ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"Aprovechamiento de las Aguas de los Ríos Angamarca y Sinde en la Provincia de Bolívar para el Desarrollo de una Central Hidroeléctrica"

TESIS DE GRADO

Previo a la obtención del Título de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACION POTENCIA

Presentado por:

Luz Alexandra Lucero Tenorio
Christian Matías Letamendi Espinoza
Leoncio Marcelo León Tamayo

GUAYAQUIL – ECUADOR Año: 2006

AGRADECIMIENTO

A todas las personas que de uno u otro modo colaboraron en la realización de este trabajo, entre ellos el Ing. Juan Saavedra Mera, nuestro director de tesis у especialmente al personal Central técnico de la Hidroeléctrica Marcel Laniado De Wind, por su invaluable ayuda.

DEDICATORIA

A DIOS
A NUESTRAS FAMILIAS
A NUESTROS AMIGOS DE LA
CENTRAL HIDROELECTRICA
MARCEL LANIADO DE WIND

TRIBUNAL DE GRADUACION

Ing. Holger Cevallos Ulloa SUB-DECANO DE LA FIEC PRESIDENTE Ing. Juan Saavedra Mera DIRECTOR DE TESIS

Ing. Gustavo Bermúdez Flores VOCAL

P.h.D. Cristóbal Mera Gencón VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, nos corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

uz Alexandra Lucero Tenorio

Christian Matías Letamendi Espinoza

Leoncio Marcelo León Tamayo

RESUMEN

El Instituto Ecuatoriano de Electrificación – INECEL – dedicó gran parte de su esfuerzo en llevar a cabo estudios para la construcción de centrales hidroeléctricas en el país, que hoy en día representan una inversión atractiva para el sector privado a mas de representar una solución al problema del sector eléctrico; de aquí parte nuestro proyecto, con el fin de satisfacer parte de la demanda en el país.

Como base para este proyecto se llevo a cabo el reconocimiento del sitio donde se ejecutarán las obras que se ubican entre las poblaciones de Moraspungo y de El Corazón en las provincias de Bolívar y Cotopaxi.

En la segunda parte del estudio, se recolectaron datos de las cuencas motivo de este estudio, datos proporcionados por el Instituto Nacional de Meteorología e Hidrología (INAMHI), desde el año 1962 hasta 1999, siendo casi imposible obtener datos de estos últimos años debido al deterioro de las estaciones hidrológicas y meteorológicas.

En este análisis hidrológico y meteorológico se deducen los caudales medios y de diseño de los ríos mediante estadísticas del historial de datos.

A la par de los estudios meteorológicos e hidrológicos, el Instituto Ecuatoriano de Electrificación llevó a cabo estudios ambientales, ya que este factor es muy importante y determina un equilibrio entre el medio ambiente y el proyecto.

Como tercera parte de nuestro estudio, una vez determinadas las condiciones hidrológicas y meteorológicas se realizó las proyecciones energéticas anuales, para el periodo de vida útil del proyecto, paralelamente se dimensionó las obras civiles, como: bocatoma, tubería de presión, canales, reservorio y casa de máquinas. También se procedió a seleccionar y determinar las turbinas y la cantidad de estas.

Como parte final del proyecto se estableció un presupuesto referencial considerando la obra civil, hidráulica, eléctrica, mecánica, gastos financieros y administrativos, para elaborar una evaluación económica en un periodo de 50 años y estimar todos los costos y desembolsos anuales así como las ganancias que generaría al implementar esta central hidroeléctrica.

ÍNDICE GENERAL

RESUMEN	I
ÍNDICE GENERAL	III
ABREVIATURAS	. VII
SIMBOLOGÍA	
ÍNDICE DE CUADROS	IX
ÍNDICE DE FIGURAS	
ÍNDICE DE PLANOS	XI
INTRODUCCIÓN	1
CAPÍTULO 1	
1. RECONOCIMIENTO DE SITIO	2
1.1. Vías de acceso	3
1.2. Ecología	7
1.3. Hidrografía	
CAPÍTULO 2	
2. GEOLOGIA Y GEOTECNIA	
2.1. Características geomorfológicas	
2.2. Características litológicas	
2.2.1. Formación Macuchi (Cretácico - Eoceno)	
2.2.2. Depósitos cuaternarios	
2.2.3. Rocas Intrusitas	
2.3. Características estructurales	
CAPÍTULO 3	
DIAGNOSTICO AMBIENTAL PRELIMINAR	
3.1. Fragiljdad Ecológica	20
3.1.1. Áreas de susceptibilidad geomorfológica y de	
amenazas naturales	21
3.1.2. Áreas de susceptibilidad biótica	
3.1.2.1. Los Ecosistemas Naturales	
3.1.2.2. Ecosistemas Artificiales	
3.2. Los potenciales impactos del ambiente hacia el proyecto	23
3.2.1. Reducción de la vida útil del proyecto	24
3.3. Impactos potenciales en el área de influencia directa	24
3.3.1. Descripción de impactos identificados en el área de	_
influencia directa	
CAPÍTULO 4	35

4. HIDE	OLOGÍA	.35
4.1.	Geografía y características físicas de la zona del proyecto	. 36
4.2.	Clima	. 37
4.3.	Precipitación	. 39
4.4.	Características Hidrográficas	. 40
4.4.	1. Pilaló En La Esperanza	. 41
4.4.	2. Las Juntas D.J. Sinde	. 41
4.4.	3. Angamarca en Pihuapungo	. 42
4.4.	4. Zapotal en Lechugal	. 42
4.4.	5. Echeandía en Echeandía	. 43
4.5.	Caudales medios diarios	. 43
4.6.	Análisis de frecuencia y variación estacional	. 44
4.7.	Caudal ecológico	. 45
4.8.	Estudio de crecidas	. 46
4.8.	1. Frecuencias de crecidas en las estaciones	. 46
4.8.	2. Crecidas en los puntos de derivación	. 47
4.9.	Sedimentología	. 48
4.10.	Calidad Del Agua	. 49
CAPITULO 5	-)	. 51
5. PROI	DUCCIONES ENERGÉTICAS	.51
5.1.	Condiciones de Cálculo	. 52
5.2.	Potencia Garantizada	. 52
	Energía Firme	
CAPÍTULO 6	j	. 54
6. DISE	ÑO DEL PROYECTO	. 54
6.1.	Obra Civil	. 54
6.1.	= · · · · · · · · · · · · · · · · · · ·	
6.1.	2. Obras de Cierre y captación en el Río Sinde	. 56
6.1.		
6.1.	4. Sistema de conducción a superficie libre	. 58
6.2.	Obra Hidráulica	. 60
6.2.		
6.2.	2. Reservorio de Regulación y Tanque de Cabecera	. 60
6.2.	3. Conducto de baja presión	. 61
6.2.	4. Chimenea de equilibrio	. 62
6.2.	5. Tubería de presión	. 62
6.2.		
6.2.	7. Características del sistema hidráulico	. 65
6.3.	Equipos Mecánicos	. 66
6.3.		
6.3.	2. Válvula de guardia	. 71
6.3.3	3. Sistema de agua potable y de servicios	. 72

6.3.4. Si	istema de aire comprimido	73
6.3.5. Si	istema de ventilación y aire acondicionado	73
6.3.6. Si	istema de drenaje	74
	s Eléctricos	
6.4.1. D	iagrama unifilar del sistema eléctrico	74
	enerador	
6.4.3. Es	stator	75
6.4.4. R	otor	76
6.4.5. C	ojinetes	77
6.4.6. V	entilación y refrigeración	77
6.4.7. Ej	jes de acoplamiento	78
	renos y gatos	
6.4.9. Se	ensores inductivos de proximidad	78
6.4.10. Si	istema de excitación	78
	ispositivos de detección y medición	
	nterruptor del generador	
6.4.13. Ti	ransformador del generador	80
	isyuntor 138 KV	
6.4.15. Se	eccionador de 138 KV	82
	ararrayos de 138 KV	
	istema de control y protección	
6.4.18. Se	ervicios auxiliares	85
6.4.19. Si	istema de iluminación	85
6.4.20. Si	istemas de ductos y bandejas	86
	istema de tierra y apantallamiento	
	istema De Transmisión	
PRESUPUES	TO DE OBRAS	88
	Civiles	
	s Electromecánicos e Hidromecánicos	
	onexión con el Sistema Nacional	
,7.4. Presup	uesto Referencial	90
CAPITULO 8		91
	N ECONÓMICA Y FINANCIERA	
	ción Económica	92
	ostos de Inversión y de Operación – Mantenimiento	
(0	D&M)	92
	ida Úṭil	
	asa de Descuento	
	eposiciones Intermedias	
	recios de Venta de la Potencia y Energía	
8.1.6. C	ostos y Beneficios Actualizados	94

