

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"Simulación del Estándar de Televisión Digital ISDB-T_b Basado en un Esquema de Modulación/Demodulación OFDM Implementado en Matlab-Simulink"

TESIS DE GRADO

Previo a la obtención del Título de:

INGENIERO EN ELECTRÓNICA Y TELECOMUNICACIONES

Presentada por:

Luiggi Renato Cantos Sánchez Sahél Josué Tapuy Rendón

> GUAYAQUIL - ECUADOR 2014

DEDICATORIA

A la memoria de mi padre, el Sr. Fernando Cantos Parrales, por haber sido ejemplo intachable de dedicación y entrega hacia su familia, y que quienes lo conocieron pueden dar certeza de aquello. A mi madre, Sra. Rosa Sánchez Villegas, por su amor, constancia y empeño durante esta y otras etapas de mi vida. A mis hermanos, familiares y amigos que sin dudarlo, me han brindado su apoyo, consejo y guía.

Luiggi Renato Cantos Sánchez

Con inmenso cariño, a mis padres: el Sr. Eduardo Eusebio Tapuy Vargas y la Sra. Luz Ofelia Rendón Pacheco, por enseñarme su esfuerzo, sacrificio hacia su familia y temor a Dios, lo cual ha sido la base para mi formación y desarrollo como hijo, amigo, estudiante y ciudadano.

Sahél Josué Tapuy Rendón

AGRADECIMIENTO

Un especial agradecimiento a la autora de mis días, por enseñarme que toda meta, que sea justa, hay que merecerla. Por ser mi ejemplo, e inspiración de persona, a mi padre, quien con seguridad estaría complacido por tal logro. A la Lic. Josefa Manrique, por habernos brindado valiosa información bibliotecaria para la elaboración del presente trabajo.

A nuestro director de tesis, Dr. Boris Ramos, por darnos la oportunidad de realizar este documento investigativo, así como al Ing. Jorge Gómez. A mis compañeros de la materia de graduación "Implementación de Sistemas de Comunicaciones Inalámbricas Usando USRP y SDR", con quienes he compartido esta experiencia investigativa, y a quienes han aportado para cumplir con esta meta: compañeros de aula, profesores y autoridades de la ESPOL.

Luiggi Renato Cantos Sánchez

A Dios Todopoderoso, dador de vida y de mis fuerzas. A mis padres y hermanos, por su comprensión y apoyo incondicional en cada momento de esta etapa de mi vida.

Al Director de esta tesis, Dr. Boris Ramos, mis compañeros de aula, principalmente a Luiggi Cantos, por formar parte de este reto. Profesores de la ESPOL, especialmente, a la Ing. Miriam Ramos, por su ejemplo y palabras de ánimo.

A mi estimado profesor de secundaria, el Lic. Jaime Troya, quien me motivó a cursar por esta prestigiosa institución.

A la familia González Soriano, por permitirme ser parte de su núcleo, en el último año de mi vida universitaria. Y a quienes me brindaron su apoyo incondicional.

Sahél Josué Tapuy Rendón

DECLARATORIA EXPRESA

"La responsabilidad del contenido de esta tesis de grado nos corresponde exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

LUIGGI RENATO CANTOS SÁNCHEZ

open

SAHÉL JOSUÉ TAPUY RENDÓN

TRIBUNAL DE SUSTENTACIÓN

letom

Msc. Holger Cevallos Subdecano (e) de la FIEC

ĩ

Bu fai

Ph.D. Boris Ramos Director de Tesis

Msc. César Yépez Vocal Principal del Tribunal

RESUMEN

La presente tesis, abarca un conjunto de conceptos detallados y un análisis completo de la modulación y demodulación OFDM, aplicados al funcionamiento del Estándar de Televisión Digital ISDB-T_b, considerando un diseño simplificado del sistema. Se respetan los parámetros que permite dicho estándar, tales como: ancho de banda, número de subportadoras OFDM, separación en frecuencia entre subportadoras, prefijo cíclico y codificación del canal.

Se presentarán inicialmente los fundamentos teóricos de la Modulación OFDM, características generales tales como: la codificación y decodificación de canal, modulación para las subportadoras, uso de pilotos, número de muestras de la IFFT (Inverse Fast Fourier Transform), intervalo de guarda, y análisis de la transformada Rápida de Fourier (FFT), como herramienta fundamental para el desarrollo del sistema.

Como paso siguiente, se estudiará el Estándar de Televisión Digital ISDB-T_b, identificando sus especificaciones de diseño como, número de bits generados por segmentos de datos, organización del espectro, números de subportadoras, entre otros; en función de los conceptos tratados en el capítulo tres. Además se calcularán los parámetros necesarios previos a la realización de la simulación. A continuación se explicará el funcionamiento de cada uno de los bloques diseñados para el modelo propuesto. También se implementará modelos de canal multitrayectoria de desvanecimiento a corta escala proporcionados por la recomendación ITU-R M.1225 en la sección 1.2.2 Modelo de Respuesta Impulso de Canal. Para lo cual se aprovechará la herramienta de software que ofrece Simulink, por medio de su integración con Matlab.

Finalmente, se realizará una comparación entre las curvas de BER vs. SNR obtenidas, en función del parámetro que se desee analizar, ya sea este tipo de modulación, ancho de guarda o codificación de canal. También se incluirán las mediciones y valores obtenidos en la simulación, tales como: ancho de banda, velocidades de transmisión y tiempo de símbolo. De esto lograremos todas las conclusiones necesarias sobre la manera en que afectan la elección de dichos parámetros de transmisión, al desempeño del sistema.

ÍNDICE GENERAL

		Pág.
DEI	DICAT	ORIAii
AG	RADEC	CIMIENTOiii
DE	CLARA	TORIA EXPRESAv
TRI	BUNAI	L DE SUSTENTACIÓNvi
RE	SUME	۷ vii
ÍND	ICE G	ENERALix
ÍND	ICE DI	E FIGURASxv
ÍND	ICE DI	E TABLASxxi
INT	RODU	CCIÓN xxiv
1.		PLANTEAMIENTO Y DESCRIPCIÓN GENERAL 1
	1.1	Antecedentes 1
	1.2	Objetivos Generales
	1.3	Objetivos Específicos
	1.4	Justificación 3
	1.5	Alcance y Limitaciones 4
	1.6	Descripción del Proyecto5
2.		INTRODUCCIÓN A LOS SISTEMAS OFDM Y SU MODELAMIENTO 6
	2.1	Estudio y Desarrollo de OFDM9
	2.2	Características Generales del Sistema OFDM 11

2.2.1	Codificación/Decodificación de Canal	11
2.2.1.7	1 Codificación Convolucional	12
2.2.1.2	2 Algoritmo de Decodificación Convolucional Viterbi	21
2.2.1.3	3 Codificador Reed-Solomon	25
2.2.2	Tipos de Modulación Digital	28
2.2.2.2	1 Modulación QPSK (Quadrature Phase-Shift Keying)	28
2.2.2.2	2 Modulación en amplitud en cuadratura (QAM)	29
2.2.2.3	3 Modulación π/4 QPSK	30
2.2.3	Transformada Rápida de Fourier FFT/IFFT	31
2.2.3.7	1 Transformada Discreta de Fourier y su Inversa	33
2.2.4	Uso de la IFFT/FFT en OFDM	37
2.2.5	Intervalo de Guarda y Prefijo Cíclico	47
2.2.6	Esquema Transmisor/Receptor OFDM	49
2.2.6.7	1 Transmisor OFDM	50
2.2.6.2	2 Receptor OFDM	52
2.2.6.3	3 Etapa de Radio Frecuencia	54
2.3 Ven	tajas Comparativas y Tendencias Actuales de OFDM	55
2.3.1	Diversidad de Tiempo	58
2.3.2	Diversidad de Frecuencia	59
2.3.3	Diversidad Espacial	60
2.3.4	OFDMA	62
2.3.5	Implementaciones Basadas en Software	63
2.4 Sun	nario	64
ESI	PECIFICACIONES DEL ESTÁNDAR ISDB-Tb	66

3.

3.1	Introd	ducción al Estándar ISDB-T _b	66
3.2	Orga	nización del Canal Radioeléctrico	68
3.3	Capa	s de Transmisión Jerárquica	71
3.4	Estuc	dio y Análisis para Elección de Parámetros OFDM	73
3.4	.1 (Cálculo de Portadoras Necesarias	74
3.4	.2 (Cálculo de las Bandas de Guardas Laterales	83
3.4	.3 (Cálculo de Tasa Binaria de Transmisión para 13 Segmentos	87
3.4	.4 (Cálculo TSP por Segmentos y por Cuadro	90
3.4	.5 1	Modos del Sistema	98
3.5	Gene	eración del Cuadro Multiplex	103
3.5	5.1 (Característica del BTS	106
3.5	5.2 (Codificación Externa	107
3.6	Sepa	rador del Canal	108
3.7	Codif	ïcación Interna	111
3.7	'.1 (Codificación Reed Solomon (204-188-8)	112
3.7	'.2 <i>i</i>	Aleatorizador de Bits	113
3.7	'.3 E	Entrelazado de Bytes	115
3.7	'.4 <i>i</i>	Ajuste de Retardo	122
3.7	'.5 (Codificación Convolucional con Punzonado	124
3.8	Modu	Ilación de Portadoras	127
3.8	8.1 N	Mapeo de los Símbolos	129
3	3.8.1.1	Mapeo DQPSK	129
3	3.8.1.2	Mapeo QPSK	130
3	3.8.1.3	Mapeo 16-QAM	131

	3	8.8.1.4	4 Mapeo 64-QAM	132
	3.8	.2	Combinador Jerárquico	133
	3.8	.3	Entrelazado de Tiempo y Frecuencia	135
	3.8.4 3.8.5 3.8.6		Generación del Cuadro OFDM	137
			Modulador OFDM: IFFT	142
			Inserción de Intervalo de Guarda	143
	3.9	Dia	grama de Bloques del Sistema De Transmisión	144
	3.10	Dia	grama de Bloques del Sistema De Recepción	145
	3.11	Sur	nario	146
4.		DE	SARROLLO DEL MODELO A SIMULAR	149
	4.1	Pre	sentación del Modelo Simplificado	151
	4.2	Blo	ques de Transmisión y Recepción	155
	4.2	.1	Generación de los 13 Segmentos de Datos y de las Capas	
	Jer	rárqui	cas	156
	4	1.2.1.	1 Generación de 1 Segmento de Datos	158
	4	1.2.1.	2 Remultiplexor	160
	4	1.2.1.	3 Separador de Canal	161
	4.2	2	Codificador de canal	163
	4.2	.3	Mapeador de Símbolos	166
	4.2	.4	Entramado de Símbolos	167
	4.2	.5	Modulador OFDM (IFFT)	168
	4.2	.6	Prefijo cíclico	169
	4.3	Car	nal Multitrayectoria y Modelo de Canal de Respuesta Impulso	170
	4.3	.1	Control Automático de Ganancia (AGC)	178

	4.3	3.2	Extracción del prefijo cíclico	178
	4.3	3.3	Demodulador OFDM (FFT)	178
	4.3	3.4	Desentramado y Demapeador de Símbolos	179
	4.3	3.5	Decodificador de Canal	180
	4.3	3.6	Extracción de Capas Jerárquicas	182
	4.4	Plar	n de Pruebas de Medición	183
	4.4	4.1	Frecuencia de Muestreo de IFFT y desvío admisible	183
	4.4	4.2	Ancho de Banda y Espectro de Transmisión admisible	184
	4.4	4.3	Duración Total de Símbolos OFDM	185
5.		AN	ÁLISIS Y RESULTADOS DE SIMULACIONES	187
	5.1	Para	ámetros de la Simulación Obtenidos desde Matlab-Simulink	188
	5.2	Uso	del Archivo .M para generar los puntos de la curva BER vs SNR	188
	5.3	Res	ultados de la Simulación y obtención de la curva BER vs SNR pa	ra
		el N	10do 1	192
	5.3	3.1	Comparación del BER respecto al tipo de Modulación	192
	5.3	3.2	Comparación del BER en función de la Codificación de Canal	195
	5.3	3.3	Comparación del BER en función del Intervalo de Guarda	197
	5.3.4		Resultados de los Parámetros de Transmisión Modo1	200
	:	5.3.4.′	1 Frecuencia de Muestreo de IFFT	200
	;	5.3.4.2	2 Ancho de Banda y Espectro	201
	;	5.3.4.3	3 Tiempo de Símbolo OFDM	202
	:	5.3.4.4	4 Tasa Binaria de Transmisión	203
	5.4	Res	ultados de la Simulación y obtención de la curva BER vs SNR pa	ra
		el N	1odo 2	203

5.4.1	Comparación del BER respecto al tipo de Modulación 20	4
5.4.2	Comparación del BER en función de la Codificación de Canal 20	7
5.4.3	Comparación del BER en función del Intervalo de Guarda 20	9
5.4.4	Resultados de los Parámetros de Transmisión Modo 2 21	2
5.4.4.	1 Frecuencia de Muestreo de IFFT 21	2
5.4.4.	2 Ancho de Banda y Espectro 21	3
5.4.4.	3 Tiempo de Símbolo OFDM 21	4
5.4.4.	4 Tasa Binaria de Transmisión 21	5
5.5 Res	sultados de la Simulación y obtención de la curva BER vs SNR para	
ell	Modo 3 21	6
5.5.1	Comparación del BER respecto al tipo de Modulación 21	6
5.5.2	Comparación del BER en función de la Codificación de Canal 21	9
5.5.3	Comparación del BER en función del Intervalo de Guarda 22	2
5.5.4	Resultados de los Parámetros de Transmisión Modo 3 22	4
5.5.4.	1 Frecuencia de Muestreo de IFFT 22	5
5.5.4.	2 Ancho de Banda y Espectro 22	5
5.5.4.	3 Tiempo de Símbolo OFDM 22	7
5.5.4.	4 Tasa Binaria de Transmisión 22	8
CONCLUSION	IES Y RECOMENDACIONES 22	9
ANEXO		4
GLOSARIO		3
BIBLIOGRAFÍ	۹	8

ÍNDICE DE FIGURAS

Figura 2.1 Comparación entre FDM convencional y OFDM8
Figura 2.2 Subdivisión de un canal con ancho de banda W
en subcanales iguales con Δf de separación
Figura 2.3 Diagrama de bloques de codificación 11
Figura 2.4 Codificador convolucional (tasa ½, K=3)
Figura 2.5 Diagrama de estados de codificador convolucional (tasa ½, K=3) 15
Figura 2.6 Representación de árbol de un codificador (tasa ½, K=3) 17
Figura 2.7 Diagrama de Trellis para Codificador (tasa ½, <i>K</i> =3) 19
Figura 2.8 Diagrama de Trellis para Decodificador (tasa ½, <i>K</i> =3)
Figura 2.9 Codeword Reed-Solomon
Figura 2.10 Posibles rutas de conmutación entre puntos de mensaje
Figura 2.11 Constelación QAM de 16 símbolos (cuatro niveles por dimensión) 30
Figura 2.12 Constelaciones (valores permitidos de la envolvente compleja)
para señales (a) π/4 QPSK y (b) QPSK
Figura 2.13 Sistema OFDM para subportadoras en modulación QAM 33
Figura 2.14 Grafico comparativo del número de operaciones entre los
algoritmos para la DFT (azul) y su implementación rápida FFT (roja). 39
Figura 2.15 Estructura Radix-2 Butterfly 41
Figura 2.16 Estructura Radix-2 Butterfly aplicada a $NFFT = 8$ puntos
Figura 2.17 Estructura Radix-2 Butterfly recursiva para $NFFT = 8$ puntos
Figura 2.18 Esquema OFDM para FEC, 64-QAM y un canal Multipaso-AWGN 44
Figura 2.19 Ortogonalidad de portadoras de acuerdo a $\Delta f = 1/Tu$

Pág.

Figura 2.20 Estructura del prefijo cíclico 47
Figura 2.21 Sistema de transmisión y recepción punto a punto para OFDM 50
Figura 2.22 RF y AFE del (a) Transmisor y (b) Receptor 54
Figura 2.23 Esquema MIMO de diversidad espacial de antenas 61
Figura 2.24 Principio de subcanalización para OFDMA63
Figura 3.1 Bandas de guarda superior e inferior de un canal
Figura 3.2 Organización del canal en segmentos 70
Figura 3.3 Transmisión jerárquica en tres capas72
Figura 3.4 Distancia recorrida por la señal reflejada77
Figura 3.5 Distancia recorrida por la señal reflejada 80
Figura 3.6 Canalización en TV analógica83
Figura 3.7 Canalización mixta (analógica y digital)
Figura 3.8 Señales ISDB-T y NTSC en canales adyacentes
Figura 3.9 Espaciamientos en frecuencia (MHz) 85
Figura 3.10 Paquetes de transporte TS y multiplexación MPEG-2 91
Figura 3.11 Generación del BTS y separación de paquetes TSP
Figura 3.12 Punto de reflexión distante
Figura 3.13 Estructura de los paquetes TSP a nivel de BTS 106
Figura 3.14 Ordenamiento del Cuadro Multiplex 109
Figura 3.15 Símbolo OFDM y número de clocks asociados (Modo 1 con Δ = 1/4) 110
Figura 3.16 Codificación de canal 111
Figura 3.17 Generador de secuencia PRBS 114
Figura 3.18 Sincronización de cuadro OFDM y señal de
habilitación del generador PRBS 115

Figura 3.19 Entrelazador y desentrelazador de bytes	117
Figura 3.20 Entrelazador de bytes con A=2, k=4	118
Figura 3.21 Entrelazado de bytes para ISDB-T $_{\rm b}$ (A=17 y k=12)	121
Figura 3.22 Codificador convolucional de relación 1/2	124
Figura 3.23 Codificador convolucional y bloque de punzonado	126
Figura 3.24 Codificación convolucional, esquema de punzonado	
y secuencia de salida	126
Figura 3.25 Etapa de modulación ISDB-T $_{\rm b}$	128
Figura 3.26 Configuración de la modulación de la portadora	128
Figura 3.27 Diagrama de sistema del modulador DQPSK $\pi/4$ shift	129
Figura 3.28 Constelación DQPSK – Desplazamiento π/4	130
Figura 3.29 Diagrama del sistema de modulación QPSK	131
Figura 3.30 Constelación QPSK	131
Figura 3.31 Diagrama del sistema de modulación 16-QAM	132
Figura 3.32 Constelación 16-QAM	132
Figura 3.33 Diagrama del sistema de modulación 64-QAM	133
Figura 3.34 Constelación 64-QAM	133
Figura 3.35 Configuración del Combinador de capas	134
Figura 3.36 Interleaving en el dominio del tiempo	135
Figura 3.37 Circuito de generación de PRBS	138
Figura 3.38 Configuración del segmento OFFDM para modulación diferencial	138
Figura 3.39 Inserción de intervalo de guarda	144
Figura 3.40 Sistema de transmisión ISDB-Tb	144
Figura 3.41 Sistema de recepción ISDB-Tb	145

rigara 1.1 Blagrania de Bloquee Ceneral de
i igula ili Diagrafia de Diequee Ceneral de

Sistema de Comunicación a simular 151
Figura 4.2 Bloque de Asignación de Parámetros 152
Figura 4.3 Máscara del bloque Ajuste de Parámetros de la simulación 152
Figura 4.4 Diagrama de bloques en Simulink del modelo de transmisor ISDB- T_b . 155
Figura 4.5 Diagrama de bloques en Simulink del modelo receptor ISDB-T _b 156
Figura 4.6 Modelo en Simulink para la generación de las capas jerárquicas 157
Figura 4.7 Bloque Binario Bernoulli generador de 1 segmento de datos 158
Figura 4.8 Cuadro de diálogo para la asignación de parámetros
para 1 Segmento 160
Figura 4.9 Bloques RS-204-188-8 para una trama de 188 bytes 164
Figura 4.10 Subsistema para codificación convolucional $Ki = 2/3$
Figura 4.11 Ventana de configuración para codificador convolucional
con punzonado (<i>Ki</i> = 2/3) 166
Figura 4.12 Subsistema de entramado de símbolos previo a la IFFT 168
Figura 4.13 Subsistema de algoritmo de la IFFT 169
Figura 4.14 Bloque de Canal Multitrayectoria Rician 171
Figura 4.15 Subsistemas del Canal ITU-R M.1225 175
Figura 4.16 Bloque de decodificación Viterbi 180
Figura 4.17 Bloque de decodificación RS 181
Figura 4.18 Máscara del espectro de transmisión para
radiodifusión de televisión digital terrestre [4] 184
Figura 5.1 Modelo de prueba para codificación de canal de factor Ki variable
sobre un canal AWGN 190

Figura 5.2 Comparativa variación factor <i>Ki</i> , en un canal AWGN	. 191
Figura 5.3 Resumen Variación de Modulación Modo 1, bp variable,	
Ki = 1/2, D = 1/4	. 193
Figura 5.4 Resumen variación de codificación Modo 1, 16-QAM,	
Ki variable, $D = 1/4$. 196
Figura 5.5 Resumen variación de guarda Modo 1, 16-QAM,	
Ki = 1/2, guarda variable	. 199
Figura 5.6 Captura del espectro de emisión y recepción de ISDB-T $_{ m b}$	
en banda base para Modo 1	. 201
Figura 5.7 Resumen variación de modulación Modo 2, bp variable,	
Ki = 1/2, D = 1/4	. 205
Figura 5.8 Resumen variación de codificación Modo 2, 16-QAM,	Ki
variable, <i>D</i> = 1/4	. 208
Figura 5.9 Resumen variación de guarda Modo 2, 16-QAM, $Ki = 1/2$, guarda	
variable	. 211
Figura 5.10 Captura del espectro de emisión y recepción de ISDB-T $_{ m b}$	
en banda base para Modo 2	. 213
Figura 5.11 Resumen variación de modulación Modo 3, bp variable,	
Ki = 1/2, D = 1/4	. 217
Figura 5.12 Resumen variación de codificación Modo 3, 16-QAM,	
Ki variable, $D = 1/4$. 221
Figura 5.13 Resumen variación de guarda Modo 3, 16-QAM,	
Ki = 1/2, guarda variable	. 223

en banda base para Modo 3..... 226

ÍNDICE DE TABLAS

Tabla 3.1 Intervalos de guarda y tiempos de símbolo 82
Tabla 3.2 Tasas de transmisión R (en Mbps) para 13 segmentos 89
Tabla 3.3 Valores de N (cantidad de paquetes TSP por segmento
y por cuadro OFDM) para QPSK/DQPSK
Tabla 3.4 Valores de N (cantidad de paquetes TSP por segmento y
por cuadro OFDM) para 16-QAM97
Tabla 3.5 Valores de N (cantidad de paquetes TSP por segmento y
por cuadro OFDM) para 64-QAM97
Tabla 3.6 Intervalos de guarda y distancias de reflexión para el Modo 1
Tabla 3.7 Intervalos de guarda y distancias máximas
de reflexión para el Modo 2 100
Tabla 3.8 Intervalos de guarda y distancias máximas
de reflexión para el Modo 3 100
Tabla 3.9 Parámetros básicos de los Modos 1, 2 y 3 101
Tabla 3.10 Frecuencia de muestreo IFFT para los 3 modos 102
Tabla 3.11 Cantidad de paquetes TSP en un Cuadro Multiplex 106
Tabla 3.12 Cantidad de portadoras para el Modo 1 110
Tabla 3.13 Entrada y salida del entrelazador de la figura 3.20,
para 12 ciclos de conmutación 119
Tabla 3.14 Entrada y salida del desentrelazador de la figura 3.20,
para 12 ciclos de conmutación 120
Tabla 3.15 Ajuste del valor de retardo D _A en número de TSP 123
Tabla 3.16 Cálculo de fase para DQPSK 130

Pág.

Tabla 3.17 Arreglo de las portadoras CP, TMCC y AC
en el modo 1 y modulación diferencial 139
Tabla 3.18 Arreglo de las portadoras CP, TMCC y AC
en el modo 2 y modulación diferencial 140
Tabla 3.19 Arreglo de las portadoras CP, TMCC y AC
en el modo 3 y modulación diferencial 141
Tabla 3.20 Parámetros básicos de los Modos 1, 2 y 3 143
Tabla 3.21 Parámetros del segmento OFDM según el estándar ISDB-T _b 147
Tabla 3.22 Parámetros para 13 segmentos según el estándar ISDB-T _b 148
Tabla 4.1 Parámetros y valores configurables del estándar ISDB-T _b 154
Tabla 4.2 Parámetros para el modelo de respuesta impulso del canal 175
Tabla 4.3 Outdoor to indoor and pedestrian test environment
tapped-delay-line parameters 176
Tabla 4.4 Especificación de las máscaras del espectro de transmisión [4] 185
Tabla 4.5 Duración total de los símbolos OFDM 186
Tabla 5.1 Parámetros en Modo 1 para variaciones de modulación:
DQPSK, QPSK, 16-QAM y 64-QAM 192
Tabla 5.2 Parámetros en Modo 1 para variaciones de codificación de canal 195
Tabla 5.3 Parámetros en Modo 1 para variaciones de intervalo de guarda 198
Tabla 5.4 Parámetros en Modo 2 para variaciones de modulación:
DQPSK, QPSK, 16-QAM y 64-QAM 204
Tabla 5.5 Parámetros en Modo 2 para variaciones de codificación de canal 207
Tabla 5.6 Parámetros en Modo 2 para variaciones de intervalo de guarda

Tabla 5 7	Parámetros	en Modo	3 pa	a variacione	s de	modulación.
1 4014 0.7	i arametros		J pa		suc	mouulación.

DQPSK, QPSK, 16-QAM	y 64-QAM	. 21	6
---------------------	----------	------	---

Tabla 5.9 Parámetros en Modo 3 para variaciones de intervalo de guarda...... 222

INTRODUCCIÓN

Los estándares de comunicación de banda ancha inalámbrica en la actualidad, se fundamentan en el esquema de Multiplexación Ortogonal por División de Frecuencia (OFDM), esquema que ofrece flexibilidad en la codificación de canal y mapeo de los símbolos, además de su robustez frente a los diversos desafíos que plantea el medio de comunicación inalámbrico, tales como: multitrayectoria y pérdidas en la potencia de la señal ocasionas por el desvanecimiento selectivo de la frecuencia. Debido a estas características, OFDM ha predominado en la utilización de dichos estándares.

El propósito de este trabajo de investigación, es demostrar las características espectrales concernientes al Estándar de Televisión Digital ISDB-T_b (Integrated Services Digital Broadcasting – Terrestrial – Built-in), sobre el esquema de modulación OFDM, verificando tasas de transmisión de datos y medición del Bit Error Rate (BER), dependiendo del modo de operación seleccionado para la simulación.

El diseño propuesto para ISDB-T_b abarca la implementación de la codificación de canal simplificada (codificación Reed-Solomon 204-188-8, y codificación convolucional), indispensables para la operación del estándar, mapeo de los bits, el uso de señales pilotos para la conformación del símbolo OFDM y la utilización de prefijo cíclico para la inserción del intervalo de

guarda.

Es importante resaltar, que se diseñó el modelo en función de los requerimientos del estándar, de manera que el usuario podrá asignar los siguientes parámetros:

- Número de subportadoras para el algoritmo de modulación OFDM (N_{FFT}),
- Factor de codificación de canal (Ki),
- Bits por símbolos de modulación I/Q (b_p), y
- Razón del intervalo de guarda (Δ).

Finalmente, se presentará el plan de pruebas y los resultados de las simulaciones, analizando comparativamente el BER para cada modo considerando el tipo demodulación, codificación de canal y tiempo de guarda seleccionado.

Además se analizarán los valores permisibles dados por el estándar como tiempo de guarda, tiempo de símbolo, frecuencia de muestreo de la IFFT (Inverse Fast Fourier Transform) y ancho de banda del espectro de transmisión.

CAPÍTULO 1

1. PLANTEAMIENTO Y DESCRIPCIÓN GENERAL

En este capítulo se abarcará el planteamiento de la tesis. Los antecedentes y justificación que apoyan el desarrollo del tema. Se describen cuáles son sus objetivos y se mencionan sus alcances y limitaciones.

1.1 Antecedentes

El sistema ISDB-T, fue desarrollado por ARIB (Association of Radio Industries and Businesses) y adoptado en Japón en el año de 1999. En Diciembre de 2003 se puso en marcha su implementación en ciudades como Tokyo, Osaka y Nagoya, para posteriormente expandirse a otras ciudades en el 2006.

El 26 de Marzo de 2010, se presentó al Consejo Nacional de Telecomunicaciones – CONATEL-, el Informe para la definición e implementación de la Televisión Digital Terrestre en el Ecuador, el cual contiene una síntesis histórica de la televisión; los estándares internacionales de Televisión Digital; el plan de implementación de la TDT; los actores del proceso; el estudio y pruebas técnicas; la investigación de usos, hábitos y preferencias de la televisión en el país; el análisis del impacto socioeconómico; análisis regulatorio, entre otros temas. [1]

De los resultados del análisis efectuado en los diferentes aspectos expuestos en el informe (técnico, socioeconómico y de cooperación internacional), el Organismo Técnico de Control recomendó al CONATEL la adopción del estándar ISDB-T/SBTVD o también denominada ISDB-T_b (japonés con variaciones brasileñas). [1]

Dado dichos antecedente nos planteamos el reto de diseñar un esquema de modulación/demodulación OFDM, aplicado a la Norma Brasilera del Estándar de Televisión Digital (ISDB-T_b), utilizando bloques de procesamiento digital mediante la herramienta de software SIMULINK, que ofrece MATLAB.

1.2 Objetivos Generales

- Diseñar un modelo OFDM aplicable al estándar ISDB-T_b.
- Diseñar el modelo OFDM, de tal forma que el usuario pueda asignar la configuración de parámetros para la simulación.

 Simular el modelo y analizar errores en la transmisión debido a factores del medio, tipo de modulación y tasa de bits.

1.3 Objetivos Específicos

- Generar la cantidad de bits por segmento totales demandados por el estándar.
- Implementar la codificación de canal simplificada para el estándar.
- Efectuar la modulación/demodulación OFDM, y analizar el espectro tanto en el transmisor (Tx), como en el receptor (Rx).
- Definir el plan de pruebas de medición para el análisis de resultados.
- Obtener el diseño de un modelo de canal multitrayectoria que se usará para la para obtención de nuestros resultados, considerando las peores condiciones de transmisión.
- Adquirir destrezas en el manejo de MATLAB tanto en el desarrollo de modelos de simulación (SIMULINK), como en las herramientas de programación de Matlab, archivos .m.

1.4 Justificación

Es de nuestro interés aplicar nuestros conocimientos adquiridos, en conceptos de modulación digital, comunicaciones inalámbricas y programación en Matlab. Sabemos que OFDM es una tendencia actual en medios alámbricos e inalámbricos, debido a su eficiencia en el uso del

espectro, y a su resistencia frente a los canales multitrayectoria típicos en las ciudades, motivos que nos mueven a su estudio e investigación.

Además la tendencia de la televisión en Latinoamérica, es migrar hacia la TV Digital y dado que el estándar ISDB-T_b fue adoptado por nuestro país y que será implementado en años posteriores, decidimos realizar la presente tesis de grado, basada en dicho estándar.

1.5 Alcance y Limitaciones

El estándar ISDB-T_b fue diseñado para funcionar bajo codificación y compresión de datos, audio y video MPEG-2, los cuales son multiplexados y transmitidos en tramas de 188 bytes. Nuestro modelo propuesto, no considerará el procesamiento de compresión en general, en vez de lo cual, esta trama será generada de manera aleatoria, manteniendo las especificaciones en cuanto al número de bits requeridos para su post procesamiento.

Cada capa jerárquica se modula bajo el mismo esquema de modulación, lo cual simplifica el modelo, facilita su diseño y reduce procesamiento computacional. El modelo simplificado también presenta la omisión del entrelazado en tiempo y frecuencia. Toda la estructura e implementación se encontrarán dentro de las normativas y especificaciones del estándar tales como: ancho de banda, velocidades de transmisión, número de subportadoras para cada modo de operación, tiempo útil, tiempo de símbolo y tiempo de guarda entre otros.

1.6 Descripción del Proyecto

Inicialmente, se generará una trama de bits de forma aleatoria, a los cuales se añadirán bits de redundancia, procedentes de la codificación de canal. Se mapearán éstos bits de acuerdo al tipo de modulación I/Q dentro de las opciones que permite el estándar. Luego los símbolos mapeados serán procesados por un bloque de modulación OFDM, con algoritmos de procesamiento computacional, para después añadir símbolos de prefijo cíclico.

Con esto, se procede a la transmisión, bajo canales multitrayectoria, y a su respectiva demodulación. En el receptor bloques de desentramado, demapeo y decodificación de canal manejan los datos para obtener el flujo de bits originalmente transmitido.

El estándar abarca tres modos de operación, los cuales contemplan el número de subportadoras utilizadas para el procesamiento OFDM y se considerarán ciertos parámetros de simulación como la codificación de canal (control de errores), inserción de tramas pilotos y utilización de prefijos cíclicos. Todos estos parámetros seleccionables previos a la simulación.

CAPÍTULO 2

2. INTRODUCCIÓN A LOS SISTEMAS OFDM Y SU MODELAMIENTO

Los principios de la Multiplexación por División de Frecuencia Ortogonales (OFDM) han sido desarrollados alrededor de las últimas décadas, sin embargo, su interés práctico se ha incrementado recientemente, debido en parte al advenimiento y avance de tecnologías como los microprocesadores de alta densidad de procesamiento y los dispositivos lógicos programables que hacen posible el procesamiento digital de señales requerido. [2]

A principios de los años 80, el laboratorio francés CCETT (Centre commund'études de télévision et télécommunications) trabajó en el desarrollo de un sistema de modulación robusto y eficiente, con dos objetivos: transportar señales digitales y ahorrar espectro radioeléctrico.

Se trata de la Multiplexación por División Ortogonal de frecuencias (OFDM) que ha sido decisivo para el desarrollo e implementación de los estándares de televisión digital terrestre europeo (DVB-T) y japonés (ISDB-T). [3]

Tomando en comparación el uso de comunicaciones de portadora única o single carrier (SC), donde cada símbolo se transmite serialmente (uno a la vez), ocupando todo el ancho de banda disponible; mientras que, en modulación multiportadora se envían los símbolos paralelamente (a la misma vez) en subportadoras adyacentes, haciendo uso de algún tipo de multiplexaje por división de frecuencia (FDM) [3,4].

La figura 2.1 muestra una comparación entre FDM convencional y OFDM, donde se observa que en (a) FDM convencional, no existe superposición entre las subportadoras es decir están espaciadas lo suficiente como para no superponerse, a diferencia de (b) OFDM donde las subportadoras se traslapan, pero dicha superposición no puede ser arbitraria, ya que se debe asegurar la ortogonalidad entre las mismas.

Figura 2.1 Comparación entre FDM convencional y OFDM.

La idea principal detrás de OFDM es dividir o repartir el flujo de datos, en cierta cantidad de flujos paralelos de reducida tasa de velocidad, y transmitir cada una de ellos sobre subportadoras separadas. Estas portadoras son hechas ortogonales por medio de la elección apropiada del espaciamiento de frecuencias entre ellas. Por lo tanto, la superposición espectral de las subportadoras es permitido, ya que la ortogonalidad asegurará que el receptor pueda separar dichas subportadoras, y es debido a esta condición, que una mayor eficiencia espectral puede ser alcanzada. [2, 5]

Algunos sistemas de comunicación, como los estándares de televisión digital, usan codificación de canal lo que no es más que la inserción de bits de redundancia para la detección y corrección de errores, previa a la modulación OFDM propiamente dicha, a los mencionados sistemas se los

denomina Coded OFDM (COFDM), como lo son ISDB-T_b y DVB-T, entre otros estándares como IEE802.11 (a,b,g), e IEEE 802.16.

2.1 Estudio y Desarrollo de OFDM

La transmisión digital a través de canales no ideales, experimentan pérdidas en cuanto a las características propias de la señal, tales como distorsión de fase y de amplitud, desvanecimiento selectivo de frecuencia y la interferencia intersimbólica (ISI), entre otros.

La interferencia entre símbolos por lo general resulta en una degradación de rendimiento, incluso en el caso en que se utiliza el detector óptimo para recuperar los símbolos de información en el receptor.

En tal caso, el receptor emplea métodos de corrección de errores, filtros, AGC y ecualizadores de canal para compensar la distorsión ofrecida por el canal.

Por lo cual, podemos utilizar un enfoque alternativo, para el diseño de un sistema de comunicación eficiente de ancho de banda, con presencia de distorsión del canal; el cual, subdivide el ancho de banda del canal disponible, en un número de subcanales de ancho de banda iguales, donde el mismo, de cada subcanal es suficientemente estrecho para que las características de respuesta de frecuencia de los subcanales, sean casi ideales.

Dicha subdivisión es ilustrada en la figura 2.2. Por lo tanto, podemos definir $K = W/\Delta f$ subcanales, donde los diferentes símbolos de información se pueden transmitir simultáneamente en *K* subcanales. En consecuencia, los datos se transmiten por multiplexación por división de frecuencia (FDM).

Figura 2.2 Subdivisión de un canal con ancho de banda W en subcanales iguales con Δf de separación

Con cada subcanal, asociamos una portadora

$$x_k(t) = \cos 2\pi f_k t$$
, $k = 0, 1, ..., K - 1$ (2.1)

Donde f_k es la frecuencia central o frecuencia media en el k-ésimo subcanal.

Mediante la selección de la tasa de símbolos 1/Ten cada uno de los subcanales, al ser igual a la separación Δf de las subportadoras adyacentes, las subportadoras son ortogonales en el intervalo de símbolo *T*, independientemente de la relación de fase relativa entre subportadoras. Así

$$\int_0^T \cos(2\pi f_k t + \varphi_k) \cos(2\pi f_j t + \varphi_j) dt = 0$$
(2.2)

donde $f_k - f_j = \frac{n}{T}$, n = 1, 2, ..., independientemente de los valores de las fases φ_k y φ_j . En este caso, obtenemos la Multiplexación por División de Frecuencia Ortogonal (OFDM). [6]

La modulación multiportadora (OFDM), se ha usado en los canales tanto de telefonía fija y de radio. En particular, se utiliza en módems digitales de abonados (DSL), que proporcionan el acceso a internet de alta velocidad para hogares y negocios. OFDM también se implementa en las redes inalámbricas de área local (LAN), que se utilizan en los hogares y oficinas para el acceso inalámbrico a internet. [6]

2.2 Características Generales del Sistema OFDM

2.2.1 Codificación/Decodificación de Canal

La codificación de canal es un proceso muy elaborado y minucioso para lograr la corrección de errores. Un diagrama de bloques general se muestra en la siguiente figura:

Figura 2.3 Diagrama de bloques de codificación
Tal sistema nos indica dos bloques de codificadores bien definidos: bloques exteriores y bloques convolucionales o internos. Estos procesos añaden redundancia en los datos con el fin de detectar, encontrar y corregir los errores en la transmisión.

Además este sistema contiene bloques de entrelazado, los cuales permitirán que bloques correlativos de bits no se transmitan juntos. Este esquema es el utilizado en la telefonía digital móvil GSM, así como en la televisión digital DVB (Digital Video Broadcasting).

2.2.1.1 Codificación Convolucional

Los códigos convolucionales son los más adecuados para enfrentar los problemas que presentan canales con mucho ruido y alta probabilidad de error. Son códigos lineales, donde la suma de dos secuencias de código nos da como resultado también otra secuencia de código.

Por tal motivo, es necesario que el sistema refleje una memoria, es decir, que la codificación actual dependa exclusivamente de los bits que se envíen en el instante y en el pasado. Un código convolucional está caracterizado por tres parámetros:

n, es el número de bits de la trama codificada;

m, es el número de bits de la trama de datos de entrada;

K, es el número la memoria del código o longitud restringida.

Como acabamos de expresar, la codificación es de manera continua en la que, la secuencia de bits codificada depende de los bits previos, lo cual hace necesaria la presencia de un registro de desplazamiento de segmentos de longitud de restricción K [7]. Con esto, concluimos que la tasa de codificación es:

 $R = m/n \tag{2.3}$

Figura 2.4 Codificador convolucional (tasa ¹/₂, K=3)

La figura 2.4 ilustra un codificador convolucional con longitud de restricción K=3 y n = 2. Por lo tanto la tasa de código R es $\frac{1}{2}$. En cada tiempo de bit de entrada, un bit se desplaza a la posición de más a la izquierda y los bits en el registro se desplazan una posición a la derecha.

A continuación, las muestras de conmutación de salida para cada módulo sumador, forman de esta manera el par de símbolos de código que componen la palabra asociada, con el bit recién introducido. La toma de muestras se repite para cada uno de los bits introducidos. La selección de las conexiones entre los sumadores y las etapas del registro dan lugar a las características del código.

Cualquier cambio en la elección de conexiones resulta en un código diferente. Las conexiones son, por supuesto, no elegidas o elegidas arbitrariamente. El problema de la elección de conexiones para dar buenas propiedades de distancia, es complicado, y no ha sido resuelto en general. Debido a la memoria del código, es necesario de disponer de medios adecuados para determinar la salida asociada a una determinada entrada. Para lo cual existen tres métodos gráficos:

Diagrama de Estados

Una forma de representar codificadores simples, es con un diagrama de estados; tal representación para el codificador de la figura 2.4, se muestra en la figura 2.5. Los estados que se muestran en los cuadros del diagrama, representan los *K-1* posibles contenidos de los bits más a la derecha del registro, y los caminos

entre los estados representan las palabras de salida de cada rama,

resultantes de dichas transiciones de estado. [7]

Figura 2.5 Diagrama de estados de codificador convolucional (tasa ¹/₂, K=3)

Los estados del registro son designados como: a = 00, b = 10, c = 01, d = 11; el diagrama que se muestra en la figura 2.5 ilustra todas las transiciones de estado que son posibles para el codificador en la figura 2.4. Solo hay dos posibles transiciones emanando de cada estado, correspondientes a las dos posibles bits de entrada.

Al lado de cada ruta entre estados, se escribe la palabra de salida de rama asociada con la transición de estado. Se utiliza la convención de que una línea continua indica un camino asociado con un bit de entrada, cero, y una línea punteada marca el camino asociado con un bit de entrada, uno. Tenemos en cuenta que no es posible en una sola transición lograr pasar de un estado dado, hacia cualquier estado arbitrario. Como consecuencia del desplazamiento de un bit a la vez, sólo hay dos posibles transiciones de estado que el registro puede hacer en cada tiempo de bit. Por ejemplo, si el estado presente del codificador es 00, las únicas posibilidades para su siguiente estado son 00 o 01. [7]

Diagrama de Árbol o Árbol de Código

Aunque el diagrama de estado caracteriza completamente el codificador, no se puede utilizar fácilmente para el seguimiento de las transiciones del mismo, como función del tiempo, ya que el diagrama no puede representar un historial de tiempo.

El diagrama de árbol añade la dimensión de tiempo para el diagrama de estado. El diagrama de árbol para el codificador convolucional de la figura 2.4 es ilustrado en la figura 2.6. En cada tiempo de bit de entrada, el procedimiento de codificación puede ser descrito por el camino mostrado en el diagrama de izquierda a derecha.

Figura 2.6 Representación de árbol de un codificador (tasa ¹/₂, K=3)

La regla de ramificación para la búsqueda de una secuencia de palabras de código es la siguiente: Si el bit de entrada es un cero, su código en la rama pasa a la siguiente rama más a la derecha, en dirección hacia arriba. Si el bit de entrada es un uno, su camino a seguir será por la rama con código más a la derecha, en dirección hacia abajo.

Suponiendo que el contenido inicial del codificador son todos ceros, la figura 2.6 muestra que si el primer bit de entrada es cero, la palabra de salida en la rama es 00; y, si el primer bit de entrada es un uno, el código de rama en la salida es 11. Del mismo modo, si el primer bit de entrada es un uno y el segundo bit de entrada es un cero, la segunda palabra de rama de salida es 10. O, si el primer bit de entrada es uno y el segundo bit de entonces la segunda palabra de salida en esa rama, es 01.

Siguiendo este procedimiento, vemos que la secuencia de entrada 11011 traza la línea gruesa dibujada en el diagrama de árbol en la figura 2.6. Este camino corresponde a la secuencia de código de salida 1101010001.La dimensión añadida de tiempo en el diagrama de árbol (en comparación con el diagrama de estados), permite describir de forma dinámica el codificador como una función de una secuencia de entrada en particular.

Sin embargo, un problema al tratar de utilizar un diagrama de árbol para describir una secuencia de cualquier longitud, es que el número de ramas o caminos, aumenta en función de 2^L , donde *L* es el número de bits de la palabras transmitida. Como se aprecia en la figura 2.6, existen 2⁵ posibles caminos para generar la palabra de salida. [7]

Diagrama de Trellis

Esta caracterización de códigos convolucionales es la más usada, pues es la que permite realizar una decodificación de una forma más sencilla. El diagrama de Trellis, mediante el uso de la estructura respectiva, proporciona un codificador más manejable que el diagrama de árbol. El diagrama de Trellis para un codificador convolucional se muestra en la figura 2.7.

Figura 2.7 Diagrama de Trellis para Codificador (tasa ¹/₂, K=3)

Al elaborar el diagrama, su interpretación es la misma con la que se introdujo el diagrama de estados; una línea continua indica la salida generada por un bit de entrada cero, mientras que, una línea punteada indica la salida generada por un bit de entrada uno. Los nodos de Trellis caracterizan los estados del codificador; los primeros nodos en la fila corresponden al estado a = 00, la segunda y siguientes filas corresponden a los estados b = 10, c = 01 y d = 11. En cada unidad de tiempo, Trellis requiere 2^{K-1} nodos para representar los 2^{K-1} posibles estados del codificador.

En la figura 2.7 asumimos una estructura periódica fija después de que se alcance la profundidad 3 (en el instante t_4).En el caso general, la estructura fija prevalece después de que se alcanza la profundidad *K*. En este punto ya partir de entonces, cada uno de los estados se puede alcanzar desde cualquiera de los dos estados anteriores. Además, cada uno de los estados puede pasar a uno de los dos estados posibles.

De las dos ramas salientes, una de ellas corresponde a un bit de entrada cero y la otra corresponde a un bit de entrada uno. Los códigos en la rama de salida correspondientes a las transiciones de estado, aparecen como etiquetas sobre ellas. Una sección de un intervalo de tiempo de una estructura del codificador Trellis completa, define completamente el código. La única razón para mostrar varias secciones es para ver una secuencia del código de símbolo como una función de tiempo. [7]

2.2.1.2 Algoritmo de Decodificación Convolucional Viterbi

El algoritmo fue descubierto y analizado por Viterbi en 1967. Básicamente lo que realiza es la decodificación por máxima probabilidad; lo cual, reduce la carga computacional, aprovechándose de la estructura del código de Trellis. La ventaja de la decodificación Viterbi, comparada con otras, es que la complejidad de un decodificador Viterbi no está en función del número de símbolos en la secuencia del codeword (palabra de código).

El algoritmo abarca el cálculo de una medida de similitud, o distancia, entre el signo recibido, en el tiempo *t*, y evalúa todos los caminos de Trellis en ese intervalo de tiempo. Viterbi no considera aquellos caminos de Trellis que posiblemente no aportarían para la opción de máxima probabilidad.

Cuando dos caminos entran en el mismo estado, el que tiene la mejor métrica o peso es elegido; este camino se llama el camino superviviente. Esta selección de caminos es realizada para todos los estados y así el decodificador continúa este camino obteniendo ventajas dentro del Trellis, tomando las decisiones mejores en base a la eliminación de los caminos menos probables.

El rechazo de los caminos improbables reduce la complejidad de la decodificación. El fin de seleccionar el óptimo camino, es equivalentemente a elegir la codeword con la métrica de más alta probabilidad, o también a seleccionar la codeword con la métrica mínima en distancia.

Un ejemplo de funcionamiento para representar el decodificador con el diagrama de Trellis, se muestra en la figura 2.7.

Figura 2.8 Diagrama de Trellis para Decodificador (tasa ¹/₂, K=3)

El análisis comienza en el instante de tiempo t_1 , con el estado 00. Por lo tanto, observamos que hay sólo dos posibles transiciones a partir de este estado, no todas las ramas se necesitan mostrar inicialmente. Después del tiempo t_3 se desarrolla la estructura completa de Trellis. Es importante etiquetar cada rama de Trellis, para cada intervalo de tiempo, con la distancia de Hamming (diferencia entre una palabra de código válida y una palabra de código recibida), entre los símbolos de código recibido y la palabra de rama correspondiente a dicha rama del codificador de Trellis. El ejemplo en la figura 2.7 indica una secuencia del mensaje *m*, la secuencia *U* correspondiente a la codeword, y una secuencia recibida *Z* afectada por el ruido *Z* = 11 01 01 10 01 ...

Estas palabras de ramas del codificador, son los símbolos del código que se esperaría que lleguen de la salida del codificador, como resultado de cada una de las transiciones de estados. Las etiquetas en las ramas del decodificador Trellis son acumuladas por el decodificador.

En otras palabras, cuando los símbolos del código se reciben, cada rama del decodificador Trellis se etiqueta con una métrica de similitud o distancia Hamming entre los símbolos del código recibido (denotados por los números enteros sobre cada rama), y cada una de las palabras de la rama para ese intervalo de tiempo.

De la secuencia recibida *Z*, notamos que los símbolos del código recibido en el tiempo t_1 son 11. Como consecuencia, vemos que un estado $00 \rightarrow 00$ de transición, produce una palabra de rama de salida 00. Pero recibimos 11. Por lo tanto, en el decodificador etiquetamos el estado $00 \rightarrow 00$ de transición con una distancia de Hamming entre ellos, de tamaño 2.

Observando nuevamente el diagrama de Trellis en la figura 2.7, podemos decir que, una transición desde el estado $00 \rightarrow 10$, produce una palabra de salida de rama de 11; lo cual corresponde exactamente con los símbolos del código que nosotros recibimos en el tiempo t_1 . Por lo tanto, etiquetamos la transición de estado $00 \rightarrow 10$, con una distancia de Hamming de 0.

De ahí que, la métrica de entrada de una rama del decodificador, representa la diferencia (la distancia) entre lo que se recibió y lo que se "*debió de haber recibido*", estando la palabra de rama asociada con la rama que ha sido transmitida. En efecto, éstas métricas describen una medida de la correlación entre una palabra de la rama recibida y cada una de las candidatas.

Podemos continuar con el etiquetado de las ramas en el decodificador, de esta manera con los símbolos que son recibidos en cada tiempo t_i . El algoritmo de decodificación usa la métrica de distancia Hamming para encontrar la rama más probable (la distancia mínima) por medio de Trellis.

La base de la decodificación Viterbi, es la siguiente: Si cualquiera de los dos caminos que presentan los nodos de Trellis, une a un solo estado, entonces siempre podrá eliminarse uno de ellos en la búsqueda por el camino óptimo. Por el contrario, en el caso de ser iguales, es independiente de su elección.

2.2.1.3 Codificador Reed-Solomon

Otra aplicación de codificación para el control de errores, corresponde a los códigos Reed-Solomon (RS); RS corrige los errores a través de bloques en los cuales procesa tramas de símbolos de datos, a los que agrega redundancia, para producir otra trama, pero de símbolos codificados.

Actualmente RS es utilizado para la corrección de errores en varios sistemas de transmisión, en las comunicaciones inalámbricas o móviles (telefonía celular, enlaces de microondas, etc.), comunicaciones satelitales, televisión Digital/DVB, módem de alta velocidad como ADSL, xDSL. [8, 10]

El código Reed-Solomon, es un código cíclico, es decir, los bits de codificación se actualizan en función del bloque de los bits de entrada. RS presenta los siguientes parámetros:

n, número de símbolos de salida del codificador;

k, número de símbolos de entrada al codificador;

t, número de símbolos máximo que puede corregir el codificador.

El formato que denota la estructura completa es RS (n, k, t). Conjuntamente, se definen símbolos de *s* bits de tamaño cada uno; donde obligatoriamente el número de símbolos de salida del codificador es $n = (2^s - 1)$, para lo cual se toman los *k* símbolos de entrada, añadiendo 2*t* símbolos de paridad, para lograr construir una codeword de *n* símbolos.

Existen *n-k* símbolos de paridad de *s* bits cada uno. Un decodificador puede corregir hasta *t* símbolos que contienen errores en una palabra de código, donde 2t = (n-k). [8, 9]

La figura 2.9 muestra la codeword RS, donde los bits de datos no se ven alterados, y los símbolos de paridad son añadidos al final de la data. Debido a esto, se dice que RS es un código sistemático.

Figura 2.9 Codeword Reed-Solomon

El proceso de codificación RS se lo realiza mediante los siguientes pasos:

- Dependiendo de los s bits de cada símbolo RS se utilizara un polinomio primitivo, que se empleara para generar el campo de Galois GF(2^s) que definirá los elementos y resultados de las operaciones que se realizaran tanto en el proceso de codificación como decodificación.
- Inicialmente, se adjuntan 2t símbolos encerados, a la data original.
- Ésta nueva data, es dividida para un polinomio generador, cuyos coeficientes pertenecen al campo de Galois GF(2^s) previamente definido.
- Una vez hallado el residuo, que debe ser de longitud 2t, éstos se convierten en los bits de paridad que se añadirían en el codificador. Resultando una codeword, tal como muestra la figura 2.9, la cual representa la palabra codificada.

Mientras que en el caso de la decodificación se presentan los siguientes lineamientos:

- Como primer paso, se divide la codeword recibida (la cual puede haber sido afectada por el canal) para su polinomio generador;
- Se extrae el residuo en base a matemáticas y operaciones definidas en el campo de Galois correspondiente;

- En caso de no existir errores, dicho residuo debe ser equivalente a 2t símbolos RS iguales a cero;
- Caso contrario, significara que se recibió el codeword con errores y se procederá a la corrección de los mismos, por medio del cálculo de 2t síndromes usados para este propósito. Cabe recalcar que los códigos de Reed-Solomon tienen la capacidad de corregir hasta t símbolos erróneos, para un detalle a profundidad acerca de este proceso de corrección de errores se recomienda revisar la referencia [8, 9].

2.2.2 Tipos de Modulación Digital

OFDM permite modular cada portadora de acuerdo a los requerimientos del sistema, condiciones de radiofrecuencia, y características del medio a transmitir. La señalización multinivel, permite más bits de entrada y por ende, genera un flujo binario serial a mayores velocidades. Es de nuestro interés, mencionar las siguientes modulaciones: QPSK, QAM y $\pi/4$ QPSK. [11]

2.2.2.1 Modulación QPSK (Quadrature Phase-Shift Keying)

La modulación por desplazamiento de fase o conmutación por corrimiento en fase (PSK), tiene como objetivo variar la fase de la portadora en un rango de números discretos; considerando los parámetros de frecuencia y amplitud, constantes. Esto la convierte también en una modulación angular.

QPSK permite una modulación con distintos valores de fase como símbolos tengan mapeados en la constelación I/Q, y adopta el nombre de modulación PSK multinivel. La figura 2.11 muestra la ubicación de los símbolos en el diagrama de constelación para una señal mapeada en QPSK. [12]

Figura 2.10 Posibles rutas de conmutación entre puntos de mensaje

2.2.2.2 Modulación en amplitud en cuadratura (QAM)

Las constelaciones para señales QAM, no se ven limitadas a tener sus puntos de señalización solamente en un cierto radio, en el diagrama I/Q. Es por ello, que nacen las diferentes constelaciones, entre ellas, la popular 16-QAM (con 16 niveles) y 64-QAM. Las formas de onda de los componentes I y Q se representan mediante la figura 2.11.

2.2.2.3 Modulación $\pi/4$ QPSK

La modulación por corrimiento de fase en cuadratura de $\pi/4$ ($\pi/4$ QPSK) se genera alternando entre dos constelaciones para QPSK que se rotan por $\pi/4=45^{\circ}$ con respecto a cada una. Los bits de entrada provocan un corrimiento de fase $\pm 45^{\circ}$ o $\pm 135^{\circ}$, dependiendo de su valor. Como esto utiliza una forma de codificación diferencial, se le conoce como *modulación por corrimiento de fase en cuadratura diferencial de \pi/4 (\pi/4 DQPSK). (Ver figura 2.12) [13]*

Figura 2.12 Constelaciones (valores permitidos de la envolvente compleja) para señales (a) π/4 QPSK y (b) QPSK

2.2.3 Transformada Rápida de Fourier FFT/IFFT

Los términos Transformada Rápida de Fourier (FFT) y Transformada Rápida de Fourier Inversa (IFFT), son utilizados para denotar algoritmos eficientes y rápidos en procesamiento, con el fin de calcular la Transformada Discreta de Fourier (DFT) y la Transformada de Fourier Discreta Inversa (IDFT), respectivamente.[14]

La FFT/IFFT es ampliamente utilizada en muchas aplicaciones de procesamiento de señales digitales y su aplicación eficiente es un tema de continua investigación. Todas sus etapas forman evidentemente el núcleo del sistema de modulación/demodulación

OFDM, al ser el módulo que reemplazaría a los bancos de osciladores y el uso de filtros. [14, 15]

Es importante recordar el concepto mismo de la Transformada de Fourier y su inversa. Se plantea entonces, una señal continua x(t) en el dominio del tiempo, y su transformada de Fourier denotada por $F{x(t)}$, y su representación en el dominio de la frecuencia, X(w), así lo muestran las ecuaciones (2.4) y (2.5) que definen la Transformada de Fourier, y la Transformada Inversa de Fourier respectivamente.

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt = \mathsf{F} \{x(t)\}$$
(2.4)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega = \mathsf{F}^{-1} \{ X(\omega) \}$$
(2.5)

Estas ecuaciones son estudiadas con detalle y mucho más en el campo de las telecomunicaciones, de hecho, de manera más particular en las comunicaciones inalámbricas, puesto que la frecuencia es un recurso limitado y controlado por reguladores nacionales, su uso y eficiencia espectral se tornan importantes [15]. El uso de la IFFF/FFT se explicará con mayor detalle en la sección 2.2.4.

2.2.3.1 Transformada Discreta de Fourier y su Inversa

Describiremos un sistema OFDM que usa transmisión de data en QAM para cada subportadora, y la implementación de los algoritmos Rápidos de Fourier para los bloques de modulación y demodulación. El diagrama de bloques básico del sistema OFDM se ilustra en la figura 2.13.

b) Receiver

Figura 2.13 Sistema OFDM para subportadoras en modulación QAM

Podemos asumir, de acuerdo a la figura 2.13, que la data input viene previamente mapeada, por lo que, el bloque Serial-to-parallel buffer, los convierte en *N* subcanales independientes QAM. Así, el número de posibles puntos de la constelación para el subcanal i-ésimo es, $M_i = 2^{b_i}$, donde b_i representa el número de bits por símbolo mapeado. Denotaremos los puntos de la constelación de valor complejo como \hat{X}_k , k = 0, 1, ..., N - 1.

De esta manera quedarían representadas las muestras en frecuencia $\{\hat{X}_k\}$, como un resultado de la Transformada Discreta de Fourier (DFT), previo al paso por el bloque de la IDFT (Inverse Discrete Fourier Transform) en el transmisor, la siguiente ecuación describe matemáticamente como se calcularía cada punto de muestra de la secuencia temporal resultante, por medio de la IDFT:

$$\hat{x}_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{X}_k e^{j2\pi nk/N}, n = 0, 1, \dots, N-1,$$
(2.6)

Donde 1/*N* es un factor de escala. La secuencia { \hat{x}_n , $0 \le n \le N - 1$ } corresponden a las muestras de la señal multiportadora OFDM continua x(t), la cual puede ser expresada como:

$$x(t) = \frac{1}{N} \sum_{k=0}^{N-1} \hat{X}_k e^{\frac{j2\pi tk}{T}}, \qquad 0 \le t \le T,$$
(2.7)

Donde *T* es la duración de la señal y $\hat{x}_n = x \left(\frac{nT}{N}\right)$, n = 0, 1, ..., N - 1. Las frecuencias de subportadoras son $f_k = \frac{k}{T}$, k = 0, 1, ..., N - 1. La señal de muestreo { \hat{x}_n } generada mediante el cálculo de la IDFT, pasa a través de un convertidor discreto a analógico, cuya salida, idealmente, es la forma de onda de la señal OFDM x(t) para la transmisión. Dado x(t) como la entrada al canal de transmisión, la señal en el receptor puede ser representada como

$$r(t) = x(t) * c(t) + n(t)$$
(2.8)

Donde c(t) es la respuesta impulso del canal en convolución con la señal x(t). Ya que el ancho de banda Δf de cada subcanal se selecciona para que sea muy pequeña, en relación con el ancho de banda del canal $W = K\Delta f$ en general, la duración del símbolo $T = 1/\Delta f$ es mayor que la duración de la respuesta impulso del canal. Para ser específicos, supongamos que la respuesta de impulso del canal se extiende por m + 1 muestras de señal, donde $m \ll N$. Una manera simple de evitar completamente la interferencia entre símbolos (ISI), se logra insertando un tiempo de guarda de duración mT/N entre la transmisión de bloques de datos sucesivos. Dado que ISI se elimina a través del prefijo cíclico del tiempo de guarda, la secuencia demodulada de los símbolos se puede expresar como:

$$\tilde{X}_k = C_k \hat{X}_k + n_k$$
, $k = 0, 1, ..., N - 1$ (2.9)

Donde $\{\tilde{X}_k\}$ es la salida de los *N* puntos de la DFT calculados por el demodulador, los factores de canal se representan por $\{C_k\}$ y $\{n_k\}$ es el ruido aditivo afectando la señal. Para recuperar la información de los símbolos de los valores calculados por la DFT, es necesario estimar y compensar los factores de canal $\{C_k\}$.

La señal del receptor se demodula mediante el cálculo de la DFT de la señal recibida, después de que haya pasado a través de un convertidor analógico a digital (ADC) y haber sido convertidos nuevamente a muestras discretas en el dominio del tiempo. [6]

La siguiente ecuación ilustra cómo se realizaría el cálculo de la DFT.

$$\hat{X}_{(k)} = \sum_{n=0}^{N-1} \hat{x}_n e^{-j2\pi nk/N}, k = 0, 1, ..., N-1,$$
(2.10)

El cálculo de este en el demodulador, se lleva a cabo de manera eficiente con el uso del algoritmo de la FFT como se explicará en la sección posterior.

El sistema multiportadora OFDM, se puede operar de forma adaptativa, es decir, la velocidad de transmisión en cada subportadora, puede ser optimizada mediante la asignación correcta de la potencia promedio de transmisión y el número de bits que se transmiten por cada subportadora. La relación canal a ruido (Signal to Noise Rate) por subcanal puede definirse como:

$$SNR_k = \frac{TP_k |C_k|^2}{\sigma_{nk}^2}$$
(2.11)

Donde *T* es la duración de símbolo, P_k es la potencia promedio transmitida para cada subcanal k, $|C_k|^2$ es el cuadrado de la magnitud de la respuesta frecuencia del k-ésimo subcanal, y σ_{nk}^2 es la varianza correspondiente al ruido. En subcanales con alto SNR, transmitimos más bits por símbolos al usar constelación QAM de mayor orden, a diferencia de la que usaríamos con subcanales de bajo SNR. [6]

Para concluir con este apartado, cabe recalcar que el cálculo por medio de los procesos discretos tanto de la IDFT en el modulador ecuación (2.6), como el de la DFT en el demodulador ecuación (2.10); se los reemplazará, y en su lugar, se realizarán los algoritmos rápidos de la IFFT y la FFT respectivamente, los cuales representan la parte fundamental de la modulación y demodulación OFDM.¹

2.2.4 Uso de la IFFT/FFT en OFDM

Usando los métodos convencionales para la generación de los símbolos OFDM, es necesario disponer de moduladores QAM en paralelo, funcionando a la frecuencia exacta de la portadora que corresponda y sincronizados entre sí, de manera que se pueda lograr

¹ Las demostraciones de cómo se llegan a obtener las ecuaciones de estos procesos discretos no competen al interés de esta tesis, dejando más bien al lector con la tarea de investigar en documentos afines, donde se profundice en la demostraciones de las mismas. [32]

la separación entre frecuencias (ortogonalidad). Este procedimiento implicaría demasiado costo y dificultad en su implementación.

Considerando que a través de la IDFT y la DFT (sección 2.2.3.1), se logra que estos procesos se los realicen de manera discreta; estos algoritmos, de la forma como fueron planteados en las ecuaciones (2.6) y (2.10) en ambos casos respectivamente, implica para su cálculo la realización de sucesivas multiplicaciones y sumas además de los gastos de memoria que crecen de acuerdo al valor de muestras.

Teniendo en cuenta que estos algoritmos basados en lazos, requieren la realización secuencial de *N* multiplicaciones por cada valor de *k*, el esfuerzo computacional asciende a N^2 , que sería el valor total de multiplicaciones. [16]

Con el objeto básico de reducir dicho número de multiplicaciones fue diseñada la "Transformada Rápida de Fourier" FFT y su respectiva inversa IFFT, en las cuales el número de multiplicaciones se reduce a $\frac{N(\log_2 N)}{2}$. La figura 2.14 muestra la gran diferencia entre los dos algoritmos en cuanto al número de cálculos realizados, lo que justifica plenamente su uso. [17]

Figura 2.14 Grafico comparativo del número de operaciones entre los algoritmos para la DFT (azul) y su implementación rápida FFT (roja).

La FFT logra la eficiencia algorítmica a través de la estrategia "divide y vencerás". La idea básica es, que un grupo de *N* muestras de la sumatoria de la DFT pueden ser expresadas como una combinación de sumatorias de DFT de N/2 muestras, tanto pares como impares. Siendo así, cuando *N* es una potencia de dos, el proceso se puede repetir hasta llegar al caso de la simple sumatoria para DFT de solo 2 muestras [15]. Podemos concluir que el proceso además es recursivo.

De la ecuación (2.10), se puede derivar la denominada radix-2 FFT, aprovechando las simetrías que presenta la sumatoria de la DFT [15, 16]:

$$\hat{X}_{(k)} = \sum_{n=0}^{\frac{N}{2}-1} \hat{x}_{(2n)} e^{-j\frac{2\pi nk}{(N/2)}} + e^{-j\frac{2\pi k}{(N)}} \sum_{n=0}^{\frac{N}{2}-1} \hat{x}_{(2n+1)} e^{-j\frac{2\pi nk}{(N/2)}}$$
(2.12)

Se sabe que la FFT como una implementación de la DFT tiene su inversa, llamada IFFT; cuya ecuación es similar a la anterior y que funciona exactamente con el mismo algoritmo que allí se presenta, con las siguientes condiciones:

- > El factor $e^{-j\frac{2\pi nk}{N/2}}$ de la ecuación (2.12), se reemplaza por su potencia positiva.
- > Cada componente de salida, es multiplicada por un factor $\frac{1}{N}$.

Como parte de la estructura para el cálculo de los coeficientes de la DFT/IDFT, se emplea la estructura computacional primordial que efectúa este cómputo recursivo, denominado "butterfly" (mariposa) [33], y en el caso de Radix-2 FFT, se utiliza la siguiente nomenclatura, reescribiendo la ecuación (2.12) como:

$$\hat{X}_{(k)} = A_k + W^k B_k \tag{2.13}$$

Dónde:

 A_k , es la sumatoria de las muestras pares $\sum_{n=0}^{\frac{N}{2}-1} \hat{x}_{(2n)} e^{-j\frac{2\pi nk}{(N/2)}}$;

 B_k , es la sumatoria de las muestras impares $\sum_{n=0}^{\frac{N}{2}-1} \hat{x}_{(2n+1)} e^{-j\frac{2\pi nk}{(N/2)}}$; y

W, corresponde al factor de giro $e^{-j\frac{2\pi}{(N)}}$.

De lo expresado anteriormente, se lo puede comprender en el esquema mostrado en la figura 2.15, que indica la estructura butterfly para Radix-2 FFT.

Figura 2.15 Estructura Radix-2 Butterfly

Observamos las muestras en frecuencia X_k y $X_{k+N/2}$, obtenidas gracias al proceso Butterfly, con esto podemos analizar, que se obtendrán dos puntos de muestras en frecuencia, dadas los datos complejos A_k , B_k y W^k de entrada², y concluir lo siguiente:

- Calculando los términos A_k y B_k para k = 0, 1, 2, ..., $\frac{N}{2} 1$, se obtienen todos los puntos de muestras, y
- El proceso es recursivo, y se lo realiza hasta llegar a procesar una DFT de tan solo 2 muestras como se lo indican las figura 2.16 y 2.17. [33]

² La demostración de cómo se obtiene la muestra en frecuencia $X_{(k+N/2)}$ en la estructura Butterfly, se encuentra en detalles en las páginas 67 a 69, de la referencia [33].

Figura 2.16 Estructura Radix-2 Butterfly aplicada a $N_{FFT} = 8$ puntos

Figura 2.17 Estructura Radix-2 Butterfly recursiva para $N_{FFT} = 8$ puntos

Entonces más bien para la generación y transmisión de OFDM, será necesario implementar la IFFT puesto que el paso previo será el realizar un mapeo de símbolos I/Q equivalente al mapeo de cada subportadora, para que luego la IFFT convierta esto, en las muestras de una señal en el tiempo. Luego de la transmisión, la FFT es quien hace el trabajo de separar los datos entre subportadoras en el lado del demodulador [18, 19].

Un esquema OFDM se puede observar en la figura 2.18 considerando FEC (*Forward Error Correction*), modulación QAM para 64 portadoras y con un canal Multipaso-AWGN.

Figura 2.18 Esquema OFDM para FEC, 64-QAM y un canal Multipaso-AWGN.

Ya que favorablemente existe esta manera eficaz y sencilla de construir un modulador OFDM, utilizando como herramienta la IFFT y procesadores numéricos que admitan realizar las operaciones necesarias, estos se enfocan en tomar cierto número N_{FFT} de muestras, tanto en frecuencia en el transmisor; como en tiempo para el receptor, todas ellas potencias de dos (512, 1024, 2048, 4096, etc.), para la aplicación de sus respectivos algoritmos.

En la recepción, la FFT es quien se encarga de separar los datos entre subportadoras y realizar el proceso de la demodulación. Para lo cual, es estrictamente necesario que la cantidad de muestras a tomar durante el tiempo de símbolo OFDM (T_s), sea una cantidad entera, requerimiento que también se extiende a los períodos de intervalo de guarda y tiempo útil (T_u), con el objeto de mantener la ortogonalidad de las muestras o también llamado muestreo ortogonal. [3]

Por consiguiente, a través de la IFFT/FFT, aseguramos la condición de ortogonalidad entre las subportadoras. El manejo de señales discretas en el tiempo-frecuencia, nos lleva a pensar en un parámetro de muestreo (frecuencia de muestreo de cada subportadora en los algoritmos de la IFFT/FFT), que limitará principales características del sistema. De este modo podemos definir el espaciamiento entre subportadoras, o también conocido, como ancho de banda de subportadora, por:

$$\Delta f = \frac{f_{IFFT}}{N_{FFT}} = \frac{1}{T_u} \tag{2.14}$$

Siendo T_u el tiempo útil del símbolo OFDM, N_{FFT} el número de portadoras a transmitir en potencia de dos y f_{IFFT} la frecuencia de muestreo de las N_{FFT} muestras. Reescribiéndolo tenemos:

$$T_u = \frac{N_{FFT}}{f_{IFFT}} \tag{2.15}$$

Bajo esta condición se cumplirá con la condición de ortogonalidad, así en la frecuencia central de una portadora corresponderá la magnitud máxima de esta, y sería capaz de compartir espectro con las portadoras adyacentes, las cuales estarían anuladas en ese punto, debido a su cruce por cero, por lo que no existirá interferencia entre ellas. (Ver figura 2.19)

La frecuencia de muestreo se obtiene del cociente entre la cantidad de muestras frecuencia-tiempo (potencia entera de 2) y el tiempo útil de símbolo T_u , siendo ésta también llamada frecuencia del algoritmo de la IFFT:

$$f_{IFFT} = \frac{2^n}{T_u}$$
; $(N_{FFT} = 2^n) \ge L$, $n \in \mathbb{Z}_+$ (2.16)

Con la condición de que, 2^n debe ser mayor al número *L* de portadoras activadas, es decir portadoras manejadas y activas antes del relleno con tonos nulos, o ceros aplicados para alcanzar el número de portadoras iguales a la potencia de dos deseada. [3]

2.2.5 Intervalo de Guarda y Prefijo Cíclico

El *tiempo de guarda o intervalo de guarda* (GI), representa a aquel período de tiempo que se reserva entre símbolos OFDM consecutivos, con la finalidad de evitar la interferencia intersimbólica (ISI) e interferencia entre canales (ICI), añadiendo el uso del *prefijo cíclico* (CP). Dado que la duración de cada símbolo es larga, se puede introducir el GI entre los mismos.

Este tiempo de separación soluciona el problema de ISI, al impedir que la cola de un símbolo se superponga con el próximo. De igual manera, se reducen los problemas desincronización temporal.

Durante este intervalo de guarda, es factible transmitir el prefijo cíclico, que consiste en copiar el contenido del final del símbolo OFDM de N_{FFT} muestras, al inicio del mismo, y éste se transmite, resultando en un nuevo símbolo OFDM de mayor tamaño, tal como lo muestra la figura 2.20.

Figura 2.20 Estructura del prefijo cíclico
Para evitar la ISI, la longitud del GI debe ser al menos igual a la misma longitud del *tiempo máximo de exceso de retardo (máximum excess delay time)* o t_r que el canal posee [20]. En otras palabras, el valor del GI dependerá de las distancias a la cual se producen las reflexiones, incluyendo la posibilidad de contar con múltiples puntos de emisión, que permitan configurar una SFN (red de frecuencia única por sus siglas en ingles). [3, 15]

El símbolo OFDM se completa, añadiendo delante de las N_{FFT} muestras que genera la IFFT, *G* muestras, las cuales son las copias de las últimas *G* del símbolo OFDM. Esto nos lleva a diferenciar entre un tiempo útil de símbolo T_u , y el tiempo de guarda T_G , dentro del período de símbolo T_s . Lo que conllevará a una reducción de la eficiencia de la transmisión, no así, de los beneficios de la técnica. [3]

Entonces con los conceptos establecidos anteriormente, tenemos las siguientes relaciones:

$$T_S = T_u + T_G \tag{2.17}$$

Para el tiempo total de símbolo. Definiendo la relación delta como el número de muestras copiadas G en división con el número total de muestras N_{FFT} ,

$$\Delta = \frac{G}{N_{FFT}} \tag{2.18}$$

Este valor G se elige de tal forma que la relación Δ tome uno de los siguientes valores: 1/4, 1/8, 1/16, 1/32.Y para el tiempo de guarda tenemos:

$$T_G = \Delta \times T_u \tag{2.19}$$

Finalmente, reemplazando la ecuación (2.19) en (2.17) y factorizando se obtiene:

$$T_S = T_u (1 + \Delta) \tag{2.20}$$

2.2.6 Esquema Transmisor/Receptor OFDM

El diagrama de bloques de un "clásico" sistema OFDM, que emplea GI para mitigar los múltiples inconvenientes del canal de radio multitrayectoria, se muestra en la figura 2.21.

Figura 2.21 Sistema de transmisión y recepción punto a punto para OFDM

2.2.6.1 Transmisor OFDM

La figura 2.21 muestra el diagrama de bloques de un sistema de transmisión punto a punto, utilizando OFDM y codificación FEC. Los tres principios principales incorporados son los siguientes:

 La IFFT y la FFT se utilizan, respectivamente, para la modulación y demodulación de las subportadoras ortogonales [21]. Estos algoritmos de procesamiento de señales reemplazan los bancos de osciladores.

Observemos que en la entrada de la IFFT, N_{FFT} puntos de la constelación de datos { $x_{i,k}$ } están presentes, donde N_{FFT} es el número de puntos de FFT. (*i* es un índice en la subportadora, *k*

es un índice en el símbolo OFDM). Estas constelaciones se pueden tomar de acuerdo a cualquier modulación por desplazamiento de fase (PSK) o conjunto de señalización QAM. Las N_{FFT} muestras de salida de la IFFT, estar en el dominio del tiempo y forman la señal de banda base que lleva los símbolos de datos en un conjunto de N_{FFT} subportadoras ortogonales. En un sistema real, sin embargo, no todos estas subportadoras se pueden utilizar para los datos.

 N_{FFT} se toma como un número entero a la potencia de dos, lo que permite la aplicación de los algoritmos IFFT de alta eficiencia para la modulación y demodulación.

2. El segundo principio clave es la introducción de un prefijo cíclico como vimos en 2.2.5, cuya longitud debe superar máximo exceso de retardo del canal de propagación multitrayectoria. Debido al prefijo cíclico, la señal transmitida se convierte en periódica, y el efecto del canal multitrayecto, se convierte en equivalente a una convolución cíclica, descartando el GI en el receptor. [21]

Debido a las propiedades de la convolución cíclica, el efecto del canal multitrayectoria se limita a una multiplicación puntual de las de las constelaciones de datos transmitidos por la transformada de Fourier del canal, y así, las subportadoras se mantienen ortogonales. El único inconveniente de este principio es una ligera pérdida de potencia de transmisión efectiva, debido a la redundancia del GI que se transmitirá. [21]

Otro beneficio del GI, es el reducir la interferencia co-canal (ICI), que se da por el traslape con los canales adyacentes.

3. La codificación FEC (*Forward Error Correction*) y el entrelazado en frecuencia son la tercera idea fundamental aplicada. El canal de radio selectivo en frecuencia puede atenuar gravemente la transmisión, en uno o varias subportadoras, lo que conduce a errores de bit y dispersión de los bits codificados.

Un esquema de codificación eficiente puede corregir los bits erróneos, y por lo tanto, explotar la diversidad de frecuencia del canal de banda ancha. Las señales generadas en banda base son equivalente a señales complejas dadas por el procesamiento de señales digitales en fase/cuadratura (I/Q), modulada y preparada para transmitirse a través de una portadora de RF. Los pasos inversos se llevan a cabo por el receptor. [21]

2.2.6.2 Receptor OFDM

La sincronización es un tema clave en el diseño de un receptor robusto OFDM. La sincronización de tiempo y de frecuencia es de suma importancia, para identificar el comienzo del símbolo de OFDM y para alinear las frecuencias del oscilador local de moduladores y los demoduladores, respectivamente.

Si cualquiera de estas tareas de sincronización no se lleva a cabo con la suficiente precisión, a continuación, la ortogonalidad de las subportadoras (parcialmente) se perderá. Es decir, ISI e ICI se introducen.

La señal digitalizada por el bloque ADC habitualmente se le debe extraer el CP o tiempo de guarda, lo que se traducirá en un descarte del número de muestras quedando N_{FFT} muestras de tiempo, sobre las cuales la FFT, convertirá a muestras en el dominio de frecuencia.

Luego de extraer todas estas componentes o muestras de frecuencias, se procede a la demodulación (demapeo) I/Q (BPSK, QPSK o M-QAM) y, a continuación, en caso de haberse incluido en el transmisor, las etapas de *desentrelazado y de detección y corrección de errores*, comúnmente se incluirá un decodificador Viterbi para la decodificación convolucional, como mecanismo de *Forward Error Correction* (FEC).

2.2.6.3 Etapa de Radio Frecuencia

Una vez realizadas las etapas de procesamiento de señales digitales DSP (Digital Signal Processing), la señal en el transmisor prosigue a la etapa de radio frecuencia (RF) y Analog Front-End (AFE). Ésta consiste principalmente en una secuencia de conversión de frecuencias, de banda base hasta radio frecuencia. La figura 2.22 muestra un ejemplo de un AFE, con una frecuencia central en 5.25 GHz tanto para el emisor, como el receptor. [22, 23]

Figura 2.22 RF y AFE del (a) Transmisor y (b) Receptor

El esquema mostrado en la figura 2.22, es genérico para otras bandas. Identifica claramente dos etapas de conversión en el dominio de la frecuencia, definidas cada una por su oscilador local LO (LO1, LO2). Es importante mencionar que el ancho de banda del filtro pasabanda de salida (BPF), debe tener una diferencia entre la frecuencia de corte en alta y en baja, igual a la anchura de banda de la señal generada en banda base.

También cabe mencionar que la ubicación de la frecuencia de corte en alta y baja, deben estar centradas alrededor de la frecuencia central de operación. En este ejemplo se indica una frecuencia central de 5.25 GHz. [15]

2.3 Ventajas Comparativas y Tendencias Actuales de OFDM

La técnica OFDM, se la ha empleado con mapeo I/Q, sean estas BPSK, QAM o PSK en cada una de sus subportadoras, esta técnica se ha implementado en una variedad de aplicaciones, incluyendo la transmisión de alta velocidad sobre líneas telefónicas, tales como líneas de subportadoras (DSL). digitales Este tipo de modulación de multiportadora, también se la ha llamado Modulación Multitono Discreto (DMT). OFDM también se utiliza en la radiodifusión de audio digital en Europa y en otras partes del mundo, así como en redes de área local inalámbrica (LANs).

Podemos mencionar que, como una de sus principales ventajas es su resistencia a la degradación debido a la multitrayectoria, que se producen

en ambientes sin líneas de vista (NLOS) o con línea de vista con obstáculos (LOS), ambientes característicos en las ciudades.

Dado el aporte y capacidad que ofrece esta tecnología, la convierte en un importante atractivo a las empresas de telecomunicaciones, pues se aprovechan de su rapidez y bajos costos de implementación. Otra ventaja es, que permite la facilidad al suscriptor, pues no tendría que contar con una antena fuertemente direccionada, como es lo usual.

Considerando los puntos de vista en cuanto a, las técnicas de implementación y uso de los recursos, es notable, una mejor eficiencia espectral a lo que se lograría con técnicas de portadora única (Single Carrier), y que la implementación basada en los algoritmos de IFFT/FFT, reducen la complejidad del transmisor y receptor. La versatilidad de este sistema, da la oportunidad de implementación de un sinnúmero de tecnologías complementarias, que tienden a mejorar su funcionamiento global y eficiencia espectral.

Para una mejor comprensión, entre OFDM y la transmisión de portadora única, consideraremos el mismo tipo de modulación I/Q para todas las subportadoras en OFDM y para SC. Debido a esto, se generarán $\log_2 M$ bits por muestra en frecuencia, donde *M*, corresponde al número de puntos de la posible modulación; portadoras que son N_{FFT} para OFDM, mientras que solo una, para SC. Sin considerar el prefijo cíclico del intervalo de guarda, ni las portadoras pilotos, es decir, asumimos un sistema OFDM ideal, donde todas las portadoras utilizadas, corresponden a datos, motivo para evitar pérdida en la eficiencia espectral. Entonces, la tasa de datos estaría dada por:

$$DR_{OFDM} = \frac{\log_2 M \times N_{FFT}}{T_u}$$
(2.21)

Dado que el intervalo de guarda no es considerado, tenemos que el tiempo de símbolo es igual al tiempo útil OFDM. Además, reemplazando la ecuación (2.15) en (2.21) obtenemos:

$$DR_{OFDM} = \frac{\log_2 M \times N_{FFT}}{N_{FFT} / f_{IFFT}} = \log_2 M \times f_{IFFT}$$
(2.22)

Si se usaran todas las N_{FFT} portadoras, es decir, si ninguna se desactivara, el ancho de banda teórico OFDM sería igual a la frecuencia de muestreo de la IFFT, entonces la tasa de datos ideal OFDM es:

$$DR_{OFDM} = \log_2 M \times B_{WOFDM} \tag{2.23}$$

Por otro lado, para Single Carrier, el ancho de banda está definido como el inverso de su período de símbolo, es decir:

$$B_{WSC} = \frac{1}{T_{sSC}} \tag{2.24}$$

Así también, la tasa de datos vendría dada por:

$$DR_{SC} = \frac{\log_2 M}{T_{SSC}} = \log_2 M \times B_{WSC}$$
(2.25)

Que es igual a la expresión de la ecuación (2.23), considerando el mismo ancho de banda para los dos casos, entonces las velocidades de datos serían iguales.

Ante esta realidad, nos encontramos con problemas inherentes a los ambientes multitrayectoria, con emisiones en bandas adyacentes, inconvenientes tales como la ISI, ICI y el desplazamiento de fase, frente a los cuales, OFDM ofrece cierta inmunidad ante estos problemas. [19, 22, 24]

OFDM comparado con SC, ofrece una mayor relación de potencia picopromedio (PAPR), a diferencia de SC la cual incide en la necesidad de una calibración de gran precisión, en los elementos pasivos e inteligencia complementaria a ella, como es el caso de los AGCs y estimación del canal. [19, 22]

2.3.1 Diversidad de Tiempo

Esta característica de OFDM, concierne a las técnicas utilizadas, especialmente para comunicaciones móviles, en el proceso de envío de bloques de datos en el intervalo de distintos espacios de tiempo. La diversidad en el tiempo, tiene como objetivo lograr y aprovechar a la vez, que el desvanecimiento rápido afecte únicamente a una parte de los datos.

Esto se cumple, por medio de las técnicas de entrelazado y codificación, como codificaciones turbo, codificaciones convolucionales y codificaciones Reed Solomon, aplicadas a los bits que se envíen en un símbolo OFDM. De igual manera, OFDMA (OFDM Access), utiliza la técnica de espectro ensanchado con salto en frecuencia (FHSS), lo que permite incrementar la diversidad en tiempo.

Otra manera de alcanzar diversidad de tiempo, es por medio de *Automatic Repeat Request with Fragmentation* (ARQF). Se basa en la petición de retransmisión de información, e inclusive si se utilizaran métodos de entrelazado y codificación, ésta técnica adicional mejoraría la diversidad de tiempo.

2.3.2 Diversidad de Frecuencia

Esta propiedad de OFDM, se presenta intrínsecamente en su esquema. Dado que su espectro proporciona el uso múltiple de frecuencias ortogonales, para el envío de datos que pueden provenir del mismo o diferentes usuarios. Cierto número de subportadoras son orientadas a determinados servicios o a determinados usuarios. Esto asegura que, al menos una porción de los datos llegarán con certeza al receptor, frente a canales selectivos en frecuencia.

La diversidad en frecuencia, se puede aplicar de manera conjunta con las técnicas de entrelazado y codificación de canal, para la detección y corrección de errores. [15]

2.3.3 Diversidad Espacial

Hace uso simultáneamente de múltiples antenas, separadas físicamente lo suficiente para asegurar que la correlación de ambas sea inferior a un valor predefinido. Se hace uso del hecho de que el fading es, al menos en parte, independiente en distintos puntos del espacio.

De acuerdo al esquema tradicional, un sistema compuesto por una sola antena tanto en el transmisor como en el receptor, es denominado *Single Input/Single Output* (SISO). Cuando se utilizan múltiples antenas en el transmisor y receptor, el sistema es conocido como *Multiple Input/Single Output* (MISO), *Single Input/Multiple Output* (SIMO), o *Multiple Input/Multiple Output* (MIMO). La figura 2.23 ilustra un ejemplo del diseño de un sistema de comunicaciones con antenas MIMO.

Figura 2.23 Esquema MIMO de diversidad espacial de antenas

Un avance de esta tecnología, manteniendo los mismos conceptos, es el uso de antenas inteligentes, ligados a los esquemas de codificación y diversidad en las antenas. Debido a los problemas que presenta un canal inalámbrico, es oportuno plantear, que las posiciones óptimas de las antenas también variarán en el tiempo. Por lo que, para la evaluación de estas condiciones, será necesario realizar una estimación del canal. [15]

Esta optimización consiste en el procesamiento digital, de los pesos que se les daría a cada uno de los elementos de un arreglo de antenas, logrando que se consiga alterar su haz para emisión o recepción observando las mejores trayectorias de entre todas las que ocasiona la multitrayectoria. Los beneficios de estos principios van, desde lograr una mejoría en la eficiencia espectro-espacial, hacia un uso más eficiente de los recursos físicos existentes (los elementos de las antenas) y de la energía. [15]

La diversidad espacial, requiere una valoración constante del canal para la cancelación de interferencia. Esto se puede conseguir con la ayuda de la recopilación de información de las tramas de entrenamiento ("training"), y con las ganancias ponderadas de las antenas, que considerarían las estadísticas, para generar una señal lo más ortogonal posible a los puntos de la interferencia detectada. [15]

2.3.4 OFDMA

Un método de acceso que se puede implementar en base a OFDM, es el Acceso Múltiple por División de Frecuencias Ortogonales (OFDMA), el mismo que permite establecer la conexión multiusuarios. Básicamente, se divide el espectro de un símbolo OFDM en grupos de subportadoras, sobre las cuales, se aplica FHSS. Este principio de subcanalización mencionado, se lo puede ver en la figura 2.24. [15]

Figura 2.24 Principio de subcanalización para OFDMA

2.3.5 Implementaciones Basadas en Software

Como ya se ha expuesto, en la actualidad, OFDM fundamenta su implementación mediante los algoritmos de la IFFT/FFT, lo cual ha hecho factible su diseño y desarrollo por medio de dispositivos para el procesamiento digital de las señales, como: el *Field Programmable Gate Arrays* (FPGAs) y *Complex Programmable Logic Devices* (CPLDs).

Dada la versatilidad de estos dispositivos, permite que en diseños ya implementados, se puedan realizar mejoras, evaluar el rendimiento y efectuar experimentaciones. Actualmente, fabricantes como Altera, Xilinx, ofrecen bloques pre-diseñados de procesamiento digital, con el fin de acelerar el desarrollo basado en sus mismas herramientas. [15]

2.4 Sumario

Gracias a la evolución de OFDM a través de décadas, finalmente halla su aplicación por medio de procesos actuales de técnicas DSP, como lo es el uso de la DFT mediante la implementación de su algoritmo rápido, la IFFT.

OFDM, radica en utilizar un conjunto de portadoras adyacentes. Esto se obtiene realizando un mapeo de bits en N_{FFT} símbolos I/Q, que se traducen en N_{FFT} portadoras. El número de portadoras o símbolos I/Q, deben ser obligatoriamente potencia de dos, para que se pueda efectuar el algoritmo de la IFFT, y éstas muestras, pasan al dominio del tiempo cumpliendo la ortogonalidad en frecuencias, gracias al uso de la IFFT.

De manera similar, en el receptor se realiza el proceso inverso, a través de la FFT. Es una transformación directa al dominio de frecuencia. Las muestras de tiempo que recibe del transmisor, las lleva a muestras discretas de frecuencia por medio de su algoritmo. Este proceso representa básicamente la demodulación OFDM.

Dada la convergencia actual de OFDM, ésta permite su implementación junto a técnicas adicionales para la mitigación de errores debido canales problemáticos, como los propios de un ambiente multitrayectoria. Mencionando algunas de ellas, tenemos: codificación de canal, entrelazado de bits, adición de intervalo de guarda, uso de antenas MIMO y algoritmos de estimación y ecualización de canal.

La codificación de canal permite mediante la implementación de sus algoritmos, la detección y corrección de errores, usando técnicas FEC, las cuales no requieren la retransmisión de información, ya que por sí solos, a través de sus algoritmos son capaces de corregir errores. Un ejemplo de éstas técnicas es la codificación Reed Solomon y los codificadores convolucionales.

El entrelazado, mejora el rendimiento de los algoritmos de corrección de errores. Otras técnicas que son factibles de implementar sobre OFDM, son la adición del intervalo de guarda a través del uso del prefijo cíclico; la modulación adaptable, es decir, que tiene la capacidad de seleccionarse en función del canal, también son posibles la técnica de acceso OFDMA y el desarrollo de codificaciones de canal más avanzadas, como la codificación Turbo.

CAPÍTULO 3

3. ESPECIFICACIONES DEL ESTÁNDAR ISDB-Tb

3.1 Introducción al Estándar ISDB-T_b

El estándar ISDB-T (Integrated Services Digital Broadcasting -Terrestrial) tiene sus orígenes en Japón a finales de la década de 1990. Su estructura y desarrollo, han prevalecido gracias al trabajo realizado por el grupo de ingenieros del DIEBEG (Digital Broadcasting Experts Group).

Para aquellos tiempos ya se contaba con experiencias definidas, fortalezas y debilidades de otros estándares, el europeo DVB-T y el norteamericano ATSC (Advanced Television System Committee), con lo cual, ISDB-T obtuvo una gran ventaja para su diseño e implementación.

Durante la fase de prueba y estudios, se tomaron importantes decisiones: estructurar un sistema multiportadora, definir un servicio de banda angosta denominado "*one seg*", parámetros espectrales, alcance y limitaciones, entre otros. Con esto, en 1999 ISDB-T se define como el estándar japonés de TV digital.

A inicios del siglo XXI es cuando América Latina toma la iniciativa, y Brasil en el año 2008 adopta ISDB-T, convirtiéndose en impulsor regional, y esto da lugar a que el Comité de Desarrollo del Sistema de TV Digital juntamente con el Superintendente de Servicios de Comunicación de Masa, crean el Sistema Brasileño de TV Digital (SBTVD).

Luego de una rigurosa comparación de los sistemas de TV digital existentes y en colaboración con Japón, los brasileños tomaron como fundamento el sistema ISDB-T, e incluyeron modificaciones que permitirían la inclusión de servicios digitales, altas tasas de transmisión y robustez en la movilidad de los receptores.

Es así como el SBTVD, también denominado ISDB-T_b (ISDB-T Built-in) o ISDB-T International, es registrado en las entidades de regulación técnica internacionales, como una derivación de ISDB-T, con algunas diferencias en la codificación de video (MPEG-2), compresión de audio, presentación de cuadros por segundo e interacción utilizando el middleware o software de soporte de aplicaciones, denominado Ginga, para aplicaciones escritas en lenguaje Java. Iniciaremos el análisis del estándar considerando el esquema de organización del canal radioeléctrico para 6 MHz, pues ISDB-T_b soporta canales con un ancho de banda de 6, 7 y 8 MHz. [25, 26, 3]

Las razones por la cual adoptamos 6 MHz, es sencillamente porque es la más usada y así será más sencillo comprender las relaciones matemáticas que gobiernan el sistema.

3.2 Organización del Canal Radioeléctrico

Los servicios de radiodifusión y televisión, no nos permiten utilizar todo el ancho de banda asignado para la transmisión, siendo así, muy necesario reservar márgenes de frecuencia, por encima y por debajo de los límites de espectro definidos. Éstos márgenes son conocidos como "bandas de guarda", en frecuencias VHF y UHF suelen tener entre 20 KHz y 200 KHz de ancho (según el tipo de servicio y las pendientes que presenten las curvas de respuesta en frecuencia espectral) y han sido pensados como medida de seguridad para evitar posibles interferencias sobre los canales adyacentes [3]. La figura 3.1 ilustra lo que acabamos de decir:

Figura 3.1 Bandas de guarda superior e inferior de un canal

 G_1 y G_2 son las bandas de guarda, con un valor de 200 KHz cada una, lo cual da un total aproximado de 400 KHz los que no se utilizarán del ancho de banda total de 6 MHz. En tal sentido, se podría organizar el canal en segmentos, representados como N_S , alrededor de 400 KHz cada uno. Entonces:

$$N_S = \frac{Bw_C}{400} = \frac{6000 \ KHz}{400 \ KHz} = 15 \tag{3.1}$$

En realidad, este valor de segmentos no se usará, ya que el valor exacto de la porción de frecuencia de cada segmento no es de 400 KHz. El estándar ISDB-T_b ofrece, la posibilidad de ofrecer un servicio de banda angosta que utiliza un solo segmento de data, y ocupa el centro de la banda, denominado "*one-seg*". Este segmento debe ser sintonizado fácilmente por el receptor, debido a su posición central.

De esta manera, este segmento debe proporcionar igual cantidad de segmentos a derecha e izquierda de él, dividiéndose así la banda en 14 segmentos en lugar de 15, y además de los 14 segmentos totales, reserva uno de ellos para distribuirlo en las bandas de guarda. Por consiguiente, la nueva anchura de cada segmento será:

$$Bw_s = \frac{Bw_c}{14} = \frac{6000 \ \text{KHz}}{14} = \frac{3000 \ \text{KHz}}{7} = 428,57 \ \text{KHz}$$
(3.2)

El resultado anterior nos muestra que ISDB-T_b ha sido definido como un sistema de "*banda angosta*", en el que cada segmento tiene una anchura de 428,57 KHz.

A continuación la figura 3.2 muestra la organización espectral de los 13 segmentos destinados para el servicio de transmisión. Los segmentos son enumerados y ordenados de acuerdo a la norma ISDB-T_b, ubicando los segmentos impares a la izquierda del one-seg y los segmentos pares a la derecha del mismo.

Figura 3.2 Organización del canal en segmentos

Esto da lugar a poder decir que el ancho de banda total ocupado por los 13 segmentos es, entonces:

$$Bw = N_s. Bw_s = 13 \frac{6000}{14} = 5,571 MHz$$
(3.3)

La ecuación anterior, representa el ancho de banda de la señal OFDM, sin considerar el ancho de banda correspondiente a la portadora DC, la cual se ubicará en el centro de todo el espectro, por lo que se deberá reservar una porción de frecuencia. Resultando finalmente, lo siguiente:

$$Bw = N_s \cdot Bw_s + \Delta f \tag{3.4}$$

Donde Δf indica el ancho de banda correspondiente a una subportadora, y éste valor dependerá del modo del sistema, dando como resultado pequeñas variaciones al ancho de banda de la señal. El análisis de éste factor se lo detallará en la sección 3.4.1.

3.3 Capas de Transmisión Jerárquica

El sistema ISDB-T_b organiza la información en a enviar en tres capas jerárquicas diferentes, llamadas A, B y C. Esta técnica es muy importante para la funcionalidad del estándar, y es motivo por el cual el canal ha sido divido en segmentos, transformándolo en un sistema denominado de *banda segmentada*.

La figura 3.3 muestra la asignación de las tres capas a diferentes servicios y su asignación: Capa A con un segmento, Capa B con 7 segmentos y Capa C con 5 segmentos. También se muestra su correspondencia con la posición de los segmentos en el espectro:

Figura 3.3 Transmisión jerárquica en tres capas

Uno o más segmentos OFDM pueden conformar cada capa jerárquica, tantos como requiera el ancho de banda del servicio que se desea ofrecer. El número de segmentos y el conjunto de parámetros de codificación FEC para cada capa jerárquica, pueden ser configurados por el radiodifusor, siendo posible especificar para cada una y por separado, parámetros tales como esquema de modulación para las portadoras, codificación interna y entrelazado de tiempo. [3]

El segmento central puede ser utilizado para recepción parcial y en ese caso también se lo considera como una capa jerárquica. El servicio apunta principalmente a ofrecer un servicio de LDTV (TV en baja definición) para teléfonos móviles y otros dispositivos con pantallas de tamaño reducido. El estándar ISDB-T_b, también asigna que cada canal de televisión pueda ser recibido simultáneamente por receptores fijos, móviles y portátiles. Existe un conjunto de portadoras que están destinadas a la transmisión de la información de control necesaria para que el receptor pueda identificar los parámetros de configuración de la emisión y los distintos servicios disponibles. [3, 4]

3.4 Estudio y Análisis para Elección de Parámetros OFDM

La selección de los parámetros de un sistema OFDM es un compromiso entre distintos requerimientos conflictivos entre sí, es decir, cuando se logra optimizar uno de ellos, los otros se ven afectados de alguna manera. Usualmente se dispone de ciertos requerimientos básicos a partir de los cuales se puede comenzar a dimensionar el sistema y normalmente estos son: anchura de banda disponible, velocidad o tasa de datos deseada y tiempo de retardo de las señales reflejadas. [3]

Como regla general, el intervalo de guarda T_G , debe ser mayor que el tiempo de retardo, pero su valor dependerá también del tipo de modulación que se empleará para cada portadora. Por ejemplo, 64-QAM es mucho más sensible a ISI que QPSK.

Una vez seleccionado el intervalo T_G , se puede fijar el tiempo útil de símbolo T_u y por consiguiente la duración total de símbolo T_s . Para

minimizar S/N adicional que provee el intervalo de guarda, se deberá cumplir que,

$$T_u \gg T_G$$
 (3.5)

sin olvidar que la duración del símbolo no podrá ser arbitrariamente grande, pues esto obligaría a disponer de muchas portadoras, con la consecuente disminución de la separación entre ellas y una mayor susceptibilidad al ruido de fase, offset de frecuencia e ISI. [3]

Determinados el tiempo de guarda y el tiempo útil, el número total de portadoras necesarias se ven limitadas y son dadas en función al ancho de banda disponible del sistema, debido a que el tiempo útil marcará la separación en frecuencia entre portadoras, puesto que: $\Delta f = \frac{1}{T_u}$ y por lo tanto $L = \frac{Bw}{\Delta f}$. [3]

3.4.1 Cálculo de Portadoras Necesarias

Es viable determinar el número de portadoras necesarias *L*, a partir del cálculo de la capacidad de transmisión máxima teórica del canal (ecuación 3.6), con probabilidad de error pequeña, que ofrece el Teorema de Shannon.

$$C(bps) = Bw_C \log_2\left(1 + \frac{S}{N}\right)$$
(3.6)

Para poder aplicar el Teorema de Shannon, es necesaria la relación señal-ruido S/N, y sabemos que en sistemas de modulación de portadora OFDM, la relación portadora-ruido (C/N), no es igual a la relación señal-ruido (S/N), debido a varios factores como la potencia que llevan las señales pilotos, la cual es ligeramente superior a la potencia de las portadoras de datos. Pero su diferencia no es notoria cuando el nivel de señal es el necesario para ofrecer excelente calidad de servicio, lo cual da lugar a poder decir que en TV digital, incluyendo un canal de Rice (señal directa y múltiples reflexiones), modulación 64-QAM y redundancia media, se requiere una C/N de 18 dB (63 veces), por lo que, si se considera el ancho de banda del canal Bw_c igual a 6 MHz, tenemos [3]:

$$C(Mbps) = 6\log_2(1+63)$$
(3.7)

C = 36 Mbps

Esta capacidad de transmisión es teórica, pues ISDB-T_b alcanza una tasa real ligeramente menor, debido a que no es posible utilizar el ancho de banda total del canal, y puesto que no todas las portadoras son utilizadas para la transmisión de data, ya que varias de ellas se reservarán para las señales piloto y de canales auxiliares.

La capacidad teórica calculada en (3.7) nos permite establecer la siguiente relación primordial: La razón entre el número de portadoras a

utilizar *L*, el tiempo total de duración de cada símbolo T_s , y el número de bits transmitidos por cada portadora, dependiendo del esquema de modulación b_p (64-QAM-6 bits), obtendremos:

$$R(bps) = \frac{b_P L}{T_s}$$

$$36 \times 10^6 = \frac{6 L}{T_s}$$

$$\frac{L}{T_s} = 6 \times 10^6$$
(3.8)
(3.8)
(3.8)
(3.9)

Observamos que de acuerdo al resultado se necesitarán 6 portadoras por cada microsegundo de duración total de símbolo T_s . En el apartado 2.2.5 se vio la necesidad de insertar un tiempo de guarda (GI) para evitar la ISI, debiéndose además de cumplir con la condición $T_G \ge t_r$. Además resulta notorio que $T_u \gg T_G$ para evitar la ISI, de acuerdo a lo que se expresó anteriormente.

El GI deberá ser ajustable de acuerdo a la configuración que se adopte para el sistema o también llamado Modo del Sistema. Lo ideal sería que tales parámetros formen un conjunto reducido de valores discretos y normalizados, evitando que puedan tomar valores al azar elegidos libremente por el radiodifusor. [3] Estos motivos nos llevan a fijar cuatro valores posibles para la relación $\frac{T_G}{T_u}$, que en forma abreviada representará al delta de guarda mediante el símbolo, como se dijo anteriormente en el apartado 2.2.5.

Se plantea entonces, un enlace mostrado en la figura 3.4, donde la distancia "d" es la separación entre la antena receptora y el objeto reflectantes, dada por 1 Km, por esto, la onda reflejada recorrerá una camino adicional de aproximadamente 2 Km respecto a la señal directa. Este valor con seguridad se presentará en las ciudades, donde se presentan reflexiones en edificios y en grandes estructuras metálicas.

Figura 3.4 Distancia recorrida por la señal reflejada

Así, el tiempo de retardo tiene el siguiente valor:

$$t_r = \frac{d}{c} = \frac{2 Km}{0.3 \frac{Km}{\mu s}} \cong 7\mu s$$
 (3.10)

Esto nos indica un tiempo de retardo pequeño, el cual debería corresponderse con un intervalo de guarda pequeño, para reflexiones a distancias cortas, es decir, una relación $\Delta = 1/32$. Si aceptamos que $T_G = t_r = 7\mu s$, reemplazando estos valores en la ecuación (3.9), se tendrá:

$$\frac{L}{T_u + T_G} = 6 \times 10^6$$

$$\frac{L}{\frac{T_G}{\Delta} + T_G} = \frac{L}{32T_G + T_G} = 6 \times 10^6$$

$$L = 33 \times 7 \times 6 = 1386$$

$$L = 1386 Portadoras$$
(3.11)

Si ésta cantidad de portadoras se distribuyen por igual entre los 13 segmentos (N_s) de ISDB-T_b, la cantidad de portadoras que ocuparán cada segmento es:

$$L_s = \frac{L}{N_s} = \frac{1386}{13} = 106,6 \ portadoras \tag{3.12}$$

Resulta indiscutible que la cantidad de portadoras debe ser un número entero y el resultado está indicando lo contrario, más aún, que se necesitarán más de 106 portadoras por segmento. Entonces si elegimos 107 portadoras, la separación entre ellas dentro de cada segmento es:

$$\Delta f = \frac{Bw_s}{L_s} \tag{3.13}$$

$$\Delta f = \frac{\frac{3000}{7}}{107} = \frac{3000}{749} = 4,0053 \ KHz$$

Y por lo tanto, el tiempo útil de símbolo es:

$$T_u = \frac{1}{\Delta f}$$
(3.14)
$$T_u = \frac{749}{3000} = 249,666 \ \mu s$$

Los intervalos de guarda y el tiempo útil son números periódicos en el ancho de banda y espaciamientos en frecuencia asignados. Una vez determinada la frecuencia de muestreo necesaria para el funcionamiento de la IFFT según la ecuación [3], mostrará que en el intervalo de tiempo de guarda y de tiempo útil, no tendremos presentes un número entero de frecuencias. De igual manera, esto afectará al tiempo total de símbolo T_S , por lo cual, debemos adoptar un número entero posterior para un correcto funcionamiento de la IFFT, y por tal razón, ISDB-T_b asigna la siguiente cantidad de portadoras por segmento:

$$L_S = 108 \ portadoras$$

Lo que da como resultado un total de portadoras para los trece segmentos de 1404 portadoras para los 13 segmentos, según la ecuación (3.15):

$$L = L_S \cdot N_S \tag{3.15}$$

Esto da lugar a pensar en los espacios de anchura de frecuencia entre portadoras denominados Δf . Con la cantidad total de portadoras *L*, se dará lugar a un total de $(L - 1) \cdot \Delta f$ espaciamientos de frecuencia. La figura 3.5 nos ayuda a comprender este razonamiento, asumiendo un número mínimo de portadoras *P*_n:

Figura 3.5 Distancia recorrida por la señal reflejada

Con esto podemos definir las siguientes ecuaciones:

$$Bw = (L-1)\Delta f \tag{3.16}$$

$$Bw = N_S \cdot Bw_S \tag{3.17}$$

$$\Delta f = \frac{Bw_S}{L_S} \tag{3.18}$$

Utilizando un poco de aritmética, sustituyendo las ecuaciones (3.17) y (3.18) en (3.16), se obtiene la expresión para la cantidad de portadoras.

$$L = (L_S \cdot N_S) + 1 \tag{3.19}$$

Entonces el número total de portadoras realmente necesarias para satisfacer todas las condiciones, es de 1405 portadoras, con 108 portadoras de datos y para los 13 segmentos, utilizando la ecuación (3.19).

Ahora se pueden calcular los parámetros restantes, usando la ecuación (3.13), tenemos una separación Δf entre portadoras de 3,968 KHz, y a la vez, es posible determinar el valor de tiempo útil de símbolo necesario para mantener la condición de ortogonalidad entre portadoras, mediante la ecuación (3.14), obteniendo 252 µs.

Con estos resultados, se pueden calcular los valores posibles para el intervalo de guarda T_G y la duración de símbolo T_S , expresados en la tabla a continuación:

T_G	1/4 <i>T</i> _u	63 µs	$T_S = T_u + T_G$	315 µs
	1/8 <i>T</i> _u	31,5 µs		283,5 µs
	1/16 <i>T</i> _u	15,75 µs		267,75 µs
	1/32 <i>T</i> _u	7,875 µs		259,875 µs

Tabla 3.1 Intervalos de guarda y tiempos de símbolo

Finalmente, se puede determinar la frecuencia de muestreo necesaria para la IFFT. Considerando, que el valor de esta frecuencia, deberá estar condicionado por la necesidad de obtener un número entero de muestras durante el período útil de símbolo T_u de acuerdo a la ecuación (2.16). Para 1405 portadoras, deberá ser *n*=11 para cumplir la condición del número entero, dando como resultado 2¹¹ = 2048; por lo tanto la frecuencia de muestreo será 8,126 MHz. Las portadoras restantes son eliminadas.

Estos parámetros (T_u , N_{FFT}) definen completamente al **Modo 1** del sistema ISDB-T_b, o también denominado **Modo 2K**, por utilizar 2048 portadoras para el algoritmo de la IFFT. Todos los parámetros pertenecientes a los **Modos 2 y 3**, al igual que los correspondientes al Modo 1, se pueden derivar muy fácilmente a partir de la frecuencia de muestreo f_{IFFT} , único valor fundamental y común a los tres modos. [3]

Los puntos necesarios para el algoritmo de la IFFT correspondientes a los tres modos del sistema, se los estudiarán con detalle en la tabla 3.10 de la sección 3.4.5.

3.4.2 Cálculo de las Bandas de Guardas Laterales

La TV analógica distribuye y asigna un espaciamiento de frecuencia, entre los canales análogos, con un valor de 6 MHz, pues así se desea mitigar las posibles interferencias que existen dentro de una misma región o área de servicio (ciudad, conglomerado urbano). Estos segmentos de frecuencia o también llamados canales adyacentes, no están autorizados para su explotación, por tal razón, el espectro presenta la característica que muestra la figura 3.6 para canales VHF:

Figura 3.6 Canalización en TV analógica

El servicio de TV digital se irá incorporando gradualmente y durante la transición este sistema convivirá con las transmisiones analógicas presentes debido a canales VHF e incluso en los canales UHF. El objetivo primordial es aprovechar completamente el espectro
disponible, otorgando todas las asignaciones de frecuencia que resulten posibles y esto implicará dejar de lado el procedimiento de espaciarlos cada 6 MHz. Con asignaciones mixtas, el espectro se vería aproximadamente como lo muestra la figura 3.7, mientras que en la figura 3.8, se aprecia el resultado de un ensayo concreto, realizado con emisiones ISDBT-T y NTSC operando en canales adyacentes.

Figura 3.7 Canalización mixta (analógica y digital)

Figura 3.8 Señales ISDB-T y NTSC en canales adyacentes

Observando la figura 3.7 se aprecia la separación entre las portadoras de video y las portadoras ISDB-T, siendo mayor que la separación entre ésta y las portadoras de sonido. Las posiciones de las portadoras son normalizadas en los canales analógicos, analizando la figura 3.8 se puede visualizar la distribución de estos espaciamientos. Si se emplearían bandas de guarda laterales simétricas para el canal digital, cada una de ellas tendría una anchura de medio segmento:

Figura 3.9 Espaciamientos en frecuencia (MHz)

Entonces tomando como referencia la figura 3.9 podemos definir las separaciones en frecuencia:

- Entre portadora de sonido y primera portadora ISDB-T_b, igual a 0,25 + 0,214 = 0,464 MHz.
- Entre portadora de video y última portadora ISDB-T_b, igual a 1,25 + 0,214 = 1,460 MHz.

Las cuales tienen como diferencia entre ellas, un valor de más de tres veces. Para lograr el desplazamiento positivo, se reduce tal diferencia, aproximándola a una relación 2:1, con esto, la separación entre la

portadora de sonido del canal analógico inferior y la portadora inicial del canal digital, se incrementará.

Este valor necesario, se determina mediante el siguiente criterio. Sabemos que en los canales analógicos, la proporción porcentual de espacio entre cada portadora y el límite del canal, con respecto al espaciamiento total (1,25 + 0,25 = 1,5 *MHz*) es:

- Entre portadora de video y límite inferior del canal $\frac{1,25}{1,50} \cdot 100 = 83,33\%$
- Entre portadora de sonido y límite superior del canal $\frac{0.25}{1.50} \cdot 100 =$ 16,66%

Utilizando estas relaciones ahora para los canales digitales, donde la banda de guarda será dada por la anchura de un segmento. Así tendremos para G_1 357,14 KHz y para G_2 71,42 KHz, ecuaciones (3.20) y (3.21) respectivamente.

$$G_1 = 0.833 \times Bw_S$$
 (3.20)

$$G_2 = 0,166 \times Bw_S \tag{3.21}$$

De esta manera, la anchura de la banda de guarda permite un múltiplo entero de Δf que pertenezcan a un cierto número exacto de portadoras nulas, es decir:

$$L_{G1} = \frac{G_1}{\Delta f} = \frac{357,14}{3,968} = 89,9 \text{ portadoras}$$
(3.22)

$$L_{G2} = \frac{G_2}{\Delta f} = \frac{71,42}{3,968} = 17,9 \ portadoras \tag{3.23}$$

Con lo cual, la norma ISDB-T_b adopta 90 y 18 portadoras nulas para las banda inferior y superior respectivamente. A través de lo cual se corrobora el ancho de banda de la guarda dado, si multiplicamos el valor de las portadoras nulas por la separación entre ellas Δf , se obtienen los valores dados para G_1 y G_2 .

Podemos definir las nuevas separaciones entre los canales analógicos y el canal ISDB-T_b de acuerdo a la figura 3.9:

- Entre portadora de sonido y primera portadora ISDB-T_b, igual a 0,25 + 0,357 = 0,607 MHz.
- Entre portadora de video y última portadora ISDB-T_b, igual a 1,25 + 0,071 = 1,321 MHz.

3.4.3 Cálculo de Tasa Binaria de Transmisión para 13 Segmentos

Es pertinente determinar las tasas de transmisión binaria, denotada R, para cada uno de los distintos valores de intervalos de guarda y esquemas de modulación asignados. Así, de esta manera tenemos la siguiente ecuación:

$$R(bps) = \frac{b_p \cdot L}{T_s}$$
(3.24)

Esta expresión comprende únicamente la cantidad de portadoras usadas (*L*), el tiempo de símbolo OFDM (T_s) y el número de bits modulados para la señal portadora (b_p), dados por el esquema de modulación. Sin embargo, ISDB-T_b presenta métodos de corrección de errores, dados por los sistemas de codificación usados, de este modo, dando lugar a los coeficientes de corrección.

Además, conocemos que esta velocidad de transferencia es inconclusa, ya que, no se incluye el factor de codificación de canal de los esquemas de corrección de errores, los cuales reducen esta tasa de bits. Es importante notar, que la cantidad de portadoras totales de datos, disponibles para la transmisión, es $L = 13 \times L_D$, donde L_D , indica las portadoras de datos por segmento en producto por trece segmentos asignados para el estándar.

Ante esta realidad, se puede escribir la ecuación (3.24) de la siguiente manera:

$$R(bps) = K_0 \cdot K_i \cdot \frac{b_p \cdot 13 \cdot L_D}{T_s}$$
(3.25)

Donde K_0 , es un valor fijo dado por la codificación externa de $\frac{188}{204}$. El valor de K_i depende de la codificación interna usada la cual puede tomar los siguientes valores: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$ y $\frac{7}{8}$. Aplicando la ecuación (3.25) a todas las combinaciones posibles para los 13 segmentos, se obtiene la siguiente tabla:

		Tasa binaria R (Mbps)			
Relación	K _i	QPSK/DQPSK	16-QAM	64-QAM	
Δ		$b_p = 2$	$b_p = 4$	$b_p = 6$	
	1/2	3,651	7,302	10,954	
1/4	2/3	4,868	9,736	14,605	
1/4	3/4	5,477	10,954	16,430	
	5/6	6,085	12,171	18,256	
	7/8	6,390	12,779	19,169	
	1/2	4,057	8,114	12,171	
1/9	2/3	5,409	10,818	16,227	
1/0	3/4	6,085	12,171	18,256	
	5/6	6,761	13,523	20,284	
	7/8	7,099	14,199	21,298	
	1/2	4295	8,591	12,886	
1/16	2/3	5,727	11,455	17,182	
1/10	3/4	6,443	12,886	19,330	

Tabla 3.2 Tasas de transmisión R (en Mbps) para 13 segmentos

	5/6	7,159	14,318	21,477
	7/8	7,517	15,034	22,551
	1/2	4,426	8,851	13,277
1/20	2/3	5,901	11,802	17,703
1/32	3/4	6,638	13,277	19,915
	5/6	7,376	14,752	22,128
	7/8	7,745	15,490	23,235

Nota: Todos los valores calculados se realizaron en base al Modo 1 del estándar. Es decir, considerando, $L_D = 96$ portadoras de datos por segmento y $T_u = 252 \ \mu s$, valores que se tratarán en apartados 3.4.4 y 3.4.5.

Cabe recalcar que los valores mostrados en la tabla 3.2, han sido calculados para el Modo 1 ($L_D = 96 \text{ portadoras}, T_S = T_u(1 + \Delta); T_u = 252 \ \mu s$), concepto que se tratará en 3.4.4 y 3.4.5. Esta tabla se aplicará para las velocidades de transmisión de los modos 2 y 3, como se explicará en la sección 3.4.5.

3.4.4 Cálculo TSP por Segmentos y por Cuadro

La idea principal de la compresión de datos MPEG-2 es proporcionar un flujo binario de tramas de datos llamadas Transport Stream (TS), donde cada una de ellas contiene información binaria, e indistintamente si se trata de audio, video o datos, el tamaño del paquete TS es de 188 bytes para cada trama TS.

La características principales del flujo de transporte TS MPEG-2, pueden verse en la figura 3.10, en la cual, se observa el esquema de

multiplexación que emplea MPEG-2, además de la aplicación del proceso de compresión de las señales de video, audio y datos (información de canales TV – identificado como TS #1 en la figura 3.10).

Figura 3.10 Paquetes de transporte TS y multiplexación MPEG-2

Una vez realizado el proceso de codificación y compresión de audio, video y datos, se generan los respectivos Flujos Elementales o Elementary Stream (ES), que contienen flujos de video y audio codificados, para luego, en la siguiente etapa, organizarse en tramas denominadas Packet Elementary Stream (PES) o Paquetes de Flujos Elementales, usualmente de longitud variable. [3]

Seguidamente, el bloque de multiplexación de TS, ajusta la información de audio, video y datos en paquetes TS, de longitud fija e igual a 188 bytes. Un segundo nivel permite multiplexar varios

programas en flujos TS. Adicionalmente se muestra también un esquema del TS, con 187 bytes de carga útil y 1 byte para sincronización.

El estándar japonés ISDB-T, consigue adaptar el TS de MPEG-2 a la transmisión jerárquica y recepción parcial, a través de un proceso llamado "*re-multiplexación*". Básicamente, el re-multiplexador dispone los TS de entrada cediendo en su salida un flujo binario único llamado BTS o TS de transmisión. Las características del BTS son las siguientes:

- Agrega 16 bytes nulos a los paquetes TS
- Forma nuevos paquetes llamados TSP (Transport Stream Packet), cuya longitud es de 204 bytes (188+16).
- El flujo es sincrónico y tiene una tasa constante de 32,5079 Mbps.
- Posiciona y dispone los paquetes TSP posibilitando la transmisión jerárquica y la recepción parcial.
- Inserta una determinada cantidad de TSP nulos para lograr mantener la velocidad binaria constante e independiente de los parámetros de transmisión seleccionados para cada capa jerárquica.

Así, en la figura 3.11 se ilustran ciertos requerimientos del estándar, considerando que cada capa puede tener una configuración diferente.

Figura 3.11 Generación del BTS y separación de paquetes TSP

De igual manera, el estándar adoptó las siguientes condiciones para su funcionamiento jerárquico:

- Cada segmento deberá transportar la cantidad de bits de datos que correspondan a un número entero de paquetes TSP.
- Las capas integradas por más de un segmento, igualmente transportarán un total de bits de datos que correspondan a un número entero de paquetes TSP.
- La cantidad de paquetes en cada capa podrá variar dependiendo de la configuración de transmisión adoptada en cada capa.
- El reloj de sincronización *f_R* del flujo binario BTS será único para las tres capas y su valor exacto de frecuencia deberá derivarse de la frecuencia de muestreo IFFT (*f_{IFFT}*), por ser ésta última el valor de referencia común para los tres modos.

Bajo esta perspectiva, determinamos las condiciones que deben cumplirse para asignar una cantidad entera de paquetes TSP a cada segmento. La ecuación (3.24) determinó la velocidad neta de transferencia de datos para los 13 segmentos, considerando los coeficientes de codificación interna y externa. Puesto que necesitamos la cantidad de bits de datos transmitidos en un determinado período de tiempo, denominado T_c , se multiplicará a ambos miembros por T_c y se dividirá para 13, obteniendo así:

$$b_S = \frac{1}{13} \cdot T_C \cdot R(bps) = K_O \cdot K_i \cdot b_p \cdot L_D \cdot \frac{T_C}{T_S}$$
(3.26)

Donde:

- b_s es la cantidad de bits de datos transmitida por un segmento,
- T_C es el tiempo considerado.

Por otro lado, la cantidad de bits de datos entregada por N paquetes TSP por segmento, es:

$$b_T = N \times 188 \times 8 \tag{3.27}$$

Estos N paquetes TSP son entregados al sistema de transmisión a cada segmento OFDM. Si igualamos las ecuaciones (3.26) y (3.27), tenemos:

$$N \times 188 \times 8 = K_0 \cdot K_i \cdot b_p \cdot L_D \cdot \frac{T_C}{T_S}$$
(3.28)

Sustituyendo K_0 por su valor 188/204 y definiendo,

$$S = \frac{T_C}{T_S}$$
(3.29)

Y despejando N obtenemos finalmente:

$$N = \frac{S \cdot K_i \cdot b_p \cdot L_D}{204 \times 8} \tag{3.30}$$

No tiene sentido considerar paquetes fraccionarios TSP, puesto que deben ser paquetes enteros, podemos concluir en función de la codificación interna y del esquema de modulación lo siguiente:

- El producto S · K_i · b_p · L_D necesariamente deber ser divisible por el producto de 204x8
- El factor 8 presente en el denominador de la ecuación (3.30) puede eliminarse si en todos los casos L_D es un múltiplo entero de 8, lo cual justifica la elección realizada para L_D de acuerdo al modo del sistema. (96, 192, 384 portadoras)
- El factor 204 presente en el denominador, puede eliminarse si S = 204. Como $T_c = 204 \cdot T_s$ el período de tiempo considerado será

igual a 204 símbolos OFDM, agrupamiento que se denomina *"Cuadro OFDM*", quedando de esto modo justificado su necesidad en el esquema de transmisión OFDM.

A igualdad de valores de b_p y K_i, el número de paquetes N podría ser el mismo para los modos 1, 2 y 3 si se adoptara un valor de S igual a 204, 102 y 51 respectivamente. Sin embargo se decidió mantener S=204 para simplificar el diseño del receptor, ya que se facilita la sincronización del BTS partiendo de la temporización del cuadro OFDM.

De lo anterior, podemos afirmar que cada segmento recibirá dentro de un cuadro OFDM 204 símbolos, un número entero de paquetes N (en función de los modos), esquemas de modulación y codificación interna usados, con lo que, finalmente la ecuación (3.30) puede reescribirse como:

$$N = \frac{K_i \cdot b_p \cdot L_D}{8} \tag{3.31}$$

Dando como resultado la obtención las siguientes tablas. Entonces asignando valores a cada combinación en función de la ecuación (3.31) tenemos:

	Modula	ación	QPSK/DQPSK ($b_p = 2$)				
Modo	K	ζ _i	1/2	2/3	3/4	5/6	7/8
1		96	12	16	18	20	21
2	L_D	192	24	32	36	40	42
3		384	48	64	72	80	84

Tabla 3.3 Valores de N (cantidad de paquetes TSP por segmento y por cuadro OFDM) para QPSK/DQPSK

Tabla 3.4 Valores of	de N (cantidad de	paquetes TSP	por segmento y
р	or cuadro OFDM) para 16-QAM	

	Modula	ación	16-QAM ($b_p = 4$)				
Modo	k	(i	1/2	2/3	3/4	5/6	7/8
1		96	24	32	36	40	42
2	L_D	192	48	64	72	80	84
3		384	96	128	144	160	168

 Tabla 3.5 Valores de N (cantidad de paquetes TSP por segmento y por cuadro OFDM) para 64-QAM

	Modula	ación	64-QAM ($b_p = 6$)				
Modo	k	K _i	1/2	2/3	3/4	5/6	7/8
1		96	36	48	54	60	63
2	L_D	192	72	96	108	120	126
3		384	144	192	216	240	252

Con lo cual, quedan en pie todos los valores posibles para N paquetes TSP dentro de un cuadro OFDM.

3.4.5 Modos del Sistema

Hasta el momento, hemos estudiado parámetros del estándar basados exclusivamente para el Modo 1 o también llamado 2K. Los tiempos de guarda se encuentran muy relacionados con los tiempos de retardo de las señales reflejadas, con lo cual resulta útil medir los intervalos de guarda del modo 1, asociándolos con sus correspondientes distancias recorridas por las señales reflejadas, así lo indica la tabla a continuación:

	Modo 1	
	Г _G	D
1/4 T _u	63 µs	18,9 Km
1/8 <i>T</i> _u	31,5 <i>μ</i> s	9,45 Km
1/16 T _u	15,75 μs	4,72 Km
1/32 <i>T</i> _u	7,875 μs	2,36 Km

Tabla 3.6 Intervalos de guarda y distancias de reflexión para el Modo 1

Estos valores de la tabla 3.6, se deben interpretar como valores limítrofes máximos en el que la señal reflejada recorre distancias hasta llegar al receptor, evitando que aparezca ISI. Si los tiempos de reflexión de las señales retardadas son menores al intervalo de guarda elegido, mantendremos cierto margen de seguridad a interferencia entre símbolos.

Pensemos en el caso más desfavorable para el Modo 1, que sin duda es para un intervalo de guarda de 1/4 T_u con un recorrido de casi 20 Km según la tabla 3.6. Esta situación puede darse en ciudades y conglomerados, pero cuando la señal se encuentre frente a zonas llanas, con reflexiones y distancias mayores a 20 Km, el Modo 1 se vuelve vulnerable frente a estos escenarios (ver figura 3.12).

Figura 3.12 Punto de reflexión distante

En tal virtud, ISDB-T_b establece un sistema de TV digital terrestre adaptativo a la mayor cantidad de escenarios posibles, configurando el sistema de emisión. Por esta razón, se definen dos modos adicionales: el Modo 2 o 4K y el Modo 3 u 8K.

Estas configuraciones permiten y garantizan una operación en función de la distancia entre el emisor y receptor de una SFN, y también una recepción adecuada ante los efectos Doppler de la señal. [3, 4]

Estos modos se relacionan directamente con el Modo 1, por tal razón, es posible derivar matemáticamente los parámetros de funcionamiento necesarios para los otros modos. El análisis se lo realiza partiendo del tiempo de retardo t_r , tomando como referencia al tiempo útil de símbolo T_u , el cual llamaremos T_{u1} , haciendo referencia al Modo 1 con valor de 252 μs . Los valores asignados a T_u , T_G y *d* vienen dados en las siguientes tablas:

Modo 2					
$T_{u2}=2\cdot T_{u1}$		d			
	1/4 T _u	126 μs	37,8 Km		
504 μs	1/8 T _u	63 µs	18,9 Km		
	1/16 T _u	31,5 μs	9,42 Km		
	1/32 <i>T_u</i>	15,75 μs	4,72 Km		

Tabla 3.7 Intervalos de guarda y distancias máximasde reflexión para el Modo 2

Tabla 3.8 Intervalos de guarda y distancias r	náximas
de reflexión para el Modo 3	

Modo 3					
$T_{u3} = 2 \cdot T_{u2}$		d			
	1/4 <i>T</i> _u	252 μs	75,6 Km		
1008 µs	1/8 <i>T</i> _u	126 μs	37,8 Km		
	1/16 <i>T_u</i>	63 µs	18,9 Km		
	1/32 <i>T_u</i>	31,5 <i>μ</i> s	9,45 Km		

Según las tablas 3.7 y 3.8, los modos 2 y 3 tienen los valores más grandes de intervalos de guarda, diseñados así, para operar en redes SFN y combatir los problemas de recepción móvil, frente al efecto

Doppler. En general, podemos afirmar categóricamente que el Modo 2 es recomendado para una SFN con separación entre emisores desde 5 y 38 Km, mientras que el Modo 3 es el indicado para redes con puntos de emisión a distancias de 10 y 76 Km entre ellos. Los principales parámetros restantes, son derivados a partir del tiempo útil de símbolo, y se muestran en la siguiente tabla:

Parámetro	Modo 1	Modo 2	Modo 3
T_u	252 μs	504 μs	1008 µs
$\Delta f = \frac{1}{T_u}$	$\frac{250}{63}$	$\frac{125}{63}$	$\frac{125}{126}$
$L_S = \frac{Bw_S}{\Delta f}$	108	216	432
$L = 13 \cdot L_S + 1$	1405	2809	5617

 Tabla 3.9 Parámetros básicos de los Modos 1, 2 y 3

Según la tabla 3.9, al duplicarse el valor de T_u en cada modo, la separación entre las portadoras es reducida a la mitad y la cantidad de portadoras por segmento se duplica. Analizando la ecuación (3.25), podemos decir que, si se mantienen los parámetros de transmisión como: bits transmitidos por portadora (b_p), codificación interna (K_i) y el factor de intervalo de guarda (Δ) para un modo del estándar, entonces, a medida que se duplican las portadoras de datos por segmento L_D , se duplica también el tiempo útil de símbolo T_u , por lo que, el cociente entre ellos sigue teniendo el mismo valor para cualquier modo

seleccionado, al igual que la tasa de bits. En concordancia con lo anterior, la tasa R(bps) de transmisión, es independiente del modo utilizado.

ISDB-T_b contempla la posibilidad de emplear otros esquemas de modulación ($b_p = 4$ para 16-QAM y $b_p = 2$ para QPSK y DQPSK), con el fin de obtener una mayor robustez en el sistema considerando el debilitamiento de la tasa de transferencia de bits.

Recordando la ecuación (2.16) que define la frecuencia de muestreo de la IFFT, se demostrará que la f_{IFFT} mantiene su valor (independiente del modo usado) teniendo en cuenta la condición $2^n \ge L$. Así, para el Modo 1 el número de portadoras totales son 2048, con lo cual se usará un n = 11. En resumen la tabla 3.10 lo muestra.

Parámetro	Modo 1	Modo 2	Modo 3	
L	1405	2809	5617	
n	11	12	13	
N _{FFT}	2048	4096	8192	
T _u	252 μs	504 μs	1008 µs	
<i>f</i> _{IFFT}	8,126 MHz			

 Tabla 3.10 Frecuencia de muestreo IFFT para los 3 modos

3.5 Generación del Cuadro Multiplex

El Cuadro Multiplex es un flujo único que contiene la información de los trece segmentos, más ciertos paquetes TSP nulos. Haciendo referencia a la figura 3.11, son generados por el bloque de codificación opcional Reed-Solomon (204-196) para su procesamiento en el separador de canales y descarte de los TSP nulos. El objetivo del bloque codificador opcional, es generar los paquetes TSP de 204x8 bits.

Para lograr la obtención del cuadro multiplex vamos a partir de la siguiente ecuación:

$$b_C = T_C \cdot f_R \tag{3.32}$$

La cual indica la cantidad de bits transmitidos en un cuadro para los trece segmentos, en función de la frecuencia de reloj y el tiempo de cuadro OFDM [27]. Despejando de la ecuación (3.29) T_c , y reemplazando la ecuación (2.20) en la ecuación (3.32), tenemos:

$$b_C = S \cdot T_u \cdot (1 + \Delta) \cdot f_R \tag{3.33}$$

Por otro lado, un paquete TSP tiene un tamaño de 204x8 bits, y definiendo N_{TSP} como la carga binaria total transportada para los 13 segmentos, también podemos expresar la ecuación (3.33) como:

$$b_C = N_{TSP} \times 204 \times 8 \tag{3.34}$$

Igualando las ecuaciones (3.33) y (3.34) Se tiene:

$$N_{TSP} \times 204 \times 8 = S \cdot T_u \cdot (1 + \Delta) \cdot f_R \tag{3.35}$$

Podemos definir al tiempo útil de símbolo en función de la f_{IFFT} , basados en la ecuación (2.16), tenemos:

$$T_u = \frac{2^n}{f_{IFFT}} \tag{3.36}$$

Y reemplazando en (3.35) se tendrá:

$$N_{TSP} \times 204 \times 8 = S \cdot \frac{2^n}{f_{IFFT}} \cdot (1 + \Delta) \cdot f_R$$
(3.37)

Ahora, es importante entender que estrictamente deberá cumplirse la condición $N_{TSP} > 13 \cdot N_{max}$, donde N_{max} es la máxima cantidad de paquetes TSP que se pueden asignar a un solo segmento para un modo definido. Entonces, partiendo de dicha condición podemos escribir la siguiente inecuación:

$$13 \cdot N_{max} \times 204 \times 8 \le S \cdot \frac{2^n}{f_{IFFT}} \cdot (1 + \Delta) \cdot f_R$$
(3.38)

De la cual, podemos establecer la relación entre las frecuencias f_R y f_{IFFT} como:

$$\frac{f_R}{f_{IFFT}} \ge \frac{13 \cdot N_{max} \times 204 \times 8}{2^n \cdot S \cdot (1 + \Delta)}$$
(3.39)

Para que la relación de frecuencias muestre su valor máximo se elige la menor guarda posible ($\Delta = \frac{1}{32}$). Para el modo definido, un N_{max} tomado de la tabla 3.5, igual a 63 para Modo 1 con $b_p = 6$. Además por conveniencia asignamos S = 204. Entonces tenemos:

$$\frac{f_R}{f_{IFFT}} \ge \frac{13 \cdot 63 \times 8}{2048 \cdot \left(1 + \frac{1}{32}\right)}$$

$$f_R \ge 3,10 f_{IFFT}$$
(3.40)

Por tal razón, se elige el entero más próximo a la frecuencia de reloj asignada para el flujo BTS, el cual es:

$$f_R = 4f_{IFFT} \tag{3.41}$$

Sustituyendo la ecuación (3.41) en la ecuación (3.37), con S = 204 y despejando N_{TSP} se tiene:

$$N_{TSP} = \frac{2^n}{8} \cdot (1+\Delta) \cdot \frac{4 \cdot f_{IFFT}}{f_{IFFT}}$$
(3.42)

Obteniendo finalmente la expresión que indica la cantidad de TSP necesarios:

$$N_{TSP} = 2^{n-1}(1+\Delta) \tag{3.43}$$

Con la cual podemos generar la tabla 3.11, en la cual se muestran el número de paquetes TSP necesarios para cada modo en función de la guarda, estableciendo el Cuadro Mutiplex.

		Relación ∆			
Modo	L _D	1/4	1/8	1/16	1/32
1	96	1280	1152	1088	1056
2	192	2560	2304	2176	2112
3	384	5120	4608	4352	4224

 Tabla 3.11 Cantidad de paquetes TSP en un Cuadro Multiplex

3.5.1 Característica del BTS

El flujo BTS debe incluir cierta información indispensable en su trama, para lograr una asignación adecuada de los TSP a cada capa jerárquica. Esto permite que el separador de canales logre identificar a cada TSP [3]. La figura 3.13 denota la estructura de paquetes a nivel de BTS.

Figura 3.13 Estructura de los paquetes TSP a nivel de BTS

Cada paquete TSP se descompone en 204 bytes, distribuidos de la siguiente manera: 1 byte para sincronismo (47_H), 187 bytes para carga útil, 8 bytes de información del Estándar y 8 bytes finales destinados para una codificación opcional. Los bytes del campo ISDB-T_b Info,

contienen información de la capa jerárquica, contador de TSP, cabeceras e información auxiliar.

Por otro lado, se especifica un canal llamado Transmission Multiplexing Configuration Control (TMCC), el cual lleva información extra para el receptor. La segunda fila que muestra la figura 3.13 de paquetes TSP, es el nivel BTS, y la información del TMCC se incorpora en un TSP llamado ISDB-T_b Information Packet (IIP). Cada cuadro multiplex llevan un IIP. Entonces, el IIP se divide en dos partes: el TMCC y el NSI (Network Synchronization Information).

El TMCC incluye: Cantidad de muestras de IFFT (modo), intervalo de guarda, esquema de modulación, codificación interna y cantidad de segmentos. Mientras que el NSI, ayuda al sincronismo de la SFN, y presenta: el Synchronization Time Stamp (STS), tiempo de retardo máximo, información de control de equipamiento e identificación de equipamiento, entre otros. [28]

3.5.2 Codificación Externa

Para lograr una mejor corrección de errores en los datos, el estándar acoge una codificación externa u *outer code*, basada en un esquema de paridad Reed Solomon (204-188-8). Este bloque de procesamiento permite corregir hasta 8 bytes errados para cada TSP dentro del flujo BTS. De igual manera se contempla un esquema de codificación Reed Solomon adicional (204-196-4), de manera opcional ubicado previo a la multiplexación de las capas jerárquicas (ver figura 3.13).

3.6 Separador del Canal

La función de este bloque de procesamiento, es básicamente situar cada TSP a su capa jerárquica correspondiente, utilizando toda la información proporcionada por el campo ISDB-T_b Info. Para lograr la máxima eficiencia posible en la tasa de transmisión binaria, los paquetes nulos son descartados.

El separador de canales está diseñado para lograr detectar los paquetes IIP con el objetivo de emplear los parámetros seleccionados para cada capa (ver figura 3.16). La información dada al ordenamiento secuencial se pierde en el momento en que los TSP se asignan jerárquicamente, debido a la transición del procesamiento de bits de serie, a su nueva etapa en paralelo.

En el receptor se vuelven a insertar los paquetes nulos en la misma posición que ocupaban en el BTS enviado, así como la regeneración de flujos TS se efectúa mediante un orden correcto de demodulación de los TSP. Es factible pensar que es necesario incluir un indicador de posición de TSP, mediante un número de secuencia, pero esto solo demandaría una carga adicional de información auxiliar, afectando a la tasa de datos. Para omitir este identificador, la figura 3.14 muestra el ordenamiento establecido para la construcción del cuadro multiplex.

Figura 3.14 Ordenamiento del Cuadro Multiplex

Como se puede observar, cada segmento mantiene un orden ascendente y de igual manera, cada una de las frecuencias de portadoras por segmento.

El bloque llamado "dummy", es el tiempo que invierte la generación de las muestras correspondientes a los segmentos de las portadoras piloto, portadoras nulas (excedentes de IFFT) e intervalo de guarda.

Por ejemplo, las muestras correspondientes a un símbolo OFDM con parámetros Modo 1 y Δ = 1/4 se muestran en la tabla a continuación:

Portadoras de datos	$96 \times 13 = 1248$	
Pilotos y canales auxiliares	$(108 - 96) \times 13 = 156$	
Portadoras nulas (exceso muestras IFFT)	2048 - 1404 = 644	
Intervalo de Guarda	$8,126 MHz \times 63 \mu s = 512$	
Total Símbolo OFDM	$8,126 MHz \times 315 \mu s = 2560$	

Tabla 3.12 Cantidad de portadoras para el Modo 1

La figura 3.14 nos permite construir el diagrama de tiempos para un símbolo OFDM. Las muestras que se generan dentro del período total de símbolo, se generan al ritmo de la frecuencia f_{IFFT} , de allí que, es comprensible referirse en términos del "número de clocks de f_{IFFT} ".

La figura 3.15 muestra este último concepto bajo los parámetros dados a la figura 3.14.

Figura 3.15 Símbolo OFDM y número de clocks asociados (Modo 1 con $\Delta = 1/4$)

Por consiguiente, podemos deducir que la cantidad total de clocks en un símbolo OFDM, es igual al doble de cantidad de paquetes TSP dentro de un cuadro múltiplex (ver tabla 3.11), es decir:

$$N_{CLK} = 2 \cdot N_{TSP} = 2 \cdot 2^{n-1} (1 + \Delta)$$

$$N_{CLK} = 2^n (1 + \Delta)$$
(3.44)

3.7 Codificación Interna

Un diagrama completo de la codificación de canal observamos en la figura 3.16, iniciando con el detector de paquete IIP y su debida extracción del descriptor TMCC, datos necesarios con los cuales se configuran las siguientes etapas de codificación y modulación. [3]

Figura 3.16 Codificación de canal

De acuerdo a la figura 3.16 los paquetes TSP son separados en sus respectivas capas jerárquicas, y los 16 bytes pertenecientes a los

campos de info-ISDB-T_b y paridad RS opcional, son sustituidos por 16 bytes nuevos de paridad Reed-Solomon (204-188-8), tal como lo muestra la figura 3.16 definiendo un nuevo bloque de Codificador RS.

Todos los bloques emplean la técnica de corrección de errores hacia delante (FEC), aplicadas al flujo de datos en la entrada. Una vez procesados los datos a través de cada bloque codificador, son enviados hacia las etapas de modulación. Cabe mencionar que el factor de codificación interna antes mencionado (K_i), lo define el bloque de codificación convolucional con su respectivo vector de punzonado, detallado en el apartado 3.7.5.

3.7.1 Codificación Reed Solomon (204-188-8)

El proceso de codificación trabaja con los 188 bytes del paquete TSP, manejándolos matemáticamente como un solo bloque y asignándole una "etiqueta de identificación digital" del contenido del bloque. Esta etiqueta tiene extensión binaria de 16 bytes (128 bits) que son añadidos al final del TSP, conocidos también como "bytes de paridad Reed-Solomon".

En la recepción se realiza la comparación de bytes recibidos con los bytes de paridad. Con esto verifica la validez de los datos recuperados. Si el receptor detecta errores, entonces se determina que la etiqueta no pertenece al paquete recibido y procede a generar una nueva, pero con ciertos bits alterados, procurando que se asemejen de la mejor manera con la etiqueta recibida, en otras palabras, busca el paquete con mayor probabilidad.

La codificación que ISDB-T_b utiliza, es una versión derivada de la codificación original RS (255-239-8). El proceso del emisor es agregar 51 bytes nulos delante de los 188 bytes recibidos, obteniendo 239 bytes. Luego, al pasar por el codificador original RS, éste añade los 16 bytes de paridad, resultando ahora 255 bytes. Finalmente son eliminados los 51 bytes nulos, y así se forma el paquete TSP de 204 bytes.

Con esta codificación es posible detectar y corregir hasta 8 bytes errados por paquete TSP, bajo ciertos limitantes, pues si existieran demasiados bytes erróneos en un TSP, le sería complicada la búsqueda de la secuencia de bits adecuada para la etiqueta de paridad recibida. En cuanto sea mayor la diferencia entre bytes de paridad y el paquete TSP, habrá una mayor probabilidad de error al asignar la etiqueta correcta binaria con el paquete corregido. [3, 9]

3.7.2 Aleatorizador de Bits

Con el fin de evitar largar series repetitivas de ceros o unos, o bien cualquier otro patrón consecutivo, la señal de entrada debe convertirse en una secuencia cuasi-aleatoria, y de esta manera, lograr una dispersión de energía del espectro radiado y una respuesta en frecuencia de espectro plano para maximizar la eficiencia del canal radioeléctrico.

Para lograr esto, los bits de cada capa deben ser procesados por el esquema mostrado en la figura 3.17, el cual nos permite obtener una Secuencia Binaria Pseudo-Aleatoria (PRBS), formada a través del operador lógico EXOR entre el bit de entrada y el polinomio de la ecuación (3.45).

$$G(x) = x^{15} + x^{14} + 1 \tag{3.45}$$

Figura 3.17 Generador de secuencia PRBS

El generador PRBS, es utilizado tanto en el transmisor (para aleatorizar) como en el receptor para construir el orden original de la información enviada. Cada registro del generador debe inicializarse con la trama 100101010000000 al comienzo del cuadro OFDM.

El sincronismo de cuadro es desplazado un byte, debido a que el inicio del cuadro se sincroniza con el MSB del segundo byte del TSP, es decir el siguiente al sincronismo 47_H. Es por esto que, al iniciar un cuadro OFDM, el primer bit del generador PRBS es aplicado al MSB del segundo byte del primer TSP. Y así continúa el proceso con todos los bits del TSP restante.

Figura 3.18 Sincronización de cuadro OFDM y señal de habilitación del generador PRBS

La figura 3.18 ilustra estos conceptos. La secuencia PRBS es deshabilitada por períodos y los bytes de sincronismo no se ven afectados, con lo que se deduce que el período de la secuencia de habilitación del PRBS es igual a $(204 - 1) \times 8 = 1624$ bits. [3]

3.7.3 Entrelazado de Bytes

Los errores que se producen por el canal multitrayectoria o errores de ráfaga, se pueden dispersar en el tiempo mediante el entrelazado de bytes. Es una técnica de diversidad temporal, en la cual una secuencia de bytes es permutada (entrelazada) previa su transmisión. Es importante entender, que si ocurre un error de ráfaga durante el envío de datos, la reconstrucción de la secuencia original tiene un equivalente a distribuir los errores a lo largo del tiempo.

El parámetro que nos permite describir el desempeño del entrelazado es la separación S_e , que representa la distancia mínima en donde los errores de ráfaga consecutivos son dispersos en el tiempo. S_e depende de la longitud de la ráfaga y es inversamente proporcional a ella. Este concepto lo comprendemos mejor considerando el caso extremo, donde la longitud de la ráfaga es igual a la secuencia completa de datos.

Con esto, la separación S_e será unitaria ya que no hay forma de entrelazar los bits y distribuir su error en el tiempo, uno tras otro. El entrelazado implica el uso de buffer y la lectura/escritura de estos elementos, por lo que experimentará un cierto retardo. El mismo valor de retardo se presentará en el receptor (desentrelazado). Este valor se denota como *D*, y expresa el número de operaciones extras de lectura/escritura necesarias para establecer el entrelazado y desentrelazado. La cantidad de elementos o celdas de memoria en el buffer se representa mediante la letra *M*. Un buen desempeño de entrelazado se obtiene cuando la separación mínima S_e es la más grande posible y el retardo *D* y requerimientos de memoria *M* sean los más pequeños. Su desempeño viene descrito por la relación S_e / D y S_e / M .

A continuación, la figura 3.19 ilustra el esquema de un entrelazador y desentrelazador a izquierda y derecha respectivamente.

Figura 3.19 Entrelazador y desentrelazador de bytes

El sistema consta de *k* líneas paralelas, seleccionadas mediante un switch el cual opera síncronamente. Cada línea contiene celdas de almacenamiento, excepto la primera, pues es una conexión directa entre la entrada y salida. El tamaño de cada celda es de 1 byte. La segunda línea posee *A* celdas, la tercera 2*A*, la cuarta 3*A* y hasta la última con (k - 1)A celdas. Los bytes de iniciación son cargados en las celdas para luego ser desplazados hacia la salida.

La salida extrae un byte a la vez, a medida que ingresa uno de ellos en el switch de entrada y ambas cambian de posición cuando terminan su operación en un byte. Para una mejor comprensión de la operación, mostraremos un ejemplo en la figura 3.20 bajo los siguientes parámetros: A = 2, k = 4 y M = 12, con el byte de inicialización "*i*".

Figura 3.20 Entrelazador de bytes con A=2, k=4

La entrada contiene 48 bytes denotados por X_J, donde J es el orden de entrada. La figura muestra la condición inicial de entrelazador y los tres primeros ciclos de conmutación de los switchs. El resultado de operación lo tiene la tabla 3.13.

Puesto que los 48 bytes se distribuyen en 4 líneas, serán necesarios 12 ciclos de conmutación para introducir todos los bytes. [29]

Ciclo	Entrada	Salida	
1	X_0, X_1, X_2, X_3	x ₀ ,i,i,i	
2	X_4, X_5, X_6, X_7	X4, İ, İ, İ	
3	X ₈ , X ₉ , X ₁₀ , X ₁₁	x ₈ , x ₁ , i , i	
4	X ₁₂ , X ₁₃ , X ₁₄ , X ₁₅	x ₁₂ , x ₅ , i, i	
5	X ₁₆ , X ₁₇ , X ₁₈ , X ₁₉	x ₁₆ , x ₉ , x ₂ , i	
6	\mathbf{X}_{20} , \mathbf{X}_{21} , \mathbf{X}_{22} , \mathbf{X}_{23}	x ₂₀ , x ₁₃ , x ₆ , i	
7	\mathbf{X}_{24} , \mathbf{X}_{25} , \mathbf{X}_{26} , \mathbf{X}_{27}	X ₂₄ , X ₁₇ , X ₁₀ , X ₃	
8	X ₂₈ , X ₂₉ , X ₃₀ , X ₃₁	X ₂₈ , X ₂₁ , X ₁₄ , X ₇	
9	X ₃₂ , X ₃₃ , X ₃₄ , X ₃₅	\mathbf{X}_{32} , \mathbf{X}_{25} , \mathbf{X}_{18} , \mathbf{X}_{11}	
10	X ₃₆ , X ₃₇ , X ₃₈ , X ₃₉	X ₃₆ , X ₂₉ , X ₂₂ , X ₁₅	
11	X ₄₀ , X ₄₁ , X ₄₂ , X ₄₃	X ₄₀ , X ₃₃ , X ₂₆ , X ₁₉	
12	X_{44} , X_{45} , X_{46} , X_{47}	X ₄₄ , X ₃₇ , X ₃₀ , X ₂₃	

Tabla 3.13 Entrada y salida del entrelazador de la figura 3.20,para 12 ciclos de conmutación
Ciclo	Entrada	Salida
1	x ₀ ,i,i,i	d, d, d, i
2	X4, İ, İ, İ	d, d, d, i
3	x ₈ , x ₁ , i , i	d, d, i, i
4	x ₁₂ , x ₅ , <i>i</i> , <i>i</i>	d, i, i, i
5	x ₁₆ , x ₉ , x ₂ , i	d, i, i, i
6	x ₂₀ , x ₁₃ , x ₆ , i	d, i, i, i
7	X ₂₄ , X ₁₇ , X ₁₀ , X ₃	X_0, X_1, X_2, X_3
8	$X_{28}, X_{21}, X_{14}, X_7$	X_4, X_5, X_6, X_7
9	\mathbf{X}_{32} , \mathbf{X}_{25} , \mathbf{X}_{18} , \mathbf{X}_{11}	$\mathbf{X}_{8}, \mathbf{X}_{9} , \mathbf{X}_{10} , \mathbf{X}_{11}$
10	X ₃₆ , X ₂₉ , X ₂₂ , X ₁₅	X ₁₂ , X ₁₃ , X ₁₄ , X ₁₅
11	X ₄₀ , X ₃₃ , X ₂₆ , X ₁₉	X ₁₆ , X ₁₇ , X ₁₈ , X ₁₉
12	$X_{44}, X_{37}, X_{30}, X_{23}$	$\mathbf{x}_{20}, \mathbf{x}_{21}, \mathbf{x}_{22}, \mathbf{x}_{23}$

Tabla 3.14 Entrada y salida del desentrelazador de la figura 3.20, para 12 ciclos de conmutación

Entonces, el reordenamiento efectuado por el desentrelazador lo muestra la tabla 3.14. Podemos deducir que, luego de 24 ciclos de conmutación se obtendrá la secuencia original, es decir, el retardo total añadido viene dado por:

$$D = 2M \tag{3.46}$$

Y la cantidad total de celdas de memoria necesarias es:

$$M = \frac{A \cdot k \cdot (k-1)}{2} \tag{3.47}$$

Otro propósito del entrelazado de bytes, es el incrementar la eficiencia de la codificación Reed Solomon a cada capa, frente a errores en ráfaga, utilizando el mismo procedimiento aleatorio. ISDB-T_b opera en función de los siguientes parámetros: A = 17 y k = 12. (Véase figura 3.21)

Figura 3.21 Entrelazado de bytes para ISDB-T_b (A=17 y k=12)

Notamos que el factor $A \cdot k = 17 \times 12 = 204$, es el tamaño correspondiente a un TSP. Aplicando la ecuación (3.47) se tendrá un total de 1122 bytes y reemplazando su valor en (3.46) encontramos un total de 2244 bytes o 2244 ciclos de conmutación, concluyendo que el retardo puede ser expresado en TSP.

$$D = 11 \cdot TSP \tag{3.48}$$

Este valor indica un retraso otorgado por el byte interleaving equivalente a once paquetes TSP, donde 1 paquete TSP corresponde a 204 bytes.

3.7.4 Ajuste de Retardo

La trasmisión jerárquica permite especificar un conjunto de parámetros de transmisión distintos para cada capa, frente a distintos tipos de modulación por capa.

Como analizamos en el apartado anterior, los retardos de tiempo aparecen en el entrelazado de bytes, dado propiamente por el conjunto de parámetros de la transmisión jerárquica (N, K_i, b_p), permitiendo diferencias en los tiempos requeridos para procesar las señales de cada capa.

Precisamente, es posible realizar la ecualización de los tiempos de tránsito binario para cada capa de transmisión. Esta ecualización se configura únicamente en el transmisor, de tal forma que los retardos y parámetros configurados, correspondan a un múltiplo entero de duración de un cuadro OFDM.

De acuerdo a las tablas indicadas en 3.4.4, podemos recordar la cantidad de bits de datos correspondientes a un número entero N de paquetes TSP, y de acuerdo a ello, es posible deducir un retardo adicional D_A , el cual se introduce en una capa jerárquica en base al número N de paquetes TSP y a la tasa binaria de la misma. Con lo cual se obtiene la ecuación:

$$D_A[TSP] = (N \times N_C) - 11 \tag{3.49}$$

Donde N_c es el número de segmentos correspondientes a cada capa jerárquica (Capa A: $N_c = 1$ segmento; Capa B: $N_c = 7$ segmentos; Capa C: $N_c = 5$ segmentos). Para una explicación y demostración detallada de la ecuación (3.49), revisar la referencia [3] páginas 39 y 40.

Como consecuencia de ello se presentan en la tabla 3.15 todos los valores de ajuste de retardo que resultan de dar valores a N (tomando valores de las tablas 3.3, 3.4 y 3.5) y efectuando la ecuación (3.49). [3]

Modulación	ĸ	Ajuste de retardo D _A							
Modulación	Γ.	Modo 1	Modo 2	Modo 3					
	1/2	12 x N _c - 11	24 x N _c - 11	48 x N _c - 11					
	2/3	16 x N _c - 11	32 x N _c - 11	64 x N _c - 11					
QPSK/DQPSK (b _P =2)	3/4	18 x N _c - 11	36 x N _c - 11	72 x N _c - 11					
	5/6	20 x N _c - 11	40 x N _c - 11	80 x N _c - 11					
	7/8	21 x N _c - 11	42 x N _c - 11	84 x N _c - 11					
	1/2	24 x N _c - 11	48 x N _c - 11	96 x N _c - 11					
	2/3	32 x N _c - 11	64 x N _c - 11	128 x N _c - 11					
16-QAM (b _P =4)	3/4	36 x N _c - 11	72 x N _c - 11	144 x N _c - 11					
	5/6	40 x N _c - 11	80 x N _c - 11	160 x N _c - 11					
	7/8	42 x N _c - 11	84 x N _c - 11	168 x N _c - 11					
	1/2	36 x N _c - 11	72 x N _c - 11	144 x N _c - 11					
	2/3	48 x N _c - 11	96 x N _c - 11	192 x N _c - 11					
64-QAM (b _P =6)	3/4	54 x N _c - 11	108 x N _c - 11	216 x N _c - 11					
	5/6	60 x N _c - 11	120 x N _c - 11	240 x N _c - 11					
	7/8	63 x N _c - 11	126 x N _c - 11	252 x N _c - 11					

Tabla 3.15 Ajuste del valor de retardo D_A en número de TSP

Para una mayor comprensión del ajuste de retardo, considerar el ejemplo dado en las páginas 43 y 44 de la referencia [3].

3.7.5 Codificación Convolucional con Punzonado

De acuerdo a la figura 3.16, después del entrelazado de bytes, los datos son sometidos a un nuevo proceso de codificación, este es de tipo convolucional, en el que se incluye un proceso llamado "punzonado". Este parámetro se constituye en uno de los seteables o configurables elegidos por el sistema y puede tomar los siguientes valores posibles para $K_i: \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, y\frac{7}{8}.$

La figura 3.22 ilustra el esquema y funcionamiento del codificador convolucional con parámetros de relación $\frac{1}{2}$, con 64 estados y 7 derivaciones (*K* = 7) que son empleados en ISDB-T_b.

Figura 3.22 Codificador convolucional de relación 1/2

Como puede verse, consta de 6 celdas de memoria de 1 bit y 8 bloques aditivos de dos entradas. Observamos que está orientado a un bit, y su flujo se distribuye en dos salidas llamadas *X* e *Y*. Estas salidas son resultados de las combinaciones mediante los sumadores con los números binarios dados en cada derivación en cada salida de la celda del registro de desplazamiento.

Los bits de salida dependen de 7 bits de entrada, esto es, 6 bits guardados en los registros y el bit actual. Eso da el valor de K = 7, conocida como "longitud de restricción". Generalmente, estas derivaciones se conectan a cada sumador indicadas con un 1 las derivaciones conectadas con un sumador y con un cero las no conectadas, y el conjunto es llamado vector o polinomio generador. [3, 4]

En la figura 3.22, los vectores generados son $G_1 = 1111001$ para la salida *X* y $G_2 = 1011011$ para la salida *Y*, expresados en base octal tal como se indican respectivamente. El codificador de relación $\frac{1}{2}$ muestra una redundancia de datos del 100%, lo cual mejora la capacidad de corrección de errores aleatorios, pero afecta a la tasa binaria, en este caso, reduciéndola a la mitad.

Para contrarrestar este efecto, las salidas del codificador se conectan a un bloque selectivo, en función de patrones llamados "punzonado", para los datos en cada salida y los transforma en un flujo binario en serie. (Ver figura 3.23)

Figura 3.23 Codificador convolucional y bloque de punzonado

Este proceso de punzonado se conceptualiza con ayuda de la siguiente figura:

Figura 3.24 Codificación convolucional, esquema de punzonado y secuencia de salida

La redundancia, o el grado de redundancia de la secuencia transmitida, es indicada mediante el factor K_i . Con la selección de $K_i = \frac{1}{2}$, se entiende que por cada bit de entrada, existen dos en la salida, en otras palabras, la información a transmitir es duplicada.

Pensando en el extremo, con $K_i = \frac{7}{8}$, encontraremos que por cada 7 bits en la entrada, salen 8 bits.

Por lo cual, la protección contra errores, se hace más vulnerable a valores más altos de K_i , pero opuestamente, la tasa de bits se incrementa. A pesar de esto, K_i deberá estar sujeto a las situaciones reales como área de cobertura y potencia de emisión disponible.

El proceso en la recepción de la señal, se aplicará el algoritmo de Viterbi, lo cual da lugar al llamado decodificador convolucional o decodificador Viterbi. [3, 4]

3.8 Modulación de Portadoras

Los bloques de procesamiento de modulación ISDB-T_b se muestran en la siguiente ilustración.

Figura 3.25 Etapa de modulación ISDB-T_b

Cada bloque representa un procesamiento digital, y la señal de entrada debe obligatoriamente ser entrelazada bit por bit y mapeada mediante el esquema mostrado para cada capa (ver figura 3.26). Este proceso de modulación de portadora, se refiere al mapeo o modulación I/Q de las portadoras que se usarán en el algoritmo de la IFFT, en banda base.

Figura 3.26 Configuración de la modulación de la portadora

Esto da lugar a referirnos al mapeo de las portadoras para cada esquema de modulación, para ISDB-T_{b.}

3.8.1 Mapeo de los Símbolos

3.8.1.1 Mapeo DQPSK

La señal de entrada deber ser obligatoriamente 2 bits por símbolo y mapeada en DQPSK con desplazamiento en $\pi/4$ para salida de datos multibit, para ejes I y Q. Después de la conversión serieparalelo, los 120 bits de atraso se deben insertar obligatoriamente en la entrada del calculador de fase para *bit interleaving*. [4]

El cálculo de fase se debe realizar tal cual lo indica la tabla 3.16 (Ver figuras 3.27 y 3.28).

NOTA (I_j y Q_j) y (I_{j-1} y Q_{j-1}) representan los símbolos de salida y el símbolo OFDM inmediatamente precedente al símbolo de salida, respectivamente.

Figura 3.27 Diagrama de sistema del modulador DQPSK $\pi/4$ shift

Tab	la	3.1	6	Cá	cul	0 0	le	fase	para	DQP	SK
-----	----	-----	---	----	-----	-----	----	------	------	-----	----

Entrada b0' b1'	Salida θj
0 0	π/4
0 1	- π/4
1 0	3 π/4
1 1	-3 π/4

3.8.1.2 Mapeo QPSK

La señal de entrada deber ser obligatoriamente 2 bits por símbolo y mapeada en QPSK debe ser obligatoriamente multibit, en los ejes l y Q. Para realizar el mapeo, 120 elementos de atraso se debe insertar obligatoriamente en la entrada del *mapper* para el entrelazamiento de bit [4]. Ver figuras 3.29 y 3.30.

Figura 3.29 Diagrama del sistema de modulación QPSK

Figura 3.30 Constelación QPSK

3.8.1.3 Mapeo 16-QAM

La señal de entrada debe ser representada obligatoriamente por 4 bits por símbolo y la salida mapeada de datos debe ser obligatoriamente multibit en los ejes I y Q. Para realizar el mapeo, los elementos de atraso se deben insertar obligatoriamente como lo indica la figura 3.31, para el *bit interleaving* [4]. (Ver figuras 3.31 y 3.32)

Figura 3.32 Constelación 16-QAM

3.8.1.4 Mapeo 64-QAM

La señal de entrada debe ser obligatoriamente de 6 bits por símbolo y la salida mapeada de datos debe ser obligatoriamente multibit, en los ejes I y Q. Para realizar el mapeo, los elementos de atraso se deben insertar obligatoriamente como lo indica la siguiente figura para entrelazamiento de bit [4]. Ver figuras 3.33 y 3.34.

Figura 3.33 Diagrama del sistema de modulación 64-QAM

Figura 3.34 Constelación 64-QAM

3.8.2 Combinador Jerárquico

En el apartado 3.3 se expuso la división jerárquica del canal ISDB- $T_{b,}$ dividiéndola en 3 capas definidas A, B y C. Pero ahora es necesario

ilustrar la funcionalidad de este bloque (figura 3.35), y acentuar que el núcleo de este procesamiento, consiste básicamente en separar los paquetes de los diferentes servicios de TV, en diferentes niveles jerárquicos.

Esto permite asignar diferentes configuraciones de transmisión (modulación, codificación, etc.), para cada nivel en el mismo canal de TV.

NOTA nc es 96, 192 y 384 en los modos 1, 2 y 3, respectivamente. Ns corresponde a los bloques de las capas jerárquicas con los segmentos y Ns1 + Ns2 + Ns3 = 13.

Figura 3.35 Configuración del Combinador de capas

La figura 3.35 indica a izquierda, la entrada de diferentes señales de las capas jerárquicas, con la codificación de canal previa y modulación. Para luego ser combinadas e insertadas en segmentación de datos y realizar su conversión de velocidad. Los datos son conmutados a cada clock de muestreo IFFT.

3.8.3 Entrelazado de Tiempo y Frecuencia

La habilidad del entrelazado en el tiempo o Time Interleaving, radica en modificar el orden temporal de transmisión, de cada paquete de datos, una vez que éstos han sido codificados con FEC. Si el canal de transmisión presenta alteraciones en la data, presentará una ráfaga de errores como se aprecia en la figura 3.36.

Figura 3.36 Interleaving en el dominio del tiempo

La técnica de interleaving, permite distribuir homogéneamente los errores en el tiempo, y así facilitar el trabajo de decodificación en el equipo receptor. El tiempo que toman los paquetes de información en el reordenamiento, es un valor importante en el proceso, ya que define la latencia o tardanza con que llegarán los paquetes antes de poder reconstruir el orden de transmisión original.

Indudablemente, mientras mayor es el período del entrelazado, mayor será la resistencia frente a los errores en ráfaga, pues la información queda mejor distribuida en el tiempo. Pero al mismo tiempo, el proceso de reconstrucción de la transmisión original, presentará una mayor latencia o tardanza y lógicamente, el receptor lleva a cabo un mayor procesamiento para lograr este reordenamiento a tiempo.

Bajo este mismo concepto, la técnica puede aplicarse en el dominio de la frecuencia, dando como resultado el entrelazamiento en frecuencia o Frequency Interleaving. El reordenamiento de los paquetes de información distribuidos ahora en frecuencia, dará como resultado una robustez frente a errores de trayectorias múltiples y desvanecimientos de canal.

Esta práctica se usa en cada uno de los 13 segmentos de datos y su período de procesamiento se ajusta al modo de transmisión, para de esta manera, ofrecer el mejor nivel de recepción posible. [26]

3.8.4 Generación del Cuadro OFDM

Cuando se ejecutan todos los procesamientos requeridos para la codificación de canal y el interleaving en tiempo y frecuencia, el cuadro OFDM debe ser obligatoriamente estructurado mediante la adición de varias señales pilotos, al segmento de datos.

Estas señales son: El piloto continuo, canal auxiliar (AC) y la señal TMCC, para modulación diferencial (DQPSK) y el piloto disperso (Scattered Pilot-SP) para modulación síncrona (QPSK, 16-QAM, 64-QAM). [4]

El piloto continuo debe ser precisamente una señal BPSK, modulada de acuerdo con la posición de la portadora dentro del segmento y con ángulo de fase constante en todo el símbolo. La señal de control TMCC, necesariamente debe transmitirse por medio de la modulación DBPSK.

El AC transporta información adicional de control de transmisión. Y ésta se modula en DBPSK al igual que el piloto continuo. Dos canales son disponibles AC1 y AC2. AC1 usado indistintamente del esquema de modulación, y el AC2 cuando se el sistema adopte modulación diferencial. Por otro lado, el SP es una señal BPSK, que se ordena a la secuencia del bit de salida *Wi* del PRBS (ver figura 3.37). La siguiente ecuación indica su polinomio generador:

$$G(x) = X^{11} + X^9 + 1 \tag{3.50}$$

Figura 3.37 Circuito de generación de PRBS

Cada valor inicial de generación PRBS, se define de acuerdo a valores binarios fijos para cada segmento ³. Bajo esta perspectiva, la configuración del cuadro OFDM para modulación diferencial DQPSK, será de acuerdo a la figura 3.38.

NOTA Si,j representa el símbolo de la portadora dentro del segmento de datos (data segment), después del interleaving.

Figura 3.38 Configuración del segmento OFFDM para modulación diferencial

³ Los valores iniciales deben obligatoriamente estar de acuerdo con la Tabla 23, mientras que la correspondencia entre Wi y la señal de modulación, debe obligatoriamente estar de acuerdo con la Tabla 24 de la referencia [4].

Los pilotos continuos serán: el CP (Continue Pilot), el TMCC y el AC. Para el Modo 1, estarán disponibles las portadoras 0 a 107, en cambio, para los Modos 2 y 3, obligatoriamente se distribuyen las portadoras 0 a 215 y 0 a 431, respectivamente.

El ordenamiento de las señales de control, son representadas por el número de portadoras, agregadas en la sección del cuadro OFDM. Las siguientes tablas plantean su posición para cada modo.

Número del segmento ^a	11	9	7	5	3	1	0	2	4	6	8	10	12
CP	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
AC2_1	3	3	29	28	23	30	3	5	13	72	36	25	10
AC2_2	45	15	41	45	63	81	72	18	93	95	48	30	30
AC2_3	59	40	84	81	85	92	85	57	98	100	52	42	55
AC2_4	77	58	93	91	105	103	89	92	102	105	74	104	81
TMCC1	13	25	4	36	10	7	49	31	16	5	78	34	23
TMCC2	50	63	7	48	28	25	61	39	30	10	82	48	37
TMCC3	70	73	17	55	44	47	96	47	37	21	85	54	51
TMCC4	83	80	51	59	47	60	99	65	74	44	98	70	68
TMCC5	87	93	71	86	54	87	104	72	83	61	102	101	105

Tabla 3.17 Arreglo de las portadoras CP, TMCC y ACen el modo 1 y modulación diferencial

^aLos números de segmento son organizados en orden ascendente de frecuencia a lo largo del eje de frecuencia

Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_4	191	209	208	205	197	197	136	208	148	187	197	172	209
AC2_1	3	29	23	3	13	36	10	3	28	30	5	72	25
AC2_2	45	41	63	72	93	48	30	15	45	81	18	95	30
AC2_3	59	84	85	85	98	52	55	40	81	92	57	100	42
AC2_4	77	93	105	89	102	74	81	58	91	103	92	105	104
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	136	138	113	180	133	111	137	131	111	121	144	118
AC2_7	123	153	189	126	203	138	153	149	171	180	201	156	138
AC2_8	148	189	200	165	208	150	167	192	193	193	206	160	163
AC2_9	166	199	211	200	213	212	185	201	213	197	210	182	189
TMCC1	13	4	10	49	16	78	23	25	36	7	31	5	34
TMCC2	50	7	28	61	30	82	37	63	48	25	39	10	48
TMCC3	70	17	44	96	37	85	51	73	55	47	47	21	54
TMCC4	83	51	47	99	74	98	68	80	59	60	65	44	70
TMCC5	87	71	54	104	83	102	105	93	86	87	72	61	101
TMCC6	133	144	115	139	113	142	121	112	118	157	124	186	131
TMCC7	171	156	133	147	118	156	158	115	136	169	138	190	145
TMCC8	181	163	155	155	129	162	178	125	152	204	145	193	159
TMCC9	188	167	168	173	152	178	191	159	155	207	182	206	176
TMCC10	201	194	195	180	169	209	195	179	162	212	191	210	213

Tabla 3.18 Arregio de las portadoras CP, TMCC y AC en el modo 2 y modulación diferencial

Número del segmento	11	9	7	5	3	1	0	2	4	6	8	10	12
CP	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
AC2_1	3	23	13	10	28	5	25	29	3	36	3	30	72
AC2_2	45	63	93	30	45	18	30	41	72	48	15	81	95
AC2_3	59	85	98	55	81	57	42	84	85	52	40	92	100
AC2_4	77	105	102	81	91	92	104	93	89	74	58	103	105
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	138	180	111	131	121	118	136	113	133	137	111	144
AC2_7	123	189	203	153	171	201	138	153	126	138	149	180	156
AC2_8	148	200	208	167	193	206	163	189	165	150	192	193	160
AC2_9	166	211	213	185	213	210	189	199	200	212	201	197	182
AC2_10	216	216	216	216	216	216	216	216	216	216	216	216	216
AC2_11	245	219	252	219	246	288	219	239	229	226	244	221	241
AC2_12	257	288	264	231	297	311	261	279	309	246	261	234	246
AC2_13	300	301	268	256	308	316	275	301	314	271	297	273	258
AC2_14	309	305	290	274	319	321	293	321	318	297	307	308	320
AC2_15	324	324	324	324	324	324	324	324	324	324	324	324	324
AC2_16	352	329	349	353	327	360	327	354	396	327	347	337	334
AC2_17	309	34Z	304	305	390	276	339	405	419	209	307	417	304
AC2_18	405	J01 416	429	400	409	3/0	204	410	424	401	409	422	405
	13	10	16	23	36	390	302	421	429	78	429	420	405
TMCC2	50	28	30	37	48	39	48	7	61	82	63	25	10
TMCC3	70	44	37	51	55	47	54	17	96	85	73	47	21
TMCC4	83	47	74	68	59	65	70	51	99	98	80	60	44
TMCC5	87	54	83	105	86	72	101	71	104	102	93	87	61
TMCC6	133	115	113	121	118	124	131	144	139	142	112	157	186
TMCC7	171	133	118	158	136	138	145	156	147	156	115	169	190
TMCC8	181	155	129	178	152	145	159	163	155	162	125	204	193
TMCC9	188	168	152	191	155	182	176	167	173	178	159	207	206
TMCC10	201	195	169	195	162	191	213	194	180	209	179	212	210
TMCC11	220	265	294	241	223	221	229	226	232	239	252	247	250
TMCC12	223	277	298	279	241	226	266	244	246	253	264	255	264
TMCC13	233	312	301	289	263	237	286	260	253	267	271	263	270
TMCC14	267	315	314	296	276	260	299	263	290	284	275	281	286
TMCC15	287	320	318	309	303	277	303	270	299	321	302	288	317
TMCC16	360	355	358	328	373	402	349	331	329	337	334	340	347
TMCC17	372	363	372	331	385	406	387	349	334	374	352	354	361
TMCC18	379	371	378	341	420	409	397	371	345	394	368	361	375
TMCC19	383	389	394	375	423	422	404	384	368	407	371	398	392
TMCC20	410	396	425	395	428	426	417	411	385	411	378	407	429

Tabla 3.19 Arregio de las portadoras CP, TMCC y AC en el modo 3 y modulación diferencial

Existe otro esquema de ubicación de portadoras (pilotos y datos), para modulación síncrona (QPSK, 16-QAM y 64-QAM). Este método, ofrece un entrelazamiento de frecuencia (entramado) distinto al que se indicó para modulación diferencial DQPSK. Para un detalle de su ubicación y generación de los pilotos, se recomienda revisar estos conceptos en las secciones 6.13.3 y 6.14 de la referencia [4].

3.8.5 Modulador OFDM: IFFT

Como se indicó en el apartado 2.2.4, gracias al procesamiento que ofrece la IFFT, se cumple la condición de ortogonalidad y además esta técnica permite reemplazar a los moduladores OFDM convencionales basados en bancos de osciladores. En ISDB-T_b, el bloque modulador cumple esta función a través de la IFFT.

Para cada modo de operación del estándar, la IFFT aplica sus algoritmos, siempre sobre una cantidad de puntos iguales a una potencia de dos, los cuales se traducen en portadoras. De acuerdo a la tabla 3.20, apreciamos el tiempo útil de símbolo, la separación en frecuencia por portadora, la cantidad de portadoras habilitadas en 1 segmento de datos y el número total de portadoras usadas para los 13 segmentos.

Parámetro	Modo 1	Modo 2	Modo 3
Τ _υ	252 μ s	504 μs	1008 μs
$\Delta \mathbf{f} = \frac{1}{T_{U}}$	<u>250</u> 63	<u>125</u> 63	<u>125</u> 126
$L_{S} = \frac{BW_{s}}{\Delta \mathbf{f}}$	108	216	432
L = 13 L _S + 1	1405	2809	5617

Tabla 3.20 Parámetros básicos de los Modos 1, 2 y 3

Recordando que la IFFT trabaja únicamente sobre potencias de 2, existe un procedimiento (que se tratará en el capítulo 4) llamado *Entramado,* el cual ordenará los símbolos y completará los puntos restantes por medio de un relleno con símbolos nulos (*null tones*) para cada modo, y así cumplir dicha condición para los algoritmos de modulación OFDM. (Modo 1- 2048 puntos; Modo 2 – 4096 puntos; Modo 3 – 8192 puntos)

3.8.6 Inserción de Intervalo de Guarda

Para lograr combatir efectos de multitrayecto y de canal, finalmente se debe agregar una trama de datos a los símbolos recibidos previamente por la IFFT. Estos se añadirán al comienzo del símbolo OFDM, y su estructura y funcionalidad es de acuerdo como lo indica la figura 3.39.

Figura 3.39 Inserción de intervalo de guarda

Esta técnica es también conocida como Inserción de Prefijo Cíclico, como fue planteada en el apartado 2.2.5.

3.9 Diagrama de Bloques del Sistema De Transmisión

Los bloques que integran al sistema de ISDB- T_b en la transmisión se indican en la figura 3.40. Todo el sistema abarca, desde la codificación de canal, entrelazados, generación del símbolo OFDM mediante la IFFT, inserción de la guarda, para lograr la estructura de transmisión correspondiente a un cuadro OFDM de 204 símbolos.

Figura 3.40 Sistema de transmisión ISDB-T_b

El estándar se encuentra organizado de acuerdo a la figura anterior, en la cual resaltan claramente cuatro particiones: la entrada de datos, los

bloques de codificación, bloques de modulación y por último la etapa de conversión de frecuencia, amplificación y filtrado.

Cuando los bits de datos son protegidos por el FEC, la modulación toma el nombre de COFDM (OFDM Codificado). También se aplican funciones como dispersión de energía, y ajuste de los retardos. Apreciamos en la figura 3.40 la presencia del bloque separador, para la respectiva división jerárquica.

3.10 Diagrama de Bloques del Sistema De Recepción

Los bloques que integran al sistema de $ISDB-T_b$ en la recepción se muestran en la figura 3.41, en el cual se procesarán los cuadros OFDM.

Figura 3.41 Sistema de recepción ISDB-T_b

Los flujos A, B y C que se muestran en la figura 3.41 corresponden al flujo binario de cada capa de jerárquica de transmisión. El bloque inicial denota el control de ganancia, el cual de cierta forma, mitiga el desvanecimiento del canal de comunicaciones. Luego la señal analógica se convierte en una señal discreta y se extraen las muestras que

conforman el prefijo cíclico, quedando únicamente las N_{FFT} que serán procesadas por el algoritmo de la FFT.

Por consiguiente, se realiza un desentrelazado y desentramado, los cuales dividen la información en los flujos de datos de cada capa. El bloque de demapeo, convierte los símbolos I/Q en secuencias binarias, para finalmente, ésta información procesarla en los decodificadores de canal pertinentes, el cual permite la corrección de errores dentro de sus limitantes.

3.11 Sumario

A continuación presentamos en la tabla 3.21, los parámetros de los Modos 1, 2 y 3, valiéndonos de las ecuaciones planteadas que predominan el sistema. Se muestran los valores más significativos que estructuran al estándar ISDB-T_b de acuerdo a la Norma ABNT NBR 15601, para los símbolos OFDM. Así mismo, se encuentran tabulados los parámetros para los 13 segmentos, considerados en la tabla 3.22. Para los 13 segmentos se emplea como tipo de codificación de canal, la codificación Reed Solomon (204-188-8), seguida de la codificación convolucional con punzonado para valores de coeficiente $K_i = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}$.

Parámetro			Мос	lo 1	Mod	o 2	Modo 3		
Ancho de banda del segm	ento	Bw_{S}		;	lz				
Separación entre portado	oras	Δf	250/6	3 kHz	125/63	3 kHz	125/126 kHz		
Número de portadoras act por segmento	tivas	Ls	108	108	216	216	432	432	
Número de portadoras o datos por segmento	de	L _D	96	96	192	192	384	384	
Esquema de modulació portadoras	n de	las	QPSK 16QAM 64QAM	DQPSK	QPSK 16QAM 64QAM	DQPSK	QPSK 16QAM 64QAM	DQPSK	
Símbolos por cuadro		S			2	04			
Período útil de símbolo)	Τυ	252	μs	504	μs	1 008 μs		
Polosión T _G		1/4 1/8	63 31,5	63 μs 31,5 μs		μs μs	252 μs 126 μs		
	Δ	1/16	15,7	5 µs	31,5	μs	63 (us	
		1/32	7,87	5 µs	15,7	5 μs	31,5 μs		
			315 μs		<mark>6</mark> 30 μs		1 260 μs		
Duración total de símbo	lo	-	283,5 μs		567	μs	1134 μs		
$T_U + T_G$		Is	267,7	′5 μs	535,	5 µs	1071	μs	
			259,8	75 μs	519,7	′5 μs	1039,	5 μ s	
			64,26	ີ ms	128,5	2 ms	257,04	4 ms	
Duración total de cuadr	0	-	57,83	4 ms	115,66	8 ms	231,33	6 ms	
S.T _S		I C	54,62	1 ms	109,24	l2 ms	218,484 ms		
			53,01	4 ms	106,02	29 ms	212,058 ms		
Frecuencia de muestreo de la IFFT				5	12/63 = 8,	12698 M	Hz		

Tabla 3.21 Parámetros del segmento OFDM según el estándar ISDB-T_b

Parámetro		Modo 1	Modo 2	Modo 3					
Numero de segmentos	N_{S}	13							
Anchura de banda	Bw	$\frac{3000}{7}N_{s}+\frac{250}{63}$ 5,575 MHz	$\frac{3000}{7}N_{s} + \frac{125}{63}$ 5,573 MHz	$\frac{3000}{7}N_{s} + \frac{125}{126}$ 5,572 MHz					
Número total de portadoras	L	108 x N _s + 1 1405	216 x N _s + 1 2809	432 x N _s + 1 5617					

Tabla 3.22 Parámetros para 13 segmentos según el estándar ISDB-T_b

Todas las posibles velocidades de transmisión alcanzadas por el estándar, para sus distintas configuraciones, se especifican en la tabla 3.2.

CAPÍTULO 4

4. DESARROLLO DEL MODELO A SIMULAR

Los sistemas de comunicaciones en general, previo a su implementación real, son necesariamente evaluados y analizados en software computacionales con capacidades de procesamiento digital. En otras palabras, nos referimos a la etapa de simulación y análisis del modelo teórico tratado. Con esta experiencia, podremos examinar resultados, tomar decisiones, y rendir el funcionamiento del sistema de comunicación.

Para ello, nos apoyamos en el poderoso simulador conocido, *Simulink*, que funciona sobre el entorno de programación *Matlab*. Todas y cada una de las prolongables pruebas del sistema, fueron simuladas bajo esta herramienta computacional.

Simulink es un ambiente de programación mediante bloques. Útil para modelar, simular y analizar sistemas lineales y no lineales. Permite la interpretación de archivos con extensión .m, dados por Matlab y genera archivos con extensión .mdl.

Su versatilidad, permite la simulación de sistemas en Ingeniería Electrónica, en temas relacionados con el procesamiento digital de señales (DSP); comprendiendo temas específicos de ingeniería biomédica, telecomunicaciones, entre otros. También es muy utilizado en Ingeniería de Control y Robótica.

Cabe resaltar, que las simulaciones efectuadas se hicieron considerando *Matlab versión 7.14.0.739 (R2012a)*. El diseño e implementación de nuestro modelo propuesto para ISDB-T_b, se fundamenta en los bloques de las siguientes librerías:

- Communications System Toolbox; el cual posee bloques de modulación en banda base, bloques de codificación y corrección de errores, modelos de canales multitrayectoria, AWGN, canal simétrico binario, etc.
- Simulink >> Commonly Used Blocks; donde encontramos sumadores, constantes, switches, inputs/outputs, scope, entre otros.
- *DSP System Toolbox;* ofrece displays, el bloque signal to workspace y from workspace y el muy importante bloque IFFT/FFT.
- Simulink >> Math Operations; de la cual usamos los bloques para operaciones matriciales y vectoriales, como así también ganancias, el bloque Real-Imag to Complex, entre otros.

4.1 Presentación del Modelo Simplificado

El sistema de comunicación propuesto, contempla los siguientes bloques de procesamiento, dados de forma general, para una comprensión inicial del mismo:

- Generador de Datos
- Etapa de Codificación/Modulación/Transmisión OFDM
- Canal de desvanecimiento a corta escala
- Etapa de Decodificación/Demodulación/Receptor OFDM
- Medición del BER

De la forma como se indica en la figura 4.1. Cada uno de ellos, se tratarán independientemente en el avance de este capítulo.

Figura 4.1 Diagrama de Bloques General del Sistema de Comunicación a simular

Uno de los propósitos de esta tesis, como ya se ha indicado, es proporcionar al usuario la selección de parámetros previos a la simulación.

Para lo cual, se diseñó un cuadro de control de funcionamiento y configuración, llamado "*Ajuste de Parámetros*", dado en el bloque mostrado en la figura 4.2, y su máscara correspondiente como lo indica la figura 4.3.

Figura 4.2 Bloque de Asignación de Parámetros

Block Parameters: Ajuste de Parámetros							
Parámetros de la Simulación de OFDM (mask)							
Este bloque muestra los parámetros que se utilizan previo a la simulacion OFDM, Se eligen: *Puntos o Numero de suportadoras para el algoritmo de la IFFT (Define el Modo del estandar). *Codificación pictoras (Define el factor Ki)							
*Modulación o Mapeo de Simbolos (Tipo de mapeo o constelación I-Q utilizada para los simbolos).							
*Prefijo Ciclico (factor del intervalo de guarda para el prefijo ciclico) Ademas de los parametros para el valor de Free space loss del enlace (FSL) *Distacia del enlace *Frecuencia de portadora a la que opera.							
Con estos parametros se calculara todo lo necesario para realizar la Simulacion.							
Parameters							
Puntos para la FFT 8192							
Codificador Convolucional 1/2							
Modulacion de Simbolos 16-QAM 🔹							
Prefijo Ciclico 1/4							
Distancia (km)							
0.2							
Frecuencia de la Portadora (MHz)							
500							
OK Cancel Help Apply							

Figura 4.3 Máscara del bloque Ajuste de Parámetros de la simulación

De esta manera, podemos observar las principales características que predominan al sistema: El número de puntos para la FFT, el coeficiente de codificación convolucional, el esquema de modulación, el prefijo cíclico y la distancia y frecuencia para el modelo de pérdida de espacio libre o FSL (Free Space Loss) por sus siglas en inglés.

Podemos escoger entre los siguientes valores para el algoritmo de la IFFT:

- $N_{FFT} = 2048$, que define al Modo 1,
- $N_{FFT} = 4096$, que define al Modo 2, y
- $N_{FFT} = 8192$, el cual define al Modo 3.

Con respecto a la codificación de canal, se aplica Reed Solomon 204-188-8, con un factor de codificación 188/204, fijo y no seleccionable, a diferencia del índice de codificación convolucional (K_i), el cual se indica en la máscara y ofrece los siguientes factores: 1/2, 2/3, 3/4, 5/6 y 7/8.

La máscara también brinda la opción de seleccionar el esquema de modulación, entre los cuales se encuentran DQPSK, QPSK, 16-QAM y 64-QAM; esto genera el factor de bits por símbolo (b_p) de acuerdo al esquema elegido (ver tabla 4.1).

También nos permite escoger el factor de prefijo cíclico (Δ) y sus valores representados en la tabla 4.1. Finalmente, se podrá definir la distancia y frecuencia para obtener la perdida de espacio libre o FSL.

Puntos N_{FFT} Parámetro Modo 1: Modo 2: Modo 3: 2048 4096 8192 1 2 3 5 7 Factor Convolucional K_i $\overline{2}$ $\overline{3}$ $\overline{4}$ $\overline{6}$ $\overline{8}$ Esquema de Modulación DQPSK; QPSK; 16-QAM; 64-QAM b_p Intervalo de guarda Δ 1 1 1 1 1 $\overline{2}'\overline{4}'\overline{8}'\overline{16}'\overline{32}$ Distancia $0.01 \sim 1 \, Km$ Frecuencia 55~890 *MHz*

Tabla 4.1 Parámetros y valores configurables del estándar ISDB-T_b

Nota: El rango de distancias y frecuencias, son considerados para mantener una pérdida máxima de 91 dB

Es importante acotar, que una vez seleccionado el modo de operación, internamente (dentro de la máscara de ajuste de parámetros) se genera el tiempo útil de símbolo (T_u , ver tabla 3.9) y se define el número de portadoras de datos por segmento (L_D). Con esto, queda completamente definido el modo del sistema.

En cualquier elección de los parámetros mencionados, siempre se mantendrá el valor de la f_{IFFT} (ver tabla 3.10), y el ancho de banda de la

señal OFDM transmitida se mantiene con valores cercanos a 5,57 MHz. (ver ver tabla 3.22).

A continuación estudiaremos el diagrama de bloques de transmisión.

4.2 Bloques de Transmisión y Recepción

Bloques de Transmisión: El esquema general definido en la figura 4.1, lo trataremos en detalle describiendo inicialmente los bloques del modelo del transmisor que se muestra a continuación:

Figura 4.4 Diagrama de bloques en Simulink del modelo de transmisor ISDB-T_b

Primero nos concentraremos en el bloque de Buffer de datos, el cual lee la información binaria de las capas jerárquicas, para luego proceder a la codificación de canal; mapeo I/Q de símbolos en la correspondiente constelación I/Q, entramado de símbolos, aplicación del algoritmo de la IFFT (modulación OFDM como tal) e inserción del prefijo cíclico.
Bloques de Recepción

El conjunto de bloques se muestran en la figura 4.5. Cada uno de ellos cumplen las siguientes funciones: control de ganancia de potencia recibida, extracción del prefijo cíclico, ejecución del algoritmo de la FFT, el desentramado y demodulación de los símbolos, con su respectiva decodificación de canal y finalmente obteniendo el flujo jerárquico.

Figura 4.5 Diagrama de bloques en Simulink del modelo receptor ISDB-T_b

Previo a esto se explicara cómo se genera la información binaria de los 13 segmentos de datos y el flujo de datos binario de las capas jerárquicas, lo cual se detallara en el siguiente apartado.

4.2.1 Generación de los 13 Segmentos de Datos y de las Capas Jerárquicas

A continuación se mostrara el modelo de Simulink para dicho propósito:

Figura 4.6 Modelo en Simulink para la generación de las capas jerárquicas

Aquí se encuentra el bloque de "Ajuste de Parámetros" el cual, fue mostrado en la figura 4.2; además como ya fue explicado, su importancia se encuentra en la configuración de parámetros de la simulación tal y como se mostró en la tabla 4.1, tabla donde se resumen los parámetros que se pueden elegir para la simulación.

Cabe recalcar que la elección de estos parámetros se la realiza de manera previa a la ejecución de la simulación propuesta en la figura 4.5.

4.2.1.1 Generación de 1 Segmento de Datos

Para la generación de cada segmento de datos, se utilizará un bloque generador binario Bernoulli, el cual se encuentra contenido dentro del bloque del Segmento_0, como lo indica la figura 4.7.

Figura 4.7 Bloque Binario Bernoulli generador de 1 segmento de datos

La característica y los parámetros necesarios para generar los bits de cada segmento, son explicados a continuación y mostrados en la figura 4.8:

- Este bloque genera la cantidad de bits contenida en 1 segmento,
 expresada en N paquetes TS (iguales a 188x8 bits cada uno)
- Tiempo de Bit: Es el tiempo que se demora en generar un uno o un cero, aleatoriamente y su expresión es detallada a continuación:

Partiendo de la ecuación (3.31) y despejando tenemos:

$$8N = L_D \times b_p \times K_i \tag{4.1}$$

Luego, reemplazando en la ecuación (3.25) y dividiendo por 13, para obtener la tasa de transmisión para 1 segmento de datos, tenemos:

$$R_b(1 \, segmento) = \frac{188 \times 8 \times N}{204 \times T_s} \tag{4.2}$$

Por último, invirtiendo dicha ecuación obtenemos el tiempo de bit en 1 segmento:

$$T_b(1 \, segmento) = \frac{204 \times T_s}{188 \times 8 \times N} \tag{4.3}$$

Interpretando esta ecuación, podemos decir, que el tiempo de bit en un segmento sería igual al tiempo considerado de un cuadro OFDM, dividido para la cantidad de bits transmitidos por un segmento, expresados en *N* paquetes TSP, que se generan en dicho tiempo de cuadro.

 Bits totales por Segmento: Es la cantidad de bits que se agrupan en un segmento, de acuerdo a lo que el estándar define. En este caso conviene asignar el grupo total, es decir N grupos de 188 bytes o 188x8 bits y su expresión viene dada de la ecuación (3.27).

Source Block Parameters: Segmento 0				
Generador de Datos de 1 Segmento (mask)				
Este bloque genera la cantidad de bits contenida en 1 segmento; expresada en N paquetes Ts (Trasnport Streaming iguales a 188x8 bits cada uno)				
Tiempo de Bit: Es el tiempo que se demora en generar un uno o un cero, aleatoriamente.				
Bits totales por Segmento: Es la cantidad de bits que se agrupan en un segmento, de acuerdo a lo que el estándar define. En este caso conviene coger el grupo total, es decir N grupos de 188 bytes o 188*8 bits.				
Parameters				
Tiempo de Bit				
(204*Ts/(188*8*N))				
Bits totales por Segmento				
188*8*N				
OK Cancel Help Apply				

Figura 4.8 Cuadro de diálogo para la asignación de parámetros para 1 Segmento

Los parámetros "*Tiempo de bit*" y "*Bits totales por segmento*", se los asigna a los parámetros de "*sample* time" y "*samples por frame*", respectivamente, pertenecientes al bloque Bernoulli. *Este* proceso se realiza paralelamente a los 13 bloques de color naranja (ver figura 4.6), los cuales análogamente representan al número de segmentos que el estándar adopta (ver apartado 3.4.4).

4.2.1.2 Remultiplexor

Este bloque es representado con el color morado en la figura 4.6, y tiene como función principal, generar el flujo de datos único BTS (ver figura 3.11). Simula al bloque remultiplexor y codificador Reed-

Solomon Opcional (204-196-4). El modelo propuesto considera la inserción de los bits codificados opcionales, rellenándolos con ceros, por medio del bloque "Pad".

El remultiplexor consta en su modelo interno, con bloques de "reshape"; "multiport selector"; subsistemas de relleno para emular la cantidad de bits producidas por el campo Info ISDB-T_b (8 bytes) y R-S-opcional (8 bytes), rellenándolos con ceros; para luego concatenar y preparar un segmento. (Ver figura 3.13)

Este proceso es repetitivo para los 13 segmentos, siendo concatenados uno a uno, mediante el bloque "matrix concatenate". Finalmente, se añade un bloque Pad, cuya función primordial es mantener la tasa binaria fija a la salida de nuestro remultiplexor mediante el relleno de TSP nulos (cada TSP es de 204 bytes).

De esta manera, se cumple con la ecuación (3.41); y podemos concluir que el flujo binario a la salida del remultiplexor, tendrá una tasa de bits constante, para cualquier asignación de parámetros de la simulación.

4.2.1.3 Separador de Canal.

El objetivo de este bloque, es construir la transmisión de las capas jerárquicas, como se vio en 3.3, de acuerdo al orden mostrado en la

figura 4.6. A continuación, detallamos su estructura interna, describiéndola en los siguientes puntos:

- Descarte de los paquetes TSP nulos; este proceso elimina los paquetes agregados en el remultiplexor para cumplir la condición de flujo binario único. Para ello, nos apoyamos en un Pad con el tamaño indicado (204x8x13xN).
- Un bloque Multiport Selector; el cual separa el flujo en trece flujos correspondientes a los 13 segmentos. Cada uno de tamaño de 204x8xN.
- Por consiguiente, se descartan los bytes nulos contenidos en cada paquete TSP (8 bytes Info ISDB-T_b y 8 bytes R-S-opcional), para cada uno de los 13 segmentos. Esto da como resultado, a la salida de cada subsistema, paquetes de 188x8x*N* bits.
- Agrupación de capas; por último, procesos de concatenación agrupan los segmentos en las capas respectivas del estándar. El servicio de one-seg es independiente (capa A), mientras que los demás se agrupan en 7 segmentos para la capa B y 5 segmentos para la capa C.

El estándar establece un orden de descarte para los campos ISDB-T_b Info y paridad Reed Solomon opcional, el cual se lo realiza después del separador de canal, es decir en el codificador Reed Solomon 204-188-8. El modelo propuesto en esta tesis, descarta dichos bytes en el separador de canal, por motivos de optimización y simplicidad del proceso, lo cual no afecta la función del codificador Reed Solomon.

4.2.2 Codificador de canal

Una vez generados los bits de las capas jerárquicas, estos son leídos del *workspace* y entregados por el Buffer, para luego continuar con el proceso de codificación de canal, como indicamos en la figura 4.4. Esto lo realiza en 2 etapas: Codificador Reed Solomon 204-188-8 y luego Codificador Convolucional con Punzonado, en el orden descrito.

Codificador Reed Solomon 204-188-8

Para lograr ésta codificación, se divide el flujo de cada capa en flujos paralelos correspondientes a un segmento, de tamaño 188x8x*N*. Ésta idea se aplica tanto para la capa B y C, pues la capa A corresponde a solo un segmento. Una vez hecho esto, el flujo de un segmento es nuevamente dividido en flujos paralelos de 188 bytes y a cada uno de ellos se le aplica el proceso mostrado en la siguiente figura:

Figura 4.9 Bloques RS-204-188-8 para una trama de 188 bytes

El bloque Pad1, agrega 51 bytes nulos con la finalidad de completar 239 bytes, y de esta manera, preparar el flujo para la inserción de los 16 bytes de corrección (al final de la trama) que añade el bloque *Binary-Input RS Encoder1*, el cual es un codificador RS(255-239-8). Con esto, el codificador opera adecuadamente, ofreciendo a su salida 255 bytes.

Posteriormente, aprovechamos la funcionalidad del bloque Selector1, el mismo que elimina los 51 bytes nulos insertados inicialmente para lograr el tamaño final de la trama, dando como resultado 204 bytes, tal cual el estándar lo menciona (apartado 3.7.1). Este proceso se realiza para los *N* paquetes de 188 bytes en un segmento, dando como resultado a la salida del mismo 204x8x*N bits*.

Previo a la codificación convolucional, se añade un bloque *Buffer*, el cual divide el flujo de 204x8x*N bit*s, en 204 flujos de tamaño 8*N*, o lo que es lo mismo $L_D \times b_p \times K_i$, como así lo expresa la ecuación (4.1); tamaño de entrada para el siguiente proceso.

Codificador Convolucional con Punzonado

Para lograr esta codificación, consideramos el boque *Pad7* (figura 4.10), el cual ajusta el tamaño de trama de entrada, respecto al coeficiente K_i seleccionado. Simulink ofrece el bloque *Convolutional* Encoder, mediante el cual, logramos el punzonado elegido, considerando el esquema mostrado en la figura 3.23.

La figura 4.10, muestra un ejemplo para el punzonado $K_i = 2/3$.

Figura 4.10 Subsistema para codificación convolucional $K_i = 2/3$

En tal sentido, la figura 4.11 muestra la configuración del bloque convolucional con punzonado 2/3, donde se observa el vector de punzonado [1, 1, 0, 1] correspondiente a su K_i y de acuerdo al esquema y secuencia mostrado en la figura 3.23.

Function Block Parameters: Convolutional Encoder 2/3				
Convolutional Encoder (mask) (link)				
Convolutionally encode binary data. Use the poly2trellis function to create a trellis using the constraint length, code generator (octal) and feedback connection (octal).				
Select the "Terminate trellis by appending bits" operation mode to terminate the trellis at the all-zero state by appending tail bits at the end of each input frame. Check the Puncture code checkbox to puncture the encoded data for all other operation modes.				
Use the istrellis function in MATLAB to check if a structure is a valid trellis structure.				
Parameters				
Trellis structure:				
poly2trellis(7, [171 133],133)				
Operation mode: Continuous				
Coutput final state				
I Puncture code				
Puncture vector:				
[1; 1; 0; 1]				
OK Cancel Help Apply				

Figura 4.11 Ventana de configuración para codificador convolucional con punzonado ($K_i = 2/3$)

Es importante resaltar que, el codificador realiza el punzonado dependiendo del factor K_i seleccionado, y el tamaño de salida que otorga, es de $L_D \times b_p$ bits, correspondientes a un segmento de datos.

4.2.3 Mapeador de Símbolos

La función del mapeador es de generar símbolos I/Q, considerando en su entrada cierta cantidad de bits. De acuerdo a lo anterior, cada segmento genera un tamaño de $L_D \times b_p$ bits, por lo que, al ingresar estos al proceso de mapeo de símbolos, se generarán L_D símbolos I/Q por segmento. Este proceso se aplica para cada capa jerárquica resultando así:

- L_D símbolos para la capa A, ya que corresponde al one-seg,
- $L_D \times 7$ símbolos dados a la capa B, ya que incluye 7 segmentos; y
- L_D × 5 símbolos asignados a la capa C, la misma que contiene 5 segmentos.

Resultando en un total de $L_D \times 13$ símbolos correspondientes al total de los 13 segmentos. Este subsistema contiene además, bloques para la selección del esquema de modulación elegido, ofrecidos por Simulink. Es importante mencionar, que las constelaciones 16-QAM y 64-QAM, son de tipo rectangular más no circular, ya que así lo define el estándar.

4.2.4 Entramado de Símbolos

Este bloque es fundamental para la organización del espectro radioeléctrico, ya que define la ubicación de símbolos I/Q de dato; posiciona las portadoras pilotos para cada segmento; y deja los símbolos preparados para el siguiente bloque, IFFT.

El arreglo de las portadoras pilotos se lo realizó para cada segmento, dependiendo del modo seleccionado y de acuerdo a las tablas 3.17, 3.18 y 3.19. Esto define la posición de ellas para el modo diferencial, de acuerdo a la figura 3.38. El esquema diferencial se implementó para los 3 modos, y las señales pilotos fueron generadas aleatoriamente, mediante el bloque *Bernoulli,* para facilitar el procesamiento computacional.

El piloto continuo (CP) en todos los casos, se moduló en BPSK y los pilotos restantes (AC y TMCC), en DBPSK.

Figura 4.12 Subsistema de entramado de símbolos previo a la IFFT

La figura 4.12 muestra el subsistema de entramado, donde se realiza el entramado propuesto, dependiendo del modo seleccionado.

4.2.5 Modulador OFDM (IFFT)

Como se enunció anteriormente (apartado 2.2.3), la IFFT es el corazón de OFDM, puesto que éste proporciona ventajas de procesamiento, dado que reemplaza la forma tradicional de modulación OFDM, la cual usaba el banco de osciladores.

El esquema se apoya en el bloque llamado *IFFT*, proporcionado por Simulink. La siguiente figura muestra el mismo:

Figura 4.13 Subsistema de algoritmo de la IFFT

El algoritmo lo realiza de acuerdo al tamaño de entrada, el mismo que deber ser potencia de dos, que comprenden los siguientes valores:

- 2048 puntos de muestra para el modo 1,
- 4096 puntos de muestra para el modo 2, y
- 8192 puntos de muestra para el modo 3.

Luego de su procesamiento, a la salida de este bloque se obtienen la cantidad equivalente de muestras en el dominio del tiempo.

4.2.6 Prefijo cíclico

Como se vio en el apartado 2.2.5, el prefijo cíclico se lo utilizará con el objetivo de minimizar ISI. Simulink dispone de un bloque llamado "Selector", el cual realizará la función de inserción del prefijo (ver figura 2.19). Sus características son las siguientes:

- Copia los últimos G puntos de muestra de la IFFT, y los posiciona al inicio de la misma, de acuerdo al formato del siguiente vector: [(Nfft-G+1):Nfft 1:Nfft], el mismo que se coloca en el cuadro de diálogo del bloque Selector.
- Brinda como resultado un tamaño de muestras de salida igual a
 N_{FFT} + G.

4.3 Canal Multitrayectoria y Modelo de Canal de Respuesta Impulso

Para poder simular pérdidas de canales selectivos en frecuencia, se utilizaron los siguientes canales: Canal Multitrayectoria tipo Rician y el Modelo de Respuesta Impulso de Canal (recomendación ITU). Implícitamente para cualquiera de ellos, consideramos el canal AWGN, y las pérdidas debido al espacio libre (FSL).

Canal Multitrayectoria de tipo Rician

Su representación en Simulink, es de acuerdo a la figura 4.14. Este bloque permite una simulación apegada a los escenarios que presentan efectos de reflexión, dispersión y difracción de la señal. Por medio de este canal, es posible estimar el ancho de banda coherente B_c .

Figura 4.14 Bloque de Canal Multitrayectoria Rician

El canal Rician, es considerado un canal de desvanecimiento de pequeña escala. Éste comprende la atenuación de la señal, que puede ocurrir con cambios muy pequeños (de la longitud de onda) en la posición relativa de los reflectores transmisor, receptor y, a veces, debido al medio ambiente.

El fenómeno de desvanecimiento de pequeña escala se atribuye a la suma de múltiples señales reflejadas que llegan con diferentes retardos (fases) y amplitudes [30]. Sus parámetros de configuración y simulación son los siguientes:

- Frecuencia Doppler (B_D) , asignada con 20 Hz,
- K-factor de la distribución de Rice, de 16 dB (39.81 veces),
- Vector de Retardos, donde se encuentran los retardos del modelo de canal de respuesta impulso como lo indica el arreglo [0 1.1e-06 8e-06 12e-06 23e-06 37e-06], y

 Vector de Ganancia [0 -4.7 -9.6 -17.5 -35.6 -42.8], en el cual cada valor corresponde a la potencia recibida normalizada respecto a 0 dB, proporcionado a cada retardo.

Con estos valores, podemos determinar la naturaleza característica del canal multitrayectoria, de acuerdo a dos criterios: debido a la dispersión de retardo y en base a la dispersión Doppler.

Para la categoría de *degradación en base a la dispersión de retardo*, se calcula el retardo RMS como lo plantea la siguiente ecuación:

$$\sigma_{rms} = \sqrt{\overline{\tau^2} - (\bar{\tau})^2} \tag{4.4}$$

Donde σ_{rms} , es el valor cuadrático medio (RMS), definido como la raíz cuadrada del segundo momento central del perfil de intensidad multitrayectoria, y sus ecuaciones respectivas son:

$$\overline{\tau^2} = \frac{\sum_k \tau_k^2 \cdot \varphi_k}{\sum_k \varphi_k} \tag{4.5}$$

$$\bar{\tau} = \frac{\sum_{k} \tau_k \cdot \varphi_k}{\sum_{k} \varphi_k} \tag{4.6}$$

Siendo,

- φ_k, la potencia relativa normalizada a 0 dB correspondiente al retardo
 τ_k, y expresada en veces; de acuerdo a su conversión anti logarítmica o exponencial,
- τ_k , el tiempo del *k-ésimo* retardo del canal.

Con esto, se obtiene un valor de retardo RMS de 2.4397 µs, y aplicando la ecuación (4.7), finalmente tenemos 8.1979 KHz de ancho de banda de coherencia.

$$B_C = \frac{1}{50\sigma_{rms}} \tag{4.7}$$

Empleando el criterio que plantea Seybold para canales selectivos en frecuencia, que expresa, que un canal puede ser considerado de respuesta plana (flat fading) o canal de banda ancha, si el ancho de banda de la señal es menor que el ancho de banda coherente; es decir, $B_w \ll B_c$. Caso contrario, es llamado canal de banda angosta o de desvanecimiento selectivo en frecuencia (selective fading). [30]

Dado este antecedente, podemos concluir que nuestro modelo de canal multitrayectoria corresponde a un canal selectivo en frecuencia.

Se deberá también analizar la categoría de *degradación en base a la dispersión Doppler*. Este concepto comprende cuán rápidamente varía la señal transmitida en banda base, en comparación con los cambios

ocurridos en el canal, tomando en consideración los dos siguientes puntos:

- Desvanecimiento rápido (fast fading), se presenta cuando la desviación Doppler es mayor que el ancho de banda de la señal. $(B_W < B_D)$
- Desvanecimiento lento (slow fading), aparece cuando la respuesta del canal a un impulso es mucho más lenta que la señal transmitida en banda base. Esto implica que la máxima dispersión Doppler es mucho menor que el ancho de banda de señal. $(B_W \gg B_D)$

Basándonos en este criterio, el canal es considerado como un canal de desvanecimiento lento, por lo tanto, las características del canal pueden ser asumidas como constantes durante un intervalo de símbolo OFDM.

Modelo de Canal Respuesta Impulso

Este modelo de canal, es realizado en base a los parámetros y conceptos presentados en la recomendación ITU-R M.1225 [31]. Su diagrama de bloques se muestra en la figura 4.15.

Figura 4.15 Subsistemas del Canal ITU-R M.1225

El diseño de este modelo de canal se lo realizó en base a la tabla 4.2, de la cual se seleccionó el ambiente de prueba *Outdoor to indoor and pedestrian*. Para el canal A, se asignó 40% de probabilidad; mientras que se presenta un 55% de aparición para el canal B.

	Channel A		Channel B	
Test environment	r.m.s. (ns)	P (%)	r.m.s. (ns)	P (%)
Indoor office	35	50	100	45
Outdoor to indoor and pedestrian	45	40	750	55
Vehicular – high antenna	370	40	4 000	55

Tabla 4.2 Parámetros para el modelo de respuesta impulso del canal

Así mismo, se especifican a detalles los parámetros para el ambiente de prueba antes mencionado, definidos en los vectores de tiempo de retardo y de ganancia, indicados en la tabla 4.3.

	Channel A		Chai	Doppler	
Тар	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	spectrum
1	0	0	0	0	Classic
2	110	-9.7	200	-0.9	Classic
3	190	-19.2	800	-4.9	Classic
4	410	-22.8	1 200	-8.0	Classic
5	_	_	2 300	-7.8	Classic
6	-	-	3 700	-23.9	Classic

Tabla 4.3 Outdoor to indoor and pedestrian test environmenttapped-delay-line parameters

El canal con probabilidad de 5 % de aparición, es un canal directo (sin ruido).

AWGN

Otra etapa del canal, es el canal de Ruido Blanco Gaussiano Aditivo (AWGN), que tiene por propósito controlar el SNR para valorar el sistema a diferentes intensidades de ruido, sumadas a las ya presentes, dadas por el modelamiento del efecto multitrayectoria.

Conformado por una densidad espectral de potencia en todas las frecuencias, de valor $N_o/2$, con media cero e independiente de la señal de entrada.

Pérdida en el Espacio Libre

La pérdida de trayectoria libre (FSL) es un factor muy importante debido a su magnitud en relación con las demás degradaciones, ya que considera la pérdida de potencia debido a la distancia y frecuencia. Es el modelo de propagación más simple usado para enlaces de larga distancia y su ecuación de pérdida está dada por:

$$L_{FSLdB} = 20 \log\left(\frac{4\pi df}{c}\right) \tag{4.8}$$

Para nuestra simulación, el valor de pérdida por espacio libre fue de 72 dB, para una distancia de 0.2 Km y a una frecuencia de portadora de 500 MHz.

Bajo esta perspectiva, se utilizó los siguientes modelos de canal para la obtención de los resultados que se analizarán en el capítulo 5:

- Modelo de Canal Multitrayectoria tipo Rician con AWGN y FSL, para las variaciones de tipo de modulación y variación del intervalo de guarda.
- Modelo de Respuesta Impulso de Canal Multitrayectoria de recomendación ITU y FSL, para las variaciones de codificación de canal FEC.

4.3.1 Control Automático de Ganancia (AGC)

Este bloque es indispensable en el sistema de recepción, pues nos ayuda a mitigar, de cierta manera, el efecto del desvanecimiento selectivo en frecuencia. Como primer paso normaliza la potencia de la trama recibida, para luego darle la ganancia definida por el valor de potencia deseado. Este proceso lo realiza por cada símbolo OFDM. Resultando en un valor de potencia promedio igual al valor deseado.

4.3.2 Extracción del prefijo cíclico

Como su nombre lo indica, este bloque ignora la parte inicial de la trama recibida, correspondiente a las muestras que el prefijo cíclico añadió. De esta manera, entrega los N_{FFT} puntos para el siguiente procedimiento de la FFT. El bloque que realiza esta operación es básicamente un *Selector*, y su formato de vector de configuración es [G+1:Nfft+G], con el cual logramos la extracción del intervalo de guarda.

4.3.3 Demodulador OFDM (FFT)

Como se expuso en el apartado 4.2.5, Simulink ofrece un bloque IFFT para modulación OFDM. Se plantea entonces, el bloque FFT como proceso inverso de la IFFT, es decir, cumple la función de un demodulador OFDM. Su algoritmo trabaja con la respectiva señal en banda base, en el dominio del tiempo, y luego de su procesamiento obtenemos las constelaciones I/Q en el dominio de la frecuencia que fue generada en el transmisor. La cantidad de muestras mantiene su equivalencia tanto en la entrada como en la salida del mismo de N_{FFT} puntos de muestras en frecuencia o símbolos provenientes de una constelación I/Q.

4.3.4 Desentramado y Demapeador de Símbolos

Desde la perspectiva del bloque de entramado (4.2.4), el desentramado, ejecuta el procedimiento opuesto. Recibe los símbolos correspondientes a los trece segmentos dados en una sola trama, con símbolos de datos y símbolos pilotos.

Cuando se eliminan los símbolos pilotos, se conforman los símbolos de datos en una sola trama, para finalmente distribuirlos por medio de un *Multiport Selector*, y con esto apreciar nuevamente las tres capas jerárquicas.

Por otra parte, el demapeador convierte los símbolos recibidos a secuencias de bits, considerando su ubicación en la constelación I/Q recibida. Lo estima por medio de su ubicación más cercana. Cabe recalcar que cada símbolo corresponde a una secuencia única de bits. Es importante acotar, que tanto en el modulador/demodulador se

utilizó código gray o distancia unitaria para limitar el error de símbolos vecinos a un bit y así disminuir la probabilidad de error por bit.

Los bloques de Simulink que permiten el demapeo son principalmente: Demoduladores DQPSK, QPSK, 16-QAM y 64-QAM.

4.3.5 Decodificador de Canal

Cada capa jerárquica se someterá a los siguientes bloques de decodificación: Viterbi y RS-204-188-8.

Para procesar la *decodificación Viterbi*, se plantea el bloque *Viterbi Decoder*. Gracias al aporte de Simulink (figura 4.16), es posible obtener los bits decodificados mediante al algoritmo de Viterbi, como se dijo anteriormente (2.2.1.2), realiza un trabajo computacional rápido que ofrece una secuencia de máxima verosimilitud.

Figura 4.16 Bloque de decodificación Viterbi

Este procedimiento dependerá de acuerdo al factor de codificación interna K_i , por medio del vector de punzonado, utilizando el arreglo dado en el codificador. El esquema de Trellis usado en el algoritmo de

Viterbi, es el mismo que fue generado en el codificador. Además, en su ventana de configuración se consideró una profundidad de retraso de 34, es decir, tomará un retraso de 34 bits antes de comenzar con su decodificación.

Es necesario añadir un retardo adicional a los 34 bits de retraso incluidos por Viterbi, para lograr sincronizar los bits a decodificar a través de RS.

Por consiguiente, esta trama de bits entra a un nuevo subsistema con su núcleo basado en el decodificador RS-255-239-8. De igual manera, Simulink nos ofrece un bloque llamado *Binary-Output RS Decoder*, como se muestra a continuación:

Figura 4.17 Bloque de decodificación RS

A su entrada recibe un flujo de 255 bytes, estructurados meticulosamente por bloques previos de relleno y de concatenación, siendo éstos:

188 bytes de datos,

- 51 bytes correspondientes a bytes nulos, y
- 16 bytes provenientes de la codificación que agregó el codificador RS.

Como resultado, entrega paquetes de 239 bytes, de los cuales se descartan 51 bytes (bytes nulos agregados anteriormente) mediante un *Multiport Selector,* con la finalidad de obtener el flujo deseado de paquetes de 188 bytes corregidos en la medida que éste lo permita.

4.3.6 Extracción de Capas Jerárquicas

Por último, se logra extraer la información de datos por capas jerárquica, mas no por segmentos. La decodificación Viterbi y el bloque *Buffer*, añaden un retardo de bits por cada capa, los cuales, desafortunadamente producen una pérdida de 2 TS (2x188x8 bits), en los bits más significativos (MSB) en cada una de ellas.

Para obtener un BER correspondiente al total de datos enviados, se suman los errores producidos en cada capa y se dividen para la suma de los bits recibidos en las tres capas.

Así, se obtiene un BER único correspondiente a la simulación tomando en cuenta todos los bits recibidos.

4.4 Plan de Pruebas de Medición

En esta sección se definen las métricas, especificaciones y aspectos que rigen y regulan a la operación de la transmisión y funcionamiento de ISDB-T_b, bajo los cuales se fundamentaron todas las simulaciones.

Todos los conceptos a continuación expuestos, han sido tratados (en su totalidad) en tópicos anteriores y son tomados de la Norma Brasileña, ABNT NBR 15601, "Televisión Digital Terrestre – Sistema de transmisión ISDB-T_b", Primera edición 30.11.2007.

4.4.1 Frecuencia de Muestreo de IFFT y desvío admisible

La frecuencia de muestreo de la IFFT para uso en la modulación OFDM para radiodifusión debe ser obligatoriamente de:

$$f_{IFFT} = 8.126984 MHz$$

Evaluada en la ecuación (2.15), para cualquier modo. (Ver tabla 3.10).

El desvío admisible es $\pm 0.3 Hz/MHz$. El desvío de frecuencia de la portadora (causado por el error de frecuencia de muestreo de la IFFT), debe ser 1 Hz o menos.

La frecuencia de muestreo de IFFT de 8.126984 MHz, una frecuencia nominal teórica, se puede usar si se respeta el desvío de frecuencia admisible.

4.4.2 Ancho de Banda y Espectro de Transmisión admisible

El nivel del espectro, fuera de la banda, asignado para la transmisión de la señal de televisión, se debe reducir obligatoriamente, aplicándose un filtro adecuado. La figura 4.18 y la tabla 4.4 indican las atenuaciones mínimas de las emisiones fuera de la banda con relación a la potencia media del transmisor, especificadas en función del alejamiento con relación a la portadora central de la señal digital, para las máscaras no crítica, subcrítica y crítica [4].

Separación o alejamiento con relación a la portadora	Atenuación mínima con relación a la potencia media, medida en la frecuencia de la portadora central				
central de la señal digital MHz	Máscara no crítica dB	Máscara subcrítica dB	Máscara crítica dB		
- 15	83,0	90,0	97,0		
- 9	83,0	90,0	97,0		
- 4,5	53,0	60,0	67,0		
- 3,15	36,0	43,0	50,0		
- 3,00	27,0	34,0	34,0		
- 2,86	20,0	20,0	20,0		
- 2,79	0,0	0,0	0,0		
2,79	0,0	0,0	0,0		
2,86	20,0	20,0	20,0		
3,00	27,0	34,0	34,0		
3,15	36,0	43,0	50,0		
4,5	53,0	60,0	67,0		
9	83,0	90,0	97,0		
15	83,0	90,0	97,0		

Tabla 4.4 Especificación de las máscaras del espectro de transmisión [4]

Adicionalmente, se podrá calcular el ancho de banda teórico mediante la siguiente ecuación:

$$B_W = \frac{(13 \times L_S) + 1}{N_{FFT}} \times f_{IFFT}$$
(4.9)

4.4.3 Duración Total de Símbolos OFDM

La duración de cada uno de los 204 símbolos OFDM, debe cumplir los tiempos de la tabla 4.5:

Duración total	Intervalo de guarda				
símbolos	1/4	1/4 1/8 1/16		1/32	
Modo 1	315 µs	283.5 µs	267.75 µs	259.875 µs	
Modo 2	628 µs	565 µs	533.5 µs	517.75 µs	
Modo 3	1260 µs	1134 µs	1071 µs	1039.5 µs	

Tabla 4.5 Duración total de los símbolos OFDM

CAPÍTULO 5

5. ANÁLISIS Y RESULTADOS DE SIMULACIONES

Una de las ventajas principales que ofrece la simulación del modelo, es manipular una gran cantidad de variaciones en cuanto a la configuración de variables dominantes del sistema, conforme al estudio que se quiere llevar.

Los resultados mostrados se obtuvieron en función de variaciones específicas de determinada variable. Todas ellas se realizaron de manera ordenada y secuencial, de forma que, se abarquen la mayoría de las combinaciones de parámetros. Esto permite la comparación y análisis de los múltiples escenarios que se podrían presentar, y que afectan al desempeño del sistema en función de los mismos.

5.1 Parámetros de la Simulación Obtenidos desde Matlab-Simulink.

Cabe considerar, por otra parte, el soporte que ofrece Simulink mediante bloques de obtención, presentación de datos y bloques analizadores. Para la experimentación se realizaron un cierto número de pruebas, por cada alteración de parámetro.

Una vez realizadas las simulaciones respectivas, previo a su análisis, se colectarán los resultados que se enlistan a continuación:

- Espectro de Transmisión y Recepción, mediante el bloque Spectrum Scope,
- Ancho de banda, mostrado a través de un Display,
- Frecuencia de IFFT, asignada de manera interna en un archivo .m,
- Tasa binaria y tiempo de símbolo OFDM, calculados en un archivo .m,
- BER para un valor específico de SNR, mostrados a través de Display's

5.2 Uso del Archivo .M para generar los puntos de la curva BER vs SNR

El archivo .*M* tiene el propósito de calcular y mostrar las métricas mencionadas anteriormente. También genera un plot con los valores de un vector BER, obtenido de las simulaciones. Para cada simulación, se

generará un valor de BER y éste se guarda en el *workspace*, para luego ser almacenado secuencialmente; vector con el cual se realiza el plot antes mencionado.

Los archivos .M considerados para el análisis, son los siguientes:

- Métricas_Modo1, Métricas_Modo2, y Métricas_Modo3, calculan la frecuencia IFFT, el ancho de banda del espectro de transmisión y la tasa binaria de transmisión. También se encuentran definidas para variaciones de modo de operación, esquema de modulación, codificación de canal, intervalo de guarda y el vector BER que se obtuvo de la concatenación secuencial desde *workspace*. Además con ellas se realiza el plot de BER VS. SNR respectivamente.
- Comparativa_FEC, recibe los vectores BER con el propósito de graficar las curvas BER vs SNR y comparar sus resultados para variaciones de la codificación de canal.
- Comparativa_Guarda, procesa los vectores BER con el objetivo de graficar las curvas BER vs SNR y comparar sus resultados en función de las variaciones del intervalo de guarda.
- Comparativa_Modulación, toma los vectores BER con el propósito de graficar las curvas BER vs SNR y comparar sus resultados de acuerdo a la configuración de esquema de modulación.

Adicionalmente se creó un modelo, con el fin de obtener las variaciones de BER en función de la codificación de canal como tal, puesto que ISDB-T_b es un sistema multi-tasa, y esto no permite una buena apreciación de este efecto.

En este modelo, la cantidad de datos generados se mantiene constante y lo que varia es la cantidad de bits producidos por el codificador elegido. (Figura 5.1)

> Parámetros de la simulación

Figura 5.1 Modelo de prueba para codificación de canal de factor *K_i* variable sobre un canal AWGN

Este esquema mantiene la codificación RS (204-188-8) fija, variando únicamente la codificación convolucional. Los bits se modulan en banda base con modulación I/Q y se transmiten a través de un canal AWGN. Lo que se trata de ver en este modelo, más que la modulación OFDM (IFFT/FFT), es la variación efectiva de la codificación de canal y su influencia en el resultado del BER.

Sus resultados se pueden ver en la figura 5.2, de la cual podemos decir que el factor de codificación de canal $K_i = 1/2$, resulta más tolerable al ruido respecto a los demás.

Este análisis es planteado con el fin de lograr una mejor comprensión de los resultados, así como también para justificar los mismos; que se tratarán en las secciones de variaciones de codificación de canal de los apartados: 5.3.2, 5.4.2 y 5.5.2.
5.3 Resultados de la Simulación y obtención de la curva BER vs SNR para el Modo 1.

A continuación se mostrarán los resultados obtenidos para el modelo propuesto:

5.3.1 Comparación del BER respecto al tipo de Modulación

Las variaciones que incluyen el modelo, respecto a esquemas de modulación son: DQPSK, QPSK, 16-QAM Y 64-QAM. En base a ellas, se realizaron las simulaciones manteniendo los parámetros restantes fijos, de acuerdo a la tabla 5.1. Para lograr una mejora del BER, se incluyó un AGC previo a su paso por el canal.

Der ort, er ort, ro erin y of erin						
Esquema de Modulación	Codificación Interna	N _{FFT}	Intervalo de Guarda	Canal Multitrayectoria		
DQPSK						
QPSK	1/2	2048	1/4	Tipo Rician		
16-QAM				AWGN – FSL		
64-QAM						

Tabla 5.1 Parámetros en Modo 1 para variaciones de modulación:DQPSK, QPSK, 16-QAM y 64-QAM

Nota: Los vectores de ganancia y de retardo para el canal Rician son definidos en el apartado 4.3.

Cada esquema de modulación no genera una cantidad fija de bits, por ejemplo, 16-QAM entrega el doble de bits en comparación a QPSK y la mitad en comparación a 64-QAM. Por esta razón, a pesar de que se obtuvieron valores distintos de bits totales, consideramos una cantidad total de 225600 bits. Éstos fueron utilizados como denominador base para el cálculo del BER, en todos los casos, y representan un valor cuantitativo considerable y favorable para el análisis. Se obtuvieron curvas independientes para cada tipo de modulación seleccionado, y su resultado de manera conjunta, se lo puede observar en la figura 5.3.

Se muestran los resultados para las curvas de color, las cuales representan lo siguiente:

 La curva azul, representa la variación del BER en función del SNR, para una modulación DQPSK,

- La curva verde, indica la variación del BER en función del SNR, para una modulación QPSK,
- La curva roja, concierne la variación del BER en función del SNR, para una modulación 16-QAM,
- La curva cyan, corresponde a la variación del BER en función del SNR, para una modulación 64-QAM.

Analizando la figura 5.3, nos damos cuenta que, existe un punto de intersección entre DQPSK y QPSK (BER=6%; SNR \approx 7dB). Para valores de SNR menores a 7 dB, la modulación QPSK resulta ser mejor que DQPSK.

Sin embargo, a medida que el SNR aumenta, DQPSK ofrece una transmisión sin error (BER=0) a partir de SNR ≥ 12dB, a diferencia de QPSK, que alcanza un límite de1.95% de BER.

De acuerdo a la tendencia de la gráfica, podemos inferir que, para modulaciones QPSK, 16-QAM y 64-QAM, el BER nunca alcanzará un valor de cero sin importar su correspondiente SNR.

Con esto, podemos decir, que la modulación DQPSK, es la más efectiva en cuanto a mitigación del efecto multipaso, en comparación a las demás. Inferimos, que éste alcanza valores de BER pequeños, e inclusive BER=0, para ambientes problemáticos.

A pesar de que DQPSK ofrece confiabilidad en la recepción, en contraposición nos brinda una tasa binaria lenta e igual a la cuarta parte de la tasa de transmisión de 64-QAM.

5.3.2 Comparación del BER en función de la Codificación de Canal

Los resultados que se analizarán fueron tomados bajo las especificaciones de la tabla 5.2. No se incluyó el bloque AGC previo a su paso por el canal para reducir los tiempos de simulación.

Codificación de Canal	Esquema de Modulación	N _{FFT}	Intervalo de Guarda	Canal Multitrayectoria
1/2				
2/3	16-QAM	2048	1/4	Respuesta Impulso
3/4				de Canal
5/6				ITU-R M.1225 con
7/8				FSL

Tabla 5.2 Parámetros en Modo 1 para variaciones de codificación de canal

De acuerdo a lo planteado en el apartado anterior 5.3.1, este esquema presenta características similares en cuanto a la cantidad de bits generados. En tal virtud, para nuestro análisis de codificación de canal, consideramos una cantidad total de 460224 bits comparados, para todos los casos.

Las curvas de la figura 5.4 tienen la siguiente asignación:

 La curva azul, indica la variación del BER en función del SNR, para variación de K_i = 1/2,

- La curva verde, representa la variación del BER en función del SNR, para $K_i = 2/3$,
- La curva roja, denota la variación del BER en función del SNR, para K_i = 3/4,
- La curva cyan, corresponde la variación del BER en función del SNR, para $K_i = 5/6$,
- La curva violeta, muestra la variación del BER en función del SNR, para K_i = 7/8.

La figura 5.4 muestra una singularidad, pues la curva obtenida para codificación de canal de $K_i = 7/8$, otorga valores de BER menores en comparación con la de $K_i = 5/6$. Se logró determinar la razón de esto, debido a que la cantidad de bits generados en cada segmento, es variable y dependiente del tipo de codificación de canal (ecuación 3.27). La cantidad de bits debe ser independiente e igual para cualquier codificación de canal, conceptos que fueron mencionados en apartado 5.2.

Para este tipo de canal y bajo estas consideraciones, observamos que el coeficiente convolucional de $K_i = 1/2$ resultó ser el más apropiado en cuanto a modulación 16-QAM, puesto que, ofrece menor susceptibilidad a los errores de bit.

Es importante recalcar que, la codificación RS (204-188-8) permanece igual para todos los casos, empero, el codificador convolucional varía de acuerdo al punzonado realizado, permitiendo la corrección de bits gracias a las operaciones y algoritmos que ejecuta.

5.3.3 Comparación del BER en función del Intervalo de Guarda

Las respuestas de simulación para las variaciones de prefijo cíclico, se muestran en la figura 5.5 bajo las especificaciones de la tabla 5.3.

Tabla 5.3 Parámetros en Modo 1 para variaciones de intervalo de guarda

Prefijo Cíclico	Esquema de Modulación	N _{FFT}	Codificación de Canal	Canal Multitrayectoria
1/4				
1/8	16-QAM	2048	1/2	Tipo Rician
1/16				AWGN – FSL
1/32				

Nota: Los vectores de ganancia y de retardo para el canal Rician son definidos en el apartado 4.3.

Una explicación detallada de cada curva vista en la figura 5.5 se expone a continuación:

- La curva azul, indica la variación del BER en función del SNR, para variación de Δ= 1/4,
- La curva verde, representa la variación del BER en función del SNR, para $\Delta = 1/8$,
- La curva roja, denota la variación del BER en función del SNR, para Δ= 1/16,
- La curva cyan, corresponde la variación del BER en función del SNR, para $\Delta = 1/32$.

Figura 5.5 Resumen variación de guarda Modo 1, 16-QAM, $K_i = 1/2$, guarda variable

De los resultados obtenidos, podemos deducir que no existe una mejoría notable entre uno u otro valor de intervalo de guarda seleccionado. Planteando el concepto de que, si el intervalo de guarda afecta al tiempo de símbolo, por ende, resultarán tasas binarias distintas para cada valor de guarda, efecto que se puede apreciar de acuerdo a la ecuación (3.25).

Bajo el concepto anterior, entonces conviene hacer un análisis en función de obtener la mayor tasa de transmisión posible, obviamente, sin que ésta afecte de manera significativa al BER, es decir, los intervalos de guarda más apropiados de acuerdo a este dilema son el de 1/16 así como el de 1/8.

Mientras menor sea el intervalo de guarda, se obtendrá una mayor tasa. Cabe recalcar que, no se noto una diferencia significativa en cuanto al BER en función del SNR, para las variaciones de prefijo cíclico, por lo que su elección quedará a libre elección y criterio del radiodifusor.

5.3.4 Resultados de los Parámetros de Transmisión Modo1

Los resultados obtenidos se compararán con el plan de pruebas de medición antes planteado (apartado 4.4), considerado por la norma que rige a ISDB-T_b. En cada una de las simulaciones para este modo de operación, se obtendrán los que caracterizan al sistema y se corroborará su cumplimiento frente a la norma.

5.3.4.1 Frecuencia de Muestreo de IFFT

Como se expuso anteriormente, la frecuencia de muestreo es constante y fija para todos los modos. Esta frecuencia de muestreo se asigna internamente en el código del archivo *Métricas_Modo1.m* en función del tiempo útil de símbolo y el número de muestras de la IFFT. Con esto se obtuvo el siguiente:

8.126984 MHz

Comparando este valor con la frecuencia de IFFT que se expuso en el plan de pruebas, se comprueba que su valor es el indicado.

5.3.4.2 Ancho de Banda y Espectro

Se usó el bloque *Spectrum Scope* para obtener la figura 5.6, el cual abarca todas las portadoras usadas para la transmisión.

Figura 5.6 Captura del espectro de emisión y recepción de ISDB-T_b en banda base para Modo 1

Los parámetros usados para la reproducción del espectro fueron:

- Esquema de modulación DQPSK,
- Codificación interna $K_i = 1/2$,
- Intervalo de guarda $\Delta = 1/4$, y
- Canal Multitrayectoria Rician AWG (SNR=22dB) con FSL.

Para cada símbolo, *Simulink* realiza una captura o grafica del espectro, de ahí que el número total de *frames* como lo llama *Simulink* es de 204, número correspondiente a la cantidad de símbolos OFDM transmitidos, que a su vez equivale a un cuadro OFDM. El espectro de color negro, corresponde a la sección tomada a la salida del transmisor.

Mientras que el de color rojo denota al espectro conseguido en la recepción incluyendo las afectaciones de canal. Como se ve en ambos casos, se mantiene su ancho de banda característico estimado en dos maneras:

- Gráficamente, utilizando la herramienta Zoom X-Axis que ofrece la ventana del gráfico dado por el Spectrum Scope, se obtiene un valor aproximado para el ancho de banda, de 5.576 MHz.
- Analíticamente, mediante la función Metricas_Modo1.m, utilizando la ecuación (4.9), se obtiene 5.575397 MHz.

Este análisis demuestra que se cumple con las especificaciones dadas en el apartado 4.4.2.

5.3.4.3 Tiempo de Símbolo OFDM

Se lo calculó utilizando el archivo *Metricas_Modo1.m*, el cual contiene en su programación la ecuación (2.20), para dicho

propósito. Éste depende del intervalo de guarda asignado, y sus distintos valores para el Modo 1, correspondieron a los resultados mostrados en la tabla 3.21.

Este parámetro se lo aprecia a la salida del transmisor OFDM, del modelo propuesto, mediante un bloque *probe*, que muestra el tiempo en que se transmiten las $N_{FFT} + G$ muestras correspondientes a un símbolo OFDM.

5.3.4.4 Tasa Binaria de Transmisión

El cálculo de ésta se lo realiza con los argumentos recibidos por la función del archivo *Metricas_Modo1.m*, y cuya ecuación se refleja en (3.25). Sus resultados fueron de acuerdo a los que se indican en la tabla 3.2.

Los datos binarios de los trece segmentos generados en el modelo, son procesados y transmitidos en el tiempo de cuadro OFDM, lo cual corresponde al concepto de tasa binaria, cumpliendo así, intrínsecamente con este requerimiento.

5.4 Resultados de la Simulación y obtención de la curva BER vs SNR para el Modo 2

Como ya se realizó para el Modo 1, se aplicará la misma metodología, y los resultados obtenidos se llevarán a comparación con el plan de

pruebas de medición. Se analizarán las gráficas correspondientes a las variaciones antes mencionadas, su gráfico de espectro y velocidades de transmisión que predominan este modo.

5.4.1 Comparación del BER respecto al tipo de Modulación

Se mantienen los esquemas de modulación planteados para el Modo

1. Lo que varía es obviamente, el número de subportadoras para el algoritmo de la IFFT.

El canal de prueba adoptado será el que se utilizó para el Modo 1. La presencia del AGC a la salida del transmisor, tiene la finalidad de mejorar el BER. Un resumen de sus parámetros de simulación se muestra en la tabla 5.4.

 Tabla 5.4 Parámetros en Modo 2 para variaciones de modulación:

 DQPSK, QPSK, 16-QAM y 64-QAM

Esquema de Modulación	Codificación Interna	N _{FFT}	Intervalo de Guarda	Canal Multitrayectoria
DQPSK				
QPSK	1/2	4096	1/4	Tipo Rician
16-QAM				AWGN – FSL
64-QAM				

Nota: Los vectores de ganancia y de retardo para el canal Rician son definidos en el apartado 4.3

Dado que cada esquema de modulación no forma una cantidad fija de bits como ya fue explicado, consideramos un número total de 460224 bits para la generación de la gráfica BER vs SNR en todos estos los casos. Las gráficas de BER vs SNR, variando la modulación, fueron realizadas de manera independiente, y su resultado se muestra en conjunto en la siguiente figura:

En la figura 5.7 podemos apreciar los resultados concernientes, representados por el color de cada curva. A continuación se detallará de manera explícita:

- La función en azul, corresponde a la variación del BER en función del SNR, para una modulación DQPSK,
- La curva verde, representa la variación del BER en función del SNR, para una modulación QPSK,

- La función en rojo, muestra la variación del BER en función del SNR, para una modulación 16-QAM,
- La curva cyan, indica la variación del BER en función del SNR, para una modulación 64-QAM.

En este caso, podemos ver que el punto de intersección entre modulaciones DQPSK y QPSK, se encuentra aproximadamente en los 4 dB para SNR, con una tasa de error de bit cercana a 13%, en comparación con el Modo 1. Tomando este punto de referencia, para valores de SNR menores a 4 dB, la modulación QPSK da mejores resultados que DQPSK, respecto al BER. Pero, a medida que el SNR aumenta,

DQPSK brinda una transmisión con BER = 4.454×10^{-4} a partir de SNR ≥ 16dB, a diferencia de QPSK, que alcanza un límite de 6,16% de BER. Aseguramos que para SNR ≥ 22dB, DQPSK da un BER = 0.

De la tendencia de las curvas obtenidas, podemos deducir que, para modulaciones QPSK, 16-QAM y 64-QAM, el BER nunca llegará a cero sin importar su correspondiente valor de SNR, esto significa que, para transmisiones en medios problemáticos la modulación DQPSK es la mejor en términos de BER. A pesar de que DQPSK ofrece confiabilidad en la recepción, en contraposición nos brinda una tasa binaria lenta e igual a la cuarta parte de la tasa de transmisión de 64-QAM.

5.4.2 Comparación del BER en función de la Codificación de Canal

Los resultados que se analizaron bajo los detalles de la tabla 5.5. Al igual que en el Modo 1, no se incluyó el bloque AGC previo a su paso por el canal, con el fin de reducir los tiempos de simulación y obtener una mejor apreciación de los resultados.

Codificación de Canal	Esquema de Modulación	N _{FFT}	Intervalo de Guarda	Canal Multitrayectoria
1/2				
2/3	16-QAM	4096	1/4	Respuesta Impulso
3/4				de Canal
5/6				ITU-R M.1225
7/8				con FSL

Tabla 5.5 Parámetros en Modo 2 para variaciones de codificación de canal

Como ya se ha tratado al igual que en el Modo 1, en esta sección la cantidad de bits generados variará dependiendo de su factor de codificación aplicado. Por lo tanto, para nuestro análisis de codificación de canal, consideramos un total de 929472 bits comparados y utilizados para el cálculo del BER en todos los casos.

Las curvas de la figura 5.8 tienen la siguiente correspondencia:

 La curva azul, indica la variación del BER en función del SNR, para variación de K_i = 1/2,

- La función verde, representa la variación del BER en función del SNR, para $K_i = 2/3$,
- La curva roja, denota la variación del BER en función del SNR, para K_i = 3/4,
- La curva cyan, corresponde la variación del BER en función del SNR, para K_i = 5/6,
- La curva violeta, muestra la variación del BER en función del SNR, para $K_i = 7/8$.

Del análisis respectivo de la figura 5.8, se observa que la curva obtenida para codificación de canal de $K_i = 7/8$, presenta valores de BER menores en comparación con la curva cyan. Esto se debe, a que la cantidad de bits generados en cada segmento, es variable y dependiente del tipo de codificación de canal (ecuación 3.27). La cantidad de bits debe ser independiente e igual para cualquier codificación de canal, conceptos que fueron mencionados en apartado 5.2.

Bajo estas consideraciones, exponemos que el coeficiente convolucional de $K_i = 1/2$ resultó ser el más adecuado en cuanto a modulación 16-QAM, puesto que, ofrece menor probabilidad a errores de bit.

Cabe recalcar que, la codificación RS (204-188-8) permanece igual para todos los casos.

5.4.3 Comparación del BER en función del Intervalo de Guarda

Los resultados de la simulación para las variaciones de prefijo cíclico, se muestran en la figura 5.9 bajo las descripciones de la tabla 5.6.

Tabla 5.6 Parámetros en Modo 2 para variaciones de intervalo de guarda

Prefijo Cíclico	Esquema de Modulación	N _{FFT}	Codificación de Canal	Canal Multitrayectoria
1/4				
1/8	16-QAM	4096	1/2	Tipo Rician
1/16				AWGN – FSL
1/32				

Nota: Los vectores de ganancia y de retardo para el canal Rician son definidos en el apartado 4.3.

Los detalles para cada curva mostradas en la figura 5.9, son:

- La función azul, indica la variación del BER en función del SNR, para variación de $\Delta = 1/4$,
- La curva verde, representa la variación del BER en función del SNR, para $\Delta = 1/8$,
- La curva roja, denota la variación del BER en función del SNR, para Δ= 1/16,
- La curva cyan, corresponde a la variación del BER en función del SNR, para $\Delta = 1/32$.

Figura 5.9 Resumen variación de guarda Modo 2, 16-QAM, $K_i = 1/2$, guarda variable

Es notable deducir, que no existe una mejoría abismal entre uno u otro valor de intervalo de guarda seleccionado. Se mantiene el concepto de que, si el intervalo de guarda afecta al tiempo de símbolo, entonces, resultarán tasas binarias distintas para cada valor de guarda elegido (ecuación 3.25).

Como se da a entender en la ecuación (3.25), mientras menor sea el intervalo de guarda seleccionado, obtendremos una mayor tasa binaria.

Ante esta realidad, es conveniente hacer un análisis en función de lo anterior considerando el menor BER posible.

De acuerdo a este dilema, el intervalo de guarda más apropiado sería el de 1/32. En cuanto al BER, el factor de 1/4 ofrece una menor tasa de error de bit.

Debemos mencionar que, para este tipo de simulaciones, se utilizaron 929472 bits para el cálculo del BER.

5.4.4 Resultados de los Parámetros de Transmisión Modo 2

Los resultados conseguidos se compararán con el plan de pruebas de medición antes tratado, con el soporte de los modelos simulados y archivos .m creados.

5.4.4.1 Frecuencia de Muestreo de IFFT

Recordando tópicos anteriores, la frecuencia de muestreo es constante y fija para todos los modos. Esta frecuencia de muestreo se asigna internamente en el código del archivo *Métricas_Modo2.m* en función del tiempo útil de símbolo y el número de muestras de la IFFT. Con lo cual se obtiene el siguiente valor:

8.126984 MHz

Tomando como referencia el valor de la frecuencia de IFFT teórica, expuesta en el plan de pruebas, corroboramos su veracidad con los resultados de la simulación de este modo.

5.4.4.2 Ancho de Banda y Espectro

El bloque Spectrum Scope permite visualizar la figura 5.10, donde se aprecian las características espectrales asignadas para la transmisión ISDB-T_b de nuestro modelo planteado.

Figura 5.10 Captura del espectro de emisión y recepción de ISDB-T_b en banda base para Modo 2

Los parámetros empleados para la obtención del espectro fueron:

• Esquema de modulación 16-QAM,

- Codificación interna $K_i = 2/3$,
- Intervalo de guarda $\Delta = 1/8$, y
- Canal Multitrayectoria Rician AWG (SNR=22dB) con FSL.

Asimismo, notamos la presencia de 204 frames representando al total de símbolos OFDM transmitidos, equivalentes a un cuadro OFDM. El espectro de color negro, concierne a la sección tomada a la salida del transmisor. Mientras que el de color rojo manifiesta al espectro conseguido en la recepción incluyendo las afectaciones dadas por el canal.

Como se ve en ambos casos, se conserva su ancho de banda. Además el ancho de banda del espectro es estimado de igual manera, como lo fue para el Modo 1, es decir, gráfica y analíticamente, dando como resultado 5.574 MHz y 5.5734127 MHz, respectivamente.

5.4.4.3 Tiempo de Símbolo OFDM

Su valor fue provisto a través del archivo *Metricas_Modo2.m*, el cual contiene en sus líneas de código de programación, la ecuación (2.20), para tal propósito. Éste se encuentra en función del intervalo de guarda seleccionado, y sus distintos valores para el Modo 2 son mostrados en la tabla 3.7.

De igual manera, ya que usamos el mismo modelo para las simulaciones de este modo de operación, apreciamos a la salida del transmisor mediante el bloque *probe*, el tiempo de símbolo OFDM, de acuerdo a la tabla 3.21 para este modo.

5.4.4.4 Tasa Binaria de Transmisión

Este parámetro se lo calcula mediante la ecuación (3.25), programada en el archivo *Metricas_Modo2.m*. Sus resultados fueron también de acuerdo a los que se indican en la tabla 3.2, puesto que, haciendo un análisis matemático a la ecuación (3.25), notamos que, manteniendo fijos los parámetros de transmisión (Δ , K_i, b_p), y variando el modo, sus valores se mantienen independientes del mismo ya que el número de portadoras de datos por segmento se duplican en el numerador, de la misma manera que en el denominador se duplica el tiempo útil de símbolo.

Debido a esto podemos tomar los resultados dados en la tabla 3.2 y aplicarlos para este modo de operación del estándar.

El modelo asegura el valor de la tasa binaria de transmisión dada en la tabla 3.2, ya que genera la cantidad de bits exactos correspondientes a los trece segmentos y los transmite en el tiempo de cuadro OFDM, por lo cual decimos, que el modelo cumple con la tasa binaria.

5.5 Resultados de la Simulación y obtención de la curva BER vs SNR para el Modo 3

A continuación se presentarán los resultados de las simulaciones configuradas para el Modo 3. Se seguirá el mismo procedimiento comparativo, tal como se lo hizo para modos anteriores, considerando variaciones frente a esquemas de modulación, codificación de canal e intervalo de guarda.

5.5.1 Comparación del BER respecto al tipo de Modulación

La tabla 5.7 muestra los parámetros del sistema, con los cuales se efectuarán las experimentaciones. Los parámetros restantes, así como el canal de pruebas utilizado mantienen sus características, tal cual fueron presentados en secciones anteriores pertinentes.

Esquema de Modulación	Codificación Interna	N _{FFT}	Intervalo de Guarda	Canal Multitrayectoria
DQPSK				
QPSK	1/2	8192	1/4	Tipo Rician
16-QAM				AWGN – FSL
64-QAM]			

Tabla 5.7 Parámetros en Modo 3 para variaciones de modulación: DQPSK, QPSK, 16-QAM y 64-QAM

Nota: Los vectores de ganancia y de retardo para el canal Rician son definidos en el apartado 4.3

Para este caso, el total de bits analizados para él cálculo del BER, fueron 929472 bits, este número de bits se lo utilizó para todas las variaciones de modulación por razones que ya fueron expuestas en apartados 5.3.1 y 5.4.1. Sus resultados son mostrados en la siguiente figura:

Por consiguiente se detallará de manera explícita la correspondencia de cada una de las curvas:

 La función en azul, representa a la variación del BER en función del SNR, para una modulación DQPSK,

- La curva verde, denota la variación del BER en función del SNR, para una modulación QPSK,
- La función en rojo, indica la variación del BER en función del SNR, para una modulación 16-QAM,
- La curva cyan, es asignada para variación del BER en función del SNR, con una modulación 64-QAM.

Aplicando un análisis gráfico, notamos que existe también un punto común entre modulaciones DQPSK y QPSK, el mismo que se encuentra aproximadamente en los 3 dB para SNR, con una tasa de error de bit cercana a 17.5%, en comparación con modos anteriores.

Con esto, es factible expresar que, para valores de SNR menores a 3 dB, la modulación QPSK resulta más efectiva que DQPSK, respecto al BER.

Empero, a medida que el SNR aumenta, DQPSK promete una transmisión con un BER $\leq 7.22 \times 10^{-4}$ (cercanos a cero) a partir de SNR \geq 18dB, a diferencia de QPSK, que alcanza un límite del 8,15% de BER. DQPSK asegura un BER = 0 para valores de SNR \geq 22dB.

Los resultados obtenidos no difieren de análisis anteriores, es decir, para transmisiones en canales que tienen mayor probabilidad de error (canales multitrayectoria y de desvanecimiento a larga escala), el esquema DQPSK ofrece una mayor confiabilidad, con posibilidades de obtener un BER=0. En contraste a esquemas 16-QAM y 64-QAM, su tasa binaria es menor.

Como análisis final de esta sección, tenemos la certeza que, modulaciones 16-QAM y 64-QAM serían las ideales para canales que ofrecen menores susceptibilidades a errores como AWGN, dado que se aprovecharía su tasa binaria de transmisión alta, obteniendo bajas tasas de error para valores de SNR altos.

Esto es una característica deseada en sistemas de comunicación y utilizada en los medios cableados.

5.5.2 Comparación del BER en función de la Codificación de Canal

En esta sección se variará el tipo de codificación de canal de acuerdo a los parámetros propuestos en la tabla 5.8.

Codificación de Canal	Esquema de Modulación	N _{FFT}	Intervalo de Guarda	Canal Multitrayectoria
1/2				
2/3	16-QAM	8192	1/4	Respuesta Impulso
3/4				de Canal
5/6				ITU-R M.1225 con
7/8				FSL

Tabla 5.8 Parámetros en Modo 3 para variaciones de codificación de canal

En todos los casos se utilizará una cantidad de 1867968 bits para el cálculo del BER. Las curvas de la figura 5.12 detallan la variación del

BER en función del SNR para sus distintas variaciones de factor de codificación. Su detalle es el siguiente:

- La función azul, indica la variación del BER en función del SNR, para variación de $K_i = 1/2$,
- La gráfica verde, representa la variación del BER en función del SNR, para $K_i = 2/3$,
- La curva roja, denota la variación del BER en función del SNR, para K_i = 3/4,
- La función cyan, corresponde la variación del BER en función del SNR, para K_i = 5/6,
- La curva violeta, muestra la variación del BER en función del SNR, para $K_i = 7/8$.

La tendencia esperada con respecto a codificación de canal, se presenta en la figura 5.2. De lo cual analizando y comparando con la figura 5.12, visualizamos que la curva obtenida para codificación de canal de $K_i = 7/8$, presenta valores de BER menores en comparación con la curva correspondiente a $K_i = 5/6$, singularidad debida a que la cantidad de bits generados en cada segmento, es variable y es dependiente del tipo de codificación de canal usado (ecuación 3.27). Razón por la cual se agregó el modelo descrito en la figura 5.1.

A pesar de esto, la función en azul, correspondiente a codificación de 1/2 presenta un mejor rendimiento en cuanto a valores de BER, en

comparación con las demás para la modulación aplicada en estos resultados (16-QAM).

Para canales con menos probabilidad de error, podemos usar un coeficiente convolucional de 7/8, el cual compensará una tasa de velocidad mayor, pues disminuye la redundancia a nivel de bits que se generan a la salida del mismo. A diferencia del codificador 1/2, éste reduce la tasa efectiva binaria, aumentando los bits de salida del codificador, mejorando la capacidad de corrección de errores, en desmedro a la tasa binaria de transmisión. Es importante mencionar que, la codificación RS (204-188-8) mantiene su esquema en todos los casos.

5.5.3 Comparación del BER en función del Intervalo de Guarda

En lo referente a variación del intervalo de guarda, la tabla 5.9 establece los parámetros bajo los cuales se realizaron las simulaciones respectivas.

Prefijo Cíclico	Esquema de Modulación	N _{FFT}	Codificación de Canal	Canal Multitrayectoria
1/4				
1/8	16-QAM	8192	1/2	Tipo Rician
1/16				AWGN – FSL
1/32				

Tabla 5.9 Parámetros en Modo 3 para variaciones de intervalo de guarda

Nota: Los vectores de ganancia y de retardo para el canal Rician son definidos en el apartado 4.3.

Los detalles de la figura 5.13 se presentan a continuación:

- La gráfica en azul, indica la variación del BER en función del SNR, para variación de Δ= 1/4,
- La curva verde, representa la variación del BER en función del SNR, para Δ= 1/8,
- La función roja, denota la variación del BER en función del SNR, para Δ= 1/16,
- La curva cyan, muestra la variación del BER en función del SNR, para $\Delta = 1/32$.

A simple vista se observa que, las curvas mantienen su tendencia a permanecer muy cercanas a lo largo del eje SNR. No existe una

mejoría notable en función del intervalo de guarda seleccionado. Si el intervalo de guarda afecta al tiempo de símbolo, entonces, esto afectará a las tasas binarias obtenidas para cada valor de guarda elegido (ecuación 3.25).

La medida en que afecta el intervalo de guarda a la velocidad de transmisión, es inversamente proporcional, es decir, mientras menor sea el intervalo de guarda seleccionado, obtendremos una mayor tasa binaria. Ante esta situación, es favorable hacer un análisis en función de lo anterior, teniendo presente el menor BER posible.

Acorde a este dilema, el intervalo de guarda más apropiado sería el de 1/32 para tasa de transmisión. En cuanto al BER, el factor de 1/16 ó 1/32, nos ofrece una menor tasa de error de bit. Todo lo anterior considera un total de 1867968 bits para el cálculo del BER.

5.5.4 Resultados de los Parámetros de Transmisión Modo 3

Todos los parámetros de transmisión detallados a continuación, serán cerciorados frente al plan de pruebas de medición antes mencionado. Nos apoyamos de los modelos simulados y archivos .m creados para la presente tesis.

5.5.4.1 Frecuencia de Muestreo de IFFT

A través del uso del archivo *Métricas_Modo3.m*, logramos obtener la frecuencia de muestreo IFFT en función del tiempo útil de símbolo y el número de muestras usadas en la IFFT, correspondientes a este modo, el cual nos dio el siguiente valor:

8.126984 MHz

Comparándolo con la frecuencia IFFT teórica de la sección 4.4.1, reconocemos su autenticidad en cuanto a los resultados en estas simulaciones.

5.5.4.2 Ancho de Banda y Espectro

Los espectros mostrados en la figura 5.14, se refieren a los obtenidos tanto en el transmisor como en el receptor de nuestro modelo propuesto para el estándar ISDB-T_b.

Figura 5.14 Captura del espectro de emisión y recepción de ISDB-T_b en banda base para Modo 3

Los parámetros utilizados para la obtención del espectro fueron:

- Esquema de modulación 64-QAM,
- Codificación interna $K_i = 3/4$,
- Intervalo de guarda $\Delta = 1/8$, y
- Canal Multitrayectoria Rician AWG (SNR=22dB) con FSL.

El espectro en color negro, representa al espectro en banda base de transmisión, mientras que el de color rojo presenta el espectro en banda base del receptor incluyendo los fenómenos de canal. Los 204 frames mostrados en la esquina inferior izquierda de la figura 5.14, son equivalentes al total de símbolos OFDM transmitidos. Para ambos casos, su anchura de banda se encuentra dentro de las limitantes dadas en el plan de mediciones. Se estima de igual manera, como lo fue para modos anteriores, es decir, gráfica y analíticamente, dando como resultado 5.573 MHz y 5.57242 MHz, respectivamente.

Finalmente, de la figura 5.14 se observa que para un valor de frecuencia de ± 3 MHz, el espectro de transmisión experimenta una caída aproximada de 140 dB respecto a la potencia de transmisión de 1 Watio (0 dB), lo cual quiere decir, que dentro de los 6 MHz de ancho de banda se cumple con el planteamiento que la norma plantea.

5.5.4.3 Tiempo de Símbolo OFDM

Su valor fue dado a través del archivo *Metricas_Modo3.m*, para lo cual se escribió en sus líneas de programación, la correspondiente ecuación (2.20). Éste parámetro se encuentra en función del intervalo de guarda seleccionado, y el tiempo útil de símbolo, conforme al Modo 3 (1008 µs). Los resultados son mostrados de acuerdo a los distintos valores presentados en la tablas 3.21, la cual enfoca un resumen en la que se observan los distintos parámetros correspondientes a los modos y configuraciones de transmisión.
Por medio del modelo propuesto (figura 4.4), obtenemos el tiempo de símbolo a la salida del transmisor. Su resultado es de acuerdo a la tabla 3.8, y esto le confiere veracidad al modelo planteado.

5.5.4.4 Tasa Binaria de Transmisión

El archivo *Metricas_Modo3.m*, a más de graficar la curva de BER correspondientes a las configuraciones seleccionadas para la simulación, tiene como propósito además, calcular la tasa binaria conforme a ésta selección de parámetros mediante la ecuación (3.25), que consta dentro de sus líneas de programación.

Considerando tal ecuación, nos percatamos que, la tasa binaria se encuentra en función únicamente de Δ , K_i , b_p , conclusión tomada del análisis hecho en la sección 5.4.4.4. En tal virtud, éste valor depende únicamente de éstos parámetros, más no del modo de operación.

Dado que, el modelo genera el flujo de bits correspondiente a los trece segmentos y los transmite en el tiempo de cuadro, podemos aseverar, que de esta forma el modelo cumple con la tasa binaria.

Bajo estos fundamentos, podemos acoger los resultados dados en la tabla 3.2 y asignarlos para este modo de operación.

CONCLUSIONES Y RECOMENDACIONES

Una vez concluida la presente tesis de investigación respecto al tema planteado, consideramos importante derivar y deducir de los resultados de las simulaciones, las siguientes conclusiones:

- 1. Se determinó que la característica principal en relación a la tasa binaria R_b , yace en que no depende de los parámetros que definen el modo de transmisión seleccionado, ya que la relación entre L_D (Número de portadoras de datos para un segmento) y T_u (Tiempo útil de símbolo OFDM), L_D/T_u , se mantiene invariable para los tres modos. Conclusión de acuerdo al análisis matemático realizado en la sección 5.4.4.4 proveniente de la ecuación (3.25). Con esto, podemos decir que la tasa binaria depende únicamente de la codificación de canal K_i , del esquema de modulación b_p y de la duración del intervalo de guarda Δ .
- 2. La tasa binaria o velocidad de transmisión, para modelos de comunicaciones inalámbricas, requiere de un compromiso entre la

misma y el BER, debido a que, si se seleccionaran modulaciones de alta codificación de bits (64-QAM), existen altas velocidades de transmisión, pero a su vez, mayor probabilidad de error. Esto se comprobó de manera experimental, para el modelo propuesto ISDB-T_b, realizando simulaciones secuenciales para los distintos tipos de modulación en banda base, codificación de canal e intervalo de guarda, frente a canales multitrayectoria.

En contraposición, para modelos de canales alámbricos (SNR \ge 40 dB), en los cuales el modelo de canal AWGN es el indicado para dicho propósito; no presenta una mayor susceptibilidad a errores de transmisión, permitiendo el uso de modulaciones de alta codificación de bits e inclusive codificaciones de canal de baja redundancia (factor K_i mayor), lo cual aportaría al incremento de la tasa de transmisión.

 Debido a los criterios utilizados para la degradación de la dispersión de retardo y a la dispersión Doppler de canales multitrayectoria (apartado 4.3), ultimamos que, las características de canales empleados para las simulaciones del modelo ISDB-T_b propuesto, pueden ser categorizados como: de Desvanecimiento Selectivo en Frecuencia y de Desvanecimiento Lento.

Decimos que es de Desvanecimiento Selectivo en frecuencia debido al cumplimiento de la relación $B_w \gg B_c$, y de Desvanecimiento Lento, ya

que los canales utilizados cumplen con la relación $B_w \gg B_D$. Por tal motivo, el receptor presentará en su espectro caídas de potencia en frecuencias aleatorias, como lo muestra por ejemplo el resultado para el modo 3 (figura 5.14) y similares modos de operación. Desvanecimientos que se mantendrán inalterables para cada símbolo OFDM transmitido.

- 4. Dado que se estudió la naturaleza de los canales multitrayectoria, se observó que éstos generan mayores desvanecimientos o caídas de potencia en modulaciones de mayor orden de codificación de bits (16-QAM, 64-QAM); en comparación a modulaciones DQPSK y QPSK. Con esto inferimos que, en la recepción se generarán mayor o menor cantidad de errores de bits, en función de lo antes dicho.
- 5. El valor del ancho de banda del sistema (B_W), para cada modo de operación está de acuerdo a los siguientes valores: 5.575397 MHz, 5.5734127 MHz y 5.57242 MHz, para Modo 1, Modo 2 y Modo 3 respectivamente. Estos valores se mantienen para cada modo simulado sin importar los parámetros (b_p, K_i, Δ) que se hayan definidos, como se obtuvieron en los resultados. La forma característica del espectro OFDM se puede observar en las figuras 5.6, 5.10 y 5.14.

Además, en los resultados se logró comparar y corroborar la duración total de símbolos OFDM (T_S), frecuencia de muestreo de la IFFT (f_{IFFT}) y la tasa binaria de transmisión (R_b); cumpliendo con el plan de pruebas

de medición para los tres modos de operación definidos en el estándar para transmisión permisible de ISDB-T_b.

6. El uso del Control Automático de Ganancia (AGC) en el transmisor, fue de gran ayuda para la disminución de la cantidad de bits erróneos recibidos, originados por los de desvanecimientos que se experimentaron por el canal multitrayectoria.

Como medida de corrección, frente al modelo de propagación propuesto, fue obligatorio incluir un AGC en el receptor, para lograr compensar la pérdida de potencia introducida por el modelo de canal de pérdida por espacio libre (FSL).

- 7. Los parámetros de transmisión $(N_{FFT}, b_p, K_i, \Delta)$ deben ser seleccionados en función a la distancia del enlace de comunicación, frecuencia de portadora, terreno o ambiente de propagación y demás factores que influyan en la pérdida de potencia, que experimenta la señal recibida y consecuentemente, afecten en la probabilidad de error en la recepción.
- 8. Se implementó una codificación de canal simplificada, basándose en las características proporcionadas por el estándar ISDB-T_b, el cual incluye una codificación externa basada en codificación RS (204-188-8) y una codificación interna generada por la codificación convolucional con

punzonado, el cual es uno de los parámetros primordiales del sistema, y que es seleccionado previo a la simulación.

9. El esquema de modulación OFDM puede ser configurado de manera robusta, confiable y con una baja susceptibilidad a errores, interferencia intersimbólica e interferencia Co-canal. Esto la convierte en una excelente opción para la transmisión ISDB-T_b, pero creemos que se podría alcanzar un mejor rendimiento, por medio de la implementación de SOFDM (Spread OFDM), lo cual tendría como objetivo lograr menores niveles de BER para esquemas de modulación 16-QAM y 64-QAM en canales multitrayectoria.

ANEXO

GUIA PARA SIMULACION Y ANALISIS DEL MODELO OFDM APLICADO AL ESTÁNDAR ISDB-T₀

1. OBJETIVOS

- Entender los principios de generación de datos y su transmisión jerárquica en ISDB-T_b.
- Comprender la estructura de los símbolos OFDM para su transmisión por el canal simulado.
- Simular un modulador OFDM basado en los parámetros del estándar de televisión digital ISDB-T_b.
- Observar los efectos de un canal multitrayectoria para una transmisión OFDM.

2. FUNDAMENTOS TEORICOS

OFDM

OFDM (Orthogonal Frequency Division Multiplexing), es una técnica de modulación multiportadora, la cual se basa en los algoritmos de la IFFT en el modulador y la FFT en el demodulador, para su implementación. Esto permite el cumplimiento de la ortogonalidad de una manera rápida en procesamiento para una señal basa en muestras discretas.

Figura 1. Estructura correspondiente a un cuadro OFDM

La figura 1, muestra la estructura asignada a un cuadro OFDM. Un cuadro OFDM equivale a la transmisión consecutiva de símbolos OFDM.

El número de muestras que se usarán para los algoritmos deben ser necesariamente potencia de dos. Bajo la plataforma de OFDM, previo al mapeo de bits y modulación OFDM como tal, se puede aplicar algún esquema de codificación de canal para corrección de errores en los bits de datos, lo cual en cierta forma contrarresta los efectos del canal. Por otro lado, una vez realizado el algoritmo de la IFFT, es posible incluir la inserción de muestras correspondientes al intervalo de guarda.

ISDB-T_b

El estándar ISDB-T_b (Integrated Services Digital Broadcasting – Terrestrial – Built-In), está orientado a la transmisión de TV Digital Terrestre con modificaciones brasileñas del estándar japonés. Basa su funcionamiento en la modulación OFDM, cumpliendo las siguientes características, implementadas en el modelo propuesto:

- Codificación de canal externa Reed Solomon (204-188-8)
- Codificación convolucional para el transmisor y algoritmo de Viterbi para la decodificación.
- Mapeado de símbolos I/Q (DQPSK, QPS, 16-QAM y 64-QAM)
- Entramado de símbolos I/Q para preparación de éstos previo la IFFT
- Bloque de la IFFT (Modulador OFDM), FFT para el demodulador.
- Inserción y extracción del intervalo de guarda. (El intervalo de guarda de aplica después del modulador OFDM)

Un diagrama de bloques del sistema se muestra en las figuras 2 y 3.

Figura 2. Sistema de transmisión ISDB-T_b

La siguiente tabla resume los parámetros que pueden ser configurados para la simulación del esquema OFDM aplicado al estándar ISDB-T_{b.}

	Puntos N _{FFT}		
Parámetro	Modo 1: 2048	Modo 2: 4096	Modo 3: 8192
Factor Convolucional <i>K_i</i>	$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}$		
Esquema de Modulación b _p	DQPSK; QPSK; 16-QAM; 64-QAM		
Intervalo de guarda Δ	$\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$		
Distancia	0.01 ~ 1 <i>Km</i>		
Frecuencia	55~890 <i>MHz</i>		

Tabla 1. Parámetros y valores configurables del estándar ISDB-T_b

Tiempo de Símbolo OFDM

El tiempo de símbolo, corresponde a la duración total que conlleva la transmisión de un símbolo OFDM. El tiempo de cada símbolo dependerá del modo y del intervalo de guarda seleccionado. Su expresión viene dada por:

$$T_S = T_u(1 + \Delta)$$

Para los siguientes valores de T_u :

- 252 µs, para el modo 1;
- 504 µs, para el modo 2; y
- 1008 µs, para el modo 3.

Ancho de Banda

El ancho de banda de la señal OFDM transmitida, bajo las especificaciones del estándar se lo calcula mediante la siguiente expresión:

$$B_W = \frac{(13 \times L_D) + 1}{N_{FFT}} \times f_{IFFT}$$

Donde,

 L_D , resulta ser la cantidad de portadoras de datos por segmento, N_{FFT} , es el número de portadoras que se aplicarán en los algoritmos IFFT/FFT, f_{IFFT} , es la frecuencia de muestro del algoritmo IFFT/FFT. Éste parámetro es invariante para los tres modos de transmisión.

Para los siguientes valores de L_D :

- 96 portadoras de datos, para el modo 1;
- 192 portadoras de datos, para el modo 2; y
- 384 portadoras datos, para el modo 3.

El estándar es operable para los 3 modos indicados en la tabla 1. Además de los parámetros que se pueden configurar para cualquiera de ellos.

3. HERRAMIENTAS A UTILIZAR

- Computadora con memoria RAM mínima de 4 GB
- Software Matlab 2012

4. PROCEDIMIENTOS PARA LA SIMULACIÓN

Se usarán dos modelos en MATLAB-SIMULINK para las respectivas simulaciones: Generacion_Data_Practica.mdl e ISDBTb_OFDM.mdl.

Generacion_Data_Practica.mdl

Los datos generados en el bloque de generación de data, serán los necesarios para cumplir con la transmisión de un cuadro OFDM, el cual procesado posteriormente por el modelo en Simulink Ilamado, ISDBTb_OFDM.mdl se usará para la transmisión.

Este archivo incluye todo el proceso de generación de los 13 segmentos de datos. Se configuran los parámetros de simulación que se desean poner a prueba en el modelo ISDBTb_OFDM.mdl, en donde se deja listo el flujo para la transmisión jerárquica.

ISDBTb_OFDM.mdl

Aquí se procesan los flujos de datos correspondientes a las capas jerárquicas (capa A=1 segmento; capa B=7 segmentos; capa C=5segmentos). Se realizará la codificación de canal respectiva, mapeo de símbolos I/Q, entramado, modulación OFDM e inserción del intervalo de guarda. El receptor realizará los procesos inversos. Todo conforme a los parámetros de transmisión seleccionados en el modelo Generación_Data_Practical.mdl.

Los pasos para las simulaciones, son los siguientes:

1. Ejecutar el modelo *Generación_Data_Practica.mdl*, dentro del cual se encontrará el bloque de ajuste de parámetros (figura 4).

Figura 4. Bloque de Asignación de parámetros

2. Seleccionar los parámetros de transmisión del sistema, dando doble clic sobre el bloque de *Ajuste de Parámetros*. Mostrados en la siguiente figura:

Block Parameters: Ajuste de Parámetros		
Parámetros de la Simulación de OFDM (mask)		
Este bloque muestra los parámetros que se utilizan previo a la simulacion OFDM, Se eligen:		
*Puntos o Numero de suportadoras para el algoritmo de la IFFT (Define el Modo del estandar). *Codificacion interna (Define el factor Ki)		
*Modulacion o Mapeo de Simbolos (Tipo de mapeo o constelacion I-Q utilizada		
*Prefijo Ciclico (factor del intervalo de guarda para el prefijo ciclico) Ademas de los parametros para el valor de Free space loss del enlace (FSL)		
*Frecuencia de portadora a la que opera.		
Con estos parametros se calculara todo lo necesario para realizar la Simulacion.		
Parameters		
Puntos para la FFT 8192		
Codificador Convolucional 7/8		
Modulacion de Simbolos Q-PSK		
Prefijo Ciclico 1/4		
Distancia (km)		
0.2		
Frecuencia de la Portadora (MHz)		
500		
Tipo de Canal Canal Tipo Rician		
OK Cancel Help Apply		

Figura 5. Máscara del bloque de Ajuste de Parámetros de Simulación

- 3. Simular el sistema y observar los resultados que aparecen en el WorkSpace.
- 4. Una vez concluida ésta simulación, elegir el valor de SNR para el canal en el modelo *ISDBTb_OFDM.mdl*, indicado en el bloque del canal. Luego se procede a ejecutar dicho archivo.

EXPERIMENTO 1

Realizar los pasos 1 al 4 para distintas configuraciones de transmisión. En el paso 2, elegir en el campo "Tipo de Canal" sin canal.

EXPERIMENTO 2

Realizar los pasos 1 al 4 para distintas configuraciones de transmisión. En el paso 2, elegir en el campo "Tipo de Canal" el canal AWGN.

EXPERIMENTO 3

Realizar los pasos 1 al 4 para distintas configuraciones de transmisión. En el paso 2, elegir en el campo "Tipo de Canal" el canal RICIAN.

5. GRAFICAS Y RESULTADOS OBTENIDOS

Ubicar en los cuadros indicados las gráficas correspondientes a:

Espectro de la señal OFDM transmitida y recibida sin Canal Tiempo de símbolo OFDM: BER obtenido:

Espectro de la señal OFDM transmitida y recibida Canal AWGN Tiempo de símbolo OFDM: BER obtenido:

6. OBSERVACIONES Y CONCLUSIONES

> Realizar los experimentos 1, 2 y 3 para tres o cuatro configuraciones de

transmisión. ¿Qué sucede con el ancho de banda del espectro?

Para cada experimento, y para cada una de las variaciones de transmisión elegidas, ¿cómo se ve afectado la tasa de error de bit?

> Corroborar el tiempo de símbolo en la simulación, mediante la fórmula dada.

GLOSARIO

	Association of Radio Industries and Businesses
AKIB	Asociación de Industrias de Radio y Empresas
AGC	Automatic Gain Control
	Control Automático de Ganancia
ADSL	Asymmetric Digital Subscriber Line
	Línea Digital del Suscriptor Asimétrica
	Aditive White Gaussian Noise
AWGN	Ruido Blanco Gaussiano Aditivo
	Analogical Front-End
AFE	Terminación Analógica (de un dispositivo)
	Automatic Repeat Request
ANQF	Solicitud de Repetición Automática
ATSC	Advanced Television System Committee
AISC	Comité de Sistemas de Televisión Avanzada
	Associação Brasileira de Normas Técnicas
	Asociación Brasileña de Normas Técnicas
BER	Bit Error Rate
	Tasa de error de bit
b_p	Número de bits por símbolo I/Q para mapeo de la constelación
PDSK	Binary Phase Shift Keying
DFSK	Modulación por desplazamiento binario de fase
RDF	Band-Pass Filter
	Filtro Pasa Banda
B _{WSC}	Ancho de banda para portadora única
B _{WOFDM}	Ancho de banda de una señal OFDM
B _{WC}	Ancho de banda del canal
B _{WS}	Ancho de un segmento de datos
B_W	Ancho de banda de una señal
BTS	Broadcast Transport Streams
	Flujo de Transporte TS
b _T	Cantidad de bits de datos entregados por N paquetes TSP por
	segmento
b_S	Cantidad de bits de datos transmitidos en un segmento
b_C	Cantidad de bits transmitidos en un cuadro para los trece
	segmentos
B _D	Máxima frecuencia de dispersión Doppler
B _C	Ancho de banda coherente del canal
CONATEL	Consejo Nacional de Telecomunicaciones
COFDM	Coded OFDM
	OFDM Codificada
CCETT	Centre Commun d'Études de Télévision et Télécommunications
	Centro Conjunto para el Estudio de la Televisión y de Telecomunicaciones

C_k	Coeficientes en frecuencia discreta de ponderación del canal
СР	Cyclic Prefix
	Prefijo Cíclico
	Continue Pilot
CF	Piloto Continuo
	Complex Programmable Logic Device
	Dispositivo Lógico Programable Complejo
C(bps)	Capacidad de canal de Shannon
C/N	Carrier to Noise
C/N	Relación Portadora a Ruido
	Constante de velocidad de la luz
Δ	Factor de intervalo de guarda
	Digital Video Broadcasting – Terrestrial
DVB-1	Difusión de Video Digital – Terrestre
	Digital Subscriber Line
DSL	Línea Digital del Suscriptor
DET	Discrete Fourier Transform
DFI	Transformada Discreta de Fourier
DBDSK	Differential Binary Phase Shift Keying
DBF 3R	Modulación diferencial por desplazamiento binario de fase
DOPSK	Differential Quadrature Phase-Shift Keying
	Modulación diferencial en cuadratura por desplazamiento de fase
рмт	Discrete Multi-Tone
	Multitono Discreto
DR _{OFDM}	Tasa de datos ideal para OFDM con N _{FFT} portadoras de datos
DR _{SC}	Tasa de datos ideal para SC
DIEBEG	Digital Broadcasting Experts Group
	Grupo de Expertos de Transmisión Digital
dB	Decibelios
$D_A[TSP]$	Ajuste de retardo en números de TSP
ES	Elementary Stream
E9	Flujo Elemental
EXOR	Exclusive Or
	O exclusive
f_k	k-ésima frecuencia ortogonal
<i>f</i> _{IFFT}	Frecuencia de muestreo para los algoritmos de la IFFT/FFT
f_R	Frecuencia de reloj para el BTS
FEC	Forward Error Correction
	Corrección del Siguiente Error
FHSS	Frequency Hopping Spread Spectrum
	Espectro Ensanchado con Salto en Frecuencia
FPGA	Field Programmable Gate Array
	Arregio de Compuertas Programables de Campo
FDM	Frequency Division Multiplexing

FFT	Fast Fourier Transform
	Free Space Loss
FSL	Pérdida de Espacio Libre
GSM	Global System for Mobile Communications
	Sistema Global para las Comunicaciones Móviles
GF	Galois Field
	Campo de Galois
GL	Guard Intervals
GI	Intervalos de Guarda
G	Valor del intervalo de guarda en número de subportadoras
G_1 , G_2	Bandas laterales para guarda en frecuencia
ноту	High Definition Television
	I elevisión de Alta Definición
IEEE	Institute of Electronics and Electrics Engineers
	Instituto de Ingenieros Electricos y Electronicos
ISDB-T	Padiadifusián Digital da Sarvicias Tarrastras Integradas
	Integrated Services Digital Broadcasting Terrestrial-Built In
ISDB-T _b	Radiodifusión Digital de Servicios Terrestres Integrados Brasilero
	International Telecommunication Union Radiocommunication
ITU-R	Unión Internacional de Telecomunicaciones Sector de Radiocomunicaciones
	In-Phase/In-Quadrature (Keying)
I/Q	(Modulación) En Fase/En Cuadratura
ICCT	Inverse Fast Fourier Transform
	Transformada Rápida de Fourier Inversa
ISI	Inter-symbolic Interference
	Interferencia Intersimbólica
ICI	Inter-Channel Interference
	Interferencia Intercanal
IDFT	Transformada Discreta da Fourier Inversa
	ISDB-T Information Packet
IIP	Paquete de Información ISDB-T
K.	Coeficiente de codificación externa para codificación Reed Solomon
K:	Coeficiente de codificación interna para codificación convolucional
LAN	Local Area Network
	Red de Área Local
LO	Local Oscilator
	Oscilador Local
LOS	Line Of Sight
	Línea de Vista
עדתו	Low-definition televisión
	I elevisión de baja definición
L	Numero de portadoras para 13 segmentos
L _S	Numero de portadoras activas (datos + piloto), de un segmento
L_D	Número de portadoras de datos para un segmento

L _{FSL}	Pérdida debido al espacio libre
MATLAB	MATrix LABoratory
	Laboratorio de Matrices
MPEG-2	Moving Pictures Experts Group 2
	Grupo 2 de Expertos en Imágenes en Movimiento
	Multiple Input/Multiple Output
	Múltiples Entradas y Múltiples Salidas
MISO	Multiple Input/Single Output
101130	Multiples Entradas y una Sola Salida
MSB	Most Significant Bit
N _{FFT}	Cantidad de puntos de muestras para el algortimo de la IFFT/FFT
n_k	Componente de frecuencia discreta para AWGN
NLOS	Non-Line Of Sight
11200	Sin Linea de Vista
N	Cantidad de paquetes TSP en un segmento
N _{TSP}	Numero total de paquetes TSP en el flujo BTS
NTSC	National Television System Committee
	Comision Nacional de Sistema de Television
OFDM	Orthogonal Frequency Division Multiplexing
	Multiplexación Ortogonal por División de Frecuencia
OFDMA	Ortnogonal Frequency Division Multiple Access
	Acceso Multiple por Division de Frecuencias Ortogonales
PES	Fackel Elementaly Stream
	Plujo de Paqueles Elementales
PAPR	Pear-10-Average Fower Railo Relación de Potoncia Pice a Promodio
	Pseudo-Random Binary Sequence
PRBS	Secuencia Binaria Pseudo-Aleatoria
	Phase Shift Keving
PSK	Modulación por Desplazamiento de Fase
QAM	Quadrature Amplitude Modulation
	Modulación por Amplitud en Cuadratura
QPSK	Quaternary-Phase Shift Keving
	Modulación por Desplazamiento Cuaternario de Fase
Rx	Receptor
R	Tasa de bits de datos
Rc	Tasa de bits de datos de un sgemento
RF	Radio-Frequency
	Badiofrecuencia
R(hns)	Tasa de bits del estándar ISDB-T _b en bits por segundo
11(000)	Root Mean Square
RMS	Baíz de la Media al Cuadrado
SIMULINK	Entorno de programación visual, que funciona sobre el entorno de
	programación Matlab.
	Signal to Noise Ratio
SNR	Relación Señal a Ruido

SBTVD	Sistema Brasileiro de Televisão Digital	
	Sistema Brasileño de Televisión Digital	
SOFDM	Spread OFDM	
	OFDM Disperso	
20	Single Carrier	
SC	Portadora Única	
SNR _k	Relación k-ésima Señal a Ruido	
OLNI	Single Frequency Network	
SEN	Red de Frecuencia Única	
SIMO	Single Input/Multiple Output	
SIMO	Una Sola Entrada y Múltiples Salidas	
9190	Single Input/Single Output	
3130	Una Sola Entrada y una Sola Salida	
SDTV	Standard-Definition Television	
3010	Definición Estándar de Televisión	
S	Relación de Tc a Ts	
Tx	Transmisor	
тот	Terrestrial Digital Television	
	Televisión Digital Terrestre	
T_G	Tiempo de guarda	
T_u	Tiempo útil de símbolo	
T_s	Tiempo de símbolo OFDM	
T _{SSC}	Tiempo de símbolo en portadora única	
t _r	Tiempo de retardo de la señal	
те	Transport Stream	
13	Flujo de Transporte	
TSD	Transport Stream Packet	
13P	Paquete de Flujo de Transporte	
T_{C}	Tiempo de cuadro OFDM	
ТМСС	Transmission Multiplexing Configuration Control	
	Control de Configuración para Transmisión Multiplexada	
T_b	Tiempo de bit	
UHF	Ultra High Frequency	
	Frecuencia Ultra Alta	
VHF	Very High Frequency	
	Frecuencia Muy Alta	
$X(\omega)$	Transformada de Fourier de una señal en el tiempo	
\hat{x}_n	Transformada Inversa discreta de Fourier en el tiempo	
$\hat{X}_{(k)}$	Transformada discreta de Fourier en la frecuencia	
xDŚL	Sigla genérica para toda la familia de tecnologías de DSL	
Δf	Separación en frecuencia de cada subportadora	
σ_{RMS}	Valor de retardo RMS	

BIBLIOGRAFÍA

- [1] Consejo Nacional de Telecomunicaciones, CONATEL, Resolución 084-05-CONATEL-2010.
- [2] Wikipedia Foundation, <u>http://en.wikipedia.org/wiki/OFDM</u>, fecha de consulta Junio 2013.
- [3] Pisciotta Nestor O., Sistema ISDB-T_b, Profesor Asociado, Cátedra de Televisión y Procesamiento de Imágenes Centro de Investigación Aplicada y Desarrollo en Informática y Telecomunicaciones (CIADE-IT) – Universidad Blas Pascal.
- [4] Norma Brasileña, ABNT NBR 15601, Televisión Digital Terrestre Sistema de Transmisión ISDB-T_b, primera edición 30.11.2007.
- [5] Wikipedia Foundation, <u>http://wikitel.info/wiki/OFDM</u>, fecha de consulta Junio 2013.
- [6] Proakis John G., MasoudSalehi, Fundamentals of Communication Systems, Pearson Prentice Hill.
- [7] Sklar Bernard, Digital Communications Fundamentals and Applications, Second Edition.
- [8] Moreno G. Ignacio, Implementación Hardware de un Transmisor/Receptor para comunicaciones mediante PLC según G3-PLC, Proyecto de Grado, Universidad Pontificia Comillas.
- [9] Acosta A. Rodrigo, Estudio Teórico Práctico de los Códigos No Binarios de Reed-Solomon para la Detección y Corrección Múltiple de Errores Utilizando el Método Matricial, Escuela Politécnica Nacional, Julio 1994.
- [10] Espitia Juarez Jesús, Codificador Reed Solomon en Software, Tesis de Grado, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica.

- [11] Haykin Simon, Sistemas de Comunicación, LIMUSA WILEY 4ta. Edición.
- [12] Guillén Esperanza, Estudio y Propuesta de la Factibilidad Técnica, Social y Económica del Sistema SBTVD-T (Sistema Brasileño de Televisión Digital Terrestre) en el Ecuador, Escuela Politécnica Nacional.
- [13] Couch Leon W., Sistemas de Comunicación Digitales y Analógicos, Prentice Hall Séptima Edición, 2008.
- [14] A. Cortés, I. Vélez, M. Turrillas and J. F. Sevillano, Fast Fourier Transform Processors: Implementing FFT and IFFT Cores for OFDM Communication Systems, TECNUN (Universidad de Navarra) and CEIT.
- [15] Vergara G. José, Simulación de un Esquema de Modulación/Demodulación OFDM Utilizando un Modelo de Canal Multitrayectoria, Tesis de Grado, Escuela Superior Politécnica del Litoral, 2008.
- [16] Taan S. ElAli, Discrete Systems and Digital Signal Processing with Matlab, CRC Press, 2000.
- [17] Donozo F. Alvaro, Marz A. Tatiana, Ortiz M. Omar, Modulación OFDM Terrestre, Universidad Católica Boliviana "San Pablo", Abril 2012.
- [18] Guan, Y.L., Song, Z., Zhang, K., Meng, H. y Wang, Y., Statistical Bit-Loading and Power-Control for OFDM Systems with Unequal Subcarrier Fading Distributions, Nanyang Technological University, Singapore. International Symposium on Communication Systems, Networks and Digital Signal Processing, UK. Julio 2002.
- [19] Olson, M., A Rapid Prototype of an IEEE802.11a Synchronizer, Linköping University, Linköping, Suecia. Noviembre 13, 2002.
- [20] Yuan, N., An Equalization Technique for High Rate OFDM Systems University of Saskatchewan, Canada. Diciembre 2003.
- [21] Ramjee Prasad, OFDM for Wireless Communication Systems, Artech House universal personal communications series, 2004.
- [22] Sampath, H., Talwar, S., Tellado, J., Erceg, V.y Paulraj, A., A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design, Performance, and Field Trial Results, IEEE Communications Magazine. Septiembre 2002.

- [23] Harada, H., Prasad, R., Simulation and Software Radio for Mobile Communications, Artech House. Boston, Londres, 2002.
- [24] Wouters, M., Vanwijnsberghe, G., Van Wesemael, P., Tom Huybrechts, T., Thoen, S., Real Time Implementation on FPGA of an OFDM based Wireless LAN modem extended with Adaptive Loading, IMEC-DESICS, Heverlee, Belgium. Proceedings European Solid-State Circuit Conference – ESSCIRC. Septiembre 23 al 27, 2002.
- [25] Superintendencia de Telecomunicaciones, SUPERTEL, Informe para la Definición e Implementación de la Televisión Digital Terrestre en el Ecuador, 19 Marzo de 2010.
- [26] Loyola A. Luis, Televisión Digital al Alcance de Todos, Una Introducción Simple al Estándar Japonés ISDB-T y a las Telecomunicaciones Modernas, Bubok Publishing, 2011.
- [27] Uehara Michihiro, Application of MPEG-2 Systems to Terrestrial ISDB (ISDB-T). Proceedings of the IEEE, Vol. 94, N° 1, January 2006.
- [28] Sotelo Rafael, Durán Diego, Joskowicz José, Sistema de Transmisión ISDB-T, Memoria de Trabajos de difusión Científica y Técnica núm 9, 2011.
- [29] Lee Sam Jhong, Miller Leonard E., CDMA Systems Engineering Handbook, Artech House Publishers Mobile Communications Series, USA, 1998.
- [30] Seybold John S., Introduction to RF Propagation, Wiley, 2005.
- [31] Recommendation ITU-R M.1225, Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000.
- [32] Wikipedia Foundation, <u>http://en.wikipedia.org/wiki/Discrete-time Fourier transform</u>, fecha de consulta Octubre del 2013.
- [33] Punskaya Elena, Fast Fourier Transform (FFT), some material adapted from courses by Prof. Simon Godsill, Dr. Amaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner, Christ's College Cambridge.