ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"AUTOMATIZACIÓN DE UNA MAQUINA PASTEURIZADORA – HOMOGENIZADORA TETRA PAK CON SISTEMA DE LIMPIEZA CIP POR ÁCIDO NÍTRICO Y SODA CÁUSTICA"

EXAMEN DE GRADO (COMPLEXIVO)

Previa a la obtención del grado de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN ELECTRÓNICA Y AUTOMATIZACIÓN INDUSTRIAL

JUAN FRANCISCO GARCÍA ARNAO

GUAYAQUIL – ECUADOR

AÑO: 2015

AGRADECIMIENTO

Mis más sinceros agradecimientos a mis padres,

mi esposa y mi hija.

DEDICATORIA

El presente proyecto lo dedico a mi razón de vivir, mi hija... Amaia García.

TRIBUNAL DE SUSTENTACIÓN

Dr. WILTON AGILA G.

PROFESOR DELEGADO

POR LA SUBDECANA DE LA FIEC

Mg. ALBERTÔ LARCO G.

PROFESOR DELEGADO

POR LA SUBDECANA DE LA FIEC

DECLARACIÓN EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestas en este Informe me corresponde exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

 \subset Juan Francisco García Arnao

RESUMEN

El presente trabajo consiste en el reemplazo integral del sistema de control de una máquina pasteurizadora y homogenizadora que incluye el sistema de limpieza CIP (Cleanin in Place) por Acido Nitrico y Soda Cáustica. El sistema original de control estaba basado en un PLC Alfa Laval fabricado por ABB [1] y que a la fecha, esta descontinuado y no se encuentran repuestos ni soporte local. Se eligió a Omron como la plataforma de reemplazo, implementando un HMI [4] y un PLC modular [3]. Se monto una red Ethernet para comunicación entre el PLC y el HMI.

Para enfrentar este proyecto, se realizo durante varios días el levantamiento funcional de la operación de la máquina, para luego proceder a elaborar las estrategias de control asociadas a cada una de las etapas del proceso.

Se elaboraron las rutinas de operación, mantenimiento, monitoreo y control, así como se implemento un HMI para la supervisión local y remota de la operación de la máquina y registro de variables.

Finalmente se obtuvieron los resultados esperados, se adicionaron nuevas funcionalidades a la operación y se entrego el informe final, los manuales de

operación y mantenimiento y las copias digitales y en duro del programa del PLC y del HMI.

ÍNDICE GENERAL

AGR	ADECI	MIENTO	ii
DED	ICATO	RIA	iii
TRIB	UNAL	DE SUSTENTACIÓN	iv
DEC	LARAC	CIÓN EXPRESA	v
RES	UMEN.		vi
ÍNDIO	CE GEI	NERAL	viii
ABRI	EVIATL	JRAS	x
ÍNDI	CE DE	FIGURAS	xi
ÍNDI	CE DE	TABLAS	xiii
INTR	ODUC	CIÓN	xiv
CAPÍ	TULO	1	1
1	SOLU	JCIÓN TECNOLÓGICA IMPLEMENTADA	1
	1.1	Ingeniería de Detalle	1
	1.2	Subsistemas y Componentes Principales	4
	1.3	Aportaciones Realizadas al Control Original	12
CAPÍ	TULO	2	14
2	RESI	JLTADOS OBTENIDOS	14
	2.1	Principales Resultados	14
	2.2	Mejoras Alcanzadas	15
	2.3	Pantalla Principal del Sistema	17
	2.4	Pantalla Home	21
	2.5	Pantalla Curvas	23
	2.6	Pantalla Esquema Funcional	25

	2.7	Pantalla BTD	.26	
	2.8	Pantalla Temperaturas Calientes	.27	
	2.9	Pantalla Homogenizador	.29	
	2.10	Pantalla Bomba M7	.30	
	2.11	Pantalla Domo Separador de Aire	32	
	2.12	Pantalla PIDs del Domo Separador de Aire	.34	
	2.13	Pantalla Temperaturas de Llenado	35	
	2.14	Pantalla Configuración del HMI	36	
	2.15	Pantalla Comando Manual	.37	
	2.16	Desconectar USB	39	
	2.17	Pantalla Login	40	
	2.18	Pantalla Registro de Cambios	41	
	2.19	Pantalla Alarmas	.42	
	2.20	Pantalla Usuarios	.43	
	2.21	Pantalla Variables	46	
	2.22	Set Points de PIDs	.50	
CONC	LUSIC	ONES Y RECOMENDACIONES	.53	
BIBLIC	GRA	FÍΑ	59	
ANEX	OS		60	
ANEX	0 1 [DIAGRAMA ESQUEMÁTICO	.61	
ANEX	O 2 E	ESPECIFICACIONES DE SENSORES	62	
ANEXO 3 LISTADO DE ENTRADAS Y SALIDAS DEL PLC63				
ANEX	0 4 [DIAGRAMA DE BLOQUES DEL PROGRAMA DEL PLC	66	

ABREVIATURAS

PLC	Programmable Logic Controller
HMI	Human Machine Interface
CIP	Clean in Place
BTD	Product Balance Tank
PID	Proportional Integral Derivative
РТ	Pressure Transmitter
FT	Flow Transmitter
LT	Level Transmitter
LL	Low Level
ML	Medium Level
HL	High Level
PROD	Producción
PI	Constante Proporcional del Control PID
ТІ	Constante Integral del Control PID
TD	Constante Derivativa del Control PID
PTC	Positive Temperature Coefficient
FDA	Food and Drug Administration

ÍNDICE DE FIGURAS

Figura 1.1. Subsistema de Alimentación	5
Figura 1.2. Subsistema de Calentamiento	7
Figura 1.3. Subsistema de Enfriamiento	9
Figura 1.4. Subsistema de Homogenización del Producto	10
Figura 2.1. Pantalla Principal del Sistema	17
Figura 2.2. Pantalla Home	21
Figura 2.3. Pantalla Curvas	23
Figura 2.4. Pantalla Esquema Funcional	25
Figura 2.5. Pantalla BTD	26
Figura 2.6. Pantalla Temperaturas Calientes	27
Figura 2.7. Pantalla Homogenizador	29
Figura 2.8. Pantalla Bomba M7	30
Figura 2.9. Pantalla Domo Separador de Aire	32
Figura 2.10. Pantalla PIDs del Domo Separador de Aire	33
Figura 2.11. Pantalla Temperatura de Llenado	35
Figura 2.12. Pantalla Configuración del HMI	37
Figura 2.13. Pantalla Comando Manual	37
Figura 2.14. Desconectar USB	39
Figura 2.15. Pantalla Login	40
Figura 2.16. Teclado	40
Figura 2.17. Ingreso de Password	41
Figura 2.18. Pantalla de Registro de Cambios	41
Figura 2.19. Pantalla Alarmas	42

Figura 2.20. Pantalla Usuarios	43
Figura 2.21. Adicionar Usuario	44
Figura 2.22. Borrar Usuario	45
Figura 2.23. Cambiar Password	46
Figura 2.24. Pantalla Variables	47
Figura 2.25. Pantalla Variable2	50

ÍNDICE DE TABLAS

Tabla 2.1. PIDs de la A	plicación51
-------------------------	-------------

INTRODUCCIÓN

La máquina a la que se hace referencia en este trabajo, generaba perdidas cuantiosas a la compañía. La falta de control en el proceso de esterilización, causaba la perdida de lotes completos de producción e incluso la devolución de producto terminado por fermentación en las bodegas del cliente final.

Al no contar con el acceso adecuado al PLC original, y no poder determinar las causas de los fallos, la planta tomo la decisión de realizar la migración del sistema de control para así, dar mayor confiabilidad y facilitar labores de diagnóstico y control de fallas.

Era imperativo para el proceso, mantener un control preciso, dentro de unos margenes estrechos establecidos por organizaciones como la FDA para garantizar la inocuidad del producto. Así mismo, debía mantenerse una delta de temperatura entre la entrada y salida del tubo de retención, de no mas de 2 grados.

También, como es de esperarse en este tipo de proyectos, se realizo un análisis de todos los componente o sub-procesos de la máquina, para así, descartar posible fuentes de contaminación o causas de fallas.

CAPÍTULO 1

1. SOLUCIÓN TECNOLÓGICA IMPLEMENTADA

Dada la carencia de información, en este proyecto las etapas preliminares, adquirieron una importancia aun mayor. Es por eso, que se hace mayor énfasis en este documento, en aquellas etapas iniciales.

La metodología implementada, es detallada en los siguientes sub capítulos.

1.1. Ingeniería de Detalle.

En esta etapa se ejecutaron las siguientes acciones:

 <u>Definiciones de la operación</u>: Al no contar con un manual explicativo del proceso, y siendo que, el programa que residía en los respaldos en oficina, no correspondía a la máquina en cuestión, se procedió a realizar el levantamiento detallado de toda la funcionalidad actual del equipo, con el operador y el personal de mantenimiento de la planta. Se pudieron identificar tres procesos, cada uno conformado por varios "pasos" definidos a continuación [2]. Los procesos de esterilización y producción, conforman una secuencia consecutiva de pasos que van del 1 al 31. El proceso de limpieza o CIP, tiene una secuencia de pasos que van desde el 1 al 15. Se recomienda seguir el anexo 1 del presente documento, como referencia a lo abajo citado.

- *Esterilización*: Conformado por los pasos del 1 al 6.
 - Paso 1.- Vaciado del BTD y retorno al drenaje. Se prende las bombas M2, M7 y M9. Se abren las válvulas V143, V122, V120, V180A-B. Una vez detectado el nivel bajo del BTD se cambia de paso. Se activa la válvula V124.
 - Paso 2.- Llenado de línea con agua o enjuague hacia el drenaje. Se activa V100. Este enjuague se lo realiza por espacio de 300 seg. o 600 seg.
 - Paso 3.- Calentamiento de agua en recirculación. Se activa V141, V140 y V104. Cuando la temperatura de retorno llega a 90 C, se activa la válvula V185. Cuando la temperatura de retorno llega a 121 °C, se va al paso 4.

- Paso 4.- Esterilización de línea. Cuando la temperatura de retorno llega a 121 °C, se comienza a contar el tiempo de esterilización, el cual es de 1800 seg.
- Paso 5.- Enfriamiento. Se activa las válvulas V151 y V150 (agua de chiller). Se activa la V155 (agua de torre). Esto se de 200 a 900 seg. Se hace esto hasta que la temperatura de llenado es la deseada.
- Paso 6.- Estabilización de temperatura. Se activan M8, V166, V144, V173, V180A-B. Cuando las temperaturas están estabilizadas, se procede con el siguiente proceso.
- Producción: Conformado por los pasos del 7 al 31.
 - Paso 7.- máquina lista para procesar. Se mantiene en recirculación.
 - Paso 8.- Llenado del BTD. Se lleva el producto, desde los tanques de almacenamiento hasta la entrada al BTD. Se cierra la válvula V103.
 - Paso 9.- Se vacía el BTD hasta su nivel bajo. Tiempo máximo 100seg.
 - Paso 10.- Llenado del línea.

- Paso 11.- Tiempo de estabilización de temperaturas en la línea.
- Paso 20.- Producción. Se activan V102, V103 Y V106.
- Paso 21.- Si la temperatura de salida del tubo de retención, cae por debajo de la guarda, se activa la válvula V122. Se energiza la V104.
- Pasos 24, 25 y 26.- Enjuague de línea.
- Paso 27.- La máquina permanece en espera de alguna instrucción del operador.
- Paso 31.- Enfriamiento antes de parar. Dura 900 seg. Se cierran V141, V140 y se apaga M8.
- Limpieza (CIP): Conformado por 15 pasos
 - Paso 1.- Vaciado del BTD. Se vacía hasta el nivel bajo.. Se enciende M2, M7, CIP1, CIP2 y M9. Se abren la válvulas V100, V175A, V175C, V175D, V122, V161, V175B.
 - Paso 2.- Enjuague. Se vacía el BTD.
 - Paso 3.- Se detiene el equipo. Se apagan M7 y M2. Se abren V135 y V160.
 - Paso 4.- Limpieza contracorriente. No se usa.

- Paso 5.- Se para el equipo. Se apagan M7 y M2. Se abren V135 y V160.
- Paso 10.- Dosificación de Soda. Se abren las válvulas V141 y V140.
- Paso 12.- Recirculación de soda. Se abren las válvulas V180A, V180B y V104.
- Paso 14.- Vaciado del BTD. Se activan V100 y V104. Se cierran V141 y V140.
- Paso 15.- Enjuague Final. Se realiza hasta que el Ph de salida del agua sea aprobado por el laboratorio.
- Descripción de los controles a implementar: Los principales requerimientos exigidos para esta aplicación son los siguientes:
 - Realizar el control de la alimentación de producto al BTD.
 - Realizar el control de la alimentación de agua al BTD.
 - Realizar el control automático del Nivel del BTD mediante el lazo
 On/Off de la bomba M1 y de la válvula V100.
 - Realizar el control de nivel del tanque de agua caliente.
 - Realizar el control de caudal mediante el lazo PID de la bomba M7.

- Realizar el control de caudal mediante el lazo PID de la bomba del Homogenizador.
- Realizar el control de presión de alimentación al homogenizador mediante el lazo PID de la bomba M7.
- Realizar el control de temperatura de esterilización, producción y CIP, mediante el lazo de control de la válvula proporcional de vapor V140.
- Realizar el control de temperatura de llenado mediante el lazo de control de la válvula proporcional para agua glicolada V150.
- Realizar el control de presión de vacío del Domo Separador de Aire mediante el control de la válvula proporcional V144.
- Realizar el control de nivel del Domo Separador de Aire mediante el método de presión diferencial de los sensores LT67 y PT67, comandando el variador de velocidad de la bomba M2.
- <u>Requerimientos de Producción</u>: Estos fueron solicitados por el departamento de producción
 - Realizar el registro histórico de:
 - Temperaturas de Entrada y Salida del Holding
 - Temperatura de Llenado.

- Temperatura del Domo Separador de Aire.
- Temperatura de retorno por Aséptico.
- Temperatura de retorno por Blending.
- Flujo del Proceso.
- Implementar el registro histórico de las alarmas para:
 - Temperatura Baja del Holding.
 - Temperatura Alta del Holding.
 - Caudal Alto.
- <u>Requerimientos de Gerencia</u>: La gerencia solicito expresamente incrementar el nivel de acceso al equipo para evitar supuestos sabotajes a la máquina. Se implemento lo siguiente:
 - Control de Acceso para operadores, mantenimiento y producción.
 - Implementar un registro histórico de todo cambio que se realice a cualquier parámetro de operación o mantenimiento.

1.2. Sistemas y Componentes Principales.

Durante el proceso de implementación de la solución, se pudo determinar que la información inicialmente entregada incluía los siguientes errores:

- Los manuales descriptivos correspondían a otro equipo con diferentes características.
- En plano general del equipo, no era el original y carecía de los siguientes controles claves:
 - Lazo de control de alimentación del producto al BTD.
 - Lazo de control de velocidad de la bomba M7.
 - Falta del transductor de presión de entrada al homogenizador.

A continuación, se procederá a describir el estado en que se recibieron los componentes principales de la máquina. Todo los componentes abajo citados, están representados gráficamente en el anexo 1.

<u>Bomba de alimentación del producto al BTD (M1)</u>: En el anexo 1, esta bomba esta identificada como PP02. Su estado es es el siguiente:

- Existía un control manual del encendido y apagado de esta bomba.
 Actualmente se agrego el control automático a la misma.
- En el tablero en el que se ubica su arranque, las luces piloto y los selectores se encontraban en mal estado.
- El control de fuerza, así como la bomba misma, presentaban frecuentes averías.

<u>Válvula V100</u>: Esta es una válvula On/Off para el ingreso de agua o producto al BTD. Interviene en el control de nivel del BTD.

<u>Bomba de salida del producto del BTD (M2)</u>: Es la encargada de movilizar el producto desde el BTD hasta el domo Separador de Aire. Su velocidad es controlada por un lazo encargado de mantener constante el nivel en el domo. En el anexo 1, esta bomba esta identificada como M2.

<u>Bomba de salida del producto del Domo. (M7)</u>: En el anexo 1, esta bomba esta identificada como M7.. Esta bomba tiene dos esquemas de operación:

- Con el Homogenizador encendido.- Esta bomba es la encargada de mantener la presión adecuada en la entrada al homogenizador.
- Con el Homogenizador apagado.- Esta bomba se encarga de mantener constante el caudal de producción, según el set point del proceso.

Homogenizador: Este equipo tiene como función homogenizar el producto, de tal manera que tenga una textura cremosa y uniforme. Su velocidad es controlada por el lazo encargado de mantener el caudal constante en la producción.

<u>Transductor de Presión (PT65)</u>: Este transductor, había sido retirado de la máquina por considerarlo sin importancia. Luego de la revisión del proceso, se instruyo que fue colocado nuevamente ya que su papel era crucial para la correcta operación de la máquina. Es el encargado de mantener la

presión de entrada al homogenizador constante, mediante el lazo de control de velocidad de la bomba M7.

<u>Transductor de Presión (PT67)</u>: Este transductor mide la presión existente en en interior del domo, en la parte superior del mismo. Cuando esta encendida la bomba de vacío, esta presión es negativa. Su función principal es la de controlar el lazo de presión de vacío del domo. Su función secundaria, es la de determinar el nivel del domo en conjunto con la lectura del transductor LT67.

<u>Transductor de Presión (LT67)</u>: Este transductor mide la presión en el interior del domo, en la parte inferior del mismo. Su lectura es influenciada por la presión de la bomba de vacío y por la presión de la columna de producto ubicada sobre el. Su única función es la de determinar el nivel del domo, mediante el método de presión diferencial en conjunto con el transductor PT67. Su lectura debe ser ajustada en base a la densidad del producto con el que se este trabajando.

<u>Transductor de Presión (LT65)</u>: Este transductor mide la presión de la columna de producto/agua en el BTD. De esta manera se determina el nivel del mismo. Dado que el control de nivel de este tanque no es continuo sino por bandas, no se realiza corrección de densidad.

Sistema de Vapor: Este sistema esta conformado por:

 Válvula de On/Off V141. Es la encargada de permitir el paso del vapor hacia la válvula modulante.

- Válvula modulante de vapor V140. Encargada de controlar en paso de vapor.
- Tanque de Agua caliente. En este tanque se almacena el agua caliente del circuito. El nivel del mismo es controlado por una boya.
- Bomba de Agua Caliente. Es la que recircula el agua caliente por el intercambiador de placas.
- Intercambiador de Placas. Es el encargado de transferir el calor desde el vapor hasta el agua.
- Intercambiador Tubular. Es el encargado de la transferencia de calor entre el agua caliente y el producto.
- Válvula de Purga de Condensado. Esta válvula, es la encargada de drenar el condensado de regreso al caldero.
- Sistema de Frío: Esta integrado por los siguientes componentes:
- Agua de Torre. Proveniente del sistema general de enfriamiento de agua.
- Válvula V155. Esta permite el paso de agua de torre a intercambiador tubular en la etapa de pre-enfriamiento.
- Agua Glicolada. Proveniente el chiller, generalmente esta a -9 °C. Se usa en el intercambiador tubular en la etapa de enfriamiento.

- Válvula V151. Encargada de permitir el paso hacia la válvula moduladora. Es una válvula On/Off.
- Válvula V150. Encargada de mantener constante la temperatura de llenado. Es una válvula modulante.

<u>Tubo de Retención o Holding</u>: Este es un tubo de aproximadamente 2.5" con una longitud de 6mts. Encargado de proporcionar un transito del producto a temperatura constante durante el tiempo suficiente para garantizar la esterilización.

1.3. Aportaciones Realizadas al Control Original

Entre los principales aportes al proceso original tenemos lo siguiente:

- Se adiciona la configuración de los rangos de operación de cada uno de los sensores usados en la maquina. De tal manera que el cliente podrá ajustar el valor leído por el PLC sin necesidad de acceder a la programación del mismo.
- Se adicionó el control automático de alimentación del producto al BTD.
- Se adicionó el control automático de alimentación de soda y ácido al BTD.

- Se adicionaron las políticas de seguridad por roles y usuarios a cada pantalla, botón o cuadro de ingreso de la aplicaron del HMI.
- Se adicionó el control remoto del HMI via web.
- Se adicionó el acceso remoto a los registros del proceso.
- Se adicionó control manual para las válvulas V150, V140, M2, M7, V122.
- Se incorporo el registro de alarmas de los variadores de velocidad de las bombas M2 y M7. Se detiene el proceso por falla de estos equipos.
- Se corrigieron los tiempos de proceso, que por fuerza de costumbre o falta de información, fueron eliminados o reducidos.

CAPÍTULO 2

2. RESULTADOS OBTENIDOS

El desarrollo de este proyecto finalizo con los siguientes resultados.

2.1. Principales Resultados

En esta etapa se ejecutaron las siguientes acciones:

Como principales resultados mencionamos los siguientes:

Estabilización de la operación: Se logro estabilizar la operación de la máquina, eliminando las causas principales del mal funcionamiento, tales como:

- Perdida de esterilización cuando la temperatura del producto a la salida del tubo de retención, baja del nivel establecido por producción.
- Falta de control en el nivel del domo separador de aire.
- Control irregular del caudal en diferentes partes del proceso.
- Falta de control de la presión mínima de entrada del homogenizador.

<u>Reducción del Delta de Temperatura</u>: Se redujo el delta de temperatura entre la entrada y salida del tubo de retención en 1 grado promedio. Se presentaron máximos de 2 grados.

2.2. Mejoras Alcanzadas

Dentro del planteamiento de mejoras solicitadas por diferentes departamentos, menciono las siguientes:

<u>Mejoras en el Tablero de Control</u>: Gracias al proceso de migración se pudieron obtener las siguientes mejoras:

- Eliminación del cableado innecesario o muerto.
- Se independizo la fuente de 24Vdc de control de la de campo.

 Se implemento una barrera a base de relés para las salidas digitales, de tal manera que las fallas de campo no afecten a las salidas físicas del PLC.

<u>Mejoras en las seguridades</u>: Atendiendo un pedido especial de la gerencia general, se implementaron seguridades a todos los accesos, comandos y controles del HMI. De esta manera solo el personal autorizado, podría acceder a las funciones que su perfil lo autorizaba. Se crearon registros históricos de modificaciones de campos, e inclusive cada botón presionado generaba un registro con el dato de usuario, fecha y descripción del evento.

<u>Mejoras en el Proceso</u>: Luego de varios años de operación, la máquina fue mutilada y sus procesos fueron alterados. Durante la implementación de esta solución, se levanto el proceso y se estudiaron aquellas funcionalidades eliminadas, determinándose la real necesidad de la presencia de las mismas. Estas contribuían a conseguir la estabilidad en la operación de la máquina.

<u>Mejoras en la HMI</u>: La interacción entre el usuario y el PLC Alfa Laval se realizaba mediante la modificación de registros específicos. El operador tenia que memorizar una serie de combinaciones de números y parámetros. Con el nuevo HMI, esta interacción se realiza de manera fluida e intuitiva.

2.3. Pantalla Principal del Sistema

Como elemento fundamental de la solución, esta el HMI. Abajo se detallan algunas de las características de las pantallas elaboradas en esta aplicación.

En la figura 2.1 describiremos cada uno de los elementos que integran la pantalla principal

Figura 2.1: Pantalla Principal del Sistema

- <u>Home</u>.- Con este botón se accede a la pantalla principal de operación mostrada en la figura 2.2, en la que se monitorizan y se controlan los procesos de CIP, Esterilización y Producción.
- 2. <u>*Curvas.*</u>- Con este botón se accede a la pantalla de curvas, en la que se registran las principales variables del proceso. Ver figura 2.3
- <u>Esquema Funcional</u>.- Con este botón se accede a la pantalla descriptiva de todo en proceso. Desde ella se podrá acceder a la parametrización de cada una de los sensores de la máquina. Ver figura 2.4
- <u>Configuración del HMI</u>.- Con este botón se accede a la pantalla de configuración del HMI mostrada en la figura 2.12, con lo que podremos parametrizar temas como:
 - Brillo de la Pantalla.
 - Hora y Fecha de la pantalla y por tanto con la que se registran los procesos.
 - Tiempo de espera para activar el protector de pantalla.
 - Calibración de la pantalla.
- <u>Comando Manual</u>.- Con este botón se accede a la pantalla mostrada en la figura 2.13 que nos permite alternar entre manual y automático a lo siguiente:

- Bomba M7
- Bomba M2
- Set Point Manual de la Válvula de Vapor V140
- Set Point Manual de la Válvula de Vapor V150
- Activar o desactivar la operación de la Válvula V122.
- <u>USB Presente</u>.- Este es un indicador que nos informa si esta o no conectado de manera correcta el USB. Ver figura 2.14
- <u>Desconectar USB</u>.- Este botón nos permite desconectar de manera segura el USB. Ver figura 2.14
- Login.- Este botón nos permite acceder el usuario y password que quien hará uso de la máquina ya sea para producción, mantenimiento u operación rutinaria. Ver figuras 2.15, 2.16 y 2.17
- <u>Web ON</u>.- Este botón nos permite activar o desactivar el servicio
 Web de tal manera que se puedan realizar las siguientes operaciones:
 - Recopilar los datos almacenados en el USB.
 - Monitorear la operación de la Máquina.
 - Controlar de manera remota, la operación de la máquina.

- <u>Registros de Cambios</u>.- Con este botón se accede a la pantalla de registro de cambios, en la que se, almacenan todos las modificaciones de cualquier parámetro en la máquina. Ver figura 2.18
- <u>Alarmas</u>.- Con este botón se accede a la pantalla de alarmas. Ver figura 2.19
- 12. <u>Usuarios</u>.- Con este botón se accede a la pantalla de usuarios. Ver las figuras 2.20, 2.21, 2.22 y 2.23, en donde se podrán realizar acciones como:
- Crear Usuarios
- Borrar Usuarios.
- Cambiar claves de acceso.
- 13. <u>Variables</u>.- Con este botón se accede a la pantalla de modificación de las variables del proceso. Ver figuras 2.24 y 2.25
- 14. <u>Usuario Conectado</u>.- Este texto nos indica cual es el usuario que se encuentra actualmente conectado.

2.4. Pantalla "Home"

En la figura 2.2 describiremos cada uno de los elementos que integran la pantalla "Home", la cual es la pantalla principal de uso del operador.

Indicador "STEP".- En este dato se muestra el paso actual de la operación del TADrink 5000.

Indicador "TIME".- En este dato se muestra el tiempo remanente en cada paso de la operación del TADrink 5000.

<u>Cuadro de Ingreso "LL_BTD"</u>.- Tiene como función permitir el ingreso del nivel bajo del BTD.

<u>Cuadro de Ingreso "ML_BTD"</u>.- Tiene como función permitir el ingreso del nivel medio del BTD.

<u>Cuadro de Ingreso "HL_BTD"</u>.- Tiene como función permitir el ingreso del nivel alto del BTD.

Botón "ON".- Tiene la función de iniciar la operación del TADrink 5000.

<u>Botón "PROD"</u>.- Tiene la función de seleccionar el modo de operación de Producción, el cual inicia con la esterilización.

<u>Botón "M1"</u>.- Debe ser activado en el paso 7 de producción. Este tiene la función de solicitar producto desde los tanques de almacenamiento. Al encenderlo, se activa la operación automática de la bomba M1. Al activar este botón, se va al paso 8. El usuario desactiva este botón, cuando observa que el producto ya ha llegado al visor ubicado en la tubería de entrada del BTD.

<u>Botón "V103"</u>.- Una vez que el producto ha llegado al visor de la tubería de entrada de producto del BTD, el usuario debe activar este botón, permitiendo que se accione la válvula V103. En este momento, el sistema va al paso 9.

<u>Botón "FILL"</u>.- Al presionar este botón, el usuario le indica al TADrink 500 que inicie el proceso de llenado del BTD. Para ello, el sistema, vacía de manera automática el BTD y permite el ingreso del producto cuando se alcance el nivel medio seteado. El sistema continuara con todos los pasos de producción.

Botón "P31".- Tiene la función de iniciar el paso 31.
<u>Botón "Blend/Asept"</u>.- Tiene la función de indicar al controlador, que se esta utilizando el retorno por el Blending o por Aséptico y que por tanto, debe usar esta temperatura como la referencia del retorno.

Botón "CIP".- Tiene la función de seleccionar el modo de operación de CIP.

<u>Botón "LYE"</u>.- Tiene la función de activar el funcionamiento automático del llenado de soda desde el tanque reservorio, hasta el BTD.

Botón "Homo".- Tiene la función de activar o encender el Homogenizador.

Botón "M8".- Tiene la función de activar o encender la bomba de vacío M8.

2.5. Pantalla "Curvas"

En la figura 2.3 se ilustra la pantalla usada por el operador para monitorear los el desempeño de cada uno de las temperaturas del proceso y el flujo. En esta específicamente se muestran valores asociados a una etapa de ajustes iniciales de la máquina.

6.	80 80 51 37 Besuireader Flate 10440
	mound and mound and and and and and and and and and a

Figura 2.3: Pantalla Curvas

Indicador "Holding IN".- En este dato se muestra la temperatura de entrada al tubo de retención.

Indicador "Holding OUT".- En este dato se muestra la temperatura de salida del tubo de retención.

Indicador "Llenado".- En este dato se muestra la temperatura de llenado.

Indicador "Retorno".- En este dato se muestra la temperatura de retorno.

Indicador "Separador de Aire".- En este dato se muestra la temperatura del Domo Separador de Aire.

<u>Indicador "Flujo"</u>.- En este dato se muestra el flujo del producto que circula por el TADrink 5000.

<u>Sección Tendencia</u>.- En esta sección se visualizan las curvas de cada una de las variables antes indicadas. En ella se pueden realizar zoom para una mejor apreciación del proceso. Al tocar la pantalla, se muestra una linea vertical que actualiza los datos mostrados en cada una de las variables anteriores.

<u>Botón "Pause"</u>.- Este botón pone en pausa el proceso de gratificaron de variables. Sin embargo estas siguen almacenándose.

Botón "Zoom".- Activa las funciones de zoom.

2.6. Pantalla "Esquema Funcional"

En la figura 2.4 se muestra un diagrama general de todo el proceso. Desde aquí se podrá acceder a la parametrización de cada una de los componentes de la máquina.

Figura 2.4: Pantalla Esquema Funcional

Procederemos a revisar cada uno de ellos:

- 1. BTD
- 2. Temperaturas Calientes
- 3. Homogenizador
- 4. Bomba M7

- 5. Domo Separador de Aire
- 6. PIDs del Domo.
- 7. Temperatura de Llenado.

2.7. Pantalla "BTD"

Figura 2.5: Pantalla BTD

En la figura 2.5 se muestra el tanque BTD. Aquí contamos con dos cuadros de ingreso numérico y un display numérico.

<u>Cuadro de Ingreso "20mA"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA.

<u>Cuadro de Ingreso "4mA"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA.

Display Numérico "20mA".- Aquí se muestra el valor escalonado de la señal de entrada del sensor de nivel del BTD.

2.8. Pantalla "Temperaturas Calientes"

PI:0.0Holding INHolding OUTTI:0.0 $20 \text{ mA} = 0$ $20 \text{ mA} = 0$ PV SPCO $4 \text{ mA} = 0$ $4 \text{ mA} = 0$ 00 0 0	PID Vapor TIC-44 PV 0 SP 0 C0 0.0	Pre-Calentamiento 20 mA = 0 4 mA = 0 0
	PI: 0.0 TI: 0.0 PV SP CO	Holding INHolding OUT $20 \text{ mA} =$ 0 $20 \text{ mA} =$ 0 $4 \text{ mA} =$ 0 0 0

Figura 2.6: Pantalla Temperaturas Calientes

En la figura 2.6 se muestran los accesos de configuración del PID de la válvula de control de vapor V141. También se incluyen las calibraciones de cada uno de los sensores de temperatura.

<u>Cuadro de Ingreso "20mA Pre Calentamiento"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de temperatura de precalentamiento.

<u>Cuadro de Ingreso "4mA Pre Calentamiento"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de temperatura de precalentamiento.

<u>Cuadro de Ingreso "20mA Holding IN"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de temperatura de entrada al tubo de retención.

<u>Cuadro de Ingreso "4mA Holding IN"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de temperatura de entrada al tubo de retención.

<u>Cuadro de Ingreso "20mA Holding OUT"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de temperatura de salida del tubo de retención.

<u>Cuadro de Ingreso "4mA Holding OUT"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de temperatura de salida del tubo de retención.

<u>Cuadro de Ingreso "PI TIC44"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID de la válvula V140.

<u>Cuadro de Ingreso "TI TIC44"</u>.- Aquí se ingresa el valor de la variable integral del control PID de la válvula V140.

<u>Cuadro de Ingreso "TD TIC44"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID de la válvula V140.

2.9. Pantalla "Homogenizador"

Figura 2.7: Pantalla Homogenizador

<u>Cuadro de Ingreso "PI PTC-67"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID del Homogenizador.

<u>Cuadro de Ingreso "TI PTC-67"</u>.- Aquí se ingresa el valor de la variable integral del control PID del Homogenizador.

<u>Cuadro de Ingreso "TD PTC-67"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID del Homogenizador.

<u>Cuadro de Ingreso "Presión de Entrada"</u>.- Aquí se ingresa el valor de la presión a ser mantenida al ingreso del Homogenizador. Esta presión es controlada por la bomba M7.

2.10. Pantalla "Bomba M7"

Figura 2.8: Pantalla Bomba M7

En la figura 2.8 se muestran las configuraciones asociadas con la operación de la bomba M7. Se incluyen la parametrización de los PIDs en cada uno de sus formas de operación, así como del escalamiento de las señales de entrada del sensor PT65 y del flujomtero FT5.

<u>Cuadro de Ingreso PID PT HOMO "PI FT5"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID de la presión de entrada al Homogenizador.

<u>Cuadro de Ingreso PID PT HOMO "TI FT5"</u>.- Aquí se ingresa el valor de la variable integral del control PID de la presión de entrada al Homogenizador.

<u>Cuadro de Ingreso PID PT HOMO "TD FT5"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID de la presión de entrada al Homogenizador.

<u>Cuadro de Ingreso "20mA Presión"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de presión de entrada al Homogenizador.

<u>Cuadro de Ingreso "4mA Presión"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de presión de entrada al Homogenizador.

<u>Cuadro de Ingreso PID FT5 "PI FT5"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID del caudal comandado por la bomba M7.

<u>Cuadro de Ingreso PID FT5 "TI FT5"</u>.- Aquí se ingresa el valor de la variable integral del control PID del caudal comandado por la bomba M7.

<u>Cuadro de Ingreso PID FT5 "TD FT5"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID del caudal comandado por la bomba M7.

<u>Cuadro de Ingreso "20mA Flujómetro"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de flujo.

<u>Cuadro de Ingreso "4mA Flujómetro"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de flujo.

2.11. Pantalla "Domo Separador de Aire"

Figura 2.9: Pantalla Domo Separador de Aire

En la figura 2.9 se muestran las lecturas y configuraciones asociadas al domo Separador de Aire. Este es el encargado de extraer las burbujas de aire contenidas en el producto previo a su proceso de esterilización.

<u>Cuadro de Ingreso "20mA PT67"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de presión PT67.

<u>Cuadro de Ingreso "4mA PT67"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de presión PT67.

<u>Cuadro de Ingreso "20mA LT67"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de presión LT67.

<u>Cuadro de Ingreso "4mA LT67"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de presión LT67.

<u>Cuadro de Ingreso "20mA TT43"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de temperatura del Domo.

<u>Cuadro de Ingreso "4mA TT43"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de temperatura del Domo.

2.12. Pantalla "PIDs de Domo Separador de Aire"

Figura 2.10: Pantalla PIDs del Domo Separador de Aire

En la figura 2.10 se muestra la configuración de los PIDs involucrados en el control del vacío del domo mediante la válvula V144 y del control del acceso de producto al mismo mediante la bomba M2.

<u>Cuadro de Ingreso PID "PI V144"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID de la válvula de vacío V144.

<u>Cuadro de Ingreso PID "TI V144"</u>.- Aquí se ingresa el valor de la variable integral del control PID de la válvula de vacío V144.

<u>Cuadro de Ingreso PID "TD V144"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID de la válvula de vacío V144.

<u>Cuadro de Ingreso PID "PI M2"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID de la bomba M2 de alimentación de producto al Domo.

<u>Cuadro de Ingreso PID "TI M2"</u>.- Aquí se ingresa el valor de la variable integral del control PID de la bomba M2 de alimentación de producto al Domo.

<u>Cuadro de Ingreso PID "TD M2"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID de la bomba M2 de alimentación de producto al Domo.

2.13. Pantalla "Temperatura de Llenado"

Figura 2.11: Pantalla Temperatura de Llenado

En la figura 2.11 se muestran los valores de temperatura, su escalamiento y el PID asociado al control de la misma.

<u>Cuadro de Ingreso PID Llenado "PI TIC-64"</u>.- Aquí se ingresa el valor de la variable proporcional del control PID de la válvula V150.

<u>Cuadro de Ingreso PID Llenado "TI TIC-64"</u>.- Aquí se ingresa el valor de la variable integral del control PID de la válvula V150.

<u>Cuadro de Ingreso PID Llenado "TD TIC-64"</u>.- Aquí se ingresa el valor de la variable derivativa del control PID de la válvula V150.

<u>Cuadro de Ingreso "20mA Llenado"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de la temperatura de llenado.

<u>Cuadro de Ingreso "4mA Llenado"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de la temperatura de llenado.

<u>Cuadro de Ingreso "20mA Aséptico"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de la temperatura de Aséptico.

<u>Cuadro de Ingreso "4mA Llenado"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de la temperatura de Aséptico.

<u>Cuadro de Ingreso "20mA Blending"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 20 mA del sensor de la temperatura de Blending.

<u>Cuadro de Ingreso "4mA Blending"</u>.- Aquí se ingresa la variable de proceso equivalente al valor de 4 mA del sensor de la temperatura de Blending.

2.14. Pantalla "Configuración del HMI"

En la figura 2.12 se puede configurar lo siguiente:

- Hora y Fecha de la pantalla y por tanto con la que se registran los procesos.
- Tiempo de espera para activar el protector de pantalla.
- Calibración de la pantalla.
- Brillo de la Pantalla.

C	onfiguracion	del Panel		
Ajuste de Reloj				
10:39			BRILLO	
HORA MINUTO			Max = 32	
17 10	2014			
DIA MES	YEAR			
			0	
Screen Saver	10			
Time (0-600m)	10			
A				
Calibrar Pant	alla		Min = 0	
			, u	

2.15.Pantalla "Comando Manual"

Figura 2.13: Pantalla Comando Manual

En la figura 2.13 se muestran controles manuales adicionados al proceso. Estos son usados en periodos de mantenimiento para permitir la activación manual de estos componentes.

<u>Botón Automático "V140"</u>.- Con este botón se activa el set point automático o manual de temperatura de la válvula V140 de vapor.

<u>Cuadro de Ingreso "V140"</u>.- Aquí se ingresa el set point manual de temperatura de la válvula V140 de vapor.

<u>Botón Automático "V150"</u>.- Con este botón se activa el set point automático o manual de temperatura de la válvula V150 de llenado.

<u>Cuadro de Ingreso "V150"</u>.- Aquí se ingresa el set point manual de temperatura de la válvula V150 de vapor.

<u>Botón Automático "M2"</u>.- Con este botón se activa el set point automático o manual de la bomba M2

<u>Cuadro de Ingreso "M2"</u>.- Aquí se ingresa el set point manual de la velocidad de la bomba M2.

<u>Botón Automático "M7"</u>.- Con este botón se activa el set point automático o manual de la bomba M7.

<u>Cuadro de Ingreso "M7"</u>.- Aquí se ingresa el set point manual de la velocidad de la bomba M7.

<u>Botón Automático "V122"</u>.- Con este botón se activa el set point automático o manual de la válvula V122.

2.16. Desconectar USB

En la figura 2.14 se muestra parte de la pantalla principal, en la que se indica la operación correcta para desconectar de manera segura el USB, y así impedir la perdida de datos.

Figura 2.14: Desconectar USB

Cuando el USB se encuentra conectado al panel operador (HMI), el símbolo del usb se torna de color verde.

Cuando es desconectado, se torna de color rojo.

Para desconectarlo de manera segura, e impedir que se pierdan datos, es necesario presionar el botón "Expulsar USB".

2.17.Pantalla "Login"

ACCESS LOGIN	×
x00000000x	
Logout	
	CCESS LOGIN

Figura 2.15: Pantalla Login

En la figura 2.15 se muestra la pantalla que permite le ingreso del usuario y clave para la validación de accesos.

<u>User Name</u>.- Puede ser un texto alfa numérico sin espacios. Para su ingreso se despliega la pantalla ilustrada en la figura 2.16.

								- 1946				×
Esc	c 1] 2	2 3	3	4 8	5 (6	7	3 8)	ОВ	ACK
CI	ear	q	w	e	r	t	У	u	i	0	р	
Са	ips	a	s	d	f	g	h	j	k	1	EN	T ◀┘
=	$\overline{\mathbf{N}}$	7	Z	X	С	v	b	n	m	;] [
+	\Box											,

Figura 2.16: Teclado

<u>Access Password</u>.- Es una clave numérica exclusivamente. Para su ingreso, se despliega la pantalla ilustrada en la figura 2.17

Figura 2.17: Ingreso de Password

2.18.Pantalla "Registro de Cambios"

No.	Date	Time	User name	Log
3	14/10/06	20:57	indupartes	DOMO HP SP 4ma(-900)
2	14/10/06	20:57	indupartes	DOMO HP SP 20ma(300)
1	14/10/06	20:57	indupartes	DOMO HP SP 20ma(-900)
0	14/10/06	20:56	indupartes	Login

Figura 2.18: Pantalla Registro de Cambios

En esta pantalla se detallan cada una de las modificaciones realizadas a los parámetros de operación y mantenimiento.

Quedan registrados los siguientes datos:

- Fecha
- Hora
- Usuario
- Modificación realizada.

2.19.Pantalla "Alarmas"

Figura 2.19: Pantalla Alarmas

En la figura 2.19 se muestra el histórico de alarmas y su estado. Así también, se indica el evento que se encuentra activo en el momento de la consulta.

Se incluye un botón de color rojo, para el reconocimiento de la alarma por parte del operador.

2.20. Pantalla "Usuarios"

En la figura 2.20 se muestra la pantalla usada para la administración de usuarios y roles. A esta pantalla solo tiene acceso el personal de sistemas.

No.	User name	Permission	Off Time	
0	indupartes	111111000000000000000000000000000000000	1	
				Delete User
				Change Password
Usuario Act	tual : indupartes	17-10-2014 (EDI) 10:44		

Figura 2.20: Pantalla Usuarios

A continuación se describen las funciones de cada uno de los botones de esta pantalla:

<u>Add User</u>.- Este botón sirve para agregar un usuario. Una vez presionado se despliega la siguiente pantalla.

Figura 2.21: Adicionar Usuario

En la figura 2.21 se muestra la pantalla en la que se escoge el usuario y su clave.

Logoff Time.- Es el tiempo que se permite de inactividad para el usuario que se esta creando. El valor de "0" quiere decir que no tiene limite.

<u>Operación</u>.- Este permiso da acceso al usuario creado a trabajar en las pantallas del operador.

<u>Producción</u>.- Con este acceso, el usuario tendrá la opción de desconectar de manera segura el USB y de habilitar el servicio Web.

<u>Mantenimiento</u>.- Con este acceso el usuario podrá interactuar y modificar todas las pantallas de mantenimiento. Estas están incluidas en su mayoría en la pantalla de "Esquema Funcional".

<u>Add/Del User.</u>- Esta permiso da acceso al usuario creado, a borra o adicionar usuarios.

<u>Change Password</u>.- Esta permiso da acceso al usuario creado, a cambiar su password. Como recomendación, todo usuario debería tener habilitada esta opción.

<u>Delete User</u>.- Este botón sirve para agregar un usuario. Una vez presionado, se despliega la pantalla ilustrada en la figura 2.22

Figura 2.22: Borrar Usuario

<u>Change Password</u>.- Este botón sirve para cambiar el password de un usuario. Para esto, el usuario debe estar logeado. En la figura 2.23 se puede apreciar la pantalla usada para esta función.

Change F	Password
Logged In User	indupartes
New Password	******
Confirm Password	x0000000000

Figura 2.23: Cambiar Password

2.21.Pantalla "Variables"

En la figura 2.24 se muestran todas las variables administradas por el operador para su proceso de producción. Por petición del cliente, se modificó la pantalla original, para eliminar las unidades y establecer un estándar en la denominación de los campos y sus unidades. Se acordo lo siguiente:

Figura 2.24: Pantalla Variables

- Las variables asociadas al tiempo, deberían ser nombradas con el prefijo "TT".
- Las variables asociadas a temperatura, deberían ser nombradas con el prefijo "TM".
- Las variables asociadas al nivel del BTD, deberían ser ingresadas por el operador y parametrizadas en el PLC en centímetros.
- Los flujos siempre se representarían en L/H.

TM P2.- Tiempo del paso 2

TM P3.- Temperatura del paso 3 o temperatura de esterilización.

TT V185-ON.- Temperatura a la que se enciende la válvula V185.

<u>TT RET</u>.- Temperatura de Retorno. Usada para activar el cambio de estado al paso 4.

FLUJO EST.- Define el flujo de esterilización.

LL BTD.- Nivel Bajo del BTD.

<u>ML BTD</u>.- Nivel Medio del BTD.

<u>HL BTD</u>.- Nivel Ato del BTD.

TM P4.- Tiempo del Paso 4. Tiempo de esterilización.

TM P5.- Tiempo del paso 5.

TT ADICIONAL.- Grados que se adicionan a la temperatura de producción.

TT LLENADO.- Temperatura de Llenado.

TM P6.- Tiempo del paso 6.

FLUJO P7.- Flujo de Producción.

TM P10.- Tiempo del paso 10.

<u>TM R P20</u>.- Tiempo que dura cada paso de la rampa de descenso controlado de temperatura desde el valor de TT P20 + TT ADICIONAL hasta TT P20. Esto en pasos de 1 grado.

TM P24.- Tiempo del paso 24.

TM P25.- Tiempo del paso 25.

TM P27.- Tiempo del paso 27.

TM P31.- Tiempo del paso 31.

FLUJO CIP. - Flujo de CIP.

TT CIP.- Temperatura de CIP.

TT RET.- Temperatura de retorno en CIP.

TM STP 2.- Tiempo del paso 2 de CIP

TM STP 10.- Tiempo del paso 10 de CIP.

TM STP 12.- Tiempo del paso 12 de CIP.

TM STP 15.- Tiempo del paso 15 de CIP.

Adicionalmente existe un botón que permite ir a una segunda pantalla de variables mostrada en la figura 2.25. En estas se agregan los niveles de alarmas denominados "guardas" y las densidades de los productos a ser procesados.

Figura 2.25: Pantalla Variables2

2.22.Set Points de PIDs

Los valores definidos para cada uno de los PIDs de la aplicación, se muestran en la tabla 2.1

PID	PI	TI	TD	Descripción
V140	35	115	22	Control de control de vapor
V150	75	150	35	Control de temperatura de llenado
V144	20	20	10	Control de Vacío
M2	50	150	15	Control de Nivel del Domo con la bomba M2
M7 x	100	60	0	Control de presión de entrada al
PT_HOMO				Homogenizador.
M7 x FT5	150	25	10	Control de Caudal con M7. (Homo
				apagauo)
НОМО	100	50	0	Control de Caudal con el Homogenizador.

Tabla 2.1: PIDs de la Aplicación.

Estos valores fueron obtenidos bajo las siguientes consideraciones:

- No podían usarse métodos analíticos para su obtención, puesto que, no existía una manera viable de obtener una representación matemática de cada sub-proceso.
- No se podía utilizar el método empírico de Ziegler Nichols debido al peligro que implicaba poner a la máquina en oscilación.
- Se inicio la entonación de cada lazo de manera independiente, con el resto de la máquina apagada o en estado estable, tanto como fuese

posible. Una vez que se calibraron todos por separado, se empezó a adicionar uno a uno los componentes de la maquina e ir ajustando a medida que se avanzaba. Aunque este proceso era lento

- Como valores iniciales en la entonación, para cada PID, se usaron los valores con los que funcionaba el PLC Alfa Laval.
- Finalmente se entono toda la maquina con agua, para luego ir cambiando de producto e ir afinando según fuese necesario.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

Luego de haber culminado el proceso de implementación de la automatización de la máquina TADrink 500, puedo concluir lo siguiente:

- El PLC Alfa Laval, no era la causa principal de la perdida de esterilización de la máquina.
- Dado el estado del PLC, no era posible realizar un correcto análisis de las causas reales de los fallos.
- Dado que no se contaban con las herramientas adecuadas para dar soporte al PLC Alfa Laval, cualquier daño físico del mismo o perdida del programa, no podía ser atendida de manera oportuna.

- 4. La ubicación de los sensores de temperatura de entrada y salida del tubo de retención, no era la correcta. Se encontraban al doble de distancia de lo que deberían estar y en puntos muy cercanos a codos y a fuentes térmicas. El sistema en estas circunstancias era muy susceptible a cualquier perturbación. La diferencia entre la entrada y salida se mantenían alejadas del estándar deseado.
- 5. Funcionamiento correcto del sistema de agua caliente descrito en el primer capitulo, es de importancia crucial. La falla de cualquiera de los componentes indicados, era causal de la pérdida de control de la temperatura y por tanto, la pérdida de esterilización.
- 6. El suministro de vapor era inestable. Fue necesario el cambio de un quemador en uno de los calderos principales para mantener el suministro en niveles adecuados. Esto causaba inestabilidad en el control de temperatura.
- 7. El control del nivel del domo se lo realizaba de manera manual. El nivel debe manejarse de manera muy rigurosa, puesto que este influye directamente en la temperatura del producto en su interior. Cualquier descuido del operador era causal de inestabilidad en el control de la temperatura.

Recomendaciones

Luego de los trabajos realizados, las observaciones y las lecuras realizadas en todo el proceso de implementación, se elaboraron varias recomendaciones que fueron divididas en tres grupos:

<u>Urgentes e Imprescindibles:</u> Sin la aplicación de estas recomendaciones, no se puede garantizar el normal desempeño del TADrink 5000. Se pone en riesgo la integridad del personal encargado de operar esta maquina y de realizar el mantenimiento de la misma.

- Implementar retro-alimentación en todas las válvulas de la máquina hacia el sistema de control. Esto para salvaguardar la integridad del producto, la máquina y la vida del operador o de quienes trabajen en la cercanía del TADrink 5000. El sistema de control, no tiene como conocer si una válvula actuó o no.
- Reemplazo de la Bomba M7 para que se ajuste a las características reales de los fluidos con los que trabaja el TA Drink 5000. Además el motor de esta bomba debe trabar dentro de las condiciones establecidas por el fabricante.
- Reemplazo del transductor de presión LT67, de acuerdo al rango detallo por el proveedor (-0.9 bar a +0.3 bar) y con supresores de vibraciones adecuados para la aplicación. Ver anexo 2 para las capacidades recomendadas.

- Reemplazo del transductor de presión PT67, de acuerdo al rango detallo por el proveedor (-0.9 bar a +0.3 bar) y con supresores de vibraciones adecuados para la aplicación.
- Reemplazo del transductor de presión de entrada al Homogenizador con supresores de vibraciones adecuados para la aplicación.
- Incrementar el flujo y presión del suministro de agua glicolada hacia el TA Drink 5000 para que no se vea afectado por la demanda general en la planta.
- 7. Colocar una válvula reguladora de presión a la entrada de la válvula V150.
- Confirmar técnicamente que la selección de la trampa de vapor es la correcta.
- Realizar los cambios necesarios en las tuberías de condensado, para evitar el retorno del mismo.

<u>Necesarias</u>: Su aplicación en necesaria. La omisión de las mismas puede causar mal funcionamiento del TADrink 5000 por fallas en los equipos. Estas recomendaciones están enfocadas a mejorar el estado actual de varios equipos, y mejorar las herramientas con las que contara el personal de mantenimiento.

10. Reemplazo del variador de la bomba M2. Este presenta funcionamiento errático.

- 11. Reemplazo del reductor de velocidad de la bomba M2 para garantizar que el motor funcione dentro del rango nominal de operación, esto es, 0 a 60Hz.
- 12. Colocar un Manovacuometro en paralelo con el transductor LT67. Esto, es necesario para la contrastación de lectura y corrección de la calibración en el sistema de control.
- Colocar un Manovacuometro en paralelo con el transductor PT67. Esto, es necesario para la contrastación de lectura y corrección de la calibración en el sistema de control.
- 14. Reemplazo de la bomba del sistema de agua caliente. Esta se encuentra muy deteriorada.
- 15. Dar mantenimiento integral al tanque de agua caliente incluido el sistema de control de nivel por boya.
- 16. Revisión integral de los sellos y empaques usados en la máquina. Se realizaron varias verificaciones para determinar el porque no llegaba el flujo al Domo. Finalmente se determino que era un fallo de la bomba de tornillo M2. En este proceso se encontró restos de producto en la ducha (que no se había incluido en la limpieza general) y un empaque en mal estado (que tampoco se había incluido en la revisión de empaques general). Esto a pesar de haber realizado un par de días atrás una limpieza general de tuberías y cambio de empaques.

<u>Altamente Deseables:</u> Son sugerencias para implementar mejoras en las seguridades y prevención de mal funcionamiento del TADrink 5000. Una vez implementadas las recomendaciones anteriores, se sugiere realizar una serie de trabajos que permitan reaccionar pro activamente ante una posible falla y de esta manera reducir los tiempos de paradas no programadas.

- 17. Análisis de vibraciones de la Bomba M2 y aplicar las sugerencias del especialista.
- 18. Análisis de vibraciones de la Bomba M7 y aplicar las sugerencias del especialista.
- Mantenimiento integral al sistema de aire comprimido que llega a la máquina.
 Este presenta aceite que causa el deterioro de los equipos que actúa.
- 20. Implementar un sistema de alerta por la falta de agua de Torre.
- 21. Implementar un sistema de alerta por la falta de agua de Glicolada.
- 22. Implementar un sistema de alerta por la falta de Vapor.
BIBLIOGRAFÍA

[1] ABB, Alfa Laval Automation, <u>http://new.abb.com/about/abb-in-</u> brief/history/heritage-brands/alfa-laval-automation, fecha de consulta febrero 2015.

[2] Alfa Laval, Tetra Therm Aseptic Drink, Doc No. OM-1244401-01, 2000

[3] OMRON Corporation, CJ1M CPU Units OPERATION MANUAL, Cat No. W395-E1-08, 2002

[4] OMRON Corporation, Programmable Terminals NB-Designer OPERATION MANUAL, Cat No. V106-E1-11, 2011

ANEXOS

Especificaciones de Sensores

Statistics of		odd i course	Consumption	Note
	LEVEL SWITCH	0CMS		LOW LEVEL
	#COMMECTION	52		
	LEVEL TRANSMITTER	ETP-04 4840		(-0,5bar)-0,3bar STANDARD INCL. DISPLAY
	BCONNECTION	St. 4-20mA		
~	LEVEL TRANSMITTER	ETP-04 4840		(-0,96ar)-0,36ar STANDARD
	#COAMECTION	St: 4.20mA		
	LEVEL CONTROLLER			
3.1	PRESSURE TRANSMITTER	ETP-04 4870		0-20bar STANDARD INCL. DISPLAY
	#COANECTION	St. 4-20mA		
	PRESSURE CONTROLLER			
67	LYE DOSING EQUIPMENT	05 500/100	0-3500.01	INCL. TANK 300L SUCTION DEVICE MAN AGITATOR
	#CONNECTION	M3: 230V	0,55kW	
587	ACID DOSING EQUIPMENT	DS 500/100	0.3500.01	INCL. TANK 300L, SUCTION DEVICE MAN AGITATOR
	BCONNECTION	· VOC2 EM	0,558WV	
00	AR FLTER SET	METAL WORK		
	*CONNECTION	IA: 1/4": 600kpa	150 mith	
231-2	FLOOR PLATES	T.P		10 PCS
120-1	ORIFICE PLATE	T-P SIMM		V175C 15AM HOLE
0013-1	ORIFICE PLATE	T-P 25AMA		V112 4MM HOLE
719-1	ORFICE PLATE	T-P 26MM		V161 SAMI HOLE
00	STEPRORINK FRAME	T.P		
900	STERIDRINK FRAME DD	T.P		
51	STERIDRINK FRAME, CIP	T.P		
	MACHINE SICINE	1.P		

ANEXO 2.- ESPECIFICACIONES DE SENSORES

ANEXO 3.- LISTADO DE E/S

Entradas y Salidas del PLC

DIRECCIÓN	TIPO	SÍMBOLO	DESCRIPCIÓN
0.00	DI	PS10	Switch NC de baja presion de aire
0.01	DI	M2_FB	Feedback M2
0.02	DI	_S10	Paro de Emergencia NC
0.04	DI	K145	Feedback Rele K145
0.06	DI	FQT5_PULSE	Senal de Pulsos del Flujometro
0.08	DI	V122 FB	Feedback Valvula V122
0.12	DI	M3_FB	Feedback M3
0.14	DI	M6_FB	Feedback M6
1.00	DI	BOLLA	Sensor de Nivel de Columna de agua caliente
1.02	DI	M9_FB	Feedback M9
1.04	DI	M12_FB	Feedback M12
1.06	DI	M8_FB	Feedback M8
1.08	DI	M7_FB	Feedback M7
1.10	DI	HOMO_FB	Feedback del Homogenizador
			Valvula. Retorno de producto por seguridad y registro
4.01	DO	V122	de evento
4.02	DO	V124	Valvula de alivio en produccion
4.03	DO	V132_133_134	Valvula. Producto hacia precalentamiento y retorno
4.04	DO	V141	Valvula. Entrada de vapor
			Valvula. Entrada de agua potable a columna agua
4.05	DO	V143	caliente
			Valvula. Entrada Glycol. Pre esterilizacion Terminada.
4.06	DO	V151	Inicio de enfriamiento
4.07	DO	V175CD	Valvula salida de Bomba de CIP #1 BTD
4.08	DO	V185	Valvula. Entrada de agua de Torre esterilización
4.09	DO	M2	Bomba. Salida de producto BTD
4.10	DO	M3	Bomba. CIP #1 BTD
4.11	DO	M7	Bomba. Salida de producto DOMO
4.12	DO	M8	Bomba. De vacio
4.13	DO	M9	Bomba de recirculacion de agua caliente
4.14	DO	M12	Bomba alimentacion de soda al BTD
4.15	DO	M13	Bomba alimentacion de acido al BTD
5.00	DO	M6	Bomba de CIP #2
5.01	DO	V166	Valvula de entrada agua helada de bomba de vacio
5.02	DO	V161_167_169	Valvula de CIP de alimentacion al Domo
			Valvula Bypass (OFF) en la entrada de la boquilla del
5.03	DO	V1/8	desaireador
5.04	DO	V180A_B	Valvula NO Bypass del retorno del retrigerante
5.05	DO	V96_K160	CIP ejecutandose
5.06	DO	V85_K175	CIP solicitud de agua
5.07	DO	K180	CIP solicitud de lavado con agua
5.08	DO	K185	CIP retorno de soda
5.09	DO	K190	CIP retorno de acido
<u> </u>			
•			

Entradas y Salidas del PLC

DIRECCIÓN	TIPO	SÍMBOLO	DESCRIPCIÓN
5.10	DO	V81_K195	CIP retorno de lavado con agua
5.11	DO	K200	CIP calentamiento
5.12	DO	V201	Valvula Bypass del Homogenizador
5.13	DO	V176	Valvula Para enjuague CIP *****
5.14	DO	V155	Valvula de entrada de agua de torre en produccion
5.15	DO	K135	Encendido del homogenizador
6.00	DO	V100	Valvula. Entrada de Água Potable
6.01	DO	V102	Valvula. Entrada de producto al BTD
6.02	DO	V103	Valvula. Antiretorno de producto
6.03	DO	V104	Valvula. Retorno al BTD
6.04	DO	V106	Valvula. Drenaje
6.05	DO	NO_ALARM	Rele de Alarma K105 (NC)
6.06	DO	RUN_LAMP	Lampara verde RUN del tablero
6.07	DO	K120	Producto Esteril disponible para llenado
6.08	DO	M1	Senal Solicitud de alimentacion de producto (K125)
6.09	DO	K130	Senal Esterilizando / Esteril
6.10	DO	SAFETY_K145	Activacion redundante de senales de seguridad
6.11	DO	V120	Valvula. Retorno de agua caliente (y V121)
6.12	DO	K140	Valvula de presion de aceote del Homo
6.12	DO	V_HOMO	Valvula de alivio del Homogenizador
6.13	DO	V175_AB	Valvula de Domo en CIP
2001	AI	TT44	Temperatura del Entrada del Holding
2002	AI	TT45	Temperatura de Salida del Holding
2003	AI	TT64	Temperatura de Llenado
2004	AI	TT42	Temperatura de precalentamiento
2005	AI	TT71B	Temperatura Blending
2006	AI	TT71	Temperatura Aseptico
2007	AI	TT43A	Temperatura de Domo
2011	AI	LT65	Transmisor de nivel de BTD
2012	AI	LT67	Transmisor de nivel de Domo
2013	AI	PT67	Transmisor de presion de vacio Domo
2014	AI	FT5	Transmisor de Flujo de producto
2015	AI	PT_HOMO	Presion de Entrada al Homo
2021	AO	V140	Valvula de Control de Vapor
2022	AO	V150	Valvula de Control de agua fria
2024	AO	M2_VFD	Salida para el variador de Velocidad del M2
2025	AO	V144	Valvula de Vacio
2026	AO	M7_VFD	Salida para el variador de velocidad de la M7
2027	AO	HOM	Referencia de Velocidad de Homogenizador

ANEXO 4.- Diagrama de Bloques del Programa del PLC