ:	146		193						
	T()	D	新 集	16:	10		X,		IJ		
	TAX:	×.	340	7	24.5	1.	Ł.				
	150	1/2	HE	14.7	17.	11	1				
USDAT USDACE	467	Q:	N.A		34.2	1;	į,				4,
	140	124	767	1-4	19.5	,3	7				
	400	14.	464	.8.7	472	";	Ť		35 52		80
	730	156	73.6	17. A	173	**	11				
	£10.	E.	Ap.	, AJ	(4)						
Chest Chest	146	}€	64.1	€3	173		17	7.24	z c.	,	-30
	423	263	1.845	67	17.3	27	7.5				
	700	125	1,52	12.7	41.5		, E				
	53	41.1	7.344	L.	103	r	- 12				
(mt)	- ex	€0	14%	¥	7.5	7.	14	2 +	r #	£	**
	365	90	/1//	94	247	7,	- 27				
	PE	\$40	7,02	į.	W	*	Æ				
	.800	920	25%		201	5.	2				

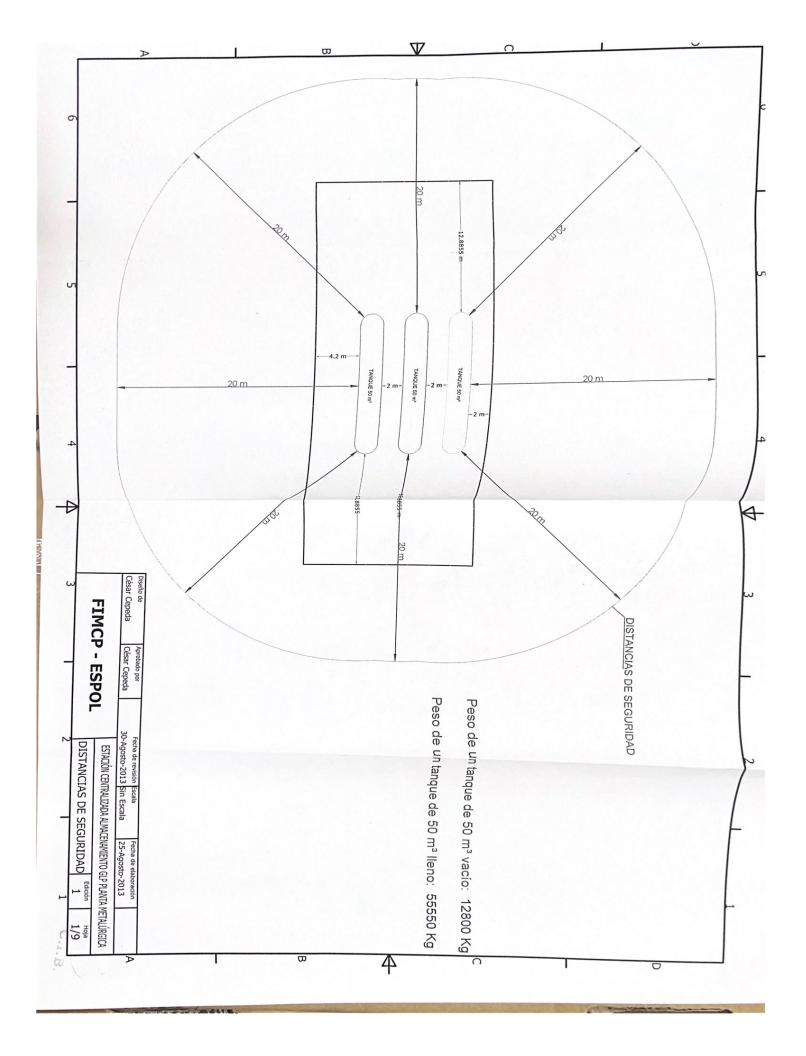
- Invested in the second in patternature and the sound and the control of second region and recognized the second control of second region with the second control of second region with the second region of the second region regi