8.2. Evaluación Financiera	95
8.2.1. Costos de Depreciación	95
8.2.2. Prima por Seguros	
8.2.3. Impuestos	
8.2.4. Financiamiento	
OBSERVACIONES Y RECOMENDACIONES	97
CONCLUSION	
APENDICES	
APENDICE A: TRANSPOSICION DE CAUDALES	103
APENDICE B: CAUDAL DE DISEÑO	
APENDICE C: CAUDAL DE RECURRENCIA	
ANEXO DE CUADROS	
ANEXO DE GRÁFICOS	
BIBLIOGRAFIA	

ABREVIATURAS

INAMHI Instituto Nacional de Meteorología e Hidrología

INECEL Instituto Ecuatoriano de Electrificación

SNI Sistema Nacional Interconectado

db Decibelesha HectáreasKm Kilómetrosm Metros

m.s.n.m. Metros sobre el nivel del mar
 NMC Nivel máximo observado
 NME Nivel mínimo observado
 NMN Nivel medio normal

QMC Caudal máximo observado
QME Caudal mínimo observado
QMN Caudal medio normal

Queb. Quebrada

IVA Impuesto al valor agregado TIR Tasa interna de retorno

VAN Valor Actual Neto

Ε este 0 Oeste S Sur NE Noreste NO Noroeste SO Suroeste SE Sureste PU Por unidad

SIMBOLOGÍA

% Porcentaje

°C Grados centigrados

A Area

Ad Área de drenaje
CC Centímetros cúbicos
F(x) Función dependiente de x

g Gravedadh altura

 η_{Γ} Rendimiento del Generador

H_n Altura Neta

η_τ Rendimiento de la Turbina
 kg/s Kilogramos por segundos
 Km² Kilómetros cuadrados

Km²/estación Kilómetros cuadrados por estación

m/s Metros por segundos m² Metros cuadrados

m³/seg Metros cúbicos por segundos

P Potencia [MW]
p probabilidad
Q Caudal

Q_s Caudal líquido [m³/s]

Q_I Caudal sólido en suspensión [kg/s]

ρ Densidad del Aguat/año Toneladas por añoTr Tiempo de recurrencia

X evento

Xr Evento de magnitud especificada
Cv Coeficiente de pérdidas en una turbina

u Velocidad de la turbina

D Diámetro de la rueda de la turbina

d_i Diámetro del chiflón

ÍNDICE DE CUADROS

CUADRO 2.1: GEOLOGIA Y GEOTECNIA DE LOS SITIOS DE OBRAS	. 112
CUADRO 3.1: VULNERABILIDAD A LA EROSIÓN Y MOVIMIENTOS EN	
MASA	. 114
CUADRO 3.2: ECOSISTEMAS NATURALES	. 115
CUADRO 3.3: ECOSISTEMAS ARTIFICIALES	
CUADRO 4.1: ESTACIONES HIDROMÉTRICAS	. 117
CUADRO 4.2: TEMPERATURA Y HUMEDAD RELATIVA	. 119
CUADRO 4.3: TEMPERATURA MEDIA [°C]	. 120
CUADRO 4.4: HUMEDAD RELATIVA [%]	
CUADRO 4.5: PRECIPITACION MEDIA MENSUAL [mm]	. 128
CUADRO 4.6: PRECIPITACION MEDIA [mm]	. 129
CUADRO 4.7: REGISTRO DE AFOROS	
CUADRO 4.8: CAUDALES MEDIOS MENSUALES [m³/seg]	
CUADRO 4.9: ANÁLISIS FÍSICO – QUÍMICO DEL AGUA	
CUADRO 7.1: PRESUPUESTO REFERENCIAL DE LA OBRA CIVIL	. 150
CUADRO 7.2: PRESUPUESTO REFERENCIAL DE EQUIPOS	. 153
CUADRO 7.3: PRESUPUESTO REFERENCIAL DE LÍNEA DE	
TRANSMISIÓN	
CUADRO 7.4: PRESUPUESTO REFERENCIAL	. 155
CUADRO 8.1: EVALUACION ECONÓMICA DEL PROYECTO ANGAMARCA	
SINDE	. 156
CUADRO 8.2.a: EVALUACION FINANCIERA DEL PROYECTO	
ANGAMARCA SINDE	. 157
CUADRO 8.2.b: CRONOGRAMA DE REEMBOLSO DEL CREDITO	. 158
CUADRO 8.2.c: ESTADO DE PERDIDAS Y GANANCIAS	
CUADRO 8.2.d: FLUJO DE CAJA	. 160
CUADRO 8.2.e: PRIMA POR CONCEPTO DE SEGURO	. 161

ÍNDICE DE FIGURAS

GRÁFICO 4.1:	HUMEDAD RELATIVA [%]	164
GRÁFICO 4.2:	TEMPERATURA [°C]	
GRÁFICO 4.3(a)): CURVA DE DESCARGA ESTACIÓN: PILALO LA	
_	ESPERANZA PERIODO: 1962 – 1965	166
GRÁFICO 4.3(b)): CURVA DE DESCARGA ESTACIÓN: PILALO LA	
	ESPERANZA PERIODO: 1965 – 1999	167
GRÁFICO 4.4(a)): CURVA DE DESCARGA ESTACIÓN: LAS JUNTAS DJ	
	SINDE PERIODO: 1963 – 1965.,	168
GRÁFICO 4.4(b)): CURVA DE DESCARGA ESTACIÓN: LAS JUNTAS DJ	
	SINDE PERIODO: 1983 – 1998.,	169
GRÁFICO 4.5(a)): CURVA DE DESCARGA ESTACIÓN: ANGAMARCA EN	
,	PIHUAPUNGO PERIODO: 1984 - 1987	170
GRÁFICO 4.5(b)): CURVA DE DESCARGA ESTACIÓN: ANGAMARCA EN	
,	PIHUAPUNGO PERIODO: 1988 – 1999	171
GRAFICO 4.6(a)): CURVA DE DURACION DE CAUDALES MEDIOS	
,	DIARIOS SITIO: ANGAMARCA EN LA TOMA	172
GRAFICO 4.6(b)): CURVA DE DURACION DE CAUDALES MEDIOS	
,	DIARIOS SITIO: SINDE EN LA TOMA	173
GRAFICO 4.7(a)): FRECUENCIA DE CRECIDAS SITIO: ANGAMARCA EN	
,	LA TOMA	174
GRAFICO 4.7(b)): FRECUENCIA DE CRECIDAS SITIO: SINDE EN LA	
,	TOMA	175
GRÁFICO 4.8:		
,	EN ANGAMARCA EN PIHUAPUNGO	
GRÁFICO 5.1:	POTENCIA GARANTIZADA	
GRÁFICO 5.2:	PRODUCCION DE POTENCIA	
GRÁFICO 6.1:	SELECCIÓN DE TURBINA	180

ÍNDICE DE PLANOS

0221-C-001 0221-C-002 0221-C-100 0221-C-102 0221-C-300 0221-C-302 0221-C-400 0221-C-402 0221-C-522 0221-C-601 0221-C-601 0221-C-701 0221-C-701 0221-C-800 0221-C-801 0221-C-802	Localización Geográfica del Estudio Plano Geológico Toma en Angamarca: implantación Toma en Angamarca: Perfiles longitudinales Toma en Sinde: implantación Toma en Sinde: Perfiles longitudinales Toma en Sinde: desarenador – planta Toma en Sinde: desarenador – cortes Canal de Conducción de Carga: Secciones típicas Reservorio de Regulación Reservorio: Planta Tanque de Cabecera y Conducto de Baja Presión Conducto de Baja Presión: Planta y Perfil Longitudinal Tubería de Presión Tubería de Presión
0221-C-802	Tubería de Presión
0221-C-803	Tubería de Presión
0221-C-803	Tuberia de Presion
0221-C-900	Casa de Máquinas: Implantación

INTRODUCCIÓN

Con miras a mejorar el sector eléctrico ecuatoriano, se ha planteado como solución la instalación de pequeñas centrales hidroeléctricas a lo largo de la cuenca del río Guayas; es así que la tesis plantea el aprovechamiento de los ríos Angamarca y Sinde para suplir la demanda, con la construcción de una Central Hidroeléctrica de 50 MW.

Se tomaron como referencia los estudios en factibilidad avanzada elaborados por el INECEL y luego de hacer una completa actualización de datos, entre los cuales constan: los análisis geológicos, hidrológicos y energéticos, fijamos un presupuesto referencial, el cual nos permite hacer un análisis económico y financiero, que nos dirá si el proyecto es viable.

CAPÍTULO 1

1. RECONOCIMIENTO DE SITIO

Las cuencas hidrográficas sobre las que se asientan los esquemas hidroeléctricos de Angamarca y Sinde, pertenecen al sistema hidrográfico Zapotal – Catarama – Babahoyo de la cuenca del río Guayas.

Estas cuencas hidrográficas se originan en la parte central de la sierra ecuatoriana, y pertenecen a la vertiente occidental de la Cordillera de los Andes, dentro de los meridianos 78°43′11″O y 79°11′05″O, entre los paralelos 01°00′45″S y 01°43′11″S. (Ver Plano 0221-C-001)

La zona de estudio comprende parcialmente áreas de los cantones de Pangua y Pujilí de la provincia de Cotopaxi y del cantón Guaranda de la provincia de Bolívar. En el interior de esta área se encuentran poblaciones como; El Corazón, Angamarca, Ramón Campaña, Pinllopata, Facundo Vela y Simiatug; el primero de ellos tiene la categoría de Cabecera Cantonal de Pangua; las restantes son cabeceras parroquiales. La superficie total aproximada de las sub-cuencas es de 87500 ha.

1.1. Vías de acceso

El acceso a la zona del proyecto se puede realizar ya sea por la región interandina o por el litoral. Desde la sierra se parte de la carretera Latacunga – Pujilí – Quevedo, al ascender la Cordillera Occidental, en el sector de Apagua, el carretero se deriva hasta la parroquia de Angamarca, la que se conecta con El Corazón, cabecera cantonal Pangua, hasta llegar a la zona de Pihuapungo, sitio donde se desarrollarán las obras del proyecto. La vía desde Apagua corresponde a un carretero lastrado y afirmado de tercer orden.

Por la costa, el proyecto dispone de cuatro accesos que lo conectan con la red vial principal del país y con los puertos de Guayaquil y Manta. Los tres primeros parten de puntos ubicados en las carreteras Quevedo – Valencia y Quevedo – Babahoyo y enlazan las poblaciones de Moraspungo y El Corazón, en la

provincia de Cotopaxi. El cuarto acceso es la carretera que parte de la población de San Luis de Pambil en la provincia de Los Ríos y que se conecta con la parroquia Facundo Vela en la provincia de Bolívar. Esta vía, desde San Luis de Pambil, se une a su vez con las parroquias Las Naves y Zapotal, que se conectan con la cabecera cantonal de Ventanas, con lo cual queda integrada a la red nacional, al empalmarse con la carretera asfaltada de primer orden Quevedo — Babahoyo. A continuación se describen las características más sobresalientes de las mismas:

La carretera asfaltada Quevedo – Valencia, en el sitio Cañalito, es una de las vías de acceso ubicada aproximadamente a 2,00 Km de la ciudad de Quevedo y se une con la carretera Quinzaloma – El Corazón en el recinto Las Juntas, según la clasificación del Ministerio de Obras Publicas es de tercer orden y esta totalmente lastrada y afirmada en toda su longitud de 65,00 Km aproximadamente hasta la cabecera cantonal de El Corazón, la cual satisface como acceso para la ejecución del proyecto.

Otra vía de acceso al proyecto, es la vía que parte del sitio El Guineo, ubicado a 23,00 Km de la ciudad de Quevedo, en la

carretera asfaltada Quevedo – Babahoyo; desde la carretera pavimentada hasta la parroquia Quinzaloma tiene una longitud de 13,70 Km y es una vía de tercer orden que se halla totalmente lastrada y afirmada.

El tercer acceso parte desde el sitio llamado "La Ercilia" en la carretera asfaltada Quevedo – Babahoyo, situada a 30,50 Km de la ciudad de Quevedo. Desde La Ercilia hasta la parroquia Quinzaloma, punto de unión con el segundo acceso, tiene una longitud de 15,90 Km, es una vía de tercer orden y se halla totalmente lastrada y afirmada. Esta carretera puede constituir el principal acceso de maquinarias y equipos para el proyecto.

Desde la parroquia Quinzaloma hasta el recinto Las Juntas, la vía tiene una longitud de 10,00 Km, pasando este recinto el carretero atraviesa el río Angamarca mediante un puente de hormigón armado y a pocos metros de distancia aguas abajo se produce la unión de los ríos Angamarca y Sinde, este ultimo conocido en el sector como río Piñanato, formando el río Umbe. Al recinto Las Juntas también llega la vía que parte desde Cañalito en la carretera Quevedo – Valencia.

Desde el recinto Las Juntas, la carretera avanza hacia la zona superior del proyecto, pasando previamente por la parroquia Moraspungo, ubicada a 2,8 Km de este recinto. La carretera es de tercer orden y asciende rápidamente desde Moraspungo hacia El Corazón siguiendo la línea de cumbre que separa las cuencas de los ríos Angamarca y Sinde; entre estas poblaciones se desarrollarán las obras del proyecto.

El sitio en que se construirán las bocatomas de los ríos Angamarca y Sinde se denomina Pihuapungo, está ubicada a 14,50 Km de la población Moraspungo y una distancia de 6,70 Km para llegar a El Corazón, cabecera cantonal del Cantón Pangua.

El cuarto acceso es el carretero que une las poblaciones San Luís de Pambil en la costa y Facundo Vela en la sierra, es una vía lastrada y afirmada que sigue la margen izquierda del río Piñanato y se desarrolla en forma casi paralela al trazado de las obras de conducción y regulación del proyecto. Cabe mencionar que la población Moraspungo, localizada en la margen derecha del río Sinde, se halla conectada a esta vía mediante un carretero

lastrado y afirmado y un puente de hormigón armado que atraviesa el río Sinde. Igual situación se tendrá cuando por las obras a construirse efecto de este proyecto, se una la población de El Corazón, ubicada en la margen derecha del río Sinde a esta carretera. (Ver plano 221 - C - 001)

1.2. Ecología

En cuanto a la ecología, en el área de estudio se identifican cinco zonas de vida pura o asociaciones climáticas, siete transiciones entre zonas de vida y una asociación edáfica en la zona de vida páramo pluvial sub-andino. Estas siete transiciones van desde bosque muy húmedo pre-montano, a los 440 m.s.n.m., pasando por montano bajo hasta páramo pluvial subandino, a los 4510 m.s.n.m., como cota más alta.

Los bosques montanos ubicados en el área de estudio se encuentran poco representados, ya que la vegetación original ha sido reemplazada casi en su totalidad, para dar paso a la agricultura y ganadería.

El páramo se encuentra mejor representado pero también ha sufrido modificaciones, especialmente en las zonas de límite de bosque andino. El páramo soporta un incremento de presiones debido al aumento poblacional que pretende un requerimiento de tierras para pastoreo y cultivo.

Con respecto a la fauna, el área del proyecto presenta tres pisos zoogeográficos: subtropical, desde 800 a 2000 m.s.n.m.; temperado, desde 1800 a 3000 m.s.n.m.; y alto-andino, desde 2800 a 4510 m.s.n.m.

La diversidad en flora y fauna va disminuyendo a medida que se asciende en altitud sobre el nivel del mar. La mayor diversidad de fauna esta representada por las aves, pues existen entre 250 y 300 especies. Otros grupos de animales también están representados con cierta diversidad, como son los anfibios, con 32 especies, reptiles 31 especies y mamíferos 54 especies.

Por todas estas razones la diversidad de fauna podría considerarse de mediana a baja, por la influencia que ejerce la

topografía con pendientes muy pronunciadas y por la alta intervención en los bosques, por parte del hombre.

Las sub-cuencas de los ríos Angamarca y Sinde presentan una diversidad íctica, pues cuenta con varias especies migratorias como son el bocachico, las dicas y la corvina de río. Las especies mencionadas desarrollan una migración vertical dos veces al año, de enero a marzo y de julio a agosto, que corresponden a los periodos de mayor pluviosidad.

En la zona la actividad pesquera es incipiente, ya que la densidad poblacional de las especies del lugar es baja. Las especies preferidas por los pescadores son el chame, el bocachico y las dicas. Merece citarse que en las cabeceras de los ríos Angamarca y Sinde existen pequeñas poblaciones de truchas.

1.3. Hidrografía

En el área del Proyecto existen dos ríos principales: el río Angamarca y el río Piñanato. Estos ríos recorren de Este a Oeste y en la zona corren casi paralelos. La cercanía de sus cauces en la zona de Pihuapungo es la que se aprovechará para el trasvase de las aguas del río Angamarca al río Sinde.

Los afluentes principales correspondientes a la cuenca del río Sinde son, las quebradas San José, Lloavi y La Florida que desembocan en la margen izquierda. Los caudales de estas quebradas se proyectan como aprovechables para el proyecto.

Las quebradas que existen en la zona son tipo intermitente y/o estacionario con cuencas de drenaje muy pequeñas.

CAPÍTULO 2

2. GEOLOGIA Y GEOTECNIA

El presente capítulo es un resumen de las características geomorfológicas, litológicas y estructurales presentes en la zona del proyecto; características obtenidas mediante pruebas y sondeos realizados por los consultores IDCO-ADEC de la ciudad de Quito y bajo asesoría de la compañía Hidroservice de la ciudad de Sao Paulo contratados por el Instituto Ecuatoriano de Electrificación (INECEL) en el año de 1984. (Ver plano 0221-C-002)

2.1. Características geomorfológicas

Los principales agentes modeladores del relieve de la zona lo constituyen la acción erosiva de los ríos, la actividad volcánica, piroclástica moderna y la presencia de movimientos de tierra.

La presencia de los ríos Angamarca y Piñanato han conformado dos valles semiparalelos orientados de Este a Oeste. Por cuanto los dos son ríos típicos de montaña, su acción erosiva es muy fuerte, lo cual se confirma por la presencia de enormes bloques arrastrados por la corriente y por el continuo cambio de cauce que ha originado la formación de pequeñas "islas".

A pesar de ser ríos en estado juvenil, a lo largo de su existencia han formado considerables acumulaciones aluviales a lo largo de todo el cauce, formando inclusive algunos niveles de terrazas.

La actividad volcánica y piroclástica moderna ha dado lugar a la formación de rocas competentes que dieron origen a la formación del estrecho topográfico en la región de Pihuapungo y que ha sido elegido como la zona para trasvasar el agua del río Angamarca al río Sinde.

La presencia de movimientos de tierra o deslizamientos es bastante común y afecta principalmente a los depósitos de cobertura, aunque algunos pueden involucrar también a la parte rocosa del basamento meteorizado. La determinación de estos fenómenos exodinámicos jugó un rol importante en cuanto se refiere a la mejor ubicación de las obras civiles del Proyecto.

2.2. Características litológicas

A continuación se efectúa una breve descripción de las diferentes variedades litológicas que se encuentran en la zona y que tienen relación con las obras proyectadas.

2.2.1. Formación Macuchi (Cretácico - Eoceno)

Son las rocas más antiguas y constituyen el basamento de la zona. Su potencia se cree que supera los 3000 m. Litologicamente esta representada por lavas y piroclastos.

Las lavas son masivas y almohadiformes. Las lavas masivas son de color gris, muy compactas con textura afaniticas y porfiricas. Las variedades porfiricas están constituidas por una matriz afanitica de color gris y fenocristales de plagioclasa de color blanquecino. El conjunto puede clasificarse como andesitas básicas. Las lavas almohadiformes pertenecen al grupo de clastolavas

aglomeráticas, conformadas por fragmentos andesiticos esferoidales, en dimensiones entre 2 y 30 cm de diámetro, acompañados por un material tobáceo mas fino.

Las piroclástitas son del tipo de tufitas limo líticas, tienen estratificación milimétrica a centimétrica y se meteorizan más fácilmente que las lavas.

2.2.2. Depósitos cuaternarios

Se han diferenciado los depósitos coluviales, aluviales y suelos residuales.

a) Depósitos coluviales

Se presentan como acumulaciones de pie de monte localizados principalmente en los flancos de los valles, formando relieves mas moderados que aquellos en donde afloran rocas sin cobertura.

Están constituidos por limos arcillosos y limos arenosos que cementan pobremente a fragmentos rocosos angulosos, que se encuentran en menor

proporción que la matriz. Los fragmentos tienen variadas dimensiones predominando aquellos entre 20 y 50 cm. La coloración de la porción fina es generalmente marrón, variando de tonos claros a obscuros. De acuerdo a su espesor se los ha clasificado en depósitos coluviales superficiales, cuyos espesores se estiman menores a 10 m y depósitos coluviales profundos, con espesores que alcanzan hasta 20 – 30 m.

b) Depósitos aluviales

Se distinguen entre depósitos aluviales actuales y depósitos de terraza. Los depósitos aluviales actuales son los que se encuentran en el cauce actual de los ríos y quebradas. Están conformados por bloques, gravas, arenas y limos sin ninguna cohesión. Los bloques son redondeados a subredondeados, alcanzando dimensiones de hasta 3 m de diámetro, existiendo predominancia de menores dimensiones. Las gravas son redondeadas y de variada litología, predominando las de origen volcánico. El espesor de

estos depósitos depende de su lugar de formación, pero se estima no debe sobrepasar los 15 a 20 m.

Los depósitos de terraza son los que están localizados en los antiguos cauces de los ríos Angamarca y Sinde y que por evolución geológica – tectonicas se encuentran actualmente ocupando niveles mas altos con relación a los cauces actuales.

Estas terrazas tienen bastante desarrollo en los flancos del cauce de los ríos Angamarca y Sinde y están constituidas por bloques, que alcanzan hasta 3,50 m de diámetro, gravas y arena. Todo el conjunto se halla con poca o ninguna consistencia. El espesor que pueden alcanzar estas terrazas es del orden de 30 – 35 m.

c) Suelo Residual

Están genética y mineralógicamente ligados a las formaciones infrayacentes de cuya alteración provienen. De manera general están constituidos por

suelos limosos, limo-arenosos y limo-arcillosos y arcillosos, con una coloración que fluctúa entre marrón y roja. Se encuentran relativamente cohesionadas y su estabilidad en cortes es moderada, dependiendo fuertemente del contenido de humedad. La potencia visible en los cortes expuestos no supera los 5 m, aunque de acuerdo a las investigaciones geotécnicas puede alcanzar mayores espesores.

2.2.3. Rocas Intrusitas

En la zona de influencia de las obras proyectadas, se pudo establecer la presencia de dos variedades de intrusitas, ambas localizadas en la margen izquierda del río Sinde, la una en el sector proyectado para casa de máquinas y la otra en la parte alta del sector de Jilimbí.

En el sector proyectado para casa de máquinas, aflora un cuerpo hipoabisal, directamente aguas debajo del sector escogido para la descarga. Se trata de una roca intrusita, de color gris cristalina fina, masiva compuesta aproximadamente de 30% de máficos donde predominan

los piroxenos y 70% de sialicos donde predominan la plagioclasa y el cuarzo, con mineralización de sulfuros en los planos de fractura. Mineralógicamente corresponde a una granodiorita o cuarzodiorita. La roca se observa bastante fresca, manteniéndose bien en taludes verticales.

Al intrusivo del sector alto de Jilimbí, lamentablemente no se lo pudo detectar en afloramientos frescos. Los afloramientos de roca alterada tienen un color blanquecino, de grano medio, equigranulares, masivos con una mineralogía que aproximadamente corresponde a 70% de feldespatos sodio – potásicos, 20% de máficos y cerca del 5% del cuarzo. Mineralógicamente esta roca corresponde a una sienita.

2.3. Características estructurales

Las fallas inferidas mantienen la dirección andina predominante, es decir Norte-Sur con una declinación hacia el Noreste y estarían afectando solo ciertos tramos del canal de conducción. De todas maneras, de existir estas dislocaciones, no presenta indicios de actividad por lo que no afectarían a las obras civiles.

Las diaclasas están vinculadas con formaciones rocosas y específicamente con las lavas de la Formación Macuchi y con las rocas intrusivas. En los afloramientos de lavas de la Formación Macuchi, de la margen izquierda del río Angamarca cerca de la zona del portal del túnel de trasvase se observa un juego de diaclasas bastante definido con rumbos 50° - 60° al NO y buzamientos de 60° - 75° tanto al SO como al NE. En cambio, en los afloramientos del intrusivo en el sector de casa de maquinas se nota también juegos de diaclasas definidos, en donde predomina el de orientación N12°O, verticalmente, existiendo además dos juegos adicionales: N55°O buzando con 65° al NE N10°E cruzando con 18° al SE.

CAPÍTULO 3

3. DIAGNOSTICO AMBIENTAL PRELIMINAR

El objetivo principal de este capitulo es presentar un resumen del Estudio de Impacto Ambiental en el área de influencia indirecta (subcuencas de los ríos Angamarca y Sinde) del Proyecto Hidroeléctrico Angamarca – Sinde, realizado por INECEL en mayo de 1996, que incluye parte del diagnóstico ambiental, su fragilidad ecológica, la identificación de posibles impactos del ambiente sobre el proyecto y la formulación de las medidas para el manejo de las áreas críticas.

3.1. Fragilidad Ecológica

La fragilidad ecológica en la zona del proyecto, ha sido determinada por las siguientes áreas de susceptibilidad ambiental:

Áreas de susceptibilidad geomorfológica y de amenazas naturales

Áreas de susceptibilidad biótica

Áreas de susceptibilidad socioeconómica e histórica

3.1.1. Áreas de susceptibilidad geomorfológica y de amenazas naturales

Esta categoría de susceptibilidad está determinada por la vulnerabilidad que presentan las geoformas del Área de Impacto Indirecto frente a los agentes erosivos y de movimientos en masa y los riesgos naturales

En la subcuenca del río Sinde, el 96,75% de la superficie presenta problemas de inestabilidad que varían de moderados a graves; en cambio, en la subcuenca del río Angamarca este porcentaje alcanza el 97,71%. Sin embargo, las categorías más críticas (inestables y muy inestables), en la subcuenca del río Angamarca suman el 37,03%; en cambio en la subcuenca del río Sinde se alcanza una superficie que corresponde al 48,11%, y en vista de que en esta última las zonas muy inestables son del orden del 19,72% frente al 5,5% en la subcuenca del

río Angamarca se concluye en una mayor fragilidad en la subcuenca del río Sinde. (Ver Tabla 3.1)

3.1.2. Áreas de susceptibilidad biótica

Incluye la vulnerabilidad de los atributos ambientales que constituyen los ecosistemas naturales y artificiales en las subcuencas de los ríos Angamarca y Sinde (Área de Impacto Indirecto del Proyecto).

3.1.2.1. Los Ecosistemas Naturales

Los ecosistemas naturales son todas aquellas áreas de la naturaleza, no alteradas o alteradas, en donde interactúan como sistemas los factores bióticos y abióticos, y cuyo valor esta definido por las especies de flora o fauna (endemismo y/o biodiversidad). En el área de estudio se definen 4 ecosistemas naturales: (Ver Tabla 3.2)

- a. Páramos.
- b. Bosques de estribación.
- c. Bosques de estribación, degradados.
- d. Bosques de galería o de ribera.

3.1.2.2. Ecosistemas Artificiales

Los ecosistemas artificiales ("agro" o espacio agrícola) constituyen todas aquellas áreas de la naturaleza donde interactúan factores bióticos y abióticos. Dentro de ellos, se han diferenciado 3 agro ecosistemas en función de los pisos altitudinales que ocupan y que características físicas definen singulares diferentes formas de **USO** У especies establecidas; ellos son: (Ver Tabla 3.3)

- a. Agro ecosistemas de ladera de clima frío o de altura
- b. Agro ecosistemas de ladera de clima templado
- c. Agro ecosistemas de ladera de clima subcálido

3.2. Los potenciales impactos del ambiente hacia el proyecto

Se orienta a identificar los impactos potenciales que el ambiente puede provocar sobre el proyecto y de manera especial en la fases de construcción y operación misma del sistema hidroeléctrico Angamarca-Sinde.

3.2.1. Reducción de la vida útil del proyecto

Este impacto está relacionado con la carga total anual de sólidos en suspensión que los ríos Angamarca—Sinde y sus tributarios pueden acarrear y acumular en las obras de toma y el reservorio.

Los sedimentos que pueden ser acarreados desde los sectores altos y adyacentes a los ríos Angamarca, Sinde y sus drenajes aportantes aguas arriba, con una consecuente reducción en la capacidad de servicios y el periodo de vida útil del sistema por disminución de la capacidad de almacenamiento de agua, tienen dos fuentes principales: la erosión y los movimientos en masa.

3.3. Impactos potenciales en el área de influencia directa

Para el área de influencia directa, la identificación de los impactos se la realiza a través de una Red de Interacción, que

permite concatenar las acciones del proyecto, considerados como la causa que provoca un efecto en los recursos del medio y que luego se traduce en los posibles impactos a producirse, durante la construcción de las obras y operación del proyecto hidroeléctrico Angamarca – Sinde.

3.3.1. Descripción de impactos identificados en el área de influencia directa

Afectación a la fauna acuática

Las repercusiones sobre la fauna acuática, durante la construcción del proyecto, se relacionan directamente con la alteración físico – química del agua. La principal alteración física de la calidad del agua de los ríos Angamarca y Sinde, se debe al incremento de partículas en suspensión y a la turbidez, producidas por el arrastre de éstas hacia los cursos de agua, por acción de la precipitación pluvial, remoción de material del lecho del río.

El aumento de material al río producirá alteraciones como aterramiento de sitios de desove y disminución temporal de oferta alimenticia por cubrimiento del lecho, pues se interrumpe la reproducción de la bentofauna que son la fuente principal de alimentación.

Las repercusiones sobre la fauna acuática durante la operación, se relacionan directamente con la reducción del caudal de los ríos Angamarca y Sinde, en un tramo de 8,1Km y 7,54 Km respectivamente.

Afectación a la vegetación terrestre

Tanto en la fase de construcción, como en la de operación, la vegetación sufrirá las consecuencias del desarrollo de las actividades. Fundamentalmente por la apertura de caminos de acceso a las obras de toma, canal abierto, reservorio y casa de máquinas, así como por la disposición de materiales de construcción.

Afectación a la fauna terrestre

La fauna sufre efectos directos por destrucción del hábitat, por construcción de infraestructura y llenado del reservorio; provocando el desplazamiento hacia espacios colindantes de algunas especies afectadas.

El ruido producido por la utilización de la maquinaria durante la construcción del proyecto y operación de la central; así como de la Línea de Transmisión, pueden afectar a las comunidades de animales, especialmente aves y producir el desplazamiento de especies más sensibles.

Afectación a las especies en peligro de extinción

Desafortunadamente no existe suficiente investigación sobre endemismo de la zona; sin embargo, no existen evidencias de que hay plantas que se encuentran en peligro de extinción. En la fauna las especies consideradas raras o en peligro de extinción son las aves: TYTONIDAE Tyto alba, Lechuza; STRINGIDAE Búho virginianus, Búho.

Pérdida de valor escénico

Cuando el nivel del reservorio esté bajo o se vacíe para lavados, la presencia de un horado vacío no permite una

continuidad visual del paisaje y producirá un aspecto desagradable.

Pérdida del horizonte superficial y subsuperficial del suelo

La pérdida del horizonte superficial y subsuperficial del suelo se produce como consecuencia de la remoción de la cobertura vegetal, en los sitios donde se ubicarán obras en superficie, esto es, reservorio, caminos de acceso, canal de conducción y campamentos; estas obras exigen también la ejecución de excavaciones y por lo tanto la remoción de la capa subsuperficial del suelo, con lo cual se elimina las posibilidades agroproductivas.

La construcción del túnel, reservorio, canal de conducción, caminos de acceso principalmente, podrían generar considerables volúmenes de material, los mismos que deberán depositarse, en zonas alejadas a los sitios de obra, y en lugares que no afecten al medio y la desestabilicen.

Afectación a la salud

La salud ocupacional se afecta principalmente por:

• Por alteración del nivel sonoro (Ruido)

La contaminación acústica, durante la construcción del proyecto, se debe fundamentalmente, al incremento de la presión sonora producida por la utilización de maquinaria pesada, que emita ruidos superiores a los 70 dB.

• Por incremento de polvo

Este efecto causa molestias y enfermedades a los trabajadores, habitantes de la zona, animales y plantas, debido al incremento de material particulado suelto.

Por aporte de elementos tóxicos a la atmósfera, debido a operación de equipos y maquinaria.

El incremento de elementos tóxicos como; gases de fósforo, cloro, nitrógeno, azufre, monóxido de carbono y plomo, se debe principalmente a la detonación de explosivos, emisión de gases de los motores de combustión e incremento del tráfico automotor. Este incremento trae como consecuencia una alteración de la calidad del aire y por ende afectación a la salud humana, plantas y animales.

Robos e inseguridad.

Durante la primera fase, los robos e inseguridad se pueden generar cerca de campamentos, talleres y con mayor frecuencia durante el transporte de equipo y materiales.

Afectación a la propiedad y a la producción

Este impacto es inevitable y permanente sobre un área de aproximadamente 150,14 ha, debido a la ocupación forzosa que efectuarán las obras del proyecto; así como la construcción de accesos, campamentos y áreas de protección necesarias para la Línea de Transmisión y Subestación. La afectación a la propiedad se dará prácticamente sobre áreas de cultivo en el 80% del área total, la diferencia se localiza en áreas actualmente bajo uso forestal, todas ellas en propiedades particulares.

Campamentos

Por efecto de la misma construcción del proyecto, se construirán cuatro campamentos temporales, ubicados en los siguientes sitios:

Bocatoma del río Angamarca (3.0 ha)

Bocatoma del río Sinde (0.25 ha)

Área del reservorio (0.12 ha)

Zona de casa de máquinas (0.10 ha)

El único campamento definitivo previsto por el proyecto, es el que se construirá cerca de casa de máquinas; el mismo que servirá tanto para su construcción como para la operación de la Central.

Reservorio

Este se construirá en terrenos de pequeñas fincas de propiedad privada, actualmente con cultivos de caña y algo de vegetación nativa.

El área total necesaria para la construcción del reservorio y sus obras complementarias es de 9.09 ha.

Casa de máquinas y subestación.

La casa de máquinas se construirá igualmente en propiedad particular, el área de afectación serán de aproximadamente 1 ha.

Accesos

Durante la construcción del proyecto, todas las obras requieren del empleo de maquinaria y equipo pesado; transporte de materiales y de equipo electromecánico; este tipo de elementos ingresarán por la vía existente de Quevedo, Quinzaloma, Moraspungo - El Corazón, por lo que se espera un importante impacto sobre la infraestructura vial de estas dos zonas. El peso e intensidad del tráfico que deberán soportar durante por lo menos 3,5 años, deteriora además las calles de circulación forzosa, dañando su entorno, principalmente por la presencia de baches, riego de materiales, aceites y grasas sobre la mesa de las vías.

El proyecto requiere la construcción de 5,5 km de vías de tercer orden, por lo que es necesario expropiar o comprar aproximadamente 39 ha de tierras agrícolas, la mayor parte de ellas se localiza en zonas muy abruptas, con cultivos de caña y pequeñas masas forestales.

Canal de conducción, chimenea de equilibrio, tubería de presión.

Esta obra afectará aproximadamente a 94,55 ha, la misma que se encuentra en áreas de cultivo de caña y plátano con pequeñas masas boscosas, en fuerte pendiente.

Afectación a los recursos arqueológicos

Aunque en el sitio mismo de las obras del proyecto no se han encontrado evidencias culturales, por información del estudio de arqueología, se determina que la zona de influencia directa tiene enorme importancia cultural pues podrían encontrarse vestigios de las culturas Panzaleos, Pujilies y Saquisilies por lo que deberán realizarse las excavaciones cuidadosamente considerando esta información.

Probable generación de zonas inestables

En sectores de orografía agreste, las condiciones de estabilidad de las laderas pueden ser fácilmente alteradas con el aumento de materiales, el cual puede incrementar el momento motor que active el movimiento de sectores anteriormente estables.

Por tanto cuando se realice el proyecto deberá tomarse en cuenta todos los considerandos analizados en el estudio medio ambiental

CAPÍTULO 4

4. HIDROLOGÍA

El comportamiento hidrológico de la cuenca está influenciado por la distribución, intensidad y duración de las precipitaciones del área en estudio, además, por la forma en que el medio ambiente influye en la administración del recurso. La evaporación directa, la infiltración, la capacidad del suelo para retener el agua, las cubiertas vegetales y la absorción de humedad son factores que afectan la forma en que el agua de lluvia discurre por la cuenca que la recibe.

Las precipitaciones y la forma en que el medio ambiente "administra" la cuenca, determina el comportamiento de los caudales de agua superficiales que se concentran en arroyos y ríos que se acumulan desde las altas cuencas hasta que se cierra el ciclo hidrológico regresando al mar. El camino ideal para conocer el comportamiento de

los caudales de una cuenca es contar con mediciones que registren la historia de la misma sobre un largo período de tiempo, con el objeto de determinar los parámetros principales para el diseño de una central hidroeléctrica.

4.1. Geografía y características físicas de la zona del proyecto

Dentro de la zona del proyecto se encuentran las cuencas de los ríos Pilaló, Angamarca y Sinde que pertenecen a la vertiente occidental de la Cordillera de los Andes y al Sistema Hidrográfico Zapotal-Catarama-Babahoyo, de la cuenca del río Guayas, que se ubican en el centro del país, entre las coordenadas 0°50′S – 1°39′S y 79°00′O – 79°10′O; con características físicas similares.

Las tres cuencas se originan en la cota 4000 m.s.n.m., y hasta los posibles puntos de derivación drenan una cuenca de:

• Pilaló 216 Km², cota 920,0 m.s.n.m

Angamarca 435 Km², cota 770,8 m.s.n.m

• Sinde 390 Km², cota 763,5 m.s.n.m

Para las tres cuencas la superficie de drenaje fue determinada por el INAMHI en base a cartografía en escala 1:25000 para el río Pilaló y 1:20000 para las cuencas Angamarca y Sinde.

La pendiente media del curso principal del río Pilaló es del 12%, al igual que la de los ríos Angamarca y Sinde. En los sitios de toma las pendientes de los ríos son del 5,5% para el Angamarca y 3,8% para el Sinde.

La pendiente, cubierta vegetal, forma y características climáticas de las tres cuencas analizadas son similares; en las cabeceras de las cuencas la vegetación es típica de páramo y sub-páramo, con alguna actividad agropecuaria, mientras que la parte media y baja, hasta alrededor de la cota 1000 m.s.n.m., esta cubierta con bosque protector.

4.2. Clima

Las características climáticas de las tres cuencas son similares por pertenecer a un mismo sistema hidrográfico, y especialmente por estar ubicadas en los nacimientos de los ríos. De todas las estaciones meteorológicas cercanas a la zona del proyecto, se consideró como representativa, la estación Pilaló en la cuenca del río del mismo nombre, a 2560 m.s.n.m., por ser la más cercana al centro de gravedad de la cuenca; la estación El Corazón, a 1500 m.s.n.m., es utilizada para establecer las características meteorológicas para las cuencas de los ríos Angamarca y Sinde. (Ver Cuadro 4.1)

Para determinar las características climáticas básicas como temperatura y humedad relativa en los puntos de interés, utilizamos los Cuadros 4.2, 4.3 y 4.4 con información sobre temperatura y humedad relativa en las estaciones que rodean el proyecto, elaborando de esta manera el Gráfico 4.2, del cual obtenemos los siguientes datos:

APROVECHAMIENTO DE LOS RÍOS ANGAMARCA Y SINDE

		51110	
	Sinde en la Toma	Angamarca en la Toma	Casa de Maguina
Humedad relativa media anual	91,80 %	91,80 %	90,20 %
Temperatura media anual	21,50 °C	21,50 °C	22,80 °C
Temperatura máxima absoluta	27,90 °C	27,90 °C	29,75 °C
Temperatura mínima absoluta	16,25 °C	16,25 °C	17,10 °C

La nubosidad media a la altura de las tomas es de 7/8, mientras que en la cuenca alta, es de 5/8 a los 2500 m.s.n.m.

Analizando las estaciones Pilaló y El Corazón, la velocidad media máxima del viento en la parte alta de las cuencas es 6,4 m/s, en tanto que la velocidad en la parte baja es de 3,9 m/s.

4.3. Precipitación

Para consideraciones de construcción en el área del proyecto se han recopilado los datos históricos de 13 estaciones meteorológicas cercanas al proyecto, las cuales tienen una zona de influencia que cubre las cuencas de los ríos Pilaló, Angamarca, Umbe, Echeandía y Zapotal, hasta las estaciones hidrométricas que controlan dichas cuencas (Ver Cuadro 4.5).

Estas estaciones cubren una zona de alrededor de 3500 Km² lo que da una densidad de 270 Km²/estación. En el cuadro 4.6 muestra los registros mensuales para el período disponible de los valores de precipitaciones medias en las estaciones. Las estaciones mencionadas representan el régimen característico, con la mayor parte de lluvias en los cinco primeros meses del año

que en promedio suman el 76,91% de la totalidad de precipitación anual y el 23,09% restante, entre junio y diciembre.

Los periodos secos en los meses de junio a diciembre se definen por la variación mensual de la lluvia. Tomando un promedio de distribución porcentual de lluvias mensuales con respecto al año medio entre todas las estaciones se tiene:

Enero	15,45 %
Febrero	18,21 %
Marzo	18,79 %
Abril	16,05 %
Mayo	8,41 %
Junio	3,42 %
Julio	1,32 %
Agosto	1,12 %
Septiembre	2,45 %
Octubre	3,24 %
Noviembre	3,36 %
Diciembre	8,17 %
TOTAL	100,00 %

4.4. Características Hidrográficas

A continuación se detalla cada una de las estaciones que rodean la zona del proyecto para determinar los caudales medios diarios en los puntos de las tomas.

4.4.1. Pilaló En La Esperanza

La estación limnimétrica Pilaló en la Esperanza, ubicada en la cota 960 m.s.n.m., fue instalada en Junio de 1962 y cuenta con información hasta el año 1999, tiene un área de drenaje de 216 Km².

De los aforos realizados por el INAMHI entre los años 1962 – 1983, que se detallan en el Cuadro 4.7, se definieron las curvas de descarga (Ver Gráfico 4.3):

1.- $Q = 6,8646(h + 0,1)^{1,6488}$ Válida desde Agosto de 1962 hasta el 14 de Mayo de 1965.

2.- $Q = 0,1176(h+1,6)^{4,7223}$ Válida desde 15 de Mayo de 1965 hasta Diciembre de 1999

4.4.2. Las Juntas D.J. Sinde

Esta estación limnigráfica funcionó desde Diciembre de 1963 hasta Agosto de 1971 en el río Umbe, en la cota 130 m.s.n.m., con un área de drenaje de 893Km². En Febrero de 1983, esta estación fue reconstruida por el INAMHI en el sitio denominado Umbe en Quinzaloma.

En un tramo de 4 Km entre las poblaciones de Quinzaloma y Catazacón, existen dos estaciones limnigráficas, Las Juntas DJ Sinde y Umbe en Quinzaloma. Esta última ubicada en Quinzaloma fue instalada el 15 de Febrero de 1982. La Estación Las Juntas D.J. Sinde presenta mejores características físicas e hidráulicas del cauce entre las dos estaciones, además de que cuenta con sección de aforo. (Ver Gráfico 4.4)

4.4.3. Angamarca en Pihuapungo

La estación Angamarca en Pihuapungo funciona desde el 15 de Febrero de 1984, ubicada en la cota 435 m.s.n.m., tiene un área de drenaje de 435 Km², proporcionando información de niveles que gracias a los 37 aforos realizados por el INAMHI, pudieron ser traducidos a caudales. (Ver Gráfico 4.5)

4.4.4. Zapotal en Lechugal

La estación limnigráfica Zapotal en Lechugal, funcionando desde 1964, representa regímenes complejos que no serían compatibles por poseer un área

de drenaje de 2990 Km² hasta la cota 40 m.s.n.m., un área mucho mayor a las otras estaciones, por esta razón es considerada referencial.

4.4.5. Echeandía en Echeandía

En la cota 370 m.s.n.m., se ubica al sur de las cuencas de los ríos Angamarca y Sinde la estación limnigráfica Echeandía en Echeandía, desde Diciembre de 1964, con una cuenca de 380 Km². Esta estación es considerada referencial para comparación de caudal medio anual.

En el Cuadro 4.8 se presentan los caudales medios mensuales de las estaciones más cercanas al proyecto, para establecer posteriormente una relación con los caudales medios diarios en los puntos de toma.

4.5. Caudales medios diarios

Los caudales medios diarios en los puntos de derivación de los ríos Angamarca y Sinde han sido determinados mediante una aplicación del Método de los Mínimos Cuadrados, llamada Transposición de Caudales. (Ver Apéndice A)

Seleccionamos la estación más cerca a los puntos de derivación, siendo esta la estación Pilaló en La Esperanza, con la que vamos a calcular los Caudales Medios Diarios en los puntos de derivación. Obteniendo como resultado los siguientes valores:

SITIO/ ESTACION	COTA [msnm]	AREA DE DRENAJE [m²]	CAUDAL MEDIO [m³/seg]	COEF DE TRANSPO SICION
Pilaló	920,00	216,00	12,9070	1,0000
Angamarca En la Toma	770,80	435,00	17,6157	1,3648
Sinde en La Toma	763,50	390,00	15,8892	1,2311
Quebrada Lloavi	780,00	14,76	0,7209	0,0559
Quebrada La Florida	780,00	18,56	0,8951	0,0694

4.6. Análisis de frecuencia y variación estacional

Luego de procesar toda la información existente, tomando como estación base a Pilaló en La Esperanza, se elaboraron las curvas de duración de caudales medios diarios en los puntos de derivación de los ríos Angamarca y Sinde. Para obtener estos resultados, se analizaron un total de 12950 datos desde el año 1962 hasta el año 1999. (Ver Gráfico 4.6)

Para incrementar el caudal de conducción principal se captan las aguas de las quebradas Lloavi y La Florida, las cuales

desembocan en el río Sinde, y de los cuales, el INAMHI estima lo siguiente:

DATOS BASICOS	QUEBRADA	
	Lloavi	La Florida
Cota de captación [m.s.n.m.]	780,00	780,00
Area de Drenaje [Km²]	14,76	18,56
Longitud del curso principal [Km]	8,20	9,20
Pendiente media del curso [%]	11,40	9,70
Pendiente media del río en el sitio de	7,80	9,20
toma [%]		
Coeficiente de escurrimiento estimado [-]	0,70	0,70
Caudal medio estimado [m³/s]	0,721	0,895
Rendimiento [l/s/km²]	55,00	55,00

Del análisis efectuado, llegamos a las siguientes conclusiones:

SITIO/ESTACION	COTA [msnm]	Qm [m³/seg]	Q _{90%} [m³/seg]
Pilaló	920,00	12,9070	1,818
Sinde en la Toma	763,50	15,8892	2,323
Angamarca en la Toma	770,80	17,6157	2,525
Quebrada Lloavi	780,00	0,7209	0,104
Quebrada La Florida	780,00	0,8951	0,129

4.7. Caudal ecológico

El caudal ecológico es el caudal mínimo considerado en un estudio con el fin de preservar la flora y fauna que rodea el cauce original del río. Para este estudio se ha considerado un caudal ecológico equivalente al 10% del caudal medio de los ríos Sinde y Angamarca.

4.8. Estudio de crecidas

El estudio de crecidas es utilizado para determinar los valores de los parámetros hidráulicos de diseño para las obras de protección y evacuación de los aprovechamientos de este esquema. Para determinar el caudal máximo a soportar en las obras de desvío y conducción se proyectó los datos históricos de caudales en los puntos de interés, mediante el método estadístico de Gumbel, para un periodo de 100 años, obteniendo el caudal de diseño a considerar previo la construcción.

El Método de Gumbel utiliza parámetros estadísticos de la serie de datos, la cual permite encontrar una expresión analítica que represente el caudal que puede ocurrir en un tiempo de retorno determinado.

4.8.1. Frecuencias de crecidas en las estaciones

Utilizando los registros de niveles máximos instantáneos de la estación Pilaló en la Esperanza para calcular los caudales correspondientes mediante la curva de descarga, que fue calculada mediante los aforos realizados por el INAMHI. Los resultados obtenidos para esta estación son los siguientes:

PERIODO DE RETORNO [años]	CAUDAL DE CRECIDA [m³/seg]
2	29,49
5	47,69
10	59,74
15	66,54
20	71,30
25	74,97
30	77,95
40	82,64
50	86,27
75	92,83
100	97,48

4.8.2. Crecidas en los puntos de derivación

Luego de realizar la transposición de caudales se procede a aplicar el Método de Gumbel para calcular las crecidas en los puntos de toma para períodos de retorno de 10 años para las obras de desvío durante la construcción y de 100 años para la crecida de diseño del azud – vertedero. (Ver Gráfico 4.7)

LUGAR	CRECIDAS 10 AÑOS [m³/s]	CRECIDAS 100 AÑOS [m³/s]
Angamarca en La Toma	82,415	146,066
Sinde en La Toma	75,897	124,335

4.9. Sedimentología

Para estimar la descarga de sedimentos, utilizamos los aforos de gasto sólido de la estación de Angamarca en Pihuapungo, la estación DJ Las Juntas no posee aforos sólidos.

En el Gráfico 4.8, se presenta la curva y la ecuación representativa a la descarga de sedimentos en los Puntos de Toma, teniendo como ecuación:

$$Q_S = 0,0024 Q_I^{2,4781}$$
 [4.1]

Los valores calculados en la estación Angamarca en Pihuapungo son los mismos que utilizaremos para el sitio Angamarca en la toma, en cambio para llevar esos valores hasta el sitio Sinde en la toma multiplicaremos el valor obtenido en Angamarca en la toma por un coeficiente resultante de los caudales medios de estos dos puntos.

Sólidos en Suspensión	Año Mínimo [t/año]	Año Medio [t/año]	Año Máximo [t/año]
Angamarca en La Toma	14.400	39.300	73.500
Sinde en La Toma	12.989	35.448	66.296

La descarga total de sólidos es igual a la suma de los sólidos de suspensión con los sólidos de fondo, según la aplicación del método de Meyer-Peter & Muller da un valor de 96.000 ton/año en el sitio Angamarca en la toma. Para facilidades de cálculo se toma el mismo valor para el sitio Sinde en la Toma.

Descarga Sólida Total	Angamarca en la Toma [t/año]	Sinde en la Toma [t/año]
Suspensión	39.300	35.448
Fondo	96.000	96.000
Total	135.300	131.448

El arrastre de fondo es la cantidad de sólidos que el río es capaz de mover.

4.10. Calidad Del Agua

Del análisis físico, químico y bacteriológico del agua realizado por el INECEL, entre los años 1983–1985, en los sitios de toma se obtuvieron los resultados presentados en el cuadro 4.9, en los que constan:

- Índices de saturación y de estabilidad de corrosión de las aguas a los materiales de hierro o acero.
- Concentraciones de sulfatos y cloruros, Ph del agua

Propiedades de calidad del Agua Potable.

El Índice de saturación (índice de Langelier) es negativo lo que indica que el agua es corrosiva, con valores entre -1,5 y-2,5, considerando que las normas de corrosión de tuberías de hierro para agua potable indican un límite entre \pm 0,30 como normal.

La calidad del agua para la fabricación de hormigones es adecuada ya que los elementos nocivos como los cloruros y sulfatos no son significativos ya que los valores registrados están muy debajo de las normas máximas (máximo 300mg/l).

Según el análisis bacteriológico el agua tiene contaminantes orgánicos, en Sinde en la Toma se encontraron 32 colonias de bacterias coliforme por cada 100cc y en Angamarca en el Puente 45 colonias por cada 100 cc. Aunque no se detectó la presencia de hongos patógenos, el agua no es apta para consumo humano, aunque la eliminación de los contaminantes orgánicos puede realizarse mediante coloración.

CAPITULO 5

5. PRODUCCIONES ENERGÉTICAS

La producción de una central hidroeléctrica se ve influenciada por las características hidrológicas del río en que se ubica y por las posibilidades de falla de los equipos electromecánicos. Esta producción está dada por los parámetros que se describen a continuación:

La *potencia garantizada* es la potencia que puede disponer una central hidroeléctrica en las condiciones más adversas de hidrología y caída. Esta garantía corresponde a una seguridad hidrológica del 90%.

La *energía primaria* es aquella correspondiente a la potencia garantizada.

La *energía secundaria* es aleatoria y no puede garantizarse, pero se puede contar con ella en términos de valor esperado; es obtenida como la diferencia entre la energía media anual y la primaria.

Los cálculos de Potencia Garantizada y Producciones Energéticas fueron calculados mediante el programa Pfirm, software diseñado para realizar estos cálculos en función de proyección de caudales en el tiempo.

5.1. Condiciones de Cálculo

Los datos utilizados en el programa del Pfirm son los caudales medios mensuales de todo el período en estudio, que para nuestro proyecto comprende los valores de caudal desde el año 1962 hasta el año 1999. Este software hace uso de herramientas matemáticas con el fin de establecer una serie sintética de caudales mensuales para los próximos cien años, valores con los cuales se proyecta la potencia y energía para el período en estudio con una alta probabilidad de ocurrencia.

5.2. Potencia Garantizada

La potencia eléctrica garantizada, de acuerdo a los resultados arrojados en la simulación del programa PFirm, es de 15,85 MW

con un caudal de ocurrencia de 3,54 m³/s teniendo una probabilidad anual de ocurrencia de 90%. (Ver Gráfico 5.1)

5.3. Energía Firme

La energía firme es de 81,26 GWh al año con un caudal de ocurrencia de 3,54 m³/s, teniendo una probabilidad anual de ocurrencia de 90% de acuerdo a los resultados arrojados en la simulación en el programa PFirm. (Ver Gráfico 5.2)

Se ha previsto para el cálculo de la potencia garantizada y volumen del reservorio, la operación de la central durante las 20 horas del día, con una carga mínima igual al 32% de su capacidad instalada. Esta operación permite que la energía firme producible en la central durante estas horas se almacene en el reservorio para luego ser colocada en la 4 horas de máxima demande del sistema, acontinuación los resultados arrojados por este programa:

Caudal Firme	3,54	m³/seg
Potencia Firme	15,85	MW
Potencia Media	32,61	MW
Energía Firme	81,26	GWh
Energía Media	349,18	GWh

CAPÍTULO 6

6. DISEÑO DEL PROYECTO

La filosofía básica con la que se rigieron las obras del proyecto fue la de mantener diseños convencionales y de simple ejecución.

A continuación se detalla las obras las obras civiles, hidráulicas y equipo electromecánico necesario para la Central Hidroeléctrica Angamarca – Sinde.

6.1. Obra Civil

6.1.1. Obras de Cierre y captación en el Río Angamarca

A continuación se presenta la descripción de las obras civiles de cierre y captación en el río Angamarca. (Ver plano N° 0221–C–100)

Caudales

Q _{firme(90%)}	2,53 [m³/s]	
Q_{medio}	17,62 [m³/s]	
Q _{diseño}	17,63 [m³/s]	
Q _T =10años	84,14 [m ³ /s]	(Obras de desvío)
Q _T =100años	138,22 [m³/s]	(Obras de excedencia)

• Obras de desvío

Altura máxima de la ataguía de desvío	5,40	[m]
Ancho del canal en la sección de entrada	12,40	[m]
Calado en sección de entrada	3,20	[m]
Ancho del canal en su sección uniforme	6,00	[m]
Velocidad del flujo	3,80	[m/s]
Solera del canal de desvío en la cota	776,30	msnm
Cota de Coronación de la Ataguía	781,40	msnm
Pendiente inicial (pasadas las obras de bocatoma)	3,30	%
Pendiente en el tramo final	1,00	%

Azud

Longitud total de la cresta	46,20	[m]
Longitud de la cresta vertiente	36,00	[m]
(Tres vanos de 12,00 m cada uno)		
Ancho de canal de purga del azud	4,80	[m]
Ancho del canal de purga de la reja	3,00	[m]
Altura del azud desde el fondo del río	6,60	[m]
Pendiente de canal de purga del azud	2,60	%
Pendiente del canal de purga de la reja	5,00	%
Nivel de agua máximo maximorum	779,80	msnm
Nivel de agua máximo normal	779,64	msnm
Nivel de agua normal	777,40	msnm
Cota de coronación del azud	777,40	msnm
Cota de la solera del cuenco disipador	768,32	msnm
Cota de coronación de los Muros de Ala	780,40	msnm
Cota de de Cauce en Zona de Cierre	770,80	msnm
Cota de Dentellón aguas arriba	760,80	msnm
Cota de Dentellón aguas abajo	765,80	msnm

Bocatoma

Reja gruesa de admisión	18,90x0,90	[m]		
Vanos (Reja gruesa de admisión)	0,20	[m]		
Ancho variable de Desripiador	21,20 a 7,01	[m]		
Longitud de Desripiador	32,00	[m]		
Longitud de cresta del escalón	7,01	[m]		
Ancho variable de Transición	7,01 a 2,82	[m]		
Longitud de Transición	9,45	[m]		
Compuerta plana de control y admisión general	2,82 x 3,77	[m]		
Ancho de canal rectangular de aproximación al túnel de trasvase	2,82	[m]		
Calado promedio de canal rectangular de aproximación al túnel de trasvase	2,65	[m]		
Longitud de cresta de vertedero lateral de excesos	32,78	[m]		
Canal y cámaras de excesos				
Ancho de canal de purga del desripiador	1,30	[m]		
Compuerta de purga del desripiador	1,30x1,70	[m]		

6.1.2. Obras de Cierre y captación en el Río Sinde

Las obras de cierre y de captación en el río Sinde que son similares a las descritas para el río Angamarca. (Ver plano N° 0221–C-300)

Caudales

Q _{firme(90%)}	1,82 [m³/s]	
Q _{medio}	12,91 [m³/s]	
Q _{diseño}	15,99 [m³/s]	
Q _T =10años	74,27 [m³/s]	(Obras de desvío)
Q _T =100años	122,92 [m³/s]	(Obras de excedencia)

• Obras de desvío

Altura máxima de la ataguía de desvío	7,00	[m]
Ancho del canal en la sección de entrada	13,00	[m]
Calado en sección de entrada	4,73	[m]
Ancho del canal en la sección uniforme	6,00	[m]
Cota de la solera del canal de desvío	768,00	msnm

Azud

Longitud total de la cresta	52,00	[m]
Longitud de la cresta vertiente	40,35	[m]
(Tres vanos de 13,45 m cada uno)		
Ancho de canal de purga del azud	6,00	[m]
Ancho del canal de purga de la reja	3,25	[m]
Altura máxima del azud desde el lecho	9,50	[m]
Pendiente del canal de purga de la reja	5,00	%
Nivel de agua máximo maximorum	775,06	msnm
Nivel de agua máximo normal	774,83	msnm
Nivel de agua normal	773,00	msnm
Cota de coronación del azud	773,00	msnm
Cota de coronación de los Muros de Ala	775,20	msnm
Cota de de Cauce en Zona de Cierre	761,00	msnm
Cota de Dentellón aguas arriba	753,50	msnm
Cota de Dentellón aguas abajo	756,00	msnm

• Bocatoma

Reja gruesa de admisión Vanos (Reja gruesa de admisión) Ancho variable de Desripiador Longitud de Desripiador Longitud de cresta del escalón Ancho variable de Transición	18,00x1,80 0,20 9,75 a 3,33 14,48 9,75 9,75 a 3,33	[m] [m] [m] [m] [m]
Longitud de Transición Compuerta plana de control y admisión general	14,48 3,33 x 5,11	[m]
Longitud de cresta de vertedero lateral de excesos	19,05	[m]
Canal y cámaras de excesos Ancho de canal de purga del desripiador	1,80	[m]
Compuerta de purga del desripiador	1,80x2,30	[m]

6.1.3. Desarenador

El desarenador del proyecto tiene dos cámaras para lavado intermitente, facilitando el mantenimiento de una de las cámaras mientras la otra continúa como desarenador. La implementación del desarenador se encuentra en el plano N° 0221–C–400, a continuación los detalles más relevantes:

• Sistema de captación de agua limpia

Longitud de cresta del azud frontal	2,0x10,8	[m]
Espesor de lámina vertiente	0,85	[m]
Longitud efectiva de la cámara de sedimentación	50,00	[m]
Ancho efectivo de la cámara de sedimentación	10,80	[m]
Profundidad efectiva de la cámara de sedimentación	4,25	[m]
Diámetro de las partículas a sedimentarse	> 0,20	[mm]
Velocidad efectiva de sedimentación	0,017	[m/s]
Velocidad de flujo en la cámara de sedimentación	0,20	[m/s]
Caudal de diseño por cámara	9,15	$[m^3/s]$
Frecuencia de lavado	8	Días

6.1.4. Sistema de conducción a superficie libre

Es aquel sistema que transporta el agua que será turbinada para la generación de energía hidroeléctrica, desde el desarenador en el río Sinde hasta la entrada al reservorio de regulación diaria. (Ver plano N° 0221–C–522)

• Caudal de diseño

$Q_{ ext{dise} ilde{ ext{no}} ext{o}}$	19,63 [m³/s]	

• Sección Canal 1 Tipo Trapezoidal

Longitud	300,00	[m]
Pendiente	0,024	%
Ancho inferior	3,20	[m]
Calado normal	2,50	[m]
Bordo libre	0,63	[m]
Velocidad de flujo	1,38	[m/s]
Ancho total de la plataforma	14,88	[m]
Ancho total del corte	9,39	[m]

• Sección Canal 2 Tipo Trