ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño de una planta de procesamiento de café (coffea arábica) para pequeños productores agrícolas en el cantón Jipijapa"

TRABAJO FINAL DE GRADUACIÓN

Materia Integradora

Previo la obtención del Título de:

INGENIERO MECÁNICO

Presentado por:

Jonathan Huayamave Nieto

Steven Totoy Wong

GUAYAQUIL - ECUADOR Año: 2017

AGRADECIMIENTOS

A mis amigas Cristina Moscoso, Hilda León, Erika Sánchez, Stephany Arias y Consuelo Ramírez por haber compartido sus conocimientos y tenerme paciencia

A mis amigos Paolo Potes, Fernando Gaona, Jordy peñafiel, Jorge Arellano, Eddie Avilés, Francisco Rites e Iván Chiquito por su apoyo incondicional en los momentos más necesitados

A mi mamá, porque sin ella yo no sería nadie

A mi familia por siempre estar apoyándome

A mi tutor Livingston Castro por motivarnos y sacar lo mejor de nosotros. A la Dra. Isabel Jiménez por generosidad.

Jonathan

AGRADECIMIENTOS

Dedico este trabajo primero a Dios por esta etapa de mi vida que he culminado, un camino que se ha forjado en base a trabajo, dedicación, constancia, y a su infinita misericordia.

A mis padres, mis hermanos, y familia, que gracias a su esfuerzo y paciencia han sido parte de este largo proceso, y que este logro al igual que a mi le pertenece a cada uno de ellos.

Al Ingeniero Livingston Castro, tutor del proyecto, que en cada etapa de la materia integradora se comprometió y contribuyó con su experiencia para que ésta obtenga resultados sobresalientes.

A mi primera experiencia laboral Ambev Ecuador, agradecido por permitirme llevar de la mano el trabajo y los estudios con sacrificio pero satisfecho de todo lo aprendido.

Steven

DECLARACIÓN EXPRESA

"La responsabilidad del contenido desarrollado en la presente propuesta de la materia integradora corresponde exclusivamente al equipo conformado por:

Jonathan Nicolás Huayamave Nieto

Steven Cesar Totoy Wong

MSc. Livingston David Castro Valladares

Ph.D Miguel Quilambaqui Jara

y el patrimonio intelectual del mismo a la Facultad de Ingeniería en Mecánica y Ciencias de la Producción (FIMCP) de la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

Jonathan Huayamave

Nieto

MSc. Livingston Castro

Valladares

Steven Totoy Wong

Ph.D Miguel Quilambaqui

Jara

RESUMEN

La producción de café es uno de las principales actividades de los agricultores en Ecuador. Sin embargo, muchos de los pequeños productores presentan perdidas dado la falta de maquinaria para los procesamientos, lo cual afecta directamente la calidad del producto. En el presente proyecto se diseñó una planta para producir 500 kg/día de café pergamino seco. El proyecto se realizó en 5 etapas. En la primera fase, se realizó la revisión bibliográfica de los diferentes procesos empleados para la producción del café. En la segunda etapa, se utilizaron matrices de decisión para seleccionar los procesos y equipos más adecuados para cumplir con los requerimientos de producción. En la tercera etapa, se realizó el dimensionamiento de la planta usando el método de relación entre áreas el cual certifica la eficiencia de la planta por departamentos. En la cuarta etapa, se realizó el dimensionamiento de la parte estructural, la cimentación, Los valores obtenidos fueron verificados que están dentro de las especificaciones de las normas ICE y NEC. Complementariamente, se realizó una simulación de la planta usando FlexSim para demostrar que se cumplía con los requerimientos de producción. En la última etapa, se realizó un análisis financiero tomando en cuenta todos los rubros requeridos para verificar la rentabilidad del proyecto, dando como resultados valores de VAN y TIR favorables.

Palabras Claves: transferencia de calor, coeficiente de convección, cimentación, humedad.

ABSTRACT

Coffee production is one of the main activities of farmers in Ecuador. However, many of the small producers present losses due to the lack of machinery for processing, which directly affects the quality of the product. In this project a plant was designed to produce 500 kg / day of dry parchment coffee. The project was carried out in 5 stages. In the first phase, the bibliographic review of the different processes used for coffee production was carried out. In the second stage, decision matrices were used to select the most adequate processes and equipment to meet production requirements. In the third stage, the sizing of the plant was carried out using the method of relation between areas which certifies the efficiency of the plant by departments. In the fourth stage, the dimensioning of the structural part, the foundation, was performed. The values obtained were verified to be within the specifications of the ICE and NEC standards. In addition, a simulation of the plant was performed using FlexSim to demonstrate that the production requirements were met. In the last stage, a financial analysis was made taking into account all the required items to verify the profitability of the project, resulting in favorable VAN and TIR values.

Keywords: heat transfer, convection coefficient, foundation, moisture.

ÍNDICE GENERAL

Conten	nido EN	l
	4 <i>CT</i>	
ÍNDICE G	GENERAL	III
ABREVIA	ATURAS	VII
SIMBOLO	.OGÍA	VIII
ÍNDICE D	DE FIGURAS	IX
ÍNDICE D	DE TABLAS	X
ÍNDICE D	DE PLANOS	XII
CAPÍTUL	LO 1	1
1. Intr	troducción	1
1.1	Descripción del problema	2
1.2	Objetivos	2
1.2.1	Objetivo General	2
1.2.2	Objetivos Específicos	2
1.3 N	Marco teórico	3
1.3.1	Café	3
1.4 F	Post-Cosecha	5
1.4.1	Vía Seca	6
1.4.2	Vía Húmeda	8
1.5 N	Matriz de decisiones	16
CAPÍTUL	LO 2	19
2. Dis	iseño de planta	19
2.1 F	Requerimiento del Personal	19
2.1.1	Descripción del Puesto de Trabajo	19

	2.1.2	Gerente General:20
	2.1.3	Jefe Financiero20
	2.1.4	Jefe de Producción21
	2.1.5	Operadores21
2	2.2	Diseño del Proceso
	2.2.1	Macro Mapa de Proceso22
	2.2.2	Diagrama del flujo de proceso23
2	2.3	Descripción del Proceso
	2.3.1	Recepción de la materia prima:24
	2.3.2	Separador de flotantes:24
	2.3.3	Despulpado:24
	2.3.4	Criba rotativa:24
	2.3.5	Desmucilaginado:25
	2.3.6	Pre-secado:25
	2.3.7	Secado:25
	2.3.8	Descripción del Empacado25
	2.3.9	Descripción del Almacenado26
2	2.4	Selección de equipos para materia prima
	2.4.1	Báscula digital27
	2.4.2	Estibador manual27
2	2.5	Selección de equipos para producción
	2.5.1	Modelos Integrados28
	2.5.2	Secado32
2	2.6	Matriz decisión de equipos36
2	2.7	Selección de equipos para producto terminado
	271	Cosedora de sacos

2.7	7.2	Montacargas manual	. 38
2.7	7.3	Medidor de Humedad y Temperatura (Higrómetro)	.39
2.8	Dis	stribución de planta	.40
2.8	3.1	Instalaciones básicas de la planta	40
2.8	3.2	Instalaciones sanitarias	40
2.8	3.3	Sistema contra incendios:	40
2.8	3.4	Descripción de las áreas de la empresa	.40
2.8	3.5	Uso de metodologías para diseño de la distribución física de la planta.	.41
2.8	3.6	Requerimiento de espacio	43
2.8	3.7	Layout Propuestos	.44
2.8	3.8	Selección de Layout	46
2.8	3.9	Simulación Del Sistema De Producción	.47
2.9	Us	o y manejo de los subproductos	50
2.10) Dis	seño Mecánico de subsecciones	.50
2.1	10.1	Determinación de la humedad relativa final del producto de la marques	ina
		51	
2.1	10.2	Secado de café en secador rotativo	53
2.1	10.3	Potencia para transporte de tornillo sin fin:	57
2.1	10.4	Diseño estructural	59
CAPÍ	TULC) 3	.71
3.	Resu	ultados	.71
3.1	Dis	seño mecánico de subsecciones	.71
3.2	An	álisis de costos	.72
3.2	2.1	Inversión inicial	.72
3.2	2.2	Costos de producción	.73
3.2	2.3	Presupuesto de Sueldos	.75

3.2.	.4	Fluyo del Proyecto	76
3.2.	.5	TIR y VAN	77
CAPÍT	ΓULO	4	78
4.	Conc	lusiones y Recomendaciones	78
4.1	Cor	nclusiones	78
4.2	Red	comendaciones	79
Bibliog	grafía		80
Anexo	s		84
5.	Calcu	ılos	84
5.1	Sec	cado en marquesina	84
5.1.	.1	Extracción de humedad del 60% al 30%	84
5.1.	.2	Coeficiente de transferencia de calor por convección	85
5.2	Sec	cado de café en secador rotativo	87
5.2.	.1	Cálculo de flujo másico del aire en contacto con el café	89
5.2.	.2	Cálculo de flujo másico de aire usado en la combustión	90
5.2.	.3	Flujo másico a mover por el ventilador	92
5.3	Pot	encia para transporte de tornillo sin fin:	94
PI AI	NOS		100

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

ASTM American Society for Testing and Materials

NACE National Association of Corrosion Engineer

SSC Electrodo de Plata Cloruro de Plata

CSE Eléctrodo de Cobre Sulfato de Cobre

HWL High Water Level

LWL Low Water Level

CIS Inspección pasó a paso, medición de potenciales de encendido

MPY Milésimas de pulgadas por año

MAG Ministerio de Agricultura, Ganadería

ACI American Concrete Institution

NEC Norma Ecuatoriana de la Construcción

SIMBOLOGÍA

I	Irradiación del sol (W/m²)
\boldsymbol{A}	Área de marquesina (m²)
t_1	Tiempo de secado al sol (h)
t_2	Tiempo total en la marquesina (h)
h_{conv}	Coeficiente de transferencia de calor por convección (W/m².K)
m_w	Masa del agua (Kg)
$C_{p,agua}$	Calor especifico del agua (J/Kg.K)
h_{fg}	Entalpia de vaporización del agua (J/Kg)
μ	Viscosidad Cinemática
ν	Viscosidad Dinámica
k	Conductividad térmica
Pr	Prandtl
Re	Reynolds
Nu	Nusselt
Р	Potencia
ω	Revoluciones
ṁ	Flujo másico
Q	Caudal
λ	Coeficiente de relleno de sección
S	Paso de hélice
g	Gravedad
C_m	Carga muerta [kg*F/m²]
C_v	Carga viva [kg*F/m²]
A_t	Área Tributaria
P	Fuerza axial
f'c	Resistencia a la compresión del hormigón

Área de varilla

Av

ÍNDICE DE FIGURAS

Figura 1-1Composición del fruto del Café	4
Figura 1-2 Secado	7
Figura 1-3 Trilladora y Pulidora para pergamino	7
Figura 1-4 Sifón de flujo continuo	8
Figura 1-5. Despulpador de cilindro horizontal.	10
Figura 1-6. Despulpadora vertical	10
Figura 1-7. Despulpador de disco.	11
Figura 1-8 . Zarandas oscilantes	12
Figura 1-9 . Criba separadora.	13
Figura 1-10 . Desmucilaginado natural	14
Figura 1-11 . Desmucilaginado mecánico	15
Figura 2-1 Organigrama de la Organización	19
Figura 2-2 Macro mapa del proceso	22
Figura 2-3Flujo del proceso	23
Figura 2-4 Báscula Digital	27

ÍNDICE DE TABLAS

Tabla 1-1.Matriz decision dei proceso	17
Tabla 1-2. Matriz de decisión del diseño del equipo	18
Tabla 2-1Características Técnicas XTEEL	27
Tabla 2-2. Características Técnicas AC LOW	27
Tabla 2-3 Características Técnicas Ecoline	28
Tabla 2-4CaracterísticasTécnicasBecolsub	30
Tabla 2-5.Caracteristicas técnicas Becolsub	31
Tabla 2-6. Características Técnicas Secadora SG-1	33
Tabla 2-7. Características Técnicas de la secadora tipo Silo	34
Tabla 2-8. Características Técnicas Secadora Manual	35
Tabla 2-9. Características Técnicas Secadora Manual	36
Tabla 2-10. Características Técnicas Serie F	37
Tabla 2-11. Características Técnicas MS 1016	38
Tabla 2-12. Características Técnicas Higrómetro	39
Tabla 2-13 Areas de la empresa	41
Tabla 2-14 Puntuacion y color de acuerdo a la importancia	41
Tabla 2-15 Relación entre las áreas	42
Tabla 2-16Espacio requerido	43
Tabla 2-17Evaluacion de la propuesta No.1	44
Tabla 2-18Evaluacion de la propuesta No.2	45
Tabla 2-19Evaluacion de la propuesta No.3	46
Tabla 2-20Resultados de la prueba piloto	48
Tabla 2-21 Resultado de la prueba con 30 replicas	49
Tabla 2-22 Temperaturas de entrada y salida	55
Tabla 3-1Resultados Marquesina	71
Tabla 3-2Resultados Secadora Rotativa	71
Tabla 3-3 Resultado Tornillo sin fin	72
Tabla 3-4 Inversion Inicial	73
Tabla 3-5 Costos de insumos de producción	73
Tabla 3-6 Costo de servicios básicos	73

Tabla 3-7Costos de Exportacion	74
Tabla 3-8Costos Legales	74
Tabla 3-9Otros Costos	74
Tabla 3-10Costos Laborales	75
Tabla 3-11 Flujo del proyecto	76
Tabla 3-12 TIR y VAN	77
Tabla 3-13Prestamo VAN	77

ÍNDICE DE PLANOS

PLANO 1	Arquitectónico planta
PLANO 2	Arquitectónico planta con medidas
PLANO 3	Estructural cubierta – vigas – cimentación
PLANO 4	Modelo compacto
PLANO 5	Secadora
PLANO 6	Vista isométrica de la planta

CAPÍTULO 1

1. INTRODUCCIÓN

El Ecuador es unos de los pocos países en el mundo capaz de cultivar todos los tipos de café: arábigo y robusta. Ventaja que se debe a su posición geográfica la cual nos permite cultivar café en todas las regiones; costa, sierra, amazonia e islas galápagos. En la región costa se encuentra unos de los principales productores de café, que es el cantón jipijapa ubicada en la provincia de Manabí (PRO ECUADOR, 2013). Hace 8 años el café fue un cultivo de gran importancia para el país ya que contaba con 198.511 ha cultivadas con un rendimiento del 0.20 t/ha, en el 2012 se produjo una caída significativa del 69% con respecto al año 2011 debido a que el rendimiento bajo un 62% y la superficie plantada decayó un 8% debido a la avanzada edad de las plantaciones (Productor, 2017). Debido a este problema el Ministerio de agricultura, ganadería, acuacultura y pesca (MAGAP) realizó un proyecto de reactivación de café y cacao adquiriendo 85 toneladas métricas de semillas certificadas del Brasil, con resistencia a la roya y con altos rendimientos. (MAGAP, Ministerio de Agricultura, Ganaderia, Acuacultura y Pesca, 2013)

En el año 2016 el café arábigo registro un rendimiento de 0.22t/ha, mientras que el café robusta reporto un rendimiento de 0.48t/ha con una superficie plantada de 96.312 ha. Comparando estos datos con el año 2006 hay un incremento del 60% en la última década ya que 2 de cada 3 hectáreas de café son plantaciones nuevas (MAGAP, Ministerio de Agricultura, Ganaderia, Acuacultura y Pesca, 2017). Es por este motivo que surge la idea de diseñar una planta procesadora de café capaz de aportar al desarrollo socioeconómico del país.

1.1 Descripción del problema

El Ecuador posee una gran capacidad como productor de café, el mismo que es comercializado para mercado interno y externo, siendo la provincia de Manabí uno de los lugares más importantes donde se cultiva este producto con más de 70.050 ha, ocupando el 38,6 % de la superficie cultivada nivel nacional (PRO ECUADOR, 2013). Debido a la alta producción de café que existe en la zona, uno de los mayores problemas tiene que ver con las condiciones de manejo, pos-cosecha y procesamiento de la producción. Actualmente muchas de estas actividades se realizan de forma artesanal, bajo circunstancias de desconocimiento de las normas de procesamiento, malas prácticas de manufactura y poca logística para el manejo de la materia prima. Todos estos factores disminuyen la calidad y productividad, donde los pequeños productores no pueden competir con sectores privados, que cuenta con una mayor organización y tecnología.

1.2 Objetivos

1.2.1 Objetivo General

Diseñar una planta para procesamiento de café con capacidad de 500 Kg/día de café pergamino seco en el cantón Jipijapa.

1.2.2 Objetivos Específicos

- Diseñar el layout de la planta.
- Seleccionar los equipos de acuerdo a las necesidades.
- Evaluar el cumplimiento de los requerimientos de producción.
- Determinar costos de producción e inversión inicial para el desarrollo de este proyecto.

1.3 Marco teórico

El café es una bebida popular, que puede ser apreciada y degustada en una simple taza para café, pero cada una con características organolépticas que definen la calidad del mismo. Este producto cuenta con una gran historia que con el pasar de los años se ha definido nuevas técnicas para obtener el mejor café, con formas complejas de sembrío, cuidados en la cosecha y un procesamiento adecuado para conservar la calidad del mismo. Para aquello se menciona a continuación qué es el café, cuál es su composición y como es el proceso del café desde su cosecha hasta obtener el café pergamino seco.

1.3.1 Café

El café se lo conoce como una bebida altamente estimulante por la cafeína que posee, de buen aroma y sabor, comúnmente bebidas como infusión. Su fruto es obtenido de los cafetos que son plantas tropicales pertenecientes a la familia de las Rubiáceas (Rubiaceae), reconocidas por una hendidura en la parte central de la semilla, con arbustos hasta de 10 metros de altura, hojas simples, flores blancas tubulares y frutos con dos semillas por lo general. Los granos del café son conocidos como cereza, por su gran parecido a ellas tanto en dimensión como color. (Café de Colombia, 2010)

1.3.1.1 Composición del fruto del café

Una buena semilla para producir café debe ser de color amarillo ámbar, de puntas redondeadas, con un correcto peso y buen olor. La semilla está compuesta por una cubierta exterior que es el exocarpio, parte que protege al fruto y responsable del color. Cubiertas intermedias como el mucílago o mesocarpio también conocida como pulpa. El endocarpio o pergamino, capa amarillenta de consistencia dura que protege la semilla. La película plateada o epidermis, que es una capa fina que recubre la semilla. El endospermo o café verde es la semilla que será usada para tostar. (Café de Colombia, 2010)

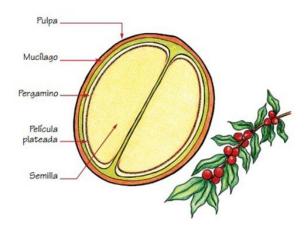


Figura 1-1Composición del fruto del Café
Fuente:(Yo Amo El Café De Colombia, 2016)

1.3.1.2 Pre-Cosecha

Los árboles de sombra ayudan a proteger el cafeto, estos por lo general son leguminosas, ya que son de rápido crecimiento, entre las principales ventajas están disminuir la erosión, aumenta el contenido de materia orgánica y disminuye la proliferación de malezas en el cafetal. (Fundación Hondureña de Investiación Agrícola, 2004). Los cafetos al ser plantas subtropicales se requieren temperaturas entre los 18 a 22 grados Celsius, ya que a temperaturas más altas dan lugar al crecimiento de plagas. El exceso o escasez de las lluvias también se convierte preponderante a la hora de cultivar, es recomendable que esté a 120 milímetros al mes. Las zonas aptas para cultivar deben presentar vientos no muy turbulentos. Otro factor importante es la radiación solar que está representado por el número de horas que el sol impacta directamente a la zona, por eso es recomendable que al día esté entre 4,5 a 5,5 horas de radiación. (Instituto Hondureño de Café, 2011)

A la hora de cultivar el suelo se torna uno de los factores más importantes y para esto se debe verificar el estado de parámetros como su color, porosidad, permeabilidad y la profundidad la cual permitirá dejar espacio para el crecimiento de raíces. El grado de acidez del suelo debe

encontrarse entre 5 a 5,5 ya que esto ayuda a la nutrición del cultivo. El cafeto necesita fertilización para cuidado del suelo, entre los más importantes están el Nitrógeno, Fósforo y Potasio. Un suelo apto para cultivo debe tener valores mayores al 8% de materia orgánica, este mejora la productividad, incluso reduce el desarrollo de organismos que puedan dañar el cafetal. (Instituto Hondureño de Café, 2011)

Los cafetos tienen sus períodos de cosecha de acuerdo a la estacionalidad de las floraciones, las cuales son producidas entre los 3 a 4 años de edad, estos se marchitan y luego de 8 meses aproximadamente se convierten en cerezas con diámetros de hasta 18mm. Los cafetos pueden rendir de 15 a 20 años. En el momento de la cosecha existen dos maneras de realizarlo; un método llamado *Picking* proceso manual en el que se escogen únicamente las cerezas maduras, lo que permite tener una calidad superior y que las demás concluyan el proceso de maduración, el otro proceso es el *Stripping*, puede ser manual o por lo general mecanizado el cual toma todos los frutos tanto maduros como no maduros, el proceso puede aumentar la cosecha pero éste puede afectar aromas y sabores a la hora de llegar al consumidor.