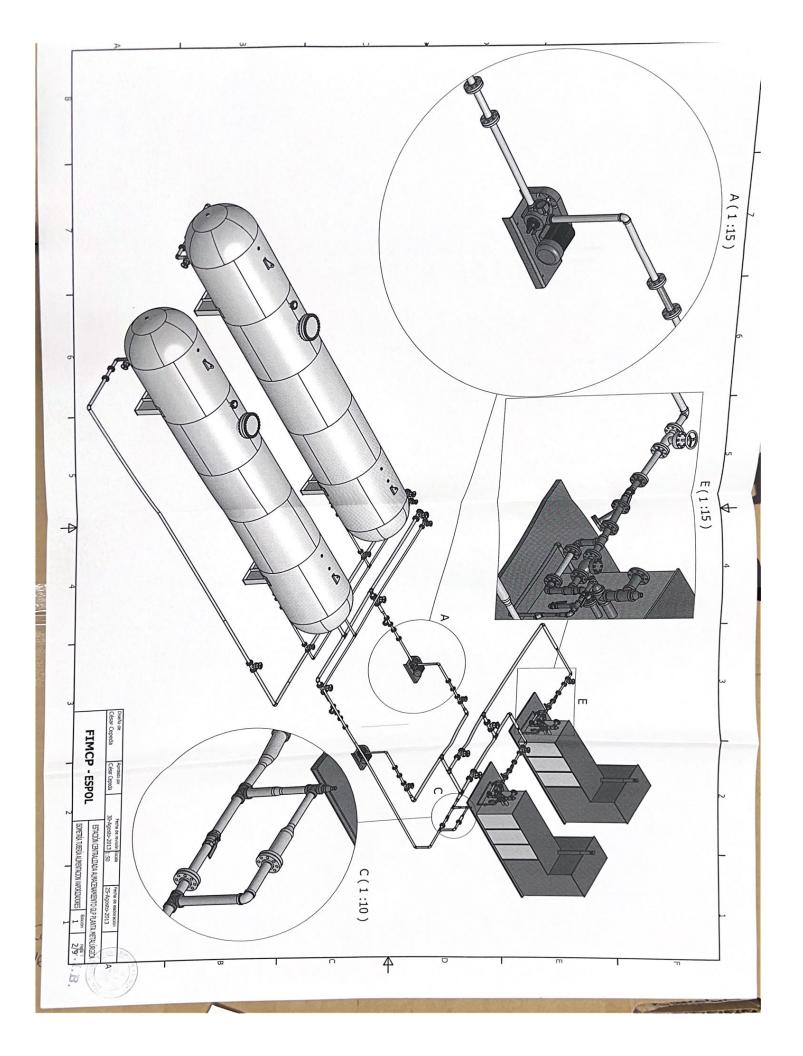
*Fuente: Positive Displacement Pumps and Oil - Free Compressors for Liquifed Gas Applications. Blackmer

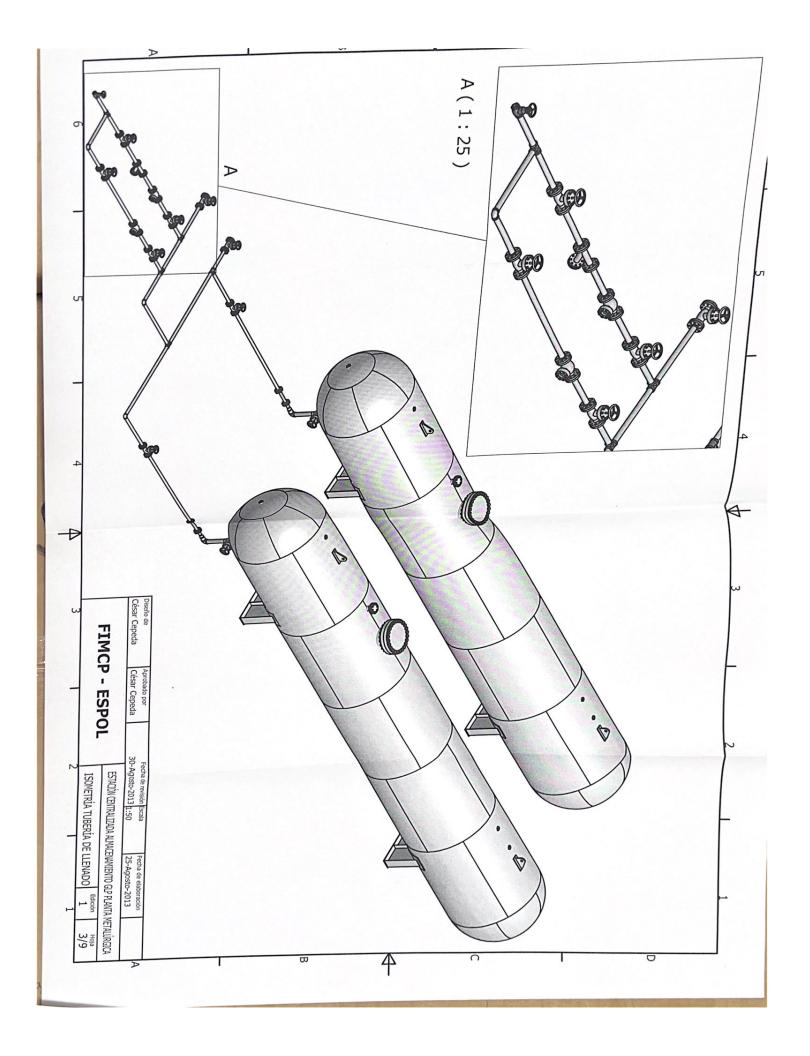
APENDICE K

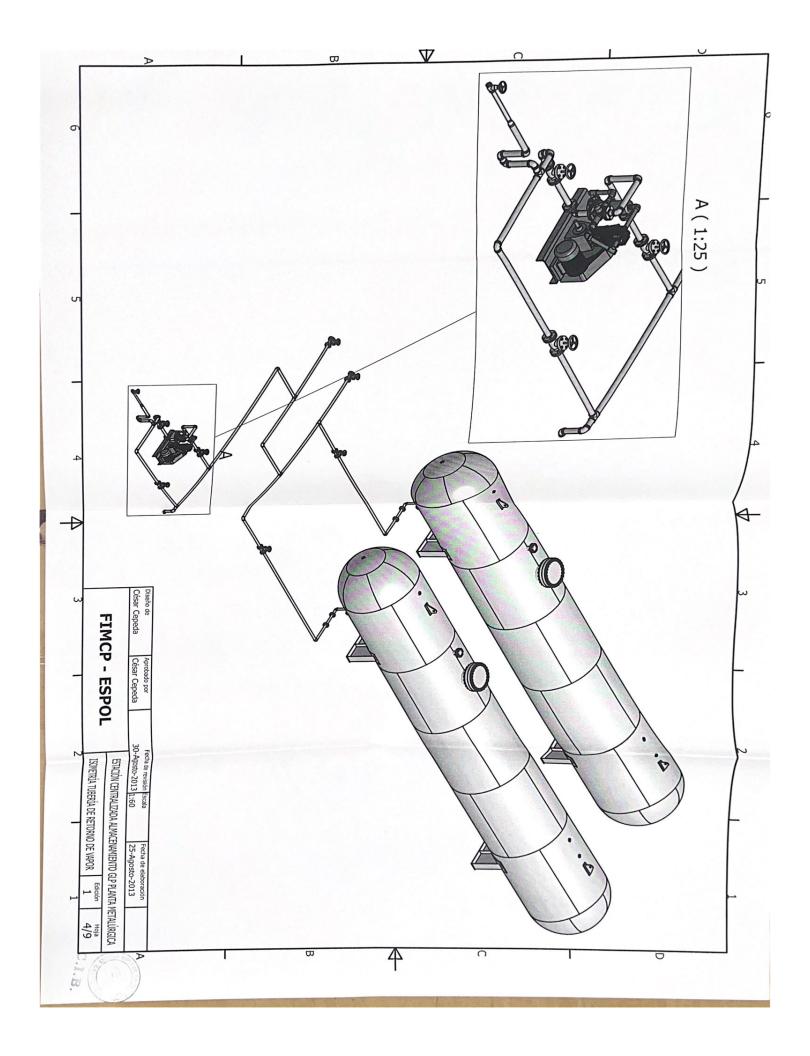
VALIDACIÓN DE COMPRESOR SELECCIONADO

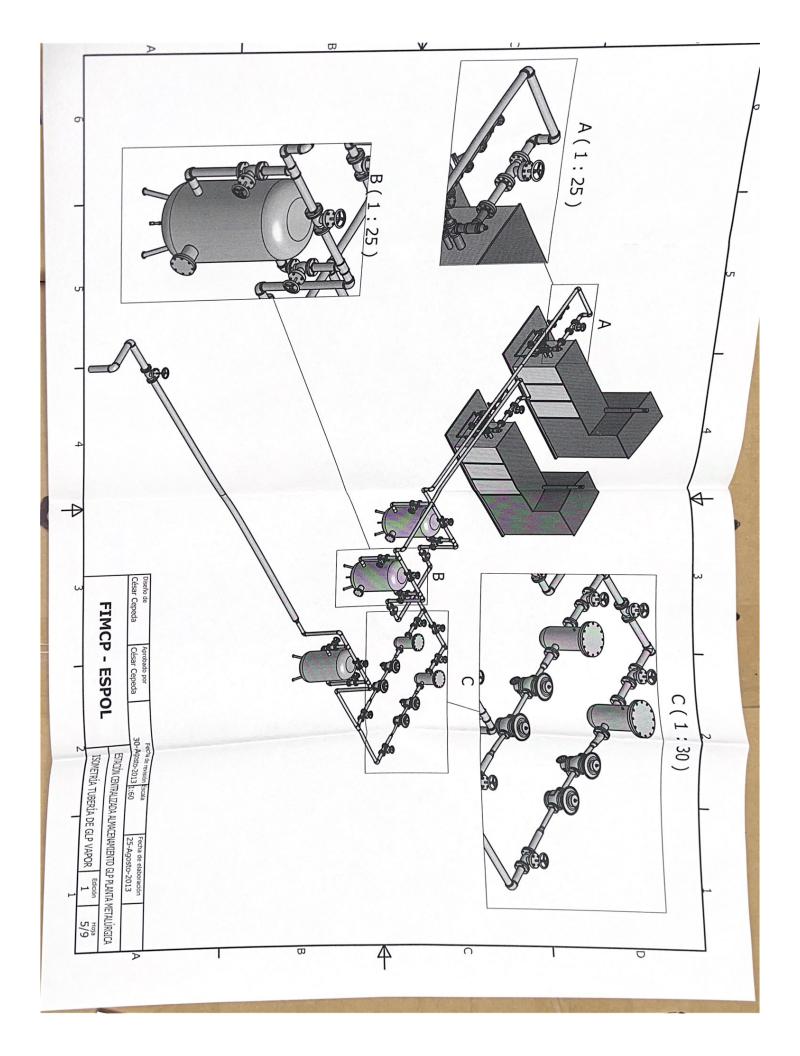
10-Jul-13




Obras, Proyectos & Servicios


Liquefied Gas Transfer Compressor Performance V1302.05np Copyright 1996-2012 2013


LB361B @ 745 RPM, 55 2 MW	hr Displacer	nent				
70% Propane / 30% Butane	MW = 48.3	'n' = 1.12	Liq. Sp.	Gravity = 0	53	
Supply Tank Volume: 37 8 M3			***			
	-12	-1	10	21	32	43
Temperature (°C) Vapor Pressure (bar-a)	2.4	3.4	4.9	6 6	89	11.7
Liquid Transfer Supply tank	is 90% full.	1 0 bar Diffe	rential Pres	sure.	. 10	1.09
Compression Ratio	1.43	1.30	1.21		1.12	1000000
Discharge Temp. (°C)	-2	7	16	26	36	46 93
Volumetric Efficiency (%)	91	92	93	93	93	
Liquid Transfer Rate (M3/hr)	35.3	39.2	42.3	44.5	46 1	47.4
	58	52	48	46	44	43
Time (min.) Power (kw)	4.0	4.5	5.1	5.8	66	7.6
Liquid Heel Boil-Off Liquid	Heel is 0.2 M	13 or 0.5% of	Supply Ta	nk Volume.		
Compression Ratio	1.29	1.20	1.14	1.10	W. 10-20-20	1.06
Compression Natio	93	93	94	94	94	94
Volumetric Efficiency (%) Time (min.)	20	14	10	8	6	4
Vapor Recovery to higher of 1	7% of Vap.	Press. or 1.0	bar-a. 0.	7 bar diff. p	ress.	
Equiv. Liquid Volume (M3)	0.2	0.4	0.6	0.0		1.5
Final Suction Press (bar-a)	1.0	10	1.3	1.8	2.4	3.1
Final Compression Ratio	3.06	4.08	4.23	4.09	3.99	3.92
Final Discharge Temp. (°C)	21	43	57	69	81	93
Final Discharge lemp. (C)	79	72	70	70	70	70
Avg Volumetric Eff. (%)	41	61	66	66	66	66
Time (min.) Power (kw)	3.9	4.6	5.6	6.6	8.3	10.0
Total Time and Maximum Po	wer of all th	hree phases				1.9
Total Time (Hours)	2.0	2 1	~ 1	2.0	19	
Maximum Power (kw)	4.0	4.6	5.6	6.8	8.3	10.0


ANEXOS

