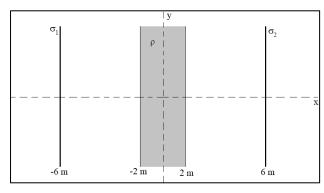


ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL


FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

AÑO:	2017	PERIODO:	SEGUNDO TÉRMINO
MATERIA:	FÍSICA II	PROFESORES:	Flores Bolívar, Heredia Tamara, Montero Eduardo, Moreno Carlos, Sacarelo José
EVALUACIÓN:	SEGUNDA	FECHA:	Febrero 8 del 2018

	COMPROMISO DE HONOR	
compromiso, reconozco que el ordinaria para cálculos aritmétic examen; y, cualquier instrument algún otro material que se encuer en esta evaluación. Los temas de	al firmar este presente examen está diseñado para ser resuelto de manera individual, que puedo usar una calculadora cos, un lápiz o esferográfico; que solo puedo comunicarme con la persona responsable de la recepción del o de comunicación que hubiere traído, debo apagarlo y depositarlo en la parte anterior del aula, junto con ntre acompañándolo. No debo además, consultar libros, notas, ni apuntes adicionales a las que se entreguen bo desarrollarlos de manera ordenada. omiso, como constancia de haber leído y aceptar la declaración anterior.	
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".		
Firma	NÚMERO DE MATRÍCULA:PARALELO:	

TEMA 1 (45%)

Una placa infinita cargada con una carga por unidad de volumen uniforme p tiene una lámina cargada con carga por unidad de área σ_1 a su izquierda y una lámina cargada con carga por unidad de área σ_2 a su derecha, como muestra la figura 1. La placa es infinita en la dirección y y en la dirección z (fuera de la página). La figura 2 muestra el potencial eléctrico V(x) en voltios debido a esta placa cargada y las dos láminas cargadas en función de la distancia horizontal x desde el centro de la placa. El potencial V no depende de y o z.

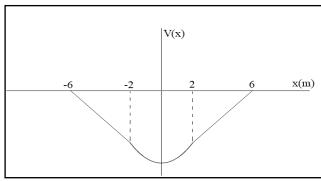
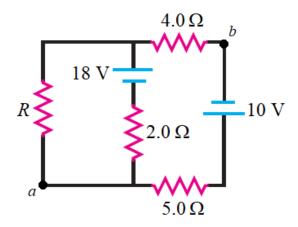


Figura 1

Figura 2

El potencial eléctrico V(x) es una función lineal en las regiones -6 m < x < -2 m y 2 m < x < 6 m. En la región -2 m < x < 2 m, el potencial eléctrico V(x) es una función cuadrática de x dado por: $V(x) = \frac{5}{16}x^2 - \frac{25}{4}$

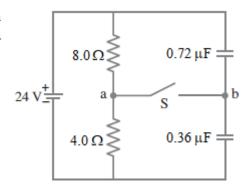

$$V(x) = \frac{5}{16}x^2 - \frac{25}{4}$$

ESTE TEMA CONTINÚA EN LA SIGUIENTE CARILLA

	sus respuestas a las siguientes preguntas (donde corresponda) en términos de ε_0 . ¿Cuál es el campo eléctrico en la región -6 m $< x < -2$ m? (5%)
b)	¿Cuál es el campo eléctrico en la región 2 m < x < 6 m? (5%)
c)	¿Cuál es el campo eléctrico en la región $-2 \text{ m} < x < 2 \text{ m}$? (5%)
d)	Use la ley de Gauss y sus respuestas anteriores para encontrar una expresión para la densidad de carga ρ de la placa. Indique la superficie gaussiana que usa en una figura. (15%)
e)	Use la ley de Gauss y sus respuestas anteriores para encontrar la densidad de carga de la superficie de la lámina cargada izquierda σ_1 . Indique la superficie gaussiana que usa en una figura. (15%)

TEMA 2 (20%)

En el circuito de la figura se tiene que $V_{ab} = 0$. Calcule: a) la corriente en el resistor de 5.0 Ω . (5%)


b) la diferencia de potencial entre los extremos de la resistencia de 2.0 Ω . (5%)

c) la potencia consumida en R. (10%)

TEMA 3 (35%)

Dos resistores y dos capacitores se acomodan como se ilustra en la figura. Suponga que la configuración ha estado conectada a la fuente durante mucho tiempo.

a) ¿Cuál es el potencial en el punto a con el interruptor S abierto? (Sea V = 0 en la terminal negativa de la fuente). (5%)

b) ¿Cuál es el potencial en el punto b con el interruptor abierto? (10%)

c) Cuando el interruptor se cierra, ¿cuál es el potencial final del punto b? (5%)

d) ¿Cuánta carga fluye a través del interruptor S después de que se cierra? (15%)