1.4 Post-Cosecha

Para procesar el café existen dos métodos, la vía húmeda y la vía seca. Estos procesos empiezan a partir de la recolección del fruto, este puede ser recolectado de dos maneras. Uno se basa en la recolección selectiva, en donde solo se recoge el fruto maduro; mientras que el otro consiste en agitar la planta y recoger todos los frutos tanto verdes como maduros. (LAVAZZA, 2015).

1.4.1 Vía Seca

El beneficio por vía seca es también llamado método natural. Se puede considerar que este método es más sencillo por factores económicos, ya que se necesita menos maquinaria que el proceso por vía húmeda. En este proceso se obtienen las semillas por métodos mecánicos (Stripping), ya que se usan cerezas tanto maduras como no maduras. Las condiciones iniciales suelen variar según la cantidad de producción que entrará al proceso, en caso de ser plantaciones grandes se suele hacer una leve clasificación separando las cerezas que se ven dañadas o no maduras o también podrían usarse tinas o tolvas de agua en las que se sumergen las cerezas; las cerezas que tienen menor densidad flotarán y serán consideradas como cerezas dañadas o materia orgánica. Una vez obtenido las semillas de café se procederá al secado. (Anacafe, 2011)

1.4.1.1 Secado

Las cerezas recolectadas se las tiende en patios de secado, por lo general se las deja entre 20 a 30 días dependiendo a las condiciones del clima, En esta etapa se secan todas las membranas; tanto la endospermo, la pulpa, el mucílago y el pergamino. Estas deben ser movidas constantemente para que puedan ser secadas equitativamente. Para métodos como el de vía seca, esta parte del secado es importante ya que de esto depende la calidad del café. En este proceso se consigue valores de 10 a 11% de humedad, si el café es sobre-secado este puede volverse quebradizo y fácilmente ser dañado en el proceso, caso contrario, si no es secado correctamente este puede conservar humedad y ser atacado por hongos o bacterias. (Soto, 2007)

Figura 1-2 Secado

Fuente: (Cafes Siboney, 2015)

1.4.1.2 Trillado

En este proceso los frutos que fueron secados aun poseen su corteza o pergamino. Para obtener la semilla o café oro se utiliza maquinaria que por medio de la fricción entre los granos y cuchillas remueven el pergamino. Este se debe graduar con precisión ya que puede quebrar los granos. La mayoría de estos equipos poseen un motor ventilador que limpia el desecho y los empuja hacia el ducto de depósito.

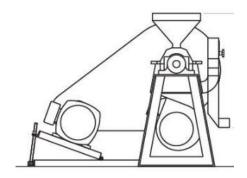


Figura 1-3 Trilladora y Pulidora para pergamino

Fuente: (Pinhalense, 2017)

1.4.2 Vía Húmeda

El método de vía húmeda requiere el uso de equipos y cantidades considerables de agua para llevar a cabo esta operación. Este método logra que el grano de café se conserve mejor, lo que implica mejor calidad y por ende alcanza precios más altos.

1.4.2.1 Limpieza y Clasificación

Una vez receptada la materia prima es vaciada en un tanque. Este tiene agua que moviliza el café a un sifón para así separar el café flotante del café pesado. Posee la forma de pirámide invertida utilizando el principio de sifón que es hacer valer la diferencia de presión entre dos puntos y obligar al café a movilizarse. El café pesado (considerado de mejor calidad) se hunde hasta el fondo del tanque donde entra a un tubo para ser movilizado al siguiente proceso llamado despulpado mientras que el café flotante (granos defectuosos) es removido. (Asociacion Nacional del Cafe, 1998)

Figura 1-4 Sifón de flujo continuo

Fuente: (Bendig Maquinaria, 1986)

1.4.2.2 Despulpadora

En esta etapa del proceso se procede a eliminar la pulpa (epicarpio), se realiza con máquinas que aprovechan la cualidad lubricante del mucilago del café, para que por presión suelten los granos. Es importante utilizar despulpadores que estén diseñados para operar en seco ya que al no utilizar agua se puede reducir el tiempo de fermentación, evitar el gasto del consumo del agua y se preserva los nutrientes orgánicos de la pulpa que pueden ser utilizados posteriormente. (Asociacion Nacional del Cafe, 1998)

Los mecanismos de despulpado más utilizados son:

- Cilindro horizontal con pecho de hierro
- Cilindro vertical
- De Disco

1.4.2.2.1 Despulpador de cilindro horizontal con pecho de hierro

Esta máquina está constituida por un cilindro de hierro fundido o aluminio el cual va fija en una camisa de acero inoxidable, con hoyuelos de diversos tipos y tamaños. Cuando el cilindro gira este aprisiona el fruto maduro contra la plancha cóncava, conocida como "pechero" como se observa en la figura 1-5. El pechero puede ser ajustado de acuerdo al tamaño de la cereza para evitar que queden cerezas sin despulpar y para no dañar el grano. Este diseño se lo ha modificado con el paso de los años mejorando su diseño, haciéndola más versátil y mejorando su eficiencia energética.

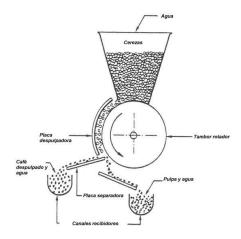


Figura 1-5. Despulpador de cilindro horizontal.

.Fuente: (J.N. Wintgens, 2004)

1.4.2.2.2 Despulpador de cilindro vertical

Esta despulpadora consiste de un cilindro angosto que rota verticalmente y alimentada desde la parte superior, cubierto con una manga de cobre o de metal con tres a seis canales que se vuelven más angostos, la presión sobre la cereza incrementa, removiendo la pulpa del grano que se cae a través de un espacio entre el canal y el tambor mientras que los granos permanecen en el canal para ser recolectados posteriormente.

Figura 1-6. Despulpadora vertical.

Fuente: (J.N. Wintgens, 2004)

1.4.2.2.3 Despulpador de Disco

El despulpador de disco consiste en un disco giratorio el cual esta sostenido por un eje en posición horizontal. Las cerezas al caer por la tolva son exprimidas por la fricción que existe entre la barra despulpadora y el disco, para luego ser dividas por una placa entre semilla despulpada y los desechos de pulpa. Este suele ser de mayor efectividad que el de cilindro y permite reducir daños por ingreso de piedras debido a la rigidez del disco.

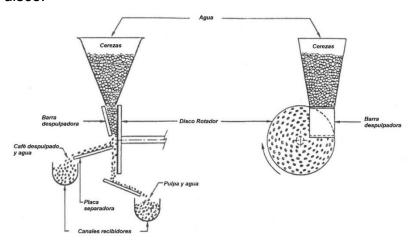


Figura 1-7. Despulpador de disco.

Fuente: (J.N. Wintgens, 2004)

1.4.2.3 Clasificación del café despulpado

Unas de las características principales que distinguen el café procesado por la vía húmeda, son las diversas fases de clasificación y selección desde la recolección hasta el lavado. El grano despulpado deberá clasificarse por tamaño, por densidad o ambos. Esto se realiza con el fin de separar cafés dañados, pulpas y uniformizar el tamaño de dicho grano. La presencia de un alto porcentaje de pulpa en las pilas de fermentación puede dañar la apariencia física del grano provocando una película rojiza y fermentaciones disparejas. (Asociacion Nacional del Cafe, 1998)

Para clasificar el café despulpado se utilizan los siguientes equipos:

- Zarandas oscilantes
- Cribas rotativas

1.4.2.3.1 Zarandas Oscilantes

Este equipo posee planchas perforadas en forma de ovalo donde se recibe el café en unos de sus extremos. Esta oscila en el plano horizontal desplazando el café de segunda y la cascara al otro extremo, para que sea descargado a un despulpador de repaso. El grano bien despulpado cae a través de las perforaciones y es conducido a la siguiente fase llamada fermentación o desmucilaginado (Anacafé, 2011).

Figura 1-8. Zarandas oscilantes.

Fuente: (Anacafé, 2011)

1.4.2.3.2 Criba rotativa

Es un equipo que combina la clasificación por densidad y tamaño. Consiste en un cilindro que gira horizontalmente y que está formado por una estructura hecha de anillos que sostienen un eje. Esta estructura puede estar forrada con lámina metálica o con hilos de nylon. El grano que pasa a través de los agujeros es café de primera mientras que los grano que salen por el extremo de la criba es café de segunda y los que flotan en la caja es rechazado (Anacafé, 2011).

Figura 1-9. Criba separadora.

Fuente: (Palini&Alves, 2017)

1.4.2.4 Fermentación o Desmucilaginado

En esta parte del proceso se busca remover el mucilago, ya sea por fermentado natural o mecánicamente. En cada uno interviene factores como tiempo, calidad, consumo de agua y costos, que ayudaran a seleccionar el mejor proceso dependiendo de las necesidades a tomar.

1.4.2.4.1 Desmucilaginado Tradicional o Fermentado Natural

Después de que el café es despulpado, alrededor de él queda una membrana llamada mucilago. Esto es un material gelatinoso insoluble en agua y es necesario degradarlo lo suficiente para que sea más fácil su remoción en el lavado. Se lo degrada en tanques, pilas de madera, concreto, ladrillo, plástico o fibra de vidrio. La fermentación requerir un tiempo dentro del rango de 6 a 48 horas dependiendo de la temperatura ambiente, capacidad de drenaje de los tanques, altura de la masa de café, calidad del agua utilizada en el despulpado, estado de madurez del fruto, microorganismos presentes, entre otros. Para determinar el punto de lavado o fermento, es necesario sacar muestras constantemente. Esto se puede realizar introduciendo un rodillo en diferentes partes del tanque hasta tocar el fondo, si al sacarlo queda hecho el orificio, entonces se toman muestras de diferentes partes del tanque, se lava y si se siente áspero al tacto es señal que ya está listo para lavar.

Figura 1-10 . Desmucilaginado natural

Fuente: (CeniCafé, 2016)

1.4.2.4.2 Desmucilaginado Mecánico

Este equipo se encarga de remover mecánicamente el mucilago del grano de forma continua, reduciendo así el tiempo que conlleva fermentar naturalmente. Se debe considerar que para este proceso se necesita utilizar cantidades considerables de energía. En estos equipos se desprende el mucílago por fricción, al llegar el café es introducido a presión en la parte inferior, luego gira el rotor que posee unos pequeños voladizos de acero, y junto a la posición de la canasta en forma poligonal hace que el café friccione removiendo así parte del mucílago. Por lo general, la sección superior del equipo permite el ingreso del agua que servirá para el remover mucílago y lavar el grano de café. Este equipo puede ser regulado, lo cual permitirá graduar la cantidad de desprendimiento de mucílago.

Figura 1-11. Desmucilaginado mecánico.

Fuente: (Pinhalense, 2017)

1.4.2.5 Lavado

El lavado consiste en quitar los restos de mucilago que queda adherido al pergamino utilizando agua limpia con un nivel entre 5 a 10 centímetros sobre la superficie del café. Se debe proceder a realizar tres enjuagues en la que cual se puede utilizar un sistema de recirculación para reducir costos. Se utiliza también para este proceso paletas con mango de madera, pala de PVC u otros materiales que no afecten al producto para moverlo y facilitar la limpieza del producto (Asociacion Nacional del Cafe, 1998).

1.4.2.6 Secado

El café después del proceso del lavado contiene un alto contenido de humedad. Con el proceso de secado se busca reducir la humedad del café hasta un punto comercial que está entre el 10-12%. Para el siguiente proceso hay que utilizar un método adecuado ya que se busca conservar las propiedades organolépticas del café y este se puede perder si se emplean temperaturas muy altas, afectando de esta manera la calidad del café (Asociacion Nacional del Cafe, 1998).

1.4.2.6.1 Secado Natural

El secado al sol es unos de los métodos más comunes para reducir la humedad del café ya que al aprovechar la energía del sol y la del aire se pueden reducir el costo de inversión en el equipo junto con los costos de operación.

1.4.2.6.2 Secado Mecánico

En zonas donde las condiciones climáticas no son favorables como escaso sol, viento y acompañamientos de muchas lluvias, no es conveniente depositar el café en patios ya que no alcanzara las condiciones adecuadas. Los métodos mecánicos utilizan una fuente de calor combinado con un ventilador para que de esta manera el aire caliente pase entre los granos. Para esta operación se necesita altos volúmenes de aire en vez de temperaturas de secamiento, en este modo de secado hay tres etapas importantes que hay que considerar:

- Evaporación Constante (55-40% humedad, 50°C Aplicados): Se pueden utilizar pre-secadoras o patios, con esta operación se elimina hasta un 40% de la humedad
- 2. Fase Crítica (40-20% humedad, 70°C Aplicados): En esta fase el grano traslada su humedad desde su interior hasta su superficie, endureciendo el pergamino y reduciendo el tamaño del grano.
- Estabilización (20-10% humedad, 60°C Aplicados): En esta última fase el grano alcanza su punto de secado, esta actividad también puede ser realizada al sol.

1.5 Matriz de decisiones

La siguiente sección del capítulo se basa en matrices para poder decidir por la mejor opción de distintos procesos involucrados con la producción de café con el objetivo de obtener un café de alta calidad. Para aquello se han tomado en cuenta distintos parámetros capaces de definir por la mejor opción, y para esto se han determinado valores para calificarlos. El rango de valores va del 1 al 5 siendo el 1 (Muy Malo), 2 (Malo), 3 (Regular), 4 (Bueno), 5 (Muy Bueno).

A continuación en la tabla 1-1 se presentará una matriz de decisión para escoger el método para el procesamiento de café. Esta matriz es de vital importancia ya que de esto se derivará todo el proceso para obtener el mejor café con la mejor calidad, considerando los siguientes parámetros: Costos, Seguridad, Medio Ambiente, Calidad, Tiempos y Ergonomía.

Tabla 1-1. Matriz decisión del proceso

Método	Costos	Seguridad	Medio Ambiente	Calidad	Tiempos	Ergonomía	Total
Ponderado (%)	20%	15%	15%	20%	20%	10%	100%
Vía Seca	5	4	4	3	3	5	3,9
Vía Húmeda	3	4	3	5	5	4	4,05

Fuente: Huayamave, Totoy. 2017.

Luego de la matriz de decisión presentada, se usará el método de vía húmeda. El método de vía húmeda genera una mejor calidad en el café, cuidando las características organolépticas. Las desventajas que se encuentran comparando con la vía seca son en costos y medio ambiente (contaminación), considerando el costo-beneficio esas desventajas se vuelven irrelevantes debido a la alta producción que se requiere.

La siguiente tabla 1-2 se presentará una matriz que tiene la finalidad de seleccionar el tipo de proceso que se requerirá para la planta de producción, teniendo en cuenta parámetros que se consideran relevantes para tomar la mejor decisión, entre las que se tienen: seguridad, ergonomía, mantenimiento, consumo de energía, fácil fabricación y costos.

Tabla 1-2. Matriz de decisión del diseño del equipo

Proceso	Тіро	Seguridad	Ergonomía	Mantenimiento	Consumo Energía	Fácil Fabricación	Calidad	Costos	Total
Ponderado		15%	10%	15%	10%	10%	25%	15%	100%
	Cilindro horizontal Pecho Hierro	4	5	4	4	4	4	4	4,1
Despulpadora	Cilindro horizontal Pecho Hule	4	3	4	4	4	3	5	3,8
Despuipadora	Cilindro Cónico Vertical	4	4	3	3	3	4	3	3,5
	Disco	4	4	4	4	4	3	5	3,9
Clasificadora	Zarandas oscilantes	4	5	3	3	3	4	4	3,75
Ciasilicaudia	Cribas rotatorias	3	5	4	4	4	4	4	3,95
Fermentación	Fermentado natural	4	5	4	5	5	2	5	3,95
rementation	Desmucilginado mecánico	5	4	4	4	3	5	3	4,15
Secado	Natural	3	3	5	5	3	4	3	3,75
Jecauo	Mecánico	4	4	3	4	3	5	3	3,85

Fuente: Huayamave, Totoy. 2017.

Luego de la matriz de decisión para cada proceso de los que se han considerado para la planta de producción se escogió los siguientes tipos:

- Separador de flotantes
- Cilindro horizontal Pecho de Hierro
- Criba rotatorio
- Desmucilaginado mecánico
- Secado mecánico

CAPÍTULO 2

2. DISEÑO DE PLANTA

En el presente capítulo se seleccionará el personal requerido y los equipos necesarios para cumplir con los requerimientos de producción. En base a esto se diseñará una planta que sea eficiente.

2.1 Requerimiento del Personal

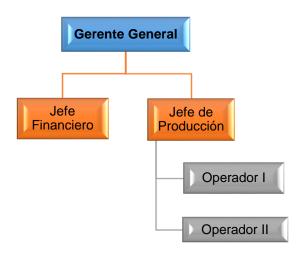


Figura 2-1 Organigrama de la Organización

Fuente: Huayamave, Totoy. 2017

2.1.1 Descripción del Puesto de Trabajo

Cada personal de la planta tendrá funciones que deberán cumplir dependiendo al perfil del puesto de trabajo que será definido a continuación.

2.1.2 Gerente General:

Es encargado de organizar, coordinar, ejecutar y dirigir proyectos de la planta y la gestión administrativa. Debe liderar al grupo de trabajo e impartir directrices con estrategias que permitan lograr los objetivos de la planta.

Funciones:

- Ejecuta las políticas de seguridad y prevención de riesgos laborales.
- Seleccionar el personal y definir los cargos de sus puestos de trabajo.
- Encargado de gestionar todo lo concerniente a recursos humanos.
- Representar a la planta en aspectos comerciales y afines.
- Liderar al equipo de trabajo.
- Implementar entrenamientos para mejoras del proceso.

2.1.3 Jefe Financiero

Será encargado de planificar y coordinar estrategias financieras controlando los ingresos y egresos de la planta. Además ser encargado de todos los insumos necesarios en la planta, asignándolos y administrándolos correctamente.

Funciones:

- Controlar la distribución de materiales, compras, facturas, registro de proveedores y pagos de la planta.
- Realizar la gestión de cobranzas.
- Control de facturación de producto terminado con las cantidades despachadas.

2.1.4 Jefe de Producción

Será encargado de controlar todo el proceso de producción, desde ingreso de materia prima hasta producto terminado. Tendrá la responsabilidad de supervisar todo el proceso de producción y logística de la planta.

Funciones:

- Asegurar la optimización de la productividad y eficiencia de la planta.
- Ejecutar mejoras en el proceso.
- Analizar tiempos resultados de producción.
- Estandarizar los procesos de producción.
- Control de la logística de la planta, desde el ingreso de la materia prima hasta la salida del producto terminado.

2.1.5 Operadores

Serán encargados de la recepción de la materia prima, manejo de equipos y almacenamiento del producto terminado.

Funciones:

- Recepción de la materia prima.
- Correcto almacenamiento del producto terminado conservando la calidad del mismo.
- Manejo responsable de equipos.
- Ejecutar mantenimiento de los equipos (lubricación, inspección, reapriete, limpieza).
- Registro de resultados de producción.

2.2 Diseño del Proceso

2.2.1 Macro Mapa de Proceso

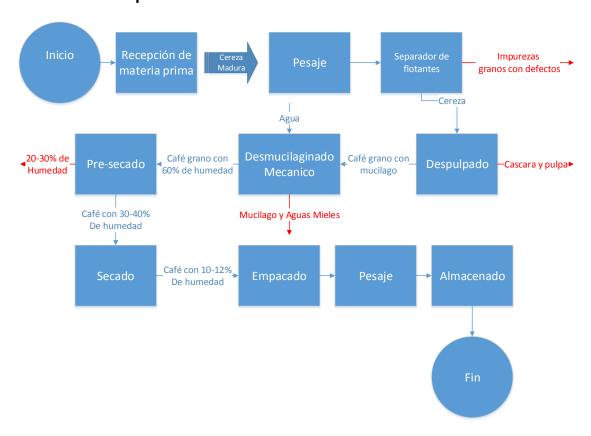


Figura 2-2 Macro mapa del proceso

2.2.2 Diagrama del flujo de proceso

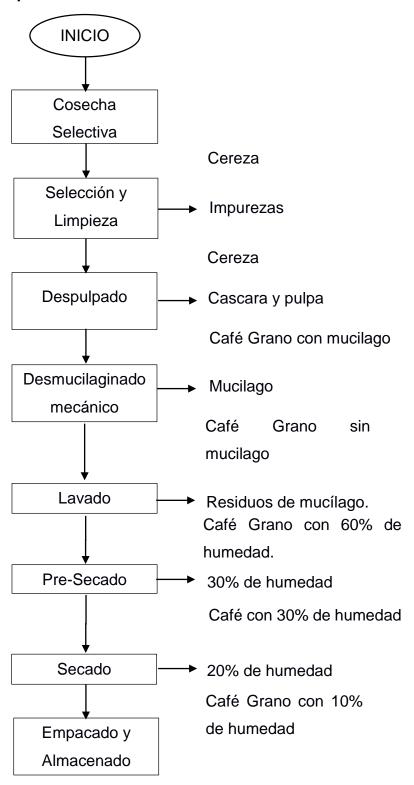


Figura 2-3Flujo del proceso

2.3 Descripción del Proceso

En esta parte se describirá como se lleva a cabo la transformación de la materia prima, desde la recepción hasta el almacenamiento del producto terminado.

2.3.1 Recepción de la materia prima:

El camión cargado con café cereza llega a las instalaciones de la planta específicamente al área de recepción. El operador será encargado de bajar los sacos para luego poder pesarlos y comprobar que el peso sea el correcto. Una vez pesados todos los sacos deben ser ordenados en pallets para poder ser trasladados al área de materia prima con ayuda del estibador manual.

2.3.2 Separador de flotantes:

De forma manual el operador es encargado de depositar el café cereza a un reservorio en forma de pirámide invertida, la cual es llenada de agua, que por medio de la densidad bajan las mejores cerezas que serán usadas para la producción. Luego por medio de un tornillo sinfín es llevada al despulpado.

2.3.3 Despulpado:

Una vez ingresado el café cereza por medio del sinfín, este es depositado en una tolva que conecta al despulpado, éste separa la pulpa de la semilla por medio de la fricción entre una placa y un tambor rotatorio. Luego es llevado al siguiente proceso por medio de un tornillo sin fin.

2.3.4 Criba rotativa:

Es un equipo rotativo que separa los restos de pulpa de la semilla con mucílago.

2.3.5 Desmucilaginado:

El café puede llegar por medio de un sinfín o caer por gravedad al desmucilaginado. Este comprende de un cilindro vertical el cual gira y por fricción desprende el mucílago de la semilla. Este proceso es considerablemente de menor tiempo comparado con el fermentado natural.

2.3.6 Pre-secado:

Luego del desmucilaginado, por medio de un tornillo sin fin el café es transportado a una marquesina, que es una mesa de madera con mallas tipo cedazo que sirve para reducir el porcentaje de humedad del café por medio de convección. En este paso el café reposa aproximadamente 12 horas para poder llegar a 30% de humedad.

2.3.7 Secado:

Luego del pre-secado es transportado a la secadora por medio de un sinfín que se conecta con la compuerta de carga. Este secador es un modelo rotativo que trabaja con aire caliente y el giro ayuda a que el secado sea de forma uniforme. Posee un sistema de control en el que se regula la temperatura para poder reducir el porcentaje de humedad de 30 al 10%. Los tiempos en el secado varían entre 3 a 4 horas.

2.3.8 Descripción del Empacado

Al terminar el proceso de secado se debe colocar el café en sacos para poder ser pesados y almacenados. En la descarga del secador se tiene una válvula tipo mariposa la cual permitirá dar apertura para poder llenar los sacos para luego de ser pesados y almacenados.

2.3.9 Descripción del Almacenado

El almacenado de granos es una labor muy importante para la conservación de los mismos, juegan papeles estrechamente relacionados: la temperatura, la humedad relativa del amiente y el sitio del almacenamiento. Si el café no es almacenado en ambientes controlados puede deteriorarse y provocar el defecto "sabor a viejo", también puede dar lugar al crecimiento de hongos que pueden formar micotoxinas que no se destruyen con el tostado y constituyen limitantes para su consumo en los países importadores, por condiciones cancerígenas. El deterioro es mucho más lento en el café pergamino que en el café oro.

EL café seco se puede conservar en buenas condiciones durante meses en ambientes con temperaturas máximas de 20°C y humedades relativas alrededor del 65%. La humedad del café almacenado en estas condiciones se mantiene entre 10% y 11% durante mucho tiempo. Este puede almacenarse de diferentes maneras; al granel, en silos, en cajas o en sacos, formando estibas. Si se hace en sacos, se debe evitar ponerlos en el piso por eso se utilizará pallets para protegerlas de la humedad del suelo, sobre todo si es concreto o ladrillo. Una columna de 6 metros de alto de café pergamino ejercerá una presión de 2.5 toneladas por metro cuadrado, aproximadamente.

Para dimensionar el espacio necesario para el almacenamiento, se debe considerar que el café ocupa 2/3 del área disponible, ya que el resto deberá dejarse para facilitar la ventilación entre estibas, vías de acceso, carga y descarga. (Anacafé, 2011)

2.4 Selección de equipos para materia prima

A continuación se presentarán los equipos utilizados para recepción de materia prima con sus respectivas características.

2.4.1 Báscula digital

Tabla 2-1Características Técnicas XTEEL

Marca	TEDEA
Dimensión (mm)	500 x 600 (Plato)
Modelo	XTEEL-W-II-C-SP-300
Capacidad (Kg)	300
Alimentación	Batería recargable conexión 110 VAC
Unidades	Kg, Lb
Escala verificación (gr)	100
Display	6 dígitos
Características	Salida a PC

Fuente:(Vía Industrial, 2012)

Figura 2-4 Báscula Digital

Fuente:(Vía Industrial, 2012)

2.4.2 Estibador manual

Tabla 2-2. Características Técnicas AC LOW

Marca	Noblelift
Modelo	AC-LOW 51
Capacidad (Ton)	2
Altura min (mm)	51
Altura max (mm)	165
Ruedas de dirección (mm)	180x50
Ruedas de carga individual (mm)	50x93
Longitud externa (mm)	685

Fuente: (Noblelift, 2017)

Figura 2-5. Estibador manual.

Fuente: (Noblelift, 2017)

2.5 Selección de equipos para producción

A continuación se presentarán los equipos utilizados para la producción con sus respectivas características.

2.5.1 Modelos Integrados

Los modelos integrados que se presentarán a continuación, son una combinación de cuatro equipos mencionados previamente que son: despulpadora, criba rotativa, desmucilaginado mecánico y lavado. Estos equipos son diseñados específicamente para los pequeños y medianos agricultores.

2.5.1.1 Opción 1

Tabla 2-3 Características Técnicas Ecoline

Marca	Penagos	
Modelo	Ecoline 400 ZS	
Capacidad	400	Kg/h
Motor Sin fin	1	Нр
Motor Despulpadora	1	Нр
Motor Desmucilaginador	2	Нр
Largo	1380	mm
Ancho	2200	mm
Alto	1200	mm

Fuente: (Penagos Hermanos, 2015)

Figura 2-6. Modelo Integrado Ecoline

Fuente: (Penagos Hermanos, 2015)

2.5.1.1.1 Características

- Despulpa y clasifica el café agilizando el proceso de beneficio.
- La criba tiene excelente desempeño, clasificando el grano despulpado y rechazando la mayor parte de la pulpa y con mínimo porcentaje de grano despulpado en el rechazo.
- La criba permite la evacuación de las pasillas o rechazos entregándolos por un costado del equipo.
- Incluye partes en acero inoxidable, lo cual permite mayor durabilidad.
- Uso de 0.2 litro de agua por kilogramo de pergamino seco
- Requiere baja potencia para su funcionamiento.
- Facilidad de operación manual o con motor.
- Diferentes capacidades de proceso según su necesidad de despulpado.
- Repuestos de fácil adquisición.
- Facilidad en el mantenimiento.
- Espacio mínimo requerido para su montaje.

2.5.1.2 Opción 2

Tabla 2-4CaracterísticasTécnicasBecolsub

Marca	JotaGallo	
Modelo	Becolsub 600	
Capacidad	600	Kg/h
Motor Sin fin	1	Нр
Motor Despulpadora	1	Нр
Motor Desmucilaginadora	3	Нр
Largo	3957	mm
Ancho	1532	mm
Altura	1690 m	

Fuente:(Inversiones Jotagallo S.A, 2015)

Figura 2-7. Modelo Integrado Becolsub

Fuente: (Inversiones Jotagallo S.A, 2015)

2.5.1.2.1 Características

- Control de hasta el 95% de la Contaminación al realizarse el desprendimiento mecánico del mucilago.
- Optimización del espacio físico (obras civiles) reduciéndolo hasta la tercera parte del Beneficio Tradicional.
- La mezcla de pulpa y mucilago se puede utilizar para la obtención de Abono Orgánico.

- El desprendimiento del mucilago del café es inmediato, a diferencia del sistema tradicional que requiere aproximadamente de entre 14 hasta 18 horas.
- Cuerpos en lámina de acero inoxidable.

2.5.1.3 Opción 3

Tabla 2-5. Caracteristicas técnicas Becolsub

Marca	JM. Estrada		
Modelo	Becolsub 600		
Capacidad	600	Kg/h	
Motor Sin fin	1	Нр	
Motor Despulpadora	1	Нр	
Motor Desmucilaginadora	2	Нр	
Largo	2100	mm	
Ancho	1890		
Altura	1530		

Fuente: (JM Estrada S.A, 2017)

Figura 2-8. Modelo integrado Becolsub

Fuente: (JM Estrada S.A, 2017)

2.5.1.3.1 Características

- Tolva en acero inoxidable.
- Soporte y estructura en perfil con pintura al horno de gran duración.
- Salidas independientes para mieles.
- Criba en acero inoxidable.
- Mínimo espacio requerido.
- Guardas de seguridad.
- Salida de pulpa en acero inoxidable.
- Rodamientos de bolas en el alimentador.
- Motor Cerrado.
- Salida de Granos despulpados en acero inoxidable.
- Rodamientos de bolas en el eje de la zaranda.
- Transporte de granos despulpados por tornillo en acero inoxidable, sin agua.
- La miel concentrada apta para alimentación animal o para mezclar con pulpa para alimentar lombricultivos.

2.5.2 Secado

A continuación se presentarán los equipos utilizados para la etapa de secado con sus respectivas características.

2.5.2.1 Opción 1

Tabla 2-6. Características Técnicas Secadora SG-1

Marca	Pen	agos
Modelo	Secadora SG-1	
Capacidad	360 Kg	
Motor Ventilador	1	HP
Motor Tambor	1	HP
Diámetro	1200	mm
Largo	900	mm

Fuente: (Penagos Hermanos, 2015)

Figura 2-9. Secadora SG-1

Fuente: (Penagos Hermanos, 2015)

2.5.2.1.1 Características

- Tambores compactos ensamblados en un solo cuerpo los cuales minimizan el desajuste y el mantenimiento.
- Compuertas para carga y descarga
- Turbina y ventilador centrifugo
- Quemador para gas
- Distribución uniforme de aire en el tambor de secado mejorando la calidad del grano al homogenizar su secado.
- Ventiladores de alto caudal asegurando flujo continuo de aire.
- Sistema automático de control de temperatura.

2.5.2.2 Opción 2

Tabla 2-7. Características Técnicas de la secadora tipo Silo

Marca	Jota Gallo	
Modelo	Secadora Tipo Silo a Gas	
Capacidad	250 Kg	
Consumo de gas	0,052	Kg/Kg CPS
Potencia	2	Нр
Largo	1800	mm
Ancho	1180	mm
Alto	1600	mm

Fuente: (Inversiones Jotagallo S.A, 2015)

Figura 2-10. Secadora Tipo Silo a Gas

Fuente: (Inversiones Jotagallo S.A, 2015)

2.5.2.2.1 Características

- 3 mallas (Oreado, pre-secado y secado)
- Motor eléctrico para el ventilador
- Tablero eléctrico para protección de los motores
- Chimenea para salida de gases de la combustión
- Parrilla para la caldera en fundición de hierro modular.
- Válvula de apertura de gas para control del flujo del mismo y regulación de la temperatura.

- Poder calorífico del gas con bajos consumos
- Ventilador centrifugo que garantiza el caudal de aire y la presión suficiente para romper las 3 masas de café.

2.5.2.3 Opción 3

Tabla 2-8. Características Técnicas Secadora Manual

Marca	JM. Estrada		
Modelo	Secadora descarga manua		
Capacidad/3 Mallas	284 Kg		
Consumo de gas	0,065	Kg/Kg CPS	
Potencia	1	HP	
Largo	1000	mm	
Ancho	860	mm	
Alto	1700	mm	

Fuente: (JM Estrada S.A, 2016)

Figura 2-11. Secadora

Fuente: (JM Estrada S.A, 2016)

2.5.2.3.1 Características

- Lámina tratada y pintada con pintura horneada dando al equipo una larga vida útil.
- Posee una bandeja removible para el cambio de aire que permite airear el café en la capa de secado de abajo hacia arriba y viceversa dando una excelente uniformad de seca
- Ventilador proporciona el caudal y la presión necesaria para atravesar las tres capas de café.
- Los gases de la combustión no contaminan el grano
- Quemador a gas localizado en la succión del ventilador.

2.6 Matriz decisión de equipos

Tabla 2-9. Características Técnicas Secadora Manual

Proceso	Marcas	Tiempo	Calidad	Ergonomía	Consumo Energía	Medio Ambiente	Costos	Dimensión	Total
Pond	lerado	15%	25%	20%	10%	10%	15%	5%	100%
December design	Penagos Ecoline	4	5	4	3	4	3	3	3,95
Despulpadora Clasificadora Fermentado	Jota Gallo Becolsub	4	3	4	4	4	4	4	3,75
rementado	JM Estrada Becolsub	3	4	4	4	5	4	3	3,9
	Penagos SG 1	4	4	4	4	4	2	4	3,7
Secadora	Jota Gallo Silo a gas	4	3	2	3	4	3	3	3,05
	JM Estrada Secadora manual	4	4	3	3	4	3	3	3,5

Fuente: Huayamave, Totoy. 2017

Se seleccionó como equipo para el diseño de planta el equipo Modelo integrado de Penagos el cual usa una cantidad mínima de agua ayudando al medio ambiente y con costos promedio al mercado.

Para la secadora el equipo a seleccionar es el Penagos SG-1 el que tiene un costo mayor a diferencia de los demás pero es justificado con la reducción de mano de obra.

2.7 Selección de equipos para producto terminado

A continuación se presentarán los equipos utilizados para el manejo del producto terminado con sus respectivas características.

2.7.1 Cosedora de sacos

Tabla 2-10. Características Técnicas Serie F

Marca	FISCHBEIN	
Modelo	Serie F – 40650	
Peso (Kg)	5	
Alto (mm)	30,5	
Ancho (mm)	22,9	
Largo (mm)	33	
Requerimiento eléctrico	115 AC 1.3 amps	
Velocidad (pies/min)	35	

Fuente: (SISCODE, 2017)

Figura 2-12. Cosedora de sacos.

Fuente: (SISCODE, 2017)

2.7.2 Montacargas manual

Tabla 2-11. Características Técnicas MS 1016

Marca	Unirrol
Modelo	MS 1016
Capacidad (Kg)	1000
Altura total (mm)	2100
Altura de las uñas (mm)	1600
Altura mínima de las uñas (mm)	90
Largo de las uñas (mm)	1100
Centro de gravedad (mm)	500
Radio de giro (mm)	1250
Ancho (mm)	1000
Largo (mm)	1380
Peso neto (Kg)	255

Fuente: (Unirrol, 2016)

Figura 2-13. Montacargas manual.

Fuente: (Unirrol, 2016)

2.7.3 Medidor de Humedad y Temperatura (Higrómetro)

Tabla 2-12. Características Técnicas Higrómetro

Marca	Meter8
Modelo	MC-7828G
Granos	22 especies
Rango de medición	0 - 50%
Precisión	± (0,5% + 0,5)
Resolución	0,1
Condiciones de temperatura	0 - 50°C
Condiciones de humedad	<90%
Dimensiones (mm)	150 x 65 x 30
Sensor (mm)	175 x 76 x 76
Peso (g)	690

Fuente: (METER, 2006)

Figura 2-14. Medidor de humedad de grano.

Fuente: (METER, 2006)

2.8 Distribución de planta

A continuación se mostrara la distribución y el área requerida de la planta según el personal y la dimensión de cada maquina

2.8.1 Instalaciones básicas de la planta

El diseño de la planta debe estar regido al decreto 2393 según el reglamento de seguridad y salud de los trabajadores y mejoramiento del medio de trabajo, el cual muestra las obligaciones que se tiene como entidad para certificar la seguridad y salud de los trabajadores y mejoramiento del medio ambiente de trabajo.

2.8.2 Instalaciones sanitarias

Para la planta se establecerá 1 baños para hombres y 1 baños para mujeres para la parte administrativa. Mientras que para el área operativa se necesitaran 1 baños para hombres con vestidores y duchas.

2.8.3 Sistema contra incendios:

Se deberá mantener como base el manejo del decreto ejecutivo 2393, el cual rige que se debe instalar gabinetes contra incendios, además de extintores, los cuales dependiendo el área debería ser de agua, a pesar de que son poco utilizados, de CO2 que se utiliza especialmente para las instalaciones y partes eléctricas debido al grado de corrosión que se podría provocar, y de PQS (polvo químico seco) que ataca incendios de materiales como madera, papel, inclusive provocados por líquidos inflamables y cortocircuitos, sabiendo que puede provocar corrosiones.

2.8.4 Descripción de las áreas de la empresa

En la empresa se definirá 3 tipos de áreas: Área administrativa, Área de producción y otras

Tabla 2-13 Areas de la empresa

Área administrativa	GerenciaFinanzasProducción
Área de producción	 Área de recepción de materia prima Producción Bodega de almacenamiento
Otras áreas	 Parqueadero Baños Vestidores, duchas y casilleros Desechos orgánicos

Fuente: Huayamave, Totoy. 2017

2.8.5 Uso de metodologías para diseño de la distribución física de la planta

Se utilizara la metodología "relaciones entre áreas" para encontrar varias opciones de distribución de la planta, de la cual se escogerá la mejor de acuerdo a su eficiencia, para esto se asigna un tipo de línea con un color en específico para poder realizar luego el diagrama de relaciones.

Las relaciones entre áreas se establecerán de base al siguiente cuadro.

Tabla 2-14 Puntuacion y color de acuerdo a la importancia

Código	Prioridad	Valor	Tipo de línea	Color
А	Absolutamente necesario	4		Verde
E	Especialmente importante	3		Amarillo
I	Importante	2		Naranja
0	Ordinariamente necesario	1		Azul
U	Sin importancia	0		Morado
Х	No deseable	-1		Rojo

Tabla 2-15 Relación entre las áreas

Departamentos	Abreviaturas	OA	RMP	BPT	PR	DES	ES	SH	VDC
Oficinas administrativas	OA		Е	Е	Е	Х	0	Α	U
Recepción de materia prima	RMP			U	Α	U	Е	U	U
Bodega de producto terminado	BPT				Α	Х	Е	U	U
Producción	PR					I	I	U	ı
Desechos Orgánicos	DES						U	Х	Х
Estacionamiento	ES							U	U
Servicios Higiénicos	SH								U
Vestidores, duchas y casilleros (Producción)	VDC								

Fuente: Huayamave, Totoy. 2017

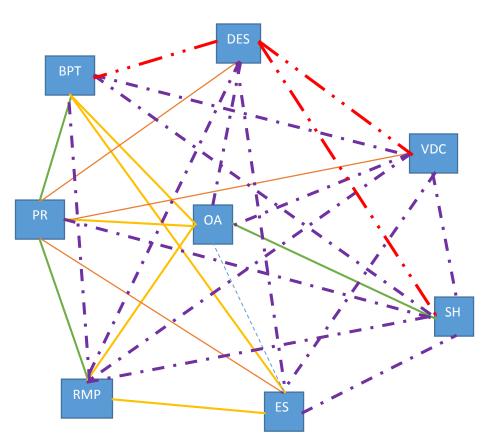


Figura 2-15.Representacion nodal entre los departamentos

2.8.6 Requerimiento de espacio

Cada una de las áreas requiere un espacio diferente, por lo cual en la siguiente tabla se muestra el área requerida de cada departamento en m². Además el espacio requerido será representado por bloques con medidas de 2x2, es decir un área total por bloque de 4m².

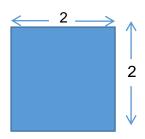


Tabla 2-16Espacio requerido

Departamentos	Abreviaturas	m²	# Bloques
Oficinas administrativas	OA	12	3
Recepción de materia prima	RMP	4,5	1
Bodega de producto terminado	BPT	24,57	6
Producción	PR	105,91	26
Desechos Orgánicos	DES	12	3
Estacionamiento	ES	90,5	23
Servicios Higiénicos	SH	2,4	1
Vestidores, duchas y casilleros (Producción)	VDC	2,4	1
Total	254,28	64	

2.8.7 Layout Propuestos

Se obtiene un total de 64 bloques que están repartidos para los diferentes departamentos según lo requerido. Posteriormente se desarrollara diferentes alternativas de layout, las cuales serán evaluadas para escoger la mejor opción.

2.8.7.1 Propuesta 1

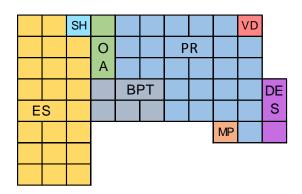


Figura 2-16 Layout No.1

Fuente: Huayamave, Totoy. 2017

2.8.7.1.1 Evaluación de la propuesta 1

Tabla 2-17Evaluacion de la propuesta No.1

Abreviaturas	OA	RMP	BPT	PR	DES	ES	SH	VDC	TOTAL
OA		3 7	3 0	3 0	-1 7	1 0	4 0	0 5	14
<u> </u>		21	0	0	-7	0	0	0	17
RMP			0 0	4 0	0 1	3 6	0 10	0 5	18
TXIVII			0	0	0	18	0	0	10
BPT				4 0	-1 4	3 0	0 4	0 6	-4
DF I				0	-4	0	0	0	-4
PR					2 0	2 1	0 1	2 0	2
FK					0	2	0	0	
DES						0	-1 10	-1 3	-13
DES						0	-10	-3	-13
ES							0 0	0 7	0
LS							0	0	U
SH								0 6	0
SH								0	U
VDC									17
VDC									''

2.8.7.1.2 Propuesta 2

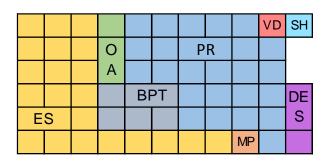


Figura 2-17Layout No.2

Fuente: Huayamave, Totoy. 2017

2.8.7.1.3 Evaluación de la propuesta 2

Tabla 2-18Evaluacion de la propuesta No.2

Abreviaturas	OA	RMP	BPT	PR	DES	ES	SH	VDC	TOTAL
OA		3 7	3 0	3 0	-1 7	1 0	4 6	0 5	38
<u> </u>		21	0	0	-7	0	24	0	30
RMP			0 0	4 0	0 1	3 0	0 6	0 5	0
TXIVII			0	0	0	0	0	0	U
BPT				4 0	-1 4	3 0	0 7	0 6	-4
DFI				0	-4	0	0	0	-4
PR					2 0	2 0	0 1	2 0	0
FIX					0	0	0	0	U
DES						0 2	-1 4	-1 3	-7
DLS						0	-4	-3	-1
ES							0 0	0 6	0
LO							0	0	U
SH								0 0	0
311								0	U
VDC									27

2.8.7.1.4 Propuesta 3

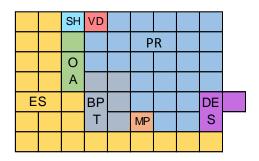


Figura 2-18Layout No.3

Fuente: Huayamave, Totoy. 2017

2.8.7.1.5 Evaluación de la propuesta 3

Tabla 2-19Evaluacion de la propuesta No.3

Abreviaturas	OA	RMP	BPT	PR	DES	ES	SH	VDC	TOTAL	
OA		3 4	3 0	3 0	-1 7	1 0	4 0	0 5	5	5
<u> </u>		12	0	0	-7	0	0	0	Ů	Ů
RMP			0 0	4 0	0 1	3 0	0 7	0 6	0	0
IXIVII			0	0	0	0	0	0	U	O
BPT				4 0	-1 3	3 0	0 3	0 2	-3	0
DFI				0	-3	0	0	0	-3	U
PR					2 0	2 0	0 1	2 0	0	0
FK					0	0	0	0	U	U
DES						0 2	-1 8	-1 7	-15	0
DES						0	-8	-7	-15	U
ES							0 0	0 6	0	0
E3							0	0	U	U
SH								0 0	0	0
ЗΠ								0	U	U
VDC									40	_
VDC									-13	5

Fuente: Huayamave, Totoy. 2017

2.8.8 Selección de Layout

El método de relación entre áreas toma en consideración que tan importante es un departamento con el otro, una vez definido esta prioridad se reemplaza por un valor como se puede ver en la tabla 2-14. Luego se procede a multiplicar esta valoración con el número de cuadros que es la distancia entre departamentos, una vez realizado este cálculo se suman todos los valores dados y como se

puede observar, la mejor distribución de las áreas acorde a su distancia recorrida, es el layout propuesto #3. Por lo tanto se diseñara la planta en base a este resultado como se muestra en la Figura 2-19

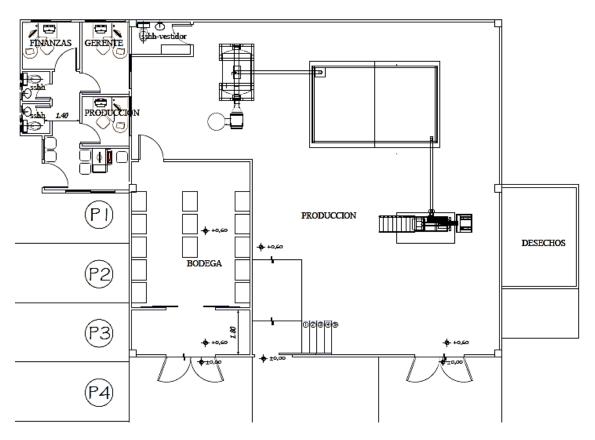


Figura 2-19 Layout de la planta

Fuente: Huayamave, Totoy. 2017

2.8.9 Simulación Del Sistema De Producción

Se realizó una prueba piloto con 10 réplicas de nuestro diseño de planta por medio del programa FlexSim como se muestra en la Figura 20 y se obtuvo los siguientes datos estadísticos mostrados en la tabla 2-20:

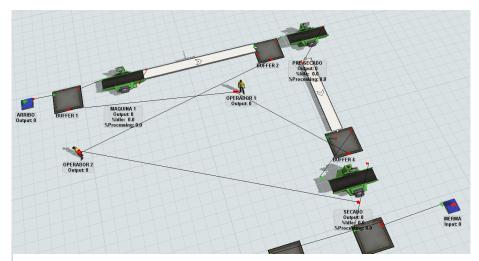


Figura 2-20 Simulación de la planta (FlexSim)

Fuente: Huayamave, Totoy. 2017

Tabla 2-20Resultados de la prueba piloto

SACOS SEMANALES				
Confiabilidad	Media	Desviación estándar	Mínimo	Máximo
95%	56.6 < 59.3 < 62.0	3.7	52	65

Fuente: Huayamave, Totoy. 2017

Donde la media es igual a $\bar{X} = 59.3$ y la desviación estándar $\sigma = 3.7$, como se requiere un intervalo de confianza del 95% se busca el valor de Z donde que es el valor crítico de la distribución normal estandarizada:

$$Z = 1.96$$

Adicionalmente se estableció un error máximo permitido de un 5% con respecto a la media:

$$e = 0.05 * \bar{X}$$

Con estos valores se despeja n de la siguiente ecuación para determinar el número mínimo de réplicas que se tiene que simular nuestra planta para tener un intervalo de 95% de confianza y un error del 5%.

$$\bar{X} \pm e$$

Donde a su vez:

$$e = \frac{\sigma * Z_{\frac{\alpha}{2}}}{\sqrt{n}} \tag{1}$$

Despejando n (número mínimo de réplicas):

$$n = \left(\frac{\sigma * Z_{\frac{\alpha}{2}}}{e}\right)^2 = \left(\frac{3.7 * 1.96}{\overline{0.05 * 59.3}}\right)^2 = 6$$
 (2)

Debido a que el número mínimo de réplicas en menor a 30, entonces se estableció correr **30 réplicas en total**.

Con las 30 réplicas se obtuvo un intervalo de confianza del 95% para la producción semanal de sacos con un máximo de 5% de error como se ve en la figura 21:

$$\bar{X} = 62.8 + 2$$

Como se muestra en la tabla 2-21 se pueden producir 62 en promedio cada semana y considerando una demanda de 55 sacos semanales, se concluye que se puede cumplir con dicha demanda.

Tabla 2-21 Resultado de la prueba con 30 replicas

SACOS SEMANALES				
Confiabilidad	Media	Desviación estándar	Mínimo	Máximo
95%	60,8 < 62,8 < 64,8	5,3	52	79

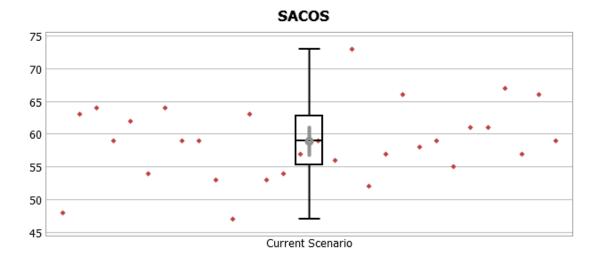


Figura 2-21 Diagrama de caja y bigotes

Fuente: Huayamave, Totoy. 2017

2.9 Uso y manejo de los subproductos

Una vez procesado el café se generan dos residuos que provocan contaminación, la pulpa que es el residuo sólido y las aguas mieles que son las aguas del proceso que adquieren una carga orgánica fuerte por la dilución y arrastre de los productos del café que al depositarse sobre terrenos o ser vertidos en ríos son fuente de malos olores y criadero de plagas, es por eso que serán recolectados en un reservorio para posteriormente ser utilizados como sustrato para lombricultura.

2.10 Diseño Mecánico de subsecciones

A continuación se mostrarán las ecuaciones utilizadas durante el proceso de presecado para hallar la humedad relativa final del café, las condiciones necesarias para el secador rotativo, selección del tornillo sin fin y el diseño estructural de la planta.

2.10.1 Determinación de la humedad relativa final del producto de la marquesina

Por medio de un balance de energía tenemos que:

$$Q_{irr} + Q_{conv} = Q (3)$$

$$(I * A * t_1) + (h_{conv} * A * \Delta T * t_2) = m_w(C_{p,agua} * \Delta T + h_{fg})$$
 (4)

Dónde:

I: Irradiación del sol (W/m²)

A: Área de marquesina (m²)

 t_1 : Tiempo de secado al sol (h)

t₂: Tiempo total en la marquesina (h)

h_{conv}: Coeficiente de transferencia de calor por convección (W/m².K)

 m_w : Masa del agua (Kg)

 $C_{p,aqua}$: Calor especifico del agua (J/Kg.K)

 h_{fg} : Entalpia de vaporización del agua (J/Kg)

2.10.1.1 Coeficiente de transferencia de calor por convección

Para calcular el coeficiente de transferencia de calor por convección se ha asumido que el grano es una esfera de 8.7 mm de diámetro el cual se encuentra a una temperatura inicial de 30°C y se busca enfriarla a una temperatura final de 23°C con una velocidad promedio del viento de 2.77 m/s (METEO CAST, s.f.)

Datos:

Propiedades del aire T=23°C = 296K

Viscosidad Cinemática: $\mu = 181.6x10^{-7} \frac{N.s}{m^2}$

Viscosidad Dinámica: $v = 15.36x10^{-6} \frac{m^2}{s}$

Conductividad térmica: $k = 0.0258 \frac{W}{m.K}$

Prandtl: Pr = 0.709

Propiedades del aire $T_s = 300K$

Propiedades del aire T=23°C = 296K

Viscosidad Cinemática: $\mu = 184.6x10^{-7} \frac{N.s}{m^2}$

Viscosidad Dinámica: $v = 15.89 \times 10^{-6} \frac{m^2}{s}$

Primero se calcula el número de Reynolds

$$Re_D = \frac{VD}{v} \tag{5}$$

Para hallar el número de Nusselt se utiliza la correlación de Whitaker usada para esferas(Incropera).

$$\overline{Nu_D} = 2 + \left(0.4Re_D^{\frac{1}{2}} + 0.06Re_D^{\frac{2}{3}}\right)Pr^{0.4}\left(\frac{\mu}{\mu_s}\right)^{\frac{1}{4}}$$
 (6)

Reemplazando este valor en la siguiente ecuación podremos obtener el h de convección

$$\bar{h} = \overline{Nu_D} * \frac{k}{D} \tag{7}$$

La masa del agua a evaporar será calculada con la ecuación 1. Para luego ser usada en la ecuación 5 y obtener la humedad final.

$$m_w = m_C(w_o - w_f) \tag{8}$$

Dónde:

 w_o : Humedad inicial

 w_f : Humedad final

Despejando x y reemplazando los valores de condiciones de entrada tenemos:

$$w_f = \left(w_o - \frac{m_w}{m_C}\right) \tag{9}$$

2.10.2 Secado de café en secador rotativo

Para definir una correcta temperatura de entrada de aire se deberá determinar el flujo másico del aire que se usa para secar la masa del café y el flujo másico de aire que será para la combustión.

Para secar el café es recomendable que los gases de combustión que son para calentar el aire no estén en contacto con el grano de café ya que esto podría repercutir directamente en la calidad del mismo. Esto será representado en el siguiente esquema en la que se observa que el aire para secar el café no es el mismo para calentar el aire.

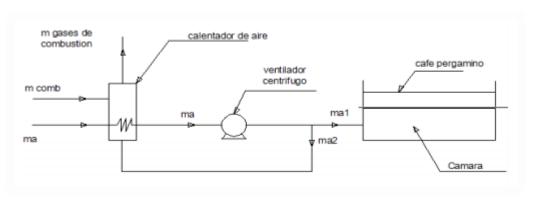


Figura 2-22 Esquema de un sistema de secado de café.

Fuente:(Hincapié, 2007)

Para calcular el flujo de aire es importante definir el porcentaje inicial de humedad del café pergamino el cual debe estar entre 30 a 40% después de haber pasado por un proceso de pre-secado. El porcentaje final de humedad del café pergamino seco debe estar entre 10 a 12% (Cenicafé, 1999), y la temperatura del aire que ingresa al tambor debe estar entre 45 y 55° (Cenicafé, 2004). El flujo másico del aire que pasa por el ventilador debe ser sumado al flujo másico de aire que pasa por la cámara de combustión.

El flujo de masa \dot{m}_{a1} que se necesita para extraer la humedad del café y llegar a humedad de 10%, está dada por la hipótesis de que el calor de vaporización ganado por el café \dot{Q}_w será igual al calor cedido por el aire.

$$\dot{Q_w} = \dot{Q_{a1}} \tag{10}$$

$$\dot{m}_{w} x \left(C p_{w} x \Delta T_{w} + h_{fa} \right) = \dot{m}_{a1} x C p_{a1} x \Delta T_{a1}$$
 (11)

Donde:

 \dot{m}_w : Flujo de masa del agua extraído del café pergamino.

 Cp_w : Calor específico para el vapor del agua.

 ΔT_w : Diferencial de temperatura del café pergamino en el secado.

 h_{fq} : Entalpía de vaporización de agua.

 Cp_{a1} : Calor específico para el aire atmosférico.

 ΔT_{a1} : Diferencial de temperatura del aire en el secado.

Wo: Humedad inicial.

Wf: Humedad final.

El flujo másico del agua extraída del café también puede expresarse de la siguiente manera:

$$\dot{m_w} = \frac{m_{caf\acute{e}}}{t} x \left(w_o - w_f \right) \tag{12}$$

El tiempo que deberá estar dentro de la cámara de secado dependerá principalmente por la temperatura del aire está en contacto con el café y de la masa a secar.

Reemplazando la ecuación 2 en la 1 se obtiene la igualdad:

$$\dot{m}_{a1} = \frac{m_{caf\acute{e}}(w_o - w_f)(Cp_w x \Delta T_w + h_{fg})}{t x Cp_{a1} x \Delta T_{a1}}$$
(13)

La temperatura que se recomienda para el aire de secado debe estar entre los 45 y 55°C, si se usan temperaturas más altas que las mencionadas puede producir sobre-secado en las membranas exteriores del café volviéndolas quebradizas. (Cenicafé, 2004).

2.10.2.1 Cálculo de flujo másico del aire en contacto con el café

Para el siguiente cálculo definiremos temperaturas tanto del aire como del vapor de agua en el café:

Tabla 2-22 Temperaturas de entrada y salida

$Ta_{1,entrada}$	50
$Ta_{1,salida}$	30
$T_{w,entrada}$	25
$T_{w,salida,}$	40

Fuente: (CENICAFÉ, 2008)

Las temperaturas del café tanto de entrada como de salida fueron tomadas en campo. Para la temperatura promedio del vapor de agua se tiene $T_{w,prom}$ = (25+40)/2 = 32,5°C. Para $T_{w,prom}$ se obtienen los valores de calor específico Cpw= 1,8723 kJ/kg·K y entalpía de evaporización h_{fg} = 2429,8 kJ/kg.(A. Cengel Yunus, 1996)

La temperatura promedio del aire es $T_{a1,prom}$ = (50+30)/2 = 40°C. Para $T_{a1,prom}$ se obtiene los valores de calor específico de Cpa1 = 1,0056 kJ/kg·K. (A. Cengel Yunus, 1996).

La humedad inicial se tomará el valor de 30%, humedad que se obtuvo después de la etapa de pre-secado en la marquesina.

Se toma de tiempo en el secador 4 horas (tiempo recomendado por proveedor) para poder llevar el porcentaje de humedad al 10% que es la humedad apta para la comercialización del café. Con estos datos podrá ser calculado el flujo másico con la ecuación 8.

Con este flujo másico se puede obtener el caudal de aire normal, la cual debe ser dividida por la densidad del aire normal (nivel del mar) que es de $1.2 kg/m^3$.

$$\dot{Q} = \frac{\nabla}{t} \tag{14}$$

$$\dot{Q} = \frac{m/\rho}{t} = \frac{\dot{m}}{\rho} \tag{15}$$

2.10.2.2 Cálculo de flujo másico de aire usado en la combustión.

Para el flujo másico de aire m_{a2} que se necesita para el proceso de combustión se usará la siguiente ecuación:

$$\dot{m}_{a2} = \dot{m}_{comb} x AC = \dot{m}_{comb} x ACT x (1+e) \tag{16}$$

Donde:

 \dot{m}_{comb} : Flujo másico del combustible.

AC: Relación aire combustible.

ACT: Relación aire combustible teórico.

e: Exceso de aire.

La masa de kilogramo de gas GLP que será usada por cada kilogramo de café pergamino seco es de 0,06. Por lo tanto para los 360 kilogramos que serán secados se usarán aproximadamente 21,6 kilogramos de gas GLP.

2.10.2.2.1 Relación aire combustible del GLP:

Para el cálculo de la relación aire combustible se hará un equilibrio de las ecuaciones químicas para tener la combustión, en este caso tendremos como combustible al GLP, entonces:

$$C_3H_8 + A(O_2 + 3,76N_2) \rightarrow BCO_2 + CH_2O + DN_2$$
 (17)

C: 3 = B

 $H: 8 = 2C \rightarrow C = 4$

 $0: 2A = 2B + C \rightarrow A = 5$

 $N: A(2)(3,76) = 2D \rightarrow D = 18,8$

Por lo tanto la ecuación equilibrada será:

$$C_3H_8 + 5(O_2 + 3,76N_2) \rightarrow 3CO_2 + 4H_2O + 18,8N_2$$
 (18)

La relación de aire combustible teórica viene dada por:

$$R(ac, th) = \frac{Masa \ aire}{Masa \ combustible} \tag{19}$$

$$R(ac, th) = \frac{(moles \ x \ Peso \ molecular)aire}{(moles \ x \ Peso \ molecular)combustible}$$
(20)

El exceso de aire que se recomienda según el tipo de aire se encuentra entre 25% y 30%. Para el caso del GLP se considera un exceso del aire de 30% (0.3). (Carlos Orozco Hincapie, 1988).

Con los datos obtenidos se tendrá el flujo másico por medio de la Ecuación 16.

2.10.2.3 Flujo másico a mover por el ventilador

El ventilador deberá mover el flujo másico provocado por el flujo másico de aire que pasa por medio del café y el flujo másico de aire que se usa para la combustión. Entonces se tiene:

$$\dot{m}_a = \dot{m}_{a1} + \dot{m}_{a2} \tag{21}$$

2.10.3 Potencia para transporte de tornillo sin fin:

La potencia del tornillo sin fin seguirá la norma UNE 58-244-88 "Aparatos de manutención continua para graneles. Transportadores de tornillo sin fin. Reglas para el diseño de los accionamientos".

Uno de los principales parámetros para seleccionar la potencia del tornillo sin fin es el caudal necesario para transportar los granos de café. Se determina por la siguiente ecuación:

$$Q = 60 x \lambda x \frac{\pi}{4} D^2 x S x n$$
 (22)

Donde:

Q: Caudal transportado $[m^3/h]$

λ: Coeficiente de relleno de la sección.

D: diámetro del canalón del transportador [m]

S: Paso de la hélice. Valor estimado de 0.75D

n: Velocidad necesaria del tornillo [rpm].

Potencia de accionamiento:

El transportador de tornillo sin fin tendrá una potencia que dependerá de tres componentes: La potencia que se requiere para el desplazamiento del material (*PH*), la potencia requerida para el tornillo sin fin en vacío (*PN*), y la potencia requerida si es que el tornillo estuviese inclinado.

$$P = P_H + P_N + P_i \tag{23}$$

Potencia requerida para el desplazamiento del material (P_H) viene dada por:

$$P_H(Kw) = C_o \frac{\dot{m}.L.g}{3600} \tag{24}$$

Donde:

 \dot{m} : Flujo másico transportado [t/h].

L: Longitud del transportador [m].

Co: Coeficiente de resistencia al desplazamiento del material a transportar.

Potencia para el accionamiento del tornillo en vacío (P_N) :

$$P_N(Kw) = \frac{D.L}{20} \tag{25}$$

Potencia requerida para tornillo sin fin por inclinación (P_i) :

$$P_i(Kw) = \frac{\dot{m} x H x g}{3600}$$
 (26)

La potencia total requerida será obtenida por medio de la suma de las 3 componentes.

2.10.3.1 Relación de transmisión

Ya que las revoluciones de este motor son de 1800 rpm y el requerido para el transportador de tornillo sin fin es de 71 rpm se usará un reductor de velocidades de corona sin fin. Por lo tanto la relación de transmisión será de:

$$Rt = \frac{\omega_2}{\omega_1} \tag{27}$$

Ya que el tornillo sin fin se considera como un solo diente, para la corona el número de dientes será:

$$Z_1 \times n_1 = Z_2 \times n_2 \tag{28}$$

$$n2 = \frac{Z_1 \times n_1}{Z_2} \tag{29}$$

2.10.4 Diseño estructural

En esta sección se mostraran las ecuaciones utilizadas para el análisis del diseño estructural de la planta, tomando en consideración las Normas Ecuatorianas para la Construcción (NEC) y la Institución Americana del Concreto (ACI).

Combinación de Cargas

$$C_u = 1.2 C_m + 1.6 C_v \tag{30}$$

Donde:

 C_m : Carga muerta [kg*F/m²]

 C_v : Carga viva [kg*F/m²]

Área Tributaria

$$A_t = B * H \tag{31}$$

Donde:

B: Distancia con respecto al eje X que contribuye a la columna [m]

H: Distancia con respecto al eje Y que contribuye a la columna [m]

Fuerza Axial

$$P = C_u * A_t \tag{32}$$

Donde:

 C_u : Combinacion de cargas [Kg*F/m²]

 A_t : Area Tributaria [m²]

Área de Columna

$$A_C = \frac{P}{0.35 * f'c}$$
 (33)

Donde:

P: Fuerza axial [Kg*F]

f'c: Resistencia a la compresión del hormigón [Kg*F/cm²]

Área de varilla

$$A_V = \frac{\pi * d^2}{4} \tag{34}$$

Donde:

d: Diametro de la varilla [cm]

Área de Acero longitudinal

$$A_{st} = n * A_V \tag{35}$$

Donde:

n: Numerous de varillas

Av: Area de varilla

Resistencia Nominal

$$\Phi Pn = 0.8 * \Phi * (0.85 * f'_c * (A_q - A_{st}) + (f_y * A_{st}))$$
(36)

Donde:

Φ: Valor predeterminado por medio del Instituto americano del concreto (ACI 318)

f'c: Resistencia a la compresión del hormigón [Kg*F/cm²]

Ag: Área del pedestal [m²]

Ast: Área de acero longitudinal

 f_y : Fluencia del acero [Kg*F/m²]

Revisión de Cuantía de Acero Longitudinal

$$0.01 * A_q < A_{st} < 0.08 * A_q \tag{37}$$

Donde:

Ast: Área de acero longitudinal [m²]

Ag: Área del pedestal [m²]

Distancia mínima entre varillas

$$x_{\min} = Max(1.5 * d; 4)$$
 (38)

Donde:

d : Diámetro de la varilla [cm]

Separación máxima de estribos

$$s_{\text{max}} = \text{Min}(16 * d ; 48 * d_{\text{est}})$$
 (39)

Donde:

d : Diámetro de la varilla [cm]

d_{est}: Diámetro del estribo [cm]

2.10.4.1 Fórmulas Dimensionamiento de Zapata

Las siguientes formulas serán utilizadas para el dimensionamiento de la zapata para que esta no se deforme y transmita las cargas a el suelo

Carga Axial

$$P = P_d + P_l \tag{40}$$

Donde:

P_d:Carga muerta [t*F]

P_l: Carga viva [t*F]

Área Requerida

$$Ar = \frac{P}{q_e} \tag{41}$$

Donde:

P: Carga axial [t*F]

q_e: Capacidad de carga [t*F/m²]

Fuerza Axial Mayorada

$$Pu = 1.2P_d + 1.6P_l (42)$$

Donde:

P_d:Carga muerta [t*F]

P_l: Carga viva [t*F]

Carga de Esfuerzo

$$qu = \frac{Pu}{B^2} \tag{43}$$

Donde:

Pu: Fuerza Axial Mayorada [t*F]

B: Longitud de Zapata [m]

Fuerza Cortante por Punzonamiento

$$Vu = Pu - qu * (c + d)^2$$
 (44)

Donde:

Pu: Fuerza Axial Mayorada [t*F]

qu: Carga de esfuerzo [t*F/m²]

c: Base o altura de columna [m]

d: Altura del peralte [m]

Peralte mínimo

dmin =
$$0.5 * \sqrt{c^2 + \frac{Vu}{0.75 * \sqrt{f'c}}}$$
 (45)

Donde:

Vu: Fuerza cortante por punzonamiento [t*F]

c: Base o altura de columna [m]

f'c: Resistencia a la compresión del hormigón [Kg*F/cm²]

Cortante Nominal Para Punzonamiento

$$\Phi Vn = 0.75 * \sqrt{f'c} * 4 * (c + d) * d$$
 (46)

Donde:

f'c: Resistencia a la compression del hormigon [Kg*F/cm²]

c: Base o altura de columna [m]

d: Altura del peralte [m]

Fuerza Cortante Como Viga

$$Vu = qu * xv * B \tag{47}$$

Donde:

qu: Carga de esfuerzo [t*F/m²]

xv: Longitud critica a cortante [m²]

B: Longitud de Zapata [m]

Cortante Nominal Como Viga

$$\Phi Vn = 0.75 * 0.53 * \sqrt{f'c} * B * d$$
 (48)

Donde:

f'c: Resistencia a la compression del hormigon [Kg*F/cm²]

B: Longitud de Zapata [m]

d: Altura del peralte [m]

2.10.4.2 Revisión por flexión

Una vez diseñada la zapata se realizará el análisis para que esta no falle por flexión.

Momento Último

$$Mu = \frac{qu * xf^2}{2} * B \tag{49}$$

Donde:

qu: Carga de esfuerzo [t*F/m²]

xf: Distancia de zona a flexión[m]

B: Longitud de Zapata [m]

Acero requerido por Flexión

$$Ar = \frac{Mu}{0.9 * 0.9 * f_{v} * d}$$
 (50)

Donde:

Mu: Momento ultimo [t*F]

f_ν: Fluencia del acero [Kg*F/m²]

d: Altura del peralte [m]

Acero mínimo por Flexión

As min = Max
$$\left(\frac{0.8 * \sqrt{f'c}}{fy}; \frac{14}{fy}\right) * B * d$$
 (51)

Donde:

f'c: Resistencia a la compression del hormigon [Kg*F/cm²]

 f_{ν} : Fluencia del acero [Kg*F/m²]

B: Longitud de Zapata [m]

d: Altura del peralte [m]

Momento Nominal por Flexión

$$\Phi Mn = 0.9 * As * fy * \left(d - \frac{a}{2}\right)$$
 (52)

Donde:

As: Acero por flexión [cm²]

 f_y : Fluencia del acero [Kg*F/m²]

d: Altura del peralte [m]

a: Ancho de ala efectivo [m]

Altura mínima

$$hmin = d + f (53)$$

Donde:

d: Altura del peralte [m]

f: Recubrimiento más diámetro de varilla [m]

Separación máxima

$$s \max = \min(3 * h; 30)$$
 (54)

Donde:

h: Altura de zapata

2.10.4.3 Revisión por sismo

Debido a que en la provincia de Manabí es propensa a movimientos telúricos se realizará el análisis para que la estructura no falle debido a estos

Excentricidad

$$e = \frac{M_e}{P_d + P_l + P_e} \tag{55}$$

Donde:

P_d:Carga muerta [t*F]

P_l: Carga viva [t*F]

P_e: Carga por sismo [t*F]

M_e: Momento Equivalente [t*f*m]

Carga máxima

$$q \max = \frac{P_d + P_l + P_e}{B^2 * \left(1 + 6 * \frac{e}{B}\right)}$$
 (56)

Donde:

P_d:Carga muerta [t*F]

P_i: Carga viva [t*F]

P_e: Carga por sismo [t*F]

B: Longitud de Zapata [m]

e: Excentricidad[m]

Carga Equivalente

$$qe' = 1.33 * q_a - q_s$$
 (57)

Donde:

 q_a : Capacidad de carga de servicio [t*F/m²]

q_s: Capacidad de desplante por sismo [t*F/m²]

Carga axial mayorada

$$Pu = 1.2 P_d + P_e + 0.5 P_l (58)$$

Donde:

P_d:Carga muerta [t*F]

P_l: Carga viva [t*F]

P_e: Carga por sismo [t*F]

Carga distribuida mayorada máxima

$$\operatorname{qu} \max = \frac{\operatorname{Pu}}{\operatorname{B}^2 * \left(1 + 6 * \frac{\operatorname{e}}{\operatorname{B}}\right)} \tag{59}$$

Donde:

Pu: Carga axial mayorada [t*F]

B: Longitud de Zapata [m]

e: Excentricidad[m]

Carga distribuida mayorada mínima

$$\operatorname{qu\,min} = \frac{\operatorname{Pu}}{\operatorname{B}^2 * \left(1 - 6 * \frac{\operatorname{e}}{\operatorname{B}}\right)} \tag{60}$$

Donde:

Pu: Carga axial mayorada [t*F]

B: Longitud de Zapata [m]

e: Excentricidad[m]

Carga mayorada 1

$$qu 1 = qu max - \frac{(qu max - qu min)}{B} * xv$$
 (61)

Donde:

qu max: Carga distribuida mayorada máxima [t*F/m²]

qu min: Carga distribuida mayorada minima [t*F/m²]

B: Longitud de Zapata [m]

xv: Longitud critica a cortante [m²]

Cortante Ultimo por sismo

$$Vu = 0.5 * (qu max + qu 1) * xv * B$$
 (62)

Donde:

qu max: Carga distribuida mayorada máxima [t*F/m²]

qu 1: carga mayorada 1 [t*F/m2]

B: Longitud de Zapata [m]

xv: Longitud critica a cortante [m²]

Carga mayorada 2

$$qu 2 = qu max - \frac{(qu max - qu min)}{B} * e$$
 (63)

Donde:

qu max: Carga distribuida mayorada máxima [t*F/m²]

qu min: Carga distribuida mayorada minima [t*F/m²]

B: Longitud de Zapata [m]

e: Excentricidad [m]

Momento último por sismo

$$Mu = \frac{qu \max * B * xf^{2}}{3} + \frac{qu 2 * B * xf^{2}}{6}$$
 (64)

Donde:

qu max: Carga distribuida mayorada máxima [t*F/m²]

B: Longitud de Zapata [m]

xf: Distancia de zona a flexión[m]

qu 2: carga mayorada 2 [t*F/m²]

2.10.4.4 Revisión por Aplastamiento

El siguiente análisis es para que la zapata no falle por aplastamiento

Área 1

$$A1 = bc * hc ag{65}$$

Donde:

bc: Base de columna [m]

hc: Altura de columna [m]

Área 2

$$A2 = (bc + 4 * hc)^2$$
 (66)

Donde:

bc: Base de columna [m]

hc: Altura de columna [m]

Constante k

$$k = Min\left(\frac{A2^{0.5}}{A1}; 2\right) \tag{67}$$

Resistencia Nominal por Aplastamiento

$$\Phi Pn = 0.65 * 0.85 * f'c * A1 * k$$
(68)

Dónde:

k: constante K

f'c: Resistencia a la compression del hormigon [Kg*F/cm²]

A1: Área 1 [m²]

Resistencia Última por Aplastamiento

$$Pu = Max(Pu; Pu sismo)$$
 (69)

Donde:

Pu: Carga axial mayorada [t*F]

Anclajes

Longitud de desarrollo

$$Ldc = Max \left(\frac{0.075 * f_y}{\sqrt{f'c}}; 0.004 * f_y \right) * d$$
 (70)

Donde:

f'c: Resistencia a la compresión del hormigón [Kg*F/cm²]

 f_y : Fluencia del acero [Kg*F/m²]

d: Diametro de la varilla [cm]

Traslape

Traslape =
$$Max(Ldc; 0.0073 * fy * d)$$
 (71)

Dónde:

Ldc: Longitud de desarrollo

f_y: Fluencia del acero [Kg*F/m²]

d: Diametro de la varilla [cm]

CAPÍTULO 3

3. RESULTADOS

A continuación se mostrarán los resultados obtenidos al reemplazar los valores de las ecuaciones previamente mostradas

3.1 Diseño mecánico de subsecciones

Tabla 3-1Resultados Marquesina

Secado en marquesina				
Coeficiente de transferencia de calor por convección	$\bar{h} = 67.56 \frac{W}{m^2. K}$			
Masa de agua a evaporar	$m_w = 159.187 Kg$			
Humedad final	$w_f = 28,5\%$			

Fuente: Huayamave, Totoy. 2017

Tabla 3-2Resultados Secadora Rotativa

Secado en Máquina Secadora Rotativa				
Flujo másico en contacto con el café	$\dot{m_{a1}} = 0.61 kg/s$			
Consumo de combustible	$m_{glp}=$ 21,6 kg			
Relación aire combustible GLP	$R(ac, th) = 15,68 \frac{kg \ aire}{kg \ GLP}$			
Flujo másico de aire que se usa en la combustión	$\dot{m}_{a2} = 0.030 \frac{kg}{s}$			
Flujo másico movido por el ventilador	$m_a = 0.64 \frac{kg}{s}$			

Tabla 3-3 Resultado Tornillo sin fin

Potencia para transporte de tornillo sin fin				
Caudal a transportar	$Q = 1,0037 \frac{m^3}{h}$			
Potencia del tornillo sin fin (MC-PS)	P=0,32HP			
Potencia del tornillo sin fin (PS-SR)	P = 0.43HP			
Relación de transmisión	Rt = 25,35			

Fuente: Huayamave, Totoy. 2017

3.2 Análisis de costos

Se realizara un análisis financiero de la planta que nos ayudara a establecer los costos que se tienen en la planta tanto de producción como administrativos, para así encontrar la rentabilidad de este proyecto.

Para realizar dicho análisis se debe determinar lo siguiente:

- Inversión inicial; costos de los equipos, estructura y terreno
- Costos de producción: costos y gastos necesarios para obtener el producto final.
- Cálculos del TIR y VAN, para verificar si nuestro proyecto es rentable.

3.2.1 Inversión inicial.

En la tabla 3-4 se muestra que la inversión inicial es de \$129.021,54 dólares tomando en cuenta las maquinarias previamente seleccionadas, el terreno requerido y la estructura necesaria para poder llevar a cabo el proyecto

Tabla 3-4 Inversion Inicial

INVERSIONES					
Inversión	Valor				
Maquinaria	\$ 34.308,00				
Instalación de Equipos	\$ 5.146,20				
Importación de maquinaria	\$ 2.572,09				
Utensilios y materiales de producción	\$ 6.150,00				
Terreno	\$ 10.000,00				
Obra Civil	\$ 45.000,00				
Obra Mecánica	\$ 17.945,25				
Adecuación de galpón	\$ 4.354,00				
Muebles de Oficina	\$ 1.915,00				
Equipos de Oficina	\$ 1.631,00				
Total	\$ 129.021,54				

Fuente: Huayamave, Totoy. 2017

3.2.2 Costos de producción

Tabla 3-5 Costos de insumos de producción

COSTO INSUMOS DE PRODUCCION							
Insumo	Cantidad	Unidad	Costo total Mensual	Costo Total Anual			
Grano de café	2,5	Kg	0,37	0,93	4.629,63	55.555,50	
Agua	0,2	litros	0,0016	0,00	1,60	19,22	
Total por Kg		0,93	4.631,23	55.574,72			

Fuente: Huayamave, Totoy. 2017

Tabla 3-6 Costo de servicios básicos

COSTO SERVICIOS BÁSICOS								
Servicio	Tarifa Fija Mensual	Tarifa Variable	Horas Consumo		dida sumo	Número de Máquinas	Total Pago Mensual	Total Anual
Energía Eléctrica	-	\$0,09	4	505,34	Kw/h	3	\$45,62	547,40
Agua Potable		\$1,55	ı	30	m^3	ı	\$46,55	558,56
Internet	\$24,90	-	ı	I	Mbps	ı	\$24,90	298,8
Telefonía Fija	\$6,20	-	2,5	150	Minutos	ı	\$6,20	74,4
Total							123,26	1479,16

Tabla 3-7Costos de Exportacion

COSTO DE EXPORTACION				
Rubro	Valor			
Certificado de Origen	156,76			
Transporte a Puerto	1621,62			
Recepción Carga General	117,72			
Porteo de Carga General	117,72			
Pesaje Carga General	352,55			
Aforo/ Inspección	1096,70			
Transferencia de Carga General	274,47			
Consolidación de contenedor	1462,22			
	\$			
Total anual	5.199,75			

Fuente: Huayamave, Totoy. 2017

Tabla 3-8Costos Legales

COSTO LEGALES				
Rubro	Valor			
Certificado BPM	1465,46			
Permiso de Funcionamiento	175,86			
Total	\$ 1.641,32			

Fuente: Huayamave, Totoy. 2017

Tabla 3-9Otros Costos

OTROS COSTOS EN EL AÑO 1				
Costos de empaquetado		\$ 0,2903		
Limpieza		3603,60		
Fumigación		0,00		
Mantenimiento de Máquina		1715,4		
Seguro	\$	899,40		

3.2.3 Presupuesto de Sueldos

Tabla 3-10Costos Laborales

Costos Laborales	Gerente General	Jefe Financiero	Jefe de producción	Operadores
Sueldo	950,00	800,00	800,00	400,00
No. de empleados por cargo	1	1	1	2
total	950,00	800,00	800,00	800,00
Vacaciones	39,58	27,08	33,33	33,33
13er. Sueldo	79,17	54,17	66,67	66,67
14to. Sueldo	32,00	32,00	32,00	64,00
Fondo de Reserva	79,14	54,15	66,64	66,64
Aporte Patronal	105,93	72,48	89,20	89,20
Secap 0,5%	4,75	3,25	4,00	4,00
IECE 0,5%	4,75	3,25	4,00	4,00
Total Mensual	1.295,31	1.046,37	1.095,84	1.127,84
Total Anual	15.543,72	12.556,44	13.150,08	13.534,08

3.2.4 Fluyo del Proyecto

Tabla 3-11 Flujo del proyecto

	FLUJO DEL PROYECTO PURO						
	Rubro	0	1	2	3	4	5
	Ingresos						
	Precio		3,50	3,51	3,51	3,51	3,51
	Cantidad		52000,00	57000,00	62000,00	67000,00	72000,00
T	otal Ingresos		182000,00	199879,23	217586,43	235298,31	253009,60
Co	stos Variables						
Grano	de café (maduro)		48148,10	52825,22	57504,98	62185,98	66866,82
Fun	das de empaque		603,80	662,46	721,14	779,85	838,55
Total	costos variables		48751,90	53487,68	58226,13	62965,83	67705,37
	Costos fijos						
	Energía Eléctrica		547,40	590,32	633,24	676,17	719,09
Compinion Dánions	Agua Potable		575,21	577,34	579,40	581,41	583,37
Servicios Básicos	Internet		298,80	298,80	298,80	298,80	298,80
	Telefonía fija		558,56	558,56	558,56	558,56	558,56
Castas I asalas	Certificado BPM		1465,46	0,00	0,00	1468,98	0,00
Costos Legales	Permiso de Funcionamiento		175,86	176,01	176,15	176,28	176,38
C1.1	Operativos		13534,08	13574,08	14890,69	16209,30	16253,30
Sueldos	Administrativos		55377,96	55477,96	56854,57	63821,34	61537,70
To	tal costos fijos		72533,34	71253,06	73991,41	83790,84	80127,19
(Otros Gastos						
Gasto	Gastos de exportacion		5199,75	5379,08	5384,38	5389,15	5566,39
Manten	imiento de equipos		1717,12	1718,66	1720,04	1721,24	1722,27
Segu	ro de propiedad		899,40	769,56	639,71	509,87	380,03
Gas	sto de limpieza		3603,60	3606,84	3609,73	3612,26	3614,42
Tota	al Otros Gastos		11419,87	11474,14	11353,86	11232,52	11283,12
Γ	Depreciación		4328,06	4328,06	4328,06	4328,06	4328,06
Utilidad antes de	Imp. yPart. de Trabajadores		44966,83	59336,28	69686,96	72981,07	89565,86
Participacio	ón Trabajadores (15%)		6745,02	8900,44	10453,04	10947,16	13434,88
Utilidad	antes de Impuesto		38221,81	50435,84	59233,92	62033,91	76130,98
Im	npuesto (22%)		8408,80	11095,88	13031,46	13647,46	16748,82
Utilidad I	Después de Impuesto		29813,01	39339,95	46202,45	48386,45	59382,17
Valor de Desecho comercial							30612,94
D	epreciaciones		4328,06	4328,06	4328,06	4328,06	4328,06
	Inversiones	(129021,54)					
Cap	oital de Trabajo	(13063,96)	(1283,37)	(1271,02)	(1271,36)	(1271,32)	18161,03
Costo Financiero		(6415,25)					
F	lujo Nominal	(148500,75)	32857,70	42396,99	49259,16	51443,19	112484,20
	Deflactor		0,001	0,002	0,003	0,003	0,004
	Flujo Neto	(148500,75)	32824,88	42316,55	49126,40	51268,66	112035,35

3.2.5 TIR y VAN

En la siguiente tabla se mostraran la tasa interna de retorno (TIR) y el valor actual neto (VAN) dando resultados positivos, lo cual refleja la rentabilidad del proyecto

Tabla 3-12 TIR y VAN

Indicador	Valor
CAPM	20,46%
VAN REAL	\$4.536,03
TIR	21,61%
PAYBACK	3,47

Fuente: Huayamave, Totoy. 2017

Tabla 3-13Prestamo VAN

Rubro	0	1	2	3	4	5
Préstamo Inicial	85.251,30					
Intereses		(8.130,84)	(6.340,57)	(4.550,29)	(2.760,01)	(969,73)
Impuestos		1.788,79	1.394,92	1.001,06	607,20	213,34
Pago de Intereses (después de imp)		(6.342,06)	(4.945,64)	(3.549,22)	(2.152,81)	(756,39)
Abono al Principal		(17.050,26)	(17.050,26)	(17.050,26)	(17.050,26)	(17.050,26)
Flujos del Financiamiento	85.251,30	(23.392,32)	(21.995,90)	(20.599,49)	(19.203,07)	(17.806,65)
Tasa de descuento	10,5%					
VAN del Financiamiento	\$ 7.111					
VAN Ajustado	\$ 11.647					

CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Se cumplió con el objetivo principal del proyecto de materia integradora en el que se requiere producir 500 kilogramos de café procesado al día. Los equipos se seleccionaron en base a los requerimientos de producción y las especificaciones de desempeño para obtener café pergamino seco. Esto se pudo corroborar mediante una simulación dinámica del funcionamiento de la planta con un 95 % de confianza.
- La distribución de la planta se diseñó por medio del método "relación entre áreas" lo que permitió diseñar la planta optimizando la ubicación de entre los departamentos permitiendo que la planta funcione de forma eficiente.
- Para iniciar el desarrollo de este proyecto se requiere una inversión en el año cero de 148500,75USD, con un TIR de 21.61%se puede concluir que el proyecto es factible.
- La implementación del presente proyecto tendrá un impacto socio económico en la región de Jipijapa dado que puede cumplirá las funciones de un centro de acopio para los pequeños productores de la región, brindando las facilidades de un centro de procesamiento tecnificado. Por lo tanto, la implementación del presente proyecto tendrá un efecto positivo en la matriz productiva del Ecuador.
- El cumplimiento de las normas de construcción estructural y de consideraciones sísmicas permitirá realizar una construcción con un factor de seguridad de 4, lo cual garantizará que el diseño no fallará bajo los efectos de movimientos telúricos.
- Por medio del balance de energía se obtuvo que en un tiempo de 18 horas en la marquesina la humedad del grano se redujo un 30%, ahorrando de esta manera tiempo y consumo de energía en el secador

4.2 Recomendaciones

- El terreno donde está ubicada la planta cuenta con una área que no está siendo utilizada, se recomienda que esta puede ser usada para agregar procesos como: trillado, tostado, molido e incluso no solo tener el método de vía húmeda sino también vía seca.
- El cálculo de flujo másico que es requerido para secar los granos de café son mayores que el valor recomendado por CENICAFE, es por eso que es aconsejable colocar un regulador de flujo para evitar consumos innecesarios.
- Se recomienda que luego del pre-secado la humedad llegue a 30% ya que si es mayor a esto, el tiempo requerido en la secadora será mayor, provocando mayores consumos de energía.
- Es recomendable utilizar equipos de poco consumo de agua como el modelo compacto seleccionado, ayudando así a conservar el medio ambiente
- Para un mejor uso de los desechos orgánicos como la pulpa y el mucílago, se recomienda dejarlos fermentar para poder usarlos como abono, de lo contrario perjudicaría el suelo.
- Se recomienda tener de referencia el precio base de la bolsa de valores, pero este puede estar sujeto a cambios según la calidad y el proceso que se le dé al café
- Antes de abrir la válvula tipo mariposa del secador rotativo asegurarse de que el equipo tenga el bloqueo de energía para evitar accidentes.

BIBLIOGRAFÍA

- A. Cengel Yunus. (1996). Termodinámica. Mexico: Mc Graw Hill.
- Anacafé. (14 de Octubre de 2011). El beneficiado húmedo. Obtenido de https://www.anacafe.org/glifos/index.php/Caficultura_BeneficiadoHumed o
- Anacafe. (12 de Octubre de 2011). *Manejo del café en el beneficio seco.*Obtenido de https://www.anacafe.org/glifos/index.php?title=BeneficioHumedo_BeneficioSeco
- Asociacion Nacional del Cafe. (1998). Manual de Caficultura. Guatemala.
- Banco Central del Ecuador. (s.f.). Banco Central del Ecuador. Obtenido de https://contenido.bce.fin.ec/indicador.php?tbl=inflacion_mensual
- Bendig Maquinaria. (1986). *Bendig*. Obtenido de http://www.bendig.co.cr/sifones.php
- Burns, R. (2003). Fundamentos de Química. México: Pearson Educación.
- Café de Colombia. (2010). Federación Nacional de cafeteros de Colombia.

 Obtenido de http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/el_cafe/el_cafe/
- Cafes Siboney. (2015). Cafes Siboney. Obtenido de https://www.cafesiboney.com/
- Carlos Orozco Hincapie. (1988). *Aplicaciones de la ingeniería solar*. Manizales: Centro de Publicaciones Universidad Nacional.
- Cenicafé. (1999). Beneficio Ecológico del café. En R. M. Gonzalo. Chinchiná.
- Cenicafé. (2004). Unificación de criterios en Beneficio Ecológico del café. Chinchiná.
- CENICAFÉ. (Abril de 2008). *Avances técnicos CENICAFÉ*. Obtenido de http://biblioteca.cenicafe.org/bitstream/10778/358/1/avt0370.pdf
- CeniCafé. (30 de Marzo de 2016). *CeniCafé*. Obtenido de http://www.cenicafe.org/es/index.php/cultivemos_cafe/beneficio
- El Diario. (4 de Junio de 2013). Agricultura. El 33% del café es manabita.

- Fundación Hondureña de Investiación Agrícola. (2004). *Guía Práctica de Produción de café con sombra de maderables.* La Lima.
- Hincapié, C. A. (2007). FLUJO MÁSICO Y CAUDAL DE AIRE PARA UN VENTILADOR. Pereira: Universidad Tecnológica de Pereira.
- Incropera, F. P. (s.f.). Fundamentos de transferencia de calor . PEARSON.
- INEC-ESPAC. (Noviembre de 2016). *Ministerio de Agricultura, Ganadería, Acuacultura y Pesca.* Obtenido de http://sinagap.agricultura.gob.ec/index.php/reportes-dinamicos-espac
- Instituto Hondureño de Café. (5 de Febrero de 2011). *Manejo de Suelos y Nutrición de Cafetales*. Obtenido de https://www.youtube.com/watch?v=ylvavM7Ggzl
- Inversiones Jotagallo S.A. (2015). *Jotagallo*. Obtenido de http://www.jotagallo.com/agricola/integrados.html
- Inversiones Jotagallo S.A. (2015). *Jotagallo*. Obtenido de http://www.jotagallo.com/agricola/beneficio-seco.html
- J.N. Wintgens. (2004). *Coffee: Growing, Processing, Sustainable Production*.Berlín: WILEY-VCH Verlag GmbH & Co. KGaA.
- JM Estrada S.A. (2016). Ferrería Amagá fundada en 1865. Obtenido de JM Estrada: http://www.jmestrada.com/beneficio-humedo/secadoras/tresmallas/manual
- JM Estrada S.A. (2017). Ferreria Amagá fundada en 1865. Obtenido de JM Estrada: http://www.jmestrada.com/beneficio-humedo/modulos/integrados-de-beneficio
- Jotagallo. (2015). *Jotagallo*. Obtenido de http://www.jotagallo.com/agricola/integrados.html
- LAVAZZA. (2015). *LAVAZZA*. Obtenido de http://www.lavazza.com/csa/coffee-passion/our-coffee/coffee_harvest/
- MAGAP. (23 de Abril de 2013). *Ministerio de Agricultura, Ganaderia, Acuacultura y Pesca*. Obtenido de http://www.agricultura.gob.ec/proyecto-dereactivacion-de-cafe-y-cacao-nacional-fino-de-aroma-realizo-mesa-de-concertacion-de-cafes-especiales-del-ecuador/

- MAGAP. (20 de Marzo de 2017). *Ministerio de Agricultura, Ganaderia, Acuacultura y Pesca*. Obtenido de http://www.agricultura.gob.ec/productividad-rendimientos-cafe/
- METEO CAST. (s.f.). Obtenido de http://es.meteocast.net/extendedforecast/ec/jipijapa/
- METER. (2006). Proveedor de medidores portatiles. Obtenido de http://www.meter8.com/es/products/Grain-Moisture-Meter-Cup-Type-MC-7828G.html
- Noblelift. (2017). *AC-LOW*. Obtenido de http://www.noblelift.com/product/actwo.htm
- Nobre, L. H. (2002). Abordagem qualitativa da inserção do biogás X diesel para o meio rural. Sao Paulo: Centro Nacional de Referência em Biomassa. USP - Universidade de São Paulo.
- Palini&Alves. (2017). Palini & Alves . Obtenido de http://www.palinialves.com.br/equipamento-es.php?equip=57&produto=PA-SCBS/1
- Penagos Hermanos. (2015). *Penagos*. Obtenido de http://www.penagos.com/producto/beneficio-ecologico-de-cafe-becolfer-500/
- Penagos Hermanos. (2015). *Penagos*. Obtenido de Penagos: http://www.penagos.com/producto/beneficio-ecologico-de-cafe-becolfer-400/
- Penagos Hermanos. (2015). *Penagos Hermanos*. Obtenido de http://www.penagos.com/producto/secadora-tipo-silo-para-cafe-sc-20/
- Pinhalense. (2017). Obtenido de http://www.pinhalense.com.br/es.equipment.php?id_maquina=178#equip amentos-holder
- Pinhalense. (2017). *Pinhalense*. Obtenido de http://www.pinhalense.com.br/es.equipment.php?id_maquina=113#equip amentos-holder
- PRO ECUADOR. (30 de MAYO de 2013). INSTITUTO DE PROMOCION DE EXPORTACIONES E INVERSIONES. Obtenido de PRO ECUADOR:

- http://www.proecuador.gob.ec/wp-content/uploads/2013/05/PROEC_AS2013_CAFE.pdf
- Productor, E. (30 de Enero de 2017). *El Productor*. Obtenido de El periódico del campo: http://elproductor.com/2017/01/30/rendimiento-de-cafe-en-el-ecuador/
- SISCODE. (2017). Sistema de Codificación S.A. Obtenido de http://siscode.com/cosedoras-de-sacos-fischbein/cosedoras-portatiles/cosedora-sencilla-estandar/
- Soto, M. A. (2007). *El cultivo y beneficiado del café.* San José, Costa Rica: Universidad estatal a distancia.
- Unirrol. (2016). *Apildor Hidráulico MS 1016*. Obtenido de http://www.unirrol.com.ar/apiladores/item/apiladores-hidraulicos-seriems.html
- Vía Industrial. (2012). *Báscula digital*. Obtenido de http://viaindustrial.com.ec/producto.asp?codigo=233024
- WEG. (2017). Motores Monofásicos. Obtenido de http://old.weg.net/ec/Productos-y-Servicios/Motores-Electricos/Monofasicos
- Yo Amo El Café De Colombia. (5 de Junio de 2016). Obtenido de http://www.yoamoelcafedecolombia.com/2016/06/05/composicion-delfruto-del-cafe/
- Zheng Zhou. (2015). *ZKMACHINE*. Obtenido de Transportador de tornillo tubular: http://www.zkmachine.es/net/Productos/Equipof/36.html

Anexos

5. CALCULOS

5.1 Secado en marquesina

5.1.1 Extracción de humedad del 60% al 30%

Por medio de un balance de energía tenemos que:

$$Q_{irr} + Q_{conv} = Q (A.1)$$

$$(I*A*t) + (h_{conv}*A*\Delta T*t) = m_w(C_{p,agua}*\Delta T + h_{fg})$$
(A.2)

Dónde:

I: Irradiación del sol (W/m²)

A: Área de marquesina (m²)

 t_1 : Tiempo de secado al sol (h)

t2: Tiempo total en la marquesina (h)

 h_{conv} : Coeficiente de transferencia de calor por convección (W/m².K)

 m_C : Masa del café (Kg)

 $C_{p,agua}$: Calor especifico del agua (J/Kg.K)

 h_{fg} : Entalpia de vaporización del agua (J/Kg)

Reemplazando los valores tenemos:

$$\left(300 \frac{W}{m^2} * 18m^2 * 8h * \frac{3600 \, s}{1h}\right) + \left(67.56 \frac{W}{m^2 \cdot K} * 18m^2 * 3K * 18h * \frac{3600 \, s}{1h}\right) =$$

$$\left(500 \, kg * 1955.28 \frac{J}{Ka^{\circ}C} * 3K\right) + m_W \left(2453.5x10^3 \frac{J}{Ka}\right) \tag{A.3}$$

Despejando la masa de agua que se va a evaporar tenemos:

$$m_w = 159.187 \, Kg \tag{A.4}$$

La masa de agua a evaporar está dada por el producto entre la masa de café y la perdida de humedad.

$$m_w = m_C(w_o - w_f) \tag{A.5}$$

Dónde:

 w_o : Humedad inicial

 w_f : Humedad final

Despejando x y reemplazando los valores de condiciones de entrada tenemos:

$$w_f = \left(w_o - \frac{m_w}{m_C}\right) = \left(0.6 - \left(\frac{159.187 \, Kg}{500 \, Kg}\right)\right) = 0.285$$
 (A.6)

Como resultado se tiene que el café tendrá una humedad final de 28% en un tiempo de 18 horas una vez que sale del modelo integrado, estando listo a las 4 de la tarde del día siguiente para que posteriormente este sea llevado al secador.

5.1.2 Coeficiente de transferencia de calor por convección

Para calcular el coeficiente de transferencia de calor por convección se ha asumido que el grano es una esfera de 8.7 mm de diámetro el cual se encuentra a una temperatura inicial de 30°C y se busca enfriarla a una temperatura final de 23°C con una velocidad promedio del viento de 2.77 m/s (METEO CAST, s.f.)

Datos:

Propiedades del aire T=23°C = 296K

Viscosidad Cinemática: $\mu = 181.6x10^{-7} \frac{N.s}{m^2}$

Viscosidad Dinámica: $v = 15.36x10^{-6} \frac{m^2}{s}$

Conductividad térmica: $k = 0.0258 \frac{W}{m.K}$

Prandtl: Pr = 0.709

Propiedades del aire $T_s = \frac{30+23^{\circ}C}{2} = 303K$

Viscosidad Cinemática: $\mu_s = 184.6x10^{-7} \frac{N.s}{m^2}$

Viscosidad Dinámica: $v = 15.89x10^{-6} \frac{m^2}{s}$

Primero se calcula el número de Reynolds

$$Re_D = \frac{VD}{v} = \frac{2.77 \frac{m}{s} * 0.0087 m}{15.36 \times 10^{-6} \frac{m^2}{s}} = 1568.94$$
 (A.7)

Para hallar el número de Nusselt se utiliza la correlación de Whitaker (Incropera)

$$\overline{Nu_D} = 2 + \left(0.4Re_D^{\frac{1}{2}} + 0.06Re_D^{\frac{2}{3}}\right)Pr^{0.4}\left(\frac{\mu}{\mu_S}\right)^{\frac{1}{4}}$$
 (A.8)

Reemplazando se tiene que:

$$\overline{Nu_D} = 22.78 \tag{A.9}$$

Reemplazando este valor en la siguiente ecuación podremos obtener el h de convección

$$\bar{h} = \overline{Nu_D} * \frac{k}{D} \tag{A.10}$$

$$\bar{h} = \overline{Nu_D} * \frac{k}{D} = 22.78 * \frac{0.0258 \frac{W}{m.K}}{0.0087 m} = 67.56 \frac{W}{m^2.K}$$
 (A.10)

5.2 Secado de café en secador rotativo

Para definir una correcta temperatura de entrada de aire se deberá determinar el flujo másico del aire que se usa para secar la masa del café y el flujo másico de aire que será para la combustión.

Para secar el café es recomendable que los gases de combustión que son para calentar el aire no estén en contacto con el grano de café ya que esto podría repercutir directamente en la calidad del mismo. Esto será representado en el siguiente esquema en la que se observa que el aire para secar el café no es el mismo para calentar el aire.

Figura 5-2. Esquema de un sistema de secado de café.

Fuente:(Hincapié, 2007)

Para calcular el flujo de aire es importante definir el porcentaje inicial de humedad del café pergamino el cual debe estar entre 30 a 40% después de haber pasado por un proceso de pre-secado. El porcentaje final de humedad del café pergamino seco debe estar entre 10 a 12% (Cenicafé, 1999), y la temperatura del aire que ingresa al tambor debe estar entre 45 y 55° (Cenicafé, 2004). El flujo másico del aire que pasa por el ventilador debe ser sumado al flujo másico de aire que pasa por la cámara de combustión.

El flujo de masa \dot{m}_{a1} que se necesita para extraer la humedad del café y llegar a humedad de 10%, está dada por la hipótesis de que el calor de vaporización ganado por el café \dot{Q}_w será igual al calor cedido por el aire.

$$\dot{Q_w} = \dot{Q_{a1}} \tag{A.11}$$

$$\dot{m}_w x \left(C p_w x \Delta T_w + h_{fg} \right) = \dot{m}_{a1} x C p_{a1} x \Delta T_{a1}$$
 (A.12)

$$\dot{m}_{a1} = \frac{\dot{m}_w \, x \, (Cp_w \, x \, \Delta T_w + h_{fg})}{Cp_{a1} \, x \, \Delta T_{a1}} \tag{A.13}$$

Donde:

 \dot{m}_w : Flujo de masa del agua extraído del café pergamino.

 Cp_w : Calor específico para el vapor del agua.

 ΔT_w : Diferencial de temperatura del café pergamino en el secado.

 h_{fg} : Entalpía de vaporización de agua.

 Cp_{a1} : Calor específico para el aire atmosférico.

 ΔT_{a1} : Diferencial de temperatura del aire en el secado.

Wo: Humedad inicial.

Wf: Humedad final.

El flujo másico del agua extraída del café también puede expresarse de la siguiente manera:

$$m_w = \frac{m_{caf\acute{e}}}{t} x (wo - wf)$$
 (A.14)

El tiempo que deberá estar dentro de la cámara de secado dependerá principalmente por la temperatura del aire está en contacto con el café y de la masa a secar.

Reemplazando la ecuación 2 en la 1 se obtiene la igualdad:

$$\dot{m}_{a1} = \frac{m_{caf\acute{e}}(wo - wf)(Cp_w x \Delta T_w + h_{fg})}{t x Cp_{a1} x \Delta T_{a1}} \tag{A.15}$$

La temperatura que se recomienda para el aire de secado debe estar entre los 45 y 55°C, si se usan temperaturas más altas que las mencionadas puede producir sobre-secado en las membranas exteriores del café volviéndolas quebradizas. (Cenicafé, 2004).

5.2.1 Cálculo de flujo másico del aire en contacto con el café

Para el siguiente cálculo definiremos temperaturas tanto del aire como del vapor de agua en el café:

$Ta_{1,entrada}$	50
$Ta_{1,salida}$	30
$T_{w,entrada}$	25
$T_{w,salida,}$	40

Las temperaturas del café tanto de entrada como de salida fueron tomadas en campo. Para la temperatura promedio del vapor de agua se tiene $T_{w,prom}$ = (25+40)/2 = 32,5°C. Para $T_{w,prom}$ se obtienen los valores de calor específico y entalpía de evaporización:

Cpw: Calor específico

Cpw= $1,8723 \text{ kJ/kg} \cdot \text{K}$

h_{fg}: Entalpía de evaporización

 $h_{fg} = 2429,8 \text{ kJ/kg}.$

(A. Cengel Yunus, 1996)

Para la temperatura promedio del aire se tiene $T_{a1,prom}$ = (50+30)/2 = 40°C. Para $T_{a1,prom}$ se obtiene los valores de calor específico de Cpa1 = 1,0056 kJ/kg·K. (A. Cengel Yunus, 1996).

La humedad inicial se tomará el valor de 30%, humedad que se obtuvo después de la etapa de pre-secado en la marquesina.

Se toma de tiempo en el secador 4 horas (tiempo recomendado por proveedor) para poder llevar el porcentaje de humedad al 10% que es la humedad apta para la comercialización del café.

De la ecuación 9 se obtendrá el flujo másico de aire.

$$\dot{m}_{a1} = \frac{(360kg)(0.30 - 0.10)(\frac{1.8723 \, KJ}{kg.k} \, x \, 15K + 2429.8 \frac{KJ}{kg})}{(4x3600seg) \, x \frac{1.0056 \, KJ}{kg.k} \, x \, 20k}$$
(A.16)

$$\dot{m}_{a1} = 0.61 \, kg/s$$
 (A.17)

Con este flujo másico se puede obtener el caudal de aire normal, la cual debe ser dividido por la densidad del aire normal (nivel del mar) que es de $1.2 kg/m^3$.

$$\dot{Q} = \frac{\nabla}{t} \tag{A.18}$$

$$\dot{Q} = \frac{m/\rho}{t} = \frac{\dot{m}}{\rho} = \frac{0.61 kg/s}{1.2 kg/m^3} = 0.5083 m^3/s$$
 (A.19)

Si se desea obtener el caudal del aire en cfm se tendrá que multiplicar por 2116,8 dando 1075,96 scfm.

5.2.2 Cálculo de flujo másico de aire usado en la combustión.

Para el flujo másico de aire m_{a2} que se necesita para el proceso de combustión se usará la siguiente ecuación:

$$\dot{m}_{a2} = \dot{m}_{comb} \ x \ AC = \dot{m}_{comb} \ x \ ACT \ x \ (1+e) \tag{A.20}$$

Donde:

 \dot{m}_{comb} : Flujo másico del combustible.

AC: Relación aire combustible.

ACT: Relación aire combustible teórico.

e: Exceso de aire.

La masa de kilogramo de gas GLP que será usada por cada kilogramo de café pergamino seco es de 0,06. Por lo tanto para los 360 kilogramos que serán secados se usarán aproximadamente 21,6 kilogramos de gas GLP.

$$m_{alp} = 21.6 \, kg$$
 (A.21)

El tiempo de secado en el proceso será de 4 horas por ende:

$$m_{glp} = 21.6 \, kg$$
 (A.22)

$$\dot{m}_{glp} = \frac{m_{carb\acute{o}n}}{t} = \frac{21.6 \ kg}{(4x3600)} = 0.0015 \ kg/seg$$
 (A.23)

$$\dot{m}_{glp} = 5.4 \, kg/hr \tag{A.24}$$

5.2.2.1 Relación aire combustible del GLP:

Para el cálculo de la relación aire combustible se hará un equilibrio de las ecuaciones químicas para tener la combustión, en este caso tendremos como combustible al GLP, entonces:

$$C_3H_8 + A(O_2 + 3,76N_2) \rightarrow BCO_2 + CH_2O + DN_2$$
 (A.25)

C: 3 = B

 $H: 8 = 2C \rightarrow C = 4$

 $0: 2A = 2B + C \rightarrow A = 5$

 $N: A(2)(3,76) = 2D \rightarrow D = 18,8$

Por lo tanto la ecuación equilibrada será:

$$C_3H_8 + 5(O_2 + 3,76N_2) \rightarrow 3CO_2 + 4H_2O + 18,8N_2$$
 (A.26)

La relación de aire combustible teórica viene dada por:

$$R(ac, th) = \frac{Masa \ aire}{Masa \ combustible}$$
 (A.27)

$$R(ac, th) = \frac{(moles \ x \ Peso \ molecular)aire}{(moles \ x \ Peso \ molecular)combustible} \tag{A.28}$$

$$R(ac, th) = \frac{5 \times 4,76 \times 29}{44 \times 1}$$
 (A.29)

$$R(ac,th) = 15,68 \frac{kg \ aire}{kg \ GLP} \tag{A.30}$$

El exceso de aire que se recomienda según el tipo de aire se encuentra entre 25% y 30%. Para el caso del GLP se considera un exceso del aire de 30% (0.3). (Carlos Orozco Hincapie, 1988).

$$\dot{m}_{a2} = \dot{m}_{comb} x ACT x (1+e) = 0.0015 \frac{kg}{seg} x 15,68 x (1+0.30)$$
 (A.31)

$$\dot{m}_{a2} = 0.030 \frac{kg}{s} \tag{A.32}$$

5.2.3 Flujo másico a mover por el ventilador

El ventilador deberá mover el flujo másico provocado por el flujo másico de aire que pasa por medio del café y el flujo másico de aire que se usa para la combustión. Entonces se tiene:

$$\dot{m_a} = \dot{m}_{a1} + \dot{m}_{a2} \tag{A.33}$$

Los cálculos que se realizaron fueron los siguientes:

$$\dot{m}_{a1} = 0.61 \frac{kg}{s}$$

$$\dot{m}_{a2} = 0.030 \frac{kg}{s}$$

Se tiene que:

$$\dot{m}_a = 0.61 \frac{kg}{s} + 0.030 \frac{kg}{s} = 0.64 \frac{kg}{s}$$
 (A.34)

Para el caudal de aire normal necesario que requiere el ventilador, considerando una densidad de $1.2 kg/m^3$ del aire se tiene:

$$Q = \frac{\nabla}{t} = \frac{m/\rho}{t} = \frac{\dot{m}}{\rho} = \frac{0.61 kg/s}{1.2 kg/m^3} = 0.51 \frac{m^3}{s} = 1079,57 scfm$$
 (A.35)

El flujo másico de aire transportado por el ventilador que se recomienda es de $25 \, m^3/min$ por cada m^3 de café pergamino seco o $66 \, m^3/min$ por cada tonelada de café pergamino seco. Entonces:

$$66 \frac{m^3}{min} x \frac{1min}{60seg} = 1.1 \frac{m^3}{seg}$$
 (A.36)

Se requiere de 1.1 m^3/seg para 1 tonelada de CPS (1000 kg).

Al secador ingresan 360 kg de café pergamino con humedad. Para el cálculo necesitaremos la masa con pérdida de humedad: 360 kg (1-0.20)=288 kg. Por lo tanto:

$$\dot{m}_{a,Recomendado} = \frac{288 \, kg \, CPS \, x \, 1,1 \, \frac{m^3}{s}}{1000 \, kg \, CPS} = 0.3168 \, m^3/s \tag{A.37}$$

El caudal recomendado está por debajo del calculado anteriormente, por ende se usará un caudal de $0.5258 \frac{m^3}{s}$, con esto se recomienda usar un regular de flujo para tener mejor control del flujo de aire y no tener consumos innecesarios de energía.

Tabla 5-2 Poder calorífico de diferentes combustibles

Combustible	Poder calorífico, Δho (kJ/kg)
Cascarilla de café	17936
Coque	30514
ACPM	43475
Basura (celulosa)	19724
GLP	49807
Gas natural	37188
Residuo de madera	15912

Fuente: (Nobre, 2002)

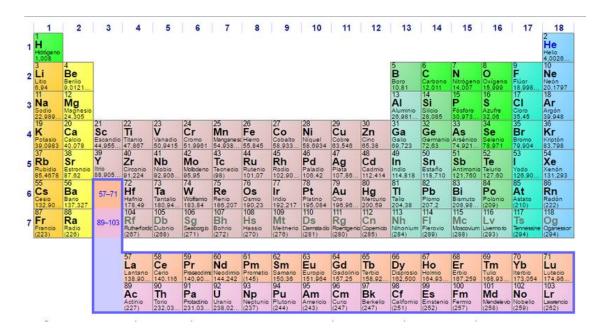


Figura 5-3. Tabla periódica de los elementos

Fuente: (Burns, 2003)

5.3 Potencia para transporte de tornillo sin fin:

La potencia del tornillo sin fin seguirá la norma UNE 58-244-88 "Aparatos de manutención continua para graneles. Transportadores de tornillo sin fin. Reglas para el diseño de los accionamientos".

Uno de los principales parámetros para seleccionar la potencia del tornillo sin fin es el caudal necesario para transportar los granos de café. Se determina por la siguiente ecuación:

$$Q = 60 x \lambda x \frac{\pi}{4} D^2 x S x n$$
 (A.38)

Donde:

Q: Caudal transportado $[m^3/h]$

λ: Coeficiente de relleno de la sección.

D: diámetro del canalón del transportador [m]

S: Paso de la hélice. Valor estimado de 0.75D

n: Velocidad necesaria del tornillo [rpm].

El coeficiente de relleno dependerá del tipo de cuerpo a transportar. En nuestro caso estamos en el grupo de materiales que se presentan en granos o pequeños tamaños y de naturaleza ligera y no abrasiva, capaces de fluir con facilidad. Su peso específico se sitúa entre 0,6 - 0,8 t/m3.

Entre los materiales pertenecientes a esta clase están:

- Alumbre en polvo.
- · Haba de soja.
- Granos de café, cacao y maíz.
- Carbón de hulla en finos y menudos.
- · Cal hidratada.

Tabla 5-3. Coeficiente de relleno

Tipo de carga	Coeficiente de relleno, λ
Pesada y abrasiva	0,125
Pesada y poco abrasiva	0,25
Ligera y poco abrasiva	0,32
Ligera y no abrasiva	0,4

Fuente: Norma UNE 58-207-89

La densidad del café depende de la etapa en la que se encuentre como se observa en la siguiente tabla:

		Presente estudio (2006)		
	Uribe (1977)	Café Seleccionado	Café sin seleccionar	
Densidad aparente (kg/m³)				
Fruto	600	621,57	616,50	
Pulpa fresca	270	299,74	298,20	
Grano de café en baba	800	826,71	803,40	
Grano de café lavado	650	701,87	693,66	
Grano de café escurrido	s.d.	687,17	678,31	
Grano de café seco de agua	520	s.d.	s.d.	
Grano de café pergamino	380	391,44	385,75	
Grano de café almendra	680	709,99	707,31	
Peso (g)				
Un fruto	2,00	1,99	1,85	
Un grano de café en baba	s.d.	0,57	0,55	
Un grano de café lavado	s.d.	0,40	0,39	
Un grano de café escurrido	s.d.	0,39	0,38	
Un grano de café pergamino	0,22	0,21	0,21	
Un grano de café almendra	0,18	0,18	0,18	
Diámetros (mm)				
Diámetro ecuatorial				
Fruto	s.d.	14,37	13,99	
Grano de café en baba	s.d.	9,24	9,02	
Grano de café lavado	s.d.	8,70	8,63	
Grano de café escurrido	s.d.	8,80	8,64	
Grano de café pergamino	s.d.	8,55	8,43	
Grano de café almendra	s.d.	7,11	7,04	
Diámetro polar				
Fruto	s.d.	15,96	15,77	
Grano de café en baba	s.d.	12,72	12,35	
Grano de café lavado	s.d.	12,31	12,22	
Grano de café escurrido	s.d.	12.38	12.03	

Figura 5-4. Propiedades del café por etapa.

Fuente: (CENICAFÉ, 2008)

Por lo tanto:

$$Q = \frac{\dot{m}}{\rho} \tag{A.39}$$

$$Q = \frac{360 \, kg/h}{701,87 \, kg/m^3} = 0.51 \, m^3/h \tag{A.40}$$

El caudal de entrada al transportador viene dado por la dosificación del modelo compacto el cual es de 360 kilogramos por hora. Debido a que el caudal es pequeño, se obtendrá un caudal con características comerciales técnicas de transportadores de tornillo sin fin.

Tabla 5-4. Transportador de tornillo tubular

Modelo	Diámetro de hoja espiral (mm)	Paso de rosca (mm)	Velocidad rotatoria (r/min)
GLS100	95	80	71~140
GLS150	142	120	50~64
GLS250	245	200	50~80
GLS315	296	300	40~80
GLS400	396	300	40~80

Fuente: (Zheng Zhou, 2015)

La capacidad de flujo que será capaz de transportar el tornillo sin fin es de:

$$Q = 60 x \lambda x \frac{\pi}{4} D^2 x S x n$$
 (A.41)

$$Q = 60 \times 0.40 \times \frac{\pi}{4} (0.095m)^2 \times 0.75 (0.095m) \times (71rpm)$$
 (A.42)

$$Q = 1,0037 \frac{m^3}{h} = 704,49 \frac{kg}{h} \tag{A.43}$$

Potencia de accionamiento:

El transportador de tornillo sin fin tendrá una potencia que dependerá de tres componentes: La potencia que se requiere para el desplazamiento del material (*PH*), la potencia requerida para el tornillo sin fin en vacío (*PN*), y la potencia requerida si es que el tornillo estuviese inclinado.

$$P = P_H + P_N + P_i \tag{A.44}$$

Potencia requerida para el desplazamiento del material (P_H) viene dada por:

$$P_H(Kw) = C_o \frac{\dot{m}. L. g}{3600}$$
 (A.45)

Donde:

 \dot{m} : Flujo másico transportado [t/h].

L:Longitud del transportador [m].

Co:Coeficiente de resistencia al desplazamiento del material a transportar.

Tabla 5-5. Coeficiente de resistencia del material al desplazamiento

Tipo de material	Valor de c ₀
Harina, serrín, productos granulosos	1,2
Turba, sosa, polvo de carbón	1,6
Antracita, carbón, sal de roca	2,5
Yeso, arcilla seca, tierra fina, cemento, cal, arena	4

Fuente: Norma UNE 58-207-89

$$P_H(Kw) = 1.2 \frac{0.704 \frac{T}{h} x \ 3.15m \ x \ 9.81 \ m/s^2}{3600 \ s} = 0.0725 \ Kw$$
 (A.46)

Potencia para el accionamiento del tornillo en vacío (P_N) :

$$P_N(Kw) = \frac{D.L}{20} \tag{A.47}$$

$$P_N(Kw) = \frac{0.1m \times 3.15m}{20} = 0.1575 \, Kw \tag{A.48}$$

Potencia requerida para tornillo sin fin por inclinación (P_i):

$$P_i(Kw) = \frac{\dot{m} x H x g}{3600} \tag{A.49}$$

$$P_i(Kw) = \frac{0.704 \frac{T}{h} \times 0.5m \times 9.81m/s^2}{3600} = 0.00959 \, Kw \tag{A.50}$$

La potencia total requerida será (Ecuación A.44):

$$P = 0.0725Kw + 0.1575Kw + 0.0095Kw = 0.2396Kw = 0.32HP$$
 (A.51)

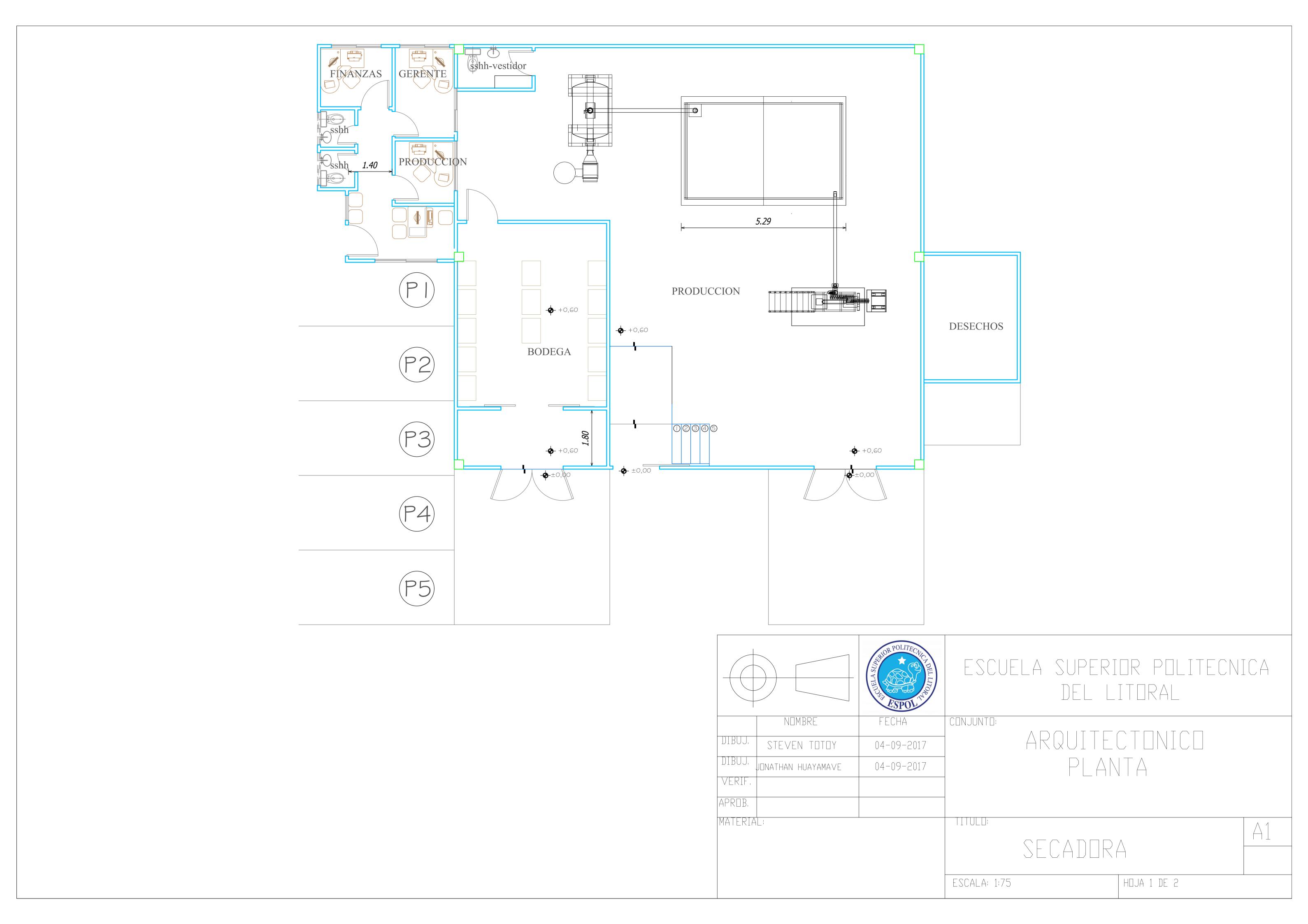
La potencia requerida para el transportador sin fin será de 0,32HP, así que se recomienda usar un motor de 0,5 HP la cual tendrá las siguientes características:

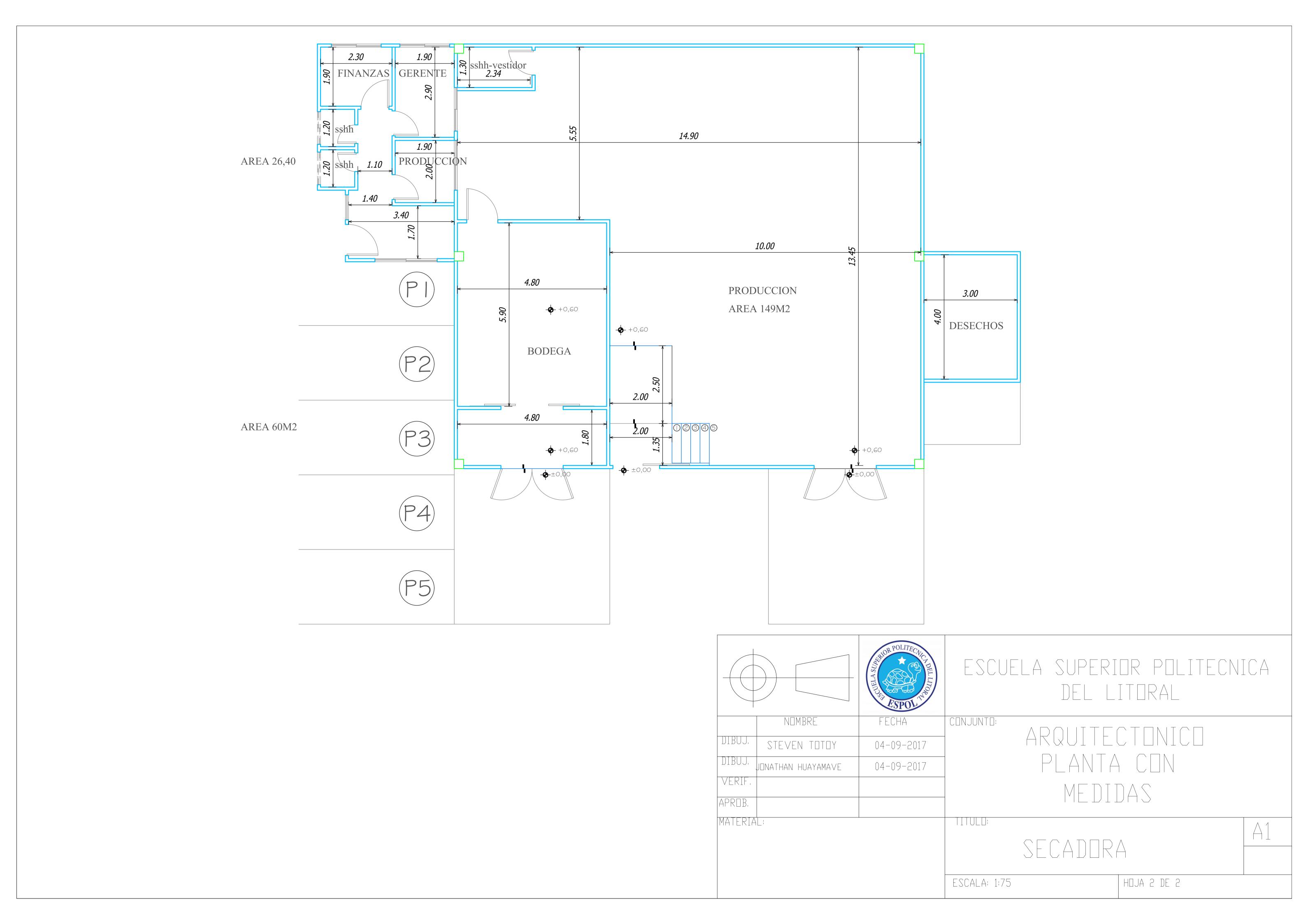
Tabla 5-6. Características motor WEG

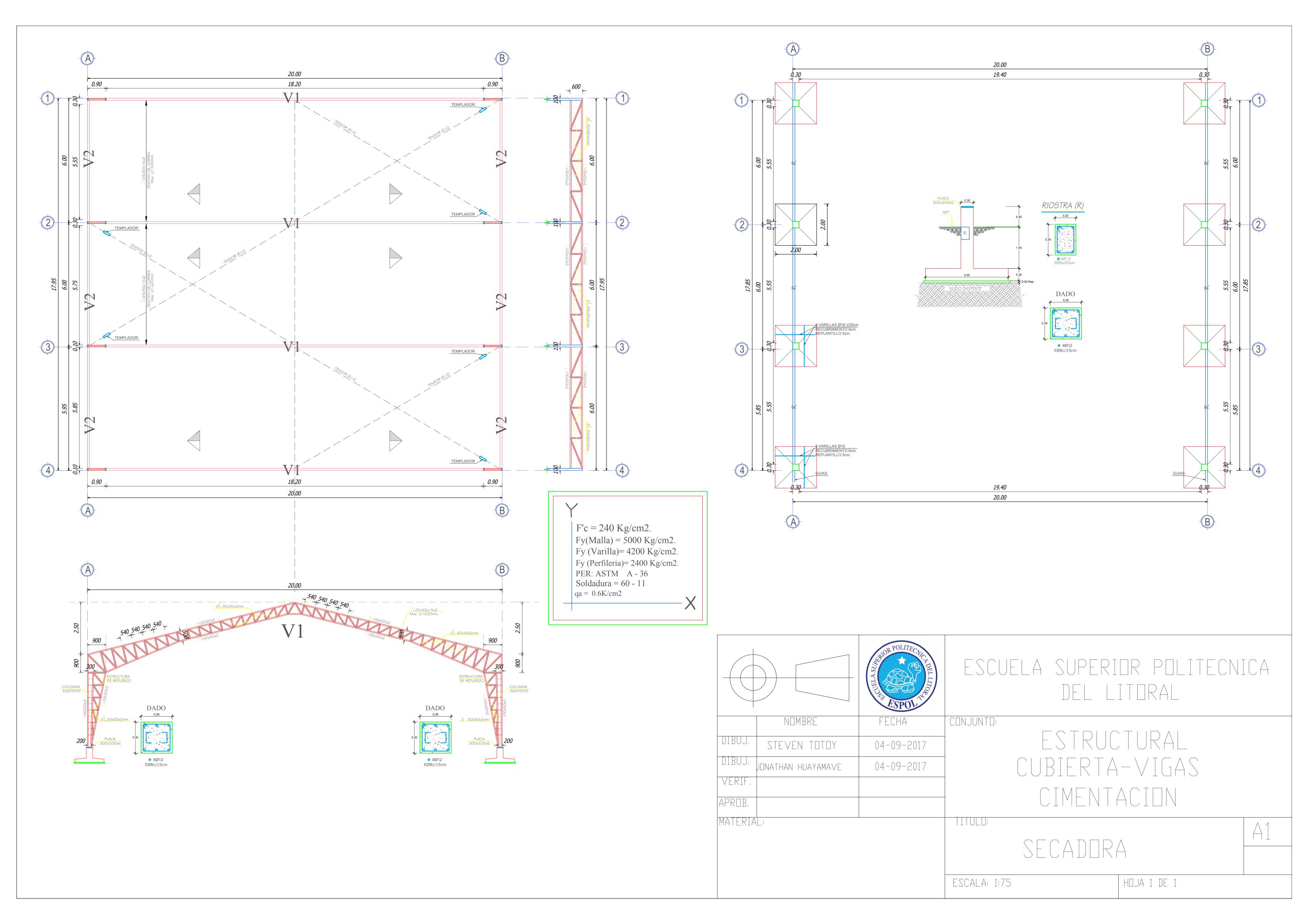
Marca	WEG
Modelo	C48
Velocidad (rpm)	1800
Tipo	Monofásico
Voltaje (V)	110/120
Potencia (HP)	0,50

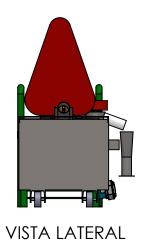
Fuente: (WEG, 2017)

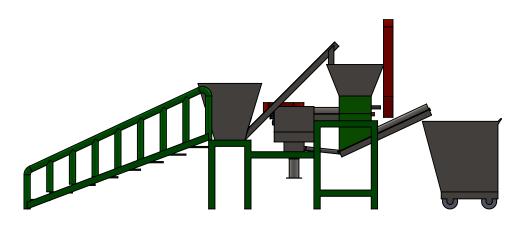
Ya que las revoluciones de este motor son de 1800 rpm y el requerido para el transportador de tornillo sin fin es de 71 rpm se usará un reductor de velocidades de corona sin fin. Por lo tanto la relación de transmisión será de:

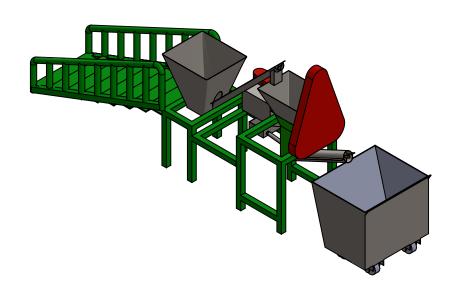

$$Rt = \frac{1800 \, rpm}{71 \, rpm} = 25,35 \tag{A.52}$$

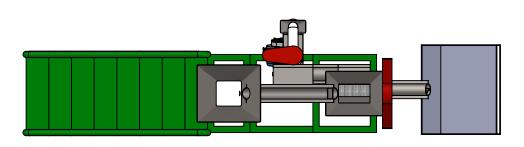

Ya que el tornillo sin fin se considera como un solo diente, para la corona el número de dientes será:


$$Z1 \times n1 = Z2 \times n2$$
 (A.53)

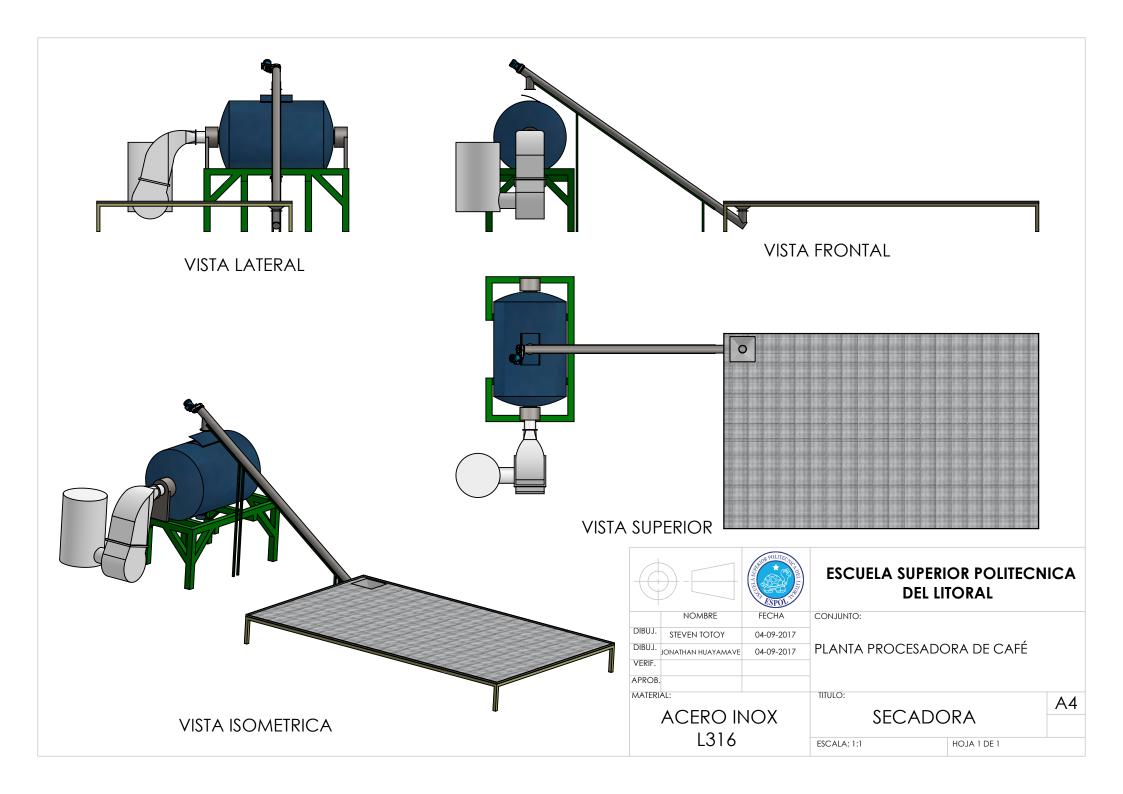

$$n2 = \frac{Z1 \times n1}{Z2} = \frac{1800 \, rpm \times 1}{71 \, rpm} = 25,35 \, dientes \tag{A.54}$$

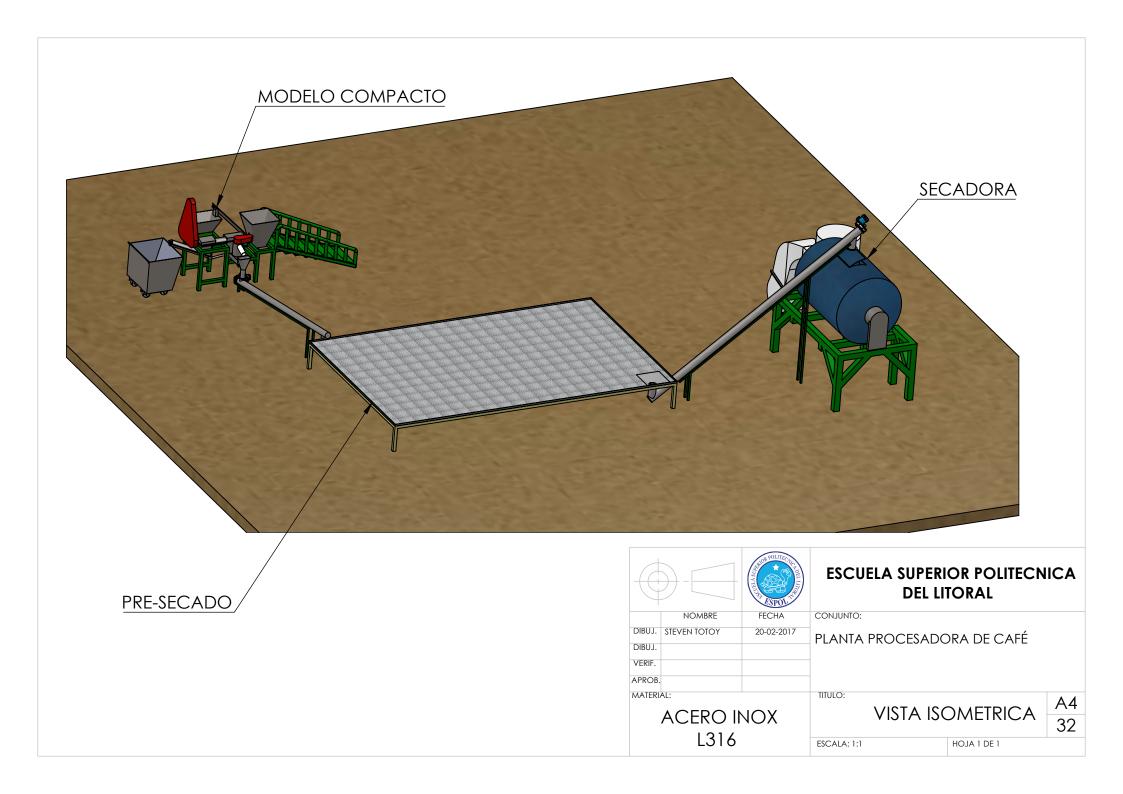

PLANOS





VISTA FRONTAL




VISTA ISOMETRICA

VISTA SUPERIOR

