ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"EVALUACIÓN TECNO ECONÓMICO PARA SELECCIONAR EL TIPO DE LUMINARIA ADECUADA PARA UNA OPERACIÓN EFICIENTE EN GALPONES INDUSTRIALES DE ELEVADA ALTURA"

EXAMEN DE GRADO (COMPLEXIVO)

Previa a la obtención del grado de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN ELECTRÓNICA

OLMEDO ERWIN CASTRO GARCÍA

GUAYAQUIL - ECUADOR

AÑO: 2015

AGRADECIMIENTO

A Dios.

A todos mis ex profesores de la Escuela Superior Politécnica del Litoral, especialmente a MSc. Holger Cevallos Ullloa, Mq. Alberto Larco Gómez y al Ph.D. Douglas Plaza.

DEDICATORIA

El presente proyecto lo dedico a mi madre e hija, así como a la memoria de mi difunta esposa y difunto padre.

TRIBUNAL DE SUSTENTACIÓN

Mg. Dennys Cortez A.

PROFESOR DELEGADO

POR LA SUBDECANA DE LA FIEC

Ph.D. Douglas Plaza G.

PROFESOR DELEGADO

POR LA SUBDECANA DE LA FIEC

V

DECLARACIÓN EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestas en este Informe me corresponde exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Olmedo Erwin Castro García

RESUMEN

Se aplicaron diferentes métodos de análisis y mediante programas para tener una evaluación tecno económica de las diferentes opciones que fueron realizadas en el pasado. Se actualizo ésta comparación con las luminarias de la tecnología actual.

El diseño de un sistema de iluminación, al igual que la planificación de un sistema industrial, se debe iniciar consultando con el personal de producción, mantenimiento y de seguridad para recibir la información pertinente a los requerimientos del área a iluminar. Se obtuvo los datos del tipo de actividad a desempeñarse en el galpón, las dimensiones del galpón (largo, ancho, altura máxima, altura posible de las luminarias, tipo de acabado en los materiales empleados para el techo, paredes y suelo. También se observó el tipo de ambiente, y se consultó la frecuencia de mantenimiento.

De las diferentes opciones de luminarias, cuál es la que presenta mejores rendimientos, cual es la inversión inicial de cada tipo, son algunas inquietudes que se analizó. El objetivo de analizar diferentes tipos de luminarias para obtener el mejor rendimiento de eficiencia energética se logró.

En el capítulo 1 se planteará el diseño del iluminación en base a la geometría del galpón. Se planteará la solución mediante el "Estimado rápido" del fabricante "AMERICAN ELECTRIC" [1] , y se confirmaran los resultados con el método de la cavidad zonal ó método de los lúmenes. La fábrica "American Electric", fue absorbida por "Thomas & Betts" y dejó la producción de las luminarias industriales Tipo "Bay Beam", sin embargo para efectos comparativos de los rendimientos, se usó los datos

técnicos de ésta marca e indicados en la tabla 1. Para la comparación económica se usó los precios de ensambladores locales, cuya partida nacional es el ensamblado de las partes y la campana de aluminio.. Los otros componentes son importados.

Luego se planteará la solución del sistema de iluminación mediante el programa "DIALux 4.12" de DIAL GmbH. [2]. Se presentará las diferentes características de cada tipo de luminarias de reciente tecnología como luminarias tipo LED e inducción. También se incluyó el análisis de luminarias de sodio de alta presión y halogenuro metálico con difusores/campanas de reciente diseño y mejor eficiencia. En el análisis de cada tipo de luminaria se presentará los costos aproximados de las luminarias y de su instalación (mano de obra y materiales).

ÍNDICE GENERAL

AGRADEC	CIMIENTOii
DEDICATO	ORIAiii
TRIBUNAL	DE SUSTENTACIÓNiv
DECLARA	CIÓN EXPRESAv
RESUMEN	√i
ÍNDICE GE	ENERALviii
INTRODU	CCIÓNx
CAPÍTULC) 1 1
1.	SOLUCIÓN TECNOLÓGICA IMPLEMENTADA 1
1.1 requerid	Procedimientos para determinar el número de luminarias
1.1.1	Datos de la apicación 1
1.1.2	Datos del fabricante de las luminarias 3
1.1.3	Aplicación de los datos del fabricante a las características del local 4
1.1.4	Cálculo del área por luminaria (AL) y distancia entre luminarias
1.1.5	Método estimado de cálculo rápido para determinar el tipo, ubicación y cantidad de luminarias requeridas del fabricante de las luminarias
1.1.6	Método estimado de cálculo de la cavidad zonal y/ó de los lúmenes
1.1.7	Método de punto a punto mediante el programa DIALux 4.12 de DIAL GmbH

CAPÍTUL	.0 2	8
2.	RESULTADOS OBTENIDOS	8
2.1 número	Resultados del método de cálculo rápido para estimo de luminarias	
2.2	Resultados del método de cálculo de la cavidad zonal	9
2.3	Resultados del método de cálculo mediante DIALux	9
CONCLU	SIONES Y RECOMENDACIONES	11
BIBLIOGI	RAFÍA	13
ANEXOS		1/

INTRODUCCIÓN

El presente proyecto lo realicé en el año de 1993, al ser consultado para el diseño de un sistema de iluminación para la industria cartonera GRUPASA, y cuyos galpones tenían alturas aproximadas de seis metros. Los temas de inversión inicial, costo operativo, distorsión del color, costo de mantenimiento, así como el consumo de energía fueron analizados y presentados.

A pesar del tiempo transcurrido, todos los temas analizados tienen vigencia. Dada la creciente importancia de la eficiencia energética, productividad, así como el creciente costo laboral se hace imprescindible revisar los sistemas de iluminación, considerando los temas indicados previamente y en base a las nuevas tecnologías, presentar soluciones a la medida de las necesidades particulares de cada industria. Esto se vuelve imperativo en el mercado globalizado en el que es fundamental, la competitividad.

El cambio climático obliga a tener galpones más altos para tener un mayor confort laboral, sobre todo en la región Costa. Menores temperaturas y mayor ventilación se consiguen con galpones altos, logrando así lugares de trabajo más cómodos y favoreciendo la sensación de bienestar. Mayor sensación de bienestar implica mejores desempeños laborales y mayor productividad.

Para evitar distorsiones comerciales y tener todos los tipos de luminarias de un solo proveedor, preferí realizar exclusivamente los cálculos con los diferentes de la marca PHILIPS.

CAPÍTULO 1

1. SOLUCIÓN TECNOLÓGICA IMPLEMENTADA

La selección de las luminarias para alturas de montaje mayores ó iguales a seis metros inicialmente la realicé con el "estimador rápido" del fabricante "American Electric"[1]. Se confirmó éstos valores con el método de la cavidad zonal ó método de los lúmenes y luego se analizó mediante el programa DIALux

.

1.1 Procedimientos para determinar el número de luminarias requerido.

1.1.1 Datos de la aplicación

Se fijaron las dimensiones del galpón: ancho (a=24m), largo (L=96m), altura del techo (6,5m) y montaje de las luminarias (AM=6,0m). También se definió la altura del plano de trabajo (0,85m).

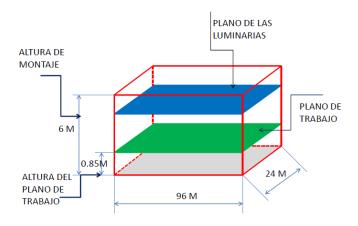


Figura 1.1 Dimensiones del galpón

En base a la observación de los tipos de materiales y acabados para el piso, techo y paredes se determinó los coeficientes de reflexión del galpón según los valores indicados en la tabla 2 de acuerdo al catálogo de American Electric [1].

Tabla 1. Coeficientes de reflexión usados

	Color	Coeficiente de Reflexión %
Techo	claro	50
Paredes	gris rugoso	30
Piso	gris oscuro	20

Para la aplicación, se determinó el tipo de alumbrado general y se analizó tres tipos de luminarias: la mayormente utilizada "Vapor de mercurio (Hg)", Vapor de sodio (Na) y Halogenuro metálico (MH/metal halide).

En el caso particular, materia de éste Proyecto Profesional de Graduación, luego de la consulta, se acordó el nivel de iluminación requerido (NIR) en 500 luxes (50 foto candelas) para el área de imprenta, de acuerdo a las tablas de niveles de iluminación , fijadas por tipo de actividades de "Illuminating Engineer Society" (IES) [3].

De los datos geométricos del local se calcula la relación de cavidad del galpón (RCG), mediante la fórmula (1.1):

RCG= 5*(altura de montaje)*(ancho + largo)/(área) (1.1)

1.1.2 Datos del fabricante de luminarias

Las luminarias tienen características propias como el flujo inicial (ϕ), dado en lúmenes, el factor de pérdida de lúmenes (FPL), y el factor ó coeficiente de mantenimiento (FM).Para el caso aplicado en el año 1993, se obtuvo los datos del catálogo ya referido e indicados en la tabla 2

Promedio de Coeficiente de Potencia de Potencia de Factor Factor de Tipo de Lumens depreciación lampara la lampara entrada Inicial pérdida lumínica vida útil potencia (Watts) (Watts) Horas (FPL) Sodio de alta 0,9 400 477 0,9 50.000 0,81 24.000 presión (HPS) Halogenuro metálico 0,65 400 476 0,9 34.000 0,7 20.000 (MH) Vapor de Mercurio 0,85 400 480 0,9 21.000 0,8 24.000 (Hg)

TABLA 2. Datos de luminarias analizadas en 1993

1.1.3 Aplicación de los datos del fabricante a las características del local.

La relación de cavidad del galpón (RCG) y los coeficientes de reflexión del suelo, techo y paredes permiten calcular el coeficiente de utilización (CU), el mismo que es suministrado por cada fabricante y/ó interpolado según la Tabla 3, indicada en los anexos.

El coeficiente de utilización es una medida del número de lúmenes emitidos por la lámpara y distribuidos por el difusor de la luminaria y los que llegan efectivamente al plano ideal de trabajo.

1.1.4 Cálculo del área por luminaria (AL) y distancia entre luminarias (S).

Para el cálculo del área por luminaria se aplica la siguiente ecuación:

 $AL \ge (LLI)^*(CU)^*(FPL)/(NIR)$ (1.2)

Donde:

AL se define cómo el área de iluminación.

LIL representa los Lúmenes iniciales de las lámparas.

FPL representa el factor de pérdida de los lúmenes

NIR representa el nivel de iluminación requerida

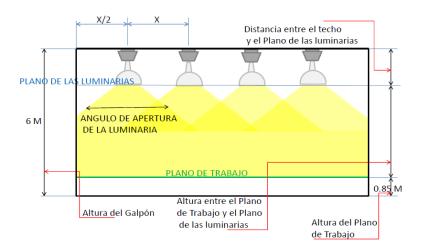


Figura 1.2 Distancia entre luminarias y entre luminarias y paredes.

La distancia entre luminarias (S), se obtiene de la tabla 4. Por criterios de uniformidad la distancia entre las luminarias y las paredes será (S/2).

TABLA 4. Distancias máximas entre luminarias versus alturas del galpón

Tipo de	Altura del	Distar	ncia Máxima (Smáx.)
Luminaria	Galpón	entre luminarias	entre pared y luminaria
		(m)	(m)
Intensiva	> 10 m	s ≤ 1,2 altura del galpón (m)	S/2
IIItelisiva	> 10111	gaipon (m)	5) 2
Extensiva	6 -10 m	s ≤ 1,5 altura del galpón (m)	S/2
Semi extensiva	4-6 m	s ≤ 1,5 altura del galpón (m)	S/2
Extensiva	≤ 4 m	s ≤ 1,6 altura del galpón (m)	S/2

1.1.5 Método estimado de cálculo rápido para determinar el tipo, ubicación y cantidad de luminarias requeridas.

Una vez obtenido el área por luminaria (AL) y la distancia entre luminarias, según la tabla 5 e indicada en los anexos, se obtiene el número de luminarias ubicadas a lo ancho (QA), dividiendo el ancho (a) para S. El número de luminarias a lo largo (QL) se obtiene dividiendo el largo del galpón (L) para S. Finalmente el número total de luminarias (N) se obtiene multiplicando (QA)* (QL)

1.1.6 Método de cálculo de la cavidad zonal y/ó de los lúmenes[4]

Se calcula el flujo luminoso total (Φ T) necesario mediante la fórmula:

$$\Phi T = (NIR)^* (A) / (FM)^* (CU)$$
 (1.3)

El número de luminarias requeridas será la relación entre flujo luminoso total (ΦT) y el flujo luminoso individual de cada luminaria (Φi).

El número de luminarias ubicadas a lo ancho (QA) se obtendrá con la siguiente fórmula :

$$Q_A$$
 (.# de lumin. a lo ancho)= $\sqrt{(N)^*(ancho)/(largo)}$ (1.4)

El número de luminarias ubicadas a lo largo (QL) se obtendrá con la siguiente fórmula:

$$Q_L$$
 (# de lumin. a lo largo)=(Q_A)*(largo/ancho) (1.5)

El número total de luminarias (N) se obtiene multiplicando (QA)* (QL)

1.1.7 Método de punto a punto a punto mediante el programa DIALux 4.12 de DIAL GmbH

Además de los datos de la aplicación señalados en los métodos anteriores, se deben tener las curvas isométricas del fabricante en la base de datos del referido programa. Se ingresa el ancho, el largo, la altura de montaje, se selecciona los coeficientes de reflexión de las paredes, techo, y piso, así como el tipo de mantenimiento.

CAPÍTULO 2

2. RESULTADOS OBTENIDOS

Los resultados obtenidos de los diferentes métodos se presentan en las tablas 6, 7,8,9 y 10 de los anexos.

2.1 Resultados del método de cálculo rápido para estimar el número de

luminarias.

En la tabla 6, se presenta los resultados de las luminarias analizadas en el año de 1993. Se observa que el consumo más bajo de energía presenta la luminaria de sodio (11,59 watts/m²), mientras que la de mercurio presenta el mayor consumo (26,25 watts/m²) y sus costos eran los más baratos por lo que eran las luminarias que más se utilizaban. Actualmente no es así.

Las luminarias de halogenuro metálico tienen un consumo de (18,59 watts/m²), que pese a que tiene mayor su consumo e inversión inicial mayor que las luminarias de sodio, se prefirió instalarlas gracias al mejor rendimiento cromático.

2.2 Resultados del método de cálculo de la cavidad zonal.

En la tabla 7, se presentan los resultados obtenidos por éste método. Dadas las aproximaciones se observa un ligero aumento de las cantidades de las luminarias, al comparar con el método anterior.

2.3 Resultados del método de cálculo mediante el programa DIALux.

El programa DIALux indica el número de luminarias, su arreglo, ubicación, el flujo de cada luminaria y el total, potencia individual y total y el valor de la eficiencia energética de cada tipo de luminaria. Los resultados individuales de cada tipo de luminaria se presentan en los anexos.

En la tabla 8, se resumen los resultados obtenidos por éste método, para los doce tipos de luminarias del mismo fabricante (PHILIPS): tipo halogenuro metálico (HPI), sodio (SON), HPL (mercurio), tipo inducción y tipo LED.

En la tabla 9, se compara los rendimientos y la inversión inicial de las luminarias del año 93 con las luminarias Philips. Se incluyó el valor de la luminaria, los materiales requeridos para su instalación y los valores correspondientes por mano de obra.

Éstas últimas presentan mejores rendimientos que las instaladas hace aproximadamente 22 años. Mediante la ayuda de software y nuevos materiales se han mejorados los rendimientos de los balastros, lámparas y difusores .Las luminarias que mejor desempeño presentaron son las tipo LED´s, 5,41 watts/m² para el modelo BY121P y 5,61 watts/m² para el model BY 471X, es decir que para un mismo nivel de iluminación, se tiene un menor consumo de energía para una misma área a iluminar.

Sin embargo la inversión inicial es significativa respectos a los modelos "nacionales" y a los del otro tipo del mismo fabricante. Dado que la cantidad de luminarias de la nueva generación es la misma (63), los costos de instalación es el mismo para todas, excepto para las tipo LED's, cuya potencia es aproximadamente la mitad.

En la tabla 10, se resume la comparación de los sistemas de iluminación para tres tipos de luminaria.

Si comparamos halogenuro metálico nacional versus halogenuro metálico de nueva generación, se recupera la diferencia de la inversión inicial en aproximadamente dos años, gracias a los ahorros por consumo de energía.

Al comparar las nacionales con las tipo LED's, la diferencia se la recupera en aproximadamente tres años.

Si comparamos la luminarias de la misma marca, el tiempo aproximado de recuperación será aproximadamente 26 meses.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- Se observó que los rendimientos de las luminarias actuales (12,28 watts/m² promedio) es mejor que los rendimientos de las luminarias instaladas hace aproximadamente 22 años (18,59 watts/m²).
- Se observa que para la aplicación materia de análisis, las luminarias tipo LED's tienen mejor desempeño que las luminarias de inducción.
- 3. Para la altura de montaje analizada e igual nivel de iluminación, las luminarias tipo LED's presentan los mejores rendimientos. Presentan la mejor huella de carbono, por lo que si se considera la contaminación ambiental y los ahorros de energía , es la mejor opción. Sin embargo, los costos iniciales todavía es un obstáculo para una mayor cantidad de luminarias instaladas.
- La eficiencia energética es directamente proporcional a la eficiencia de la luminaria empleada y a los factores de utilización de las luminarias e inversamente proporcional al nivel de iluminación.

Recomendaciones

- Los diseños de los sistemas de iluminación de cada proyecto eléctrico ó memoria de diseño, deberá especificar la eficiencia energética de la instalación para un determinado nivel de iluminación.
- Se observa que algunas de las luminarias ensambladas están desfasadas en los rendimientos de energía. Las autoridades respectivas deberán regular y favorecer a la obtención de mejores rendimientos.

BIBLIOGRAFÍA

- [1] American Electric Lighting Products / Industrial Lighting Group, Catalog No. # LSBC, 1991.
- [2] DIALux 4.12. , DIAL GmbH, fecha de consulta Enero 2015
- [3] ETCC Partners The Emerging Technologies Coordinating Council, http://www.etcc-ca.com/, fecha de consulta Enero 2015
- [4] Manual de luminotecnia, http://www.lazlo.com.ar , fecha de consulta Enero 2015

ANEXOS

TABLA 3

Coeficiente de utilización-Método de la cavidad zonal

							Joencie	ente de	utiliza	CION-IVI	etodo	ue la ca	viuac	i zona	l				
									Date	os foto	métrico	os							
								Lumin	aria tip	o Bay	Beam s	erie 60	/61						
							C	oeficie	nte de	reflexi	ón del :	suelo (20 %)						
								Coefic	ciente d	le refle	xión de	l techo	(%)						
			8	0			7	0			50			30			10		0
		70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
_	1	0,91	0,89	0,86	0,84	0,89	0,86	0,84	0,82	0,89	0,86	0,84	0,78	0,77	0,76	0,75	0,74	0,73	0,71
lpór	2	0,86	0,81	0,77	0,74	0,84	0,8	0,76	0,73	0,76	0,73	0,71	0,73	0,71	0,69	0,7	0,68	0,66	0,65
l ga	3	0,81	0,74	0,7	0,66	0,78	0,73	0,69	0,65	0,7	0,66	0,63	0,67	0,64	0,62	0,65	0,62	0,6	0,59
d de	4	0,76	0,68	0,63	0,59	0,74	0,67	0,62	0,58	0,65	0,6	0,57	0,62	0,59	0,56	0,6	0,57	0,55	0,53
cavidad del galpón	5	0,71	0,63	0,57	0,53	0,69	0,61	0,56	0,52	0,59	0,55	0,51	0,57	0,54	0,5	0,56	0,52	0,5	0,48
	6	0,66	0,57	0,51	0,47	0,64	0,56	0,51	0,47	0,54	0,5	0,46	0,53	0,49	0,45	0,51	0,48	0,45	0,43
op I	7	0,61	0,52	0,46	0,42	0,6	0,51	0,46	0,42	0,5	0,45	0,41	0,48	0,44	0,4	0,47	0,43	0,4	0,39
ción	8	0,57	0,48	0,42	0,38	0,56	0,47	0,41	0,38	0,46	0,41	0,37	0,44	0,4	0,37	0,43	0,39	0,36	0,35
Relación	9	0,53	0,44	0,38	0,34	0,52	0,43	0,37	0,34	0,42	0,37	0,33	0,41	0,36	0,33	0,4	0,35	0,33	0,31
- 42	10	0,5	0,4	0,34	0,31	0,49	0,4	0,34	0,3	0,39	0,34	0,3	0,37	0,33	0,3	0,37	0,32	0,3	0,28

Coeficiente de reflexión de las paredes (%)

TABLA 5 Área por luminaria (AL) versus Distancia entre luminarias (S)

Área por lum	ninaria (AL)	Distancia	(S)
desde	uminaria (AL) Dista hasta (pies)	(pies)	(m)
57	72	8	2,44
73	90	9	2,74
91	110	10	3,05
111	132	11	3,35
133	156	12	3,66
157	182	13	3,96
183	210	14	4,27
211	240	15	4,57
241	272	16	4,88
273	306	17	5,18
307	342	18	5,49
343	380	19	5,79
381	420	20	6,10
421	462	21	6,40
463	506	22	6,71
507	552	23	7,01
553	600	24	7,31
601	650	25	7,62
651	702	26	7,92
703	756	27	8,23
757	812	28	8,53
813	870	29	8,84
871	930	30	9,14
931	992	31	9,45

TABLA 6 MÉTODO ESTIMADO DE CÁLCULO RÁPIDO DEL NÚMERO DE LUMINARIAS

1	Nivel de iluminación requerido (NIR)				
		(Lux)	500	(fc)	50

2	Medidas del área a iluminar (A)	ancho	largo		
	(m)	24	96	área (m²)	2.304
	(pies)	79	315	área (pies²)	24.799

3	Altura de montaje (AM)		6	(m)	
		(pies)	20		
4	Luminaria/ tipo de lampara		МН	Na	Hg
5	Relación de cavidad del galpón (RCG)		1,56	1,56	1,56
	5 * (altura de montaje) * (ancho+largo)/ (área)				
6	Coeficiente de reflexión del suelo(%)		20	20	20
7	Coeficiente de reflexión del techo(%)		50	50	50
8	Coeficiente de reflexión de las paredes (%)		30	30	30
9	Coeficiente de utilización (CU) %		0,673	0,673	0,65
10	Factor de pérdida lúmenes (FPL)		0,7	0,81	0,8
11	Lúmenes de la lampara inicial(LIL)		34000	50000	21000
12	Área por luminaria(AL)?(LIL)*(CU)*(FPL)/(NIR)		320,348	545,13	218,4
13E	Distancia entre luminarias (S)		18	23	15
14	Ubicación de luminarias				
			4,3744	3,42344348	5,24928
a)	Cantidad de luminarias a lo ancho(QA)=Ancho/S		5	4	6
			17,4976	13,6937739	20,99712
b)	Cantidad de luminarias a lo largo(QL)=largo/S		18	14	21
15	Cantidad total de luminarias		90	56	126
16	Potencia Total requerida (Watts)		42.840	26.712	60.480
17	Watts/m²		18,59	11,59	26,25

	TANIA				
	TABLA 7 MÉTODO DE CAVIDA	D ZONAL			
1	Nivel de iluminación requerido (NIR)		(lux)		
	(nivel de iluminancia media)		(fotocandel	as)	
2	Medidas del área a iluminar	ancho	largo		Área (A)
	(m)	24	96	(m²)	2304,00
	(pies)	79	315	(pies²)	24799
3	Altura de montaje (AM)	6	20	(pies)	24733
4	Luminaria/ tipo de lampara	MH	Na	Hg	
5	Relación de cavidad del galpón (RCG)	1,56	1,56	1,56	
J	5 * (altura de montaje) * (ancho+largo)/ (área)	1,50	1,30	1,30	
	5 (artura de montaje) (arturo riargo)) (area)				
6	Coeficiente de reflexión del suelo(%)	20	20	20	
7	Coeficiente de reflexión del techo(%)	50	50	50	
8	Coeficiente de reflexión de las paredes (%)	30	30	30	
9	a)Coeficiente de utilización (CU) %	0,673	0,673	0,65	
	b)Coeficiente de mantenimiento(FM)%	0,8	0,8	0,8	
10	Factor de pérdida lúmenes (FPL)	0,7	0,81	0,74	
11	Lúmenes de la lampara inicial(LLI)	34000	50000	21000	
	, ,				
12	φ Flujo luminoso total (lm)=(NIR)*(A)/(FM*CU)	2.139.673	2.139.673	2.215.385	
		89,90223		142,56014	
13I	Número de luminarias requerido	90	53	143	
14	Arreglo de luminarias	4,7434165	3,64005494	5,9791304	
	QA (.# de lumin. a lo ancho)=V(N)*(ancho)/(largo)	5	4	6	
		18,973666	14,5602198	23,916521	
	QB(# de lumin. a lo largo)=(QA)*(largo/ancho)	18	15	24	
15	Revisión de cumplimiento de separación máxima				
	Máx .distancia entre luminarias permitida (m)	9,6	9,6	9,6	
	Máx. distancia entre luminarias y pared permitida (m)	4,8	4,8	4,8	
	max. distancia entre funinarias y pareu perintuda (m)	4,0	4,0	4,0	
	Distancia entre luminarias a lo ancho del galpón (m)	4,8	6	4	
		,,,,			
	Distancia entre luminarias/pared a lo ancho del galpón (m)	2,4	3	2	
	Distancia entre luminarias a lo largo del galpón (m)	5	6	4	
	Distancia entre luminarias/pared a lo largo del galpón (n	2,7	3	2	
16	Cantidad total de luminarias	90	60	144	
17	Potencia Total requerida (Watts)	42.840	28.620	69.120	
18	Watts/m²	18,59	12,42	30,00	

							TABLA 8 . Resultados del programa DIALux	ta dos del	programa DI,	ALux							
							TUN	LUMINARIAS PHILIPS	HILIPS								
ITEM	Modelo	Tipo de	Pin	тро de	u	cantidad	ф	ф	ф total	ф total	d	Ь	u		Ы	Plano útil	
		Lámpara		Luminaria	luminaria		luminaria	lampara	luminaria	lampara	luminaria	Total	energética	Em	Emin	Emax	Emin/Em
			(W)		%		(lm)	(Im)	(lm)	(Im)	(W)	(W)	(W/m²)	(Ix)	(lx)	(Ix)	
1:-	4ME350	MQD	315	Inducción	99	63	24.192	37.800	1.524.096	2.381.400	341	21.483	9,32	501	128	871	0,255
2	4ME550	МН	400	Inducción	84	63	35700	42500	2.249.100	2.677.500	470	29.610	12,85	788	83	1690	0,10533
3	4ME550	Na	400	Inducción	82	63	40800	48000	2.570.400	3.024.000	433	27.279	11,84	891	93	1814	0,10438
4	MDK900	МН	400	ОІН	9/	63	24700	32500	1.556.100	2.047.500	428	26.964	11,70	521	105	1070	0,20154
5	HPK888	eN	400	QIH	98	63	41280	48000	2.600.640	3.024.000	433	27.279	11,84	791	138	1704	0,17446
9	BY150P	МН	400	ДІН	9/	63	32300	42500	2.034.900	2.677.500	470	29.610	12,85	694	114	1319	0,16427
7	BY150P	Na	400	OH.	92	63	36480	48000	2.298.240	3.024.000	433	27.279	11,84	775	154	1310	0,19871
	HPK238	НМ	400	QIH	69	63	22425	32500	1.412.775	2.047.500	428	26.964	11,70	473	95	905	0,20085
9	HPK238	Na	400	HID	99	63	31680	48000	1.995.840	3.024.000	433	27.279	11,84	699	136	1298	0,20329
10	HPK238	Hg	400	HID	64	63	14080	22000	887.040	1.386.000	426	26.838	11,65	296	62	268	0,20946
11	BY121P	CED	202	ŒD	100	63	20500	20500	1.291.500	1.291.500	198	12.474	5,41	437	8	773	0,18307
12	BY471X	LED	250	LED	100	63	25000	25000	1.575.000	1.575.000	205	12.915	5,61	537	70	1000	0,13035

									TAB	TABLA 9									
		CUA	\DRO	COMPA	CUADRO COMPARATIVO DE LA INVERSIÓN INICIAL PARA LUMINARIAS DEL 93'S VERSUS LUMINARIAS PHILIPS	E LA IN	VERSI	ÓN INICIA	AL PA	RA LUN	IINARIA	S DEL	. 93′S V	ERSUS LL	MINARIA	S PHILIPS			
		tipo	Ameri	tipo American Electric	tric								PHILIPS	IPS					
		0.	93'S BAY	Y BEAM			4M	4ME inducción	_ ا		BY.	BY150P			HPK238		BY121P		BY471X
		MH		Na	Hg	CDM	5	MH	Na	_	MM		Na	MH	Na	Hg		LED	
Cantidad		06		26	126	63		63	63		63		63	63	E9	63	63		63
Kw total		42,84	2	26,71	60,48	21,48	ø,	29,61	27,28	82	29,61	27	27,28	26,96	27,28	26,84	12,47		12,92
																		H	
\$/luminaria		96,6	1	123,9	88,2	420		400	400)	400	4	400	400	400	380	800		1000
\$/total lum.		8694	59	6938,4	11113,2	26460	30	25200	25200	00	25200	25	25200	25200	25200	23940	50400		63000
Materiales																			
cable		\$ 1.154	\$	1.010	\$ 1.443	\$	1.082	1.082	\$ 1	1.082	1.082	\$	1.082	\$ 1.082	\$ 1.082	\$ 1.082	\$ 700	\$ 00	700
ducto elect.		\$ 2.100	\$	1.960	\$ 2.380	\$	1.260 \$	1.260	\$ 1	1.260 \$	1.260	\$	1.260	\$ 1.260	\$ 1.260	\$ 1.260	\$ 1.400	\$ 00	1.400
codo rígid		\$ 45	₩.	45	06 \$	\$	42 \$	42	\$	42 \$	42	φ	42	\$ 42	\$ 42	\$ 42	\$	42 \$	42
cajas		\$ 180	\$	120	\$ 162	\$	120 \$	120	\$	120 \$	120	\$	120	\$ 120	\$ 120	\$ 120	\$	120 \$	120
breakers		\$ 153	\$	89	\$ 170	\$	\$ 89	89	\$	\$ 89	89	\$	89	\$ 68	89 \$	\$ 68	\$	\$ 89	68
caja breaker		\$ 70	\$	70	\$ 70	\$	\$ 0Z	70	\$	\$ 0Z	70	\$	70	\$ 70	02 \$	\$ 70	\$	\$ 0Z	70
caja LB		\$ 264	\$	154	\$ 330	\$	160 \$	160	\$	160 \$	160	\$	160	\$ 160	\$ 160	\$ 160	\$ 160	\$ 09	160
conector		\$ 162	\$	144	\$ 192	\$	150 \$	150	\$	150 <mark>\$</mark>	150	\$	150	\$ 150	\$ 150	\$ 150	\$	150 \$	150
cinta aisl.33+		\$ 530	\$	371	\$ 795	\$	395 \$	395	\$	395 \$	395	ş	395	\$ 395	\$ 395	\$ 395	\$ 395	\$ St	395
Sub total mat.		\$ 4.658	\$	3.942	\$ 5.631	\$ 3.	3.347 \$	3.347	\$ 3	3.347 \$	3.347	\$	3.347	\$ 3.347	\$ 3.347	\$ 3.347	\$ 3.105)5 <mark>\$</mark>	3.105
m/o instalac.		\$ 5.400	\$	3.360	\$ 7.560	\$	3.780 \$	3.780	\$ 3	3.780 \$	3.780	\$	3.780	\$ 3.780	\$ 3.780	\$ 3.780	\$ 3.780	30 \$	3.780
Sub total mat.+m/o	o/w-	\$ 10.058	\$	7.302	\$ 13.191	\$ 7.	7.127	7.127	\$ 7	7.127	7.127	\$	7.127	\$ 7.127	\$ 7.127	\$ 7.127	\$ 6.885	\$ \$	6.885
Total		\$ 18.752	ŵ	14.240	\$ 24.305	\$ 33.	33.587 \$	32.327	\$ 32	32.327 \$	32.327	\$	32.327	\$ 32.327	\$ 32.327	\$ 31.067	\$ 57.285	\$ \$	69.885
MDK900	costo	costo similar a HPK 238 MH,total 29,96 Kw	PK 238 I	MH,tota	l 29,96 Kw														
HPK888	costo	costo similar a HPK 238 Na,total 27,28 Kw	PK 238	Na,tota	I 27,28 Kw														
Incluye: costo de luminaria+materi	to de	luminaria ₊	нтате	riales p	ales para la instalación+mano de obra	alaciór	ı+manı	o de obra	_										

TABLA 10 Comparativo de la inversión inicial de las luminarias								
	MH nac.		MH imp.		LED1		LED2	
\$ sistema Ilum.	\$	18.752	\$	32.327	\$	57.285	\$	69.885
Kw	42,84		26,964		12,474		12,915	
\$/Kwh mes	\$	1.658,76	\$	1.044,05	\$	482,99	\$	500,07
MH nacional Vs Importada	\$	614,72	\$	13.575	22 meses		ses	
MH nacional Vs LED1.	\$	1.175,77	\$	38.533	33 meses		ses	
**se asume 12 horas/día,22días/mes y \$ 0,08/Kwh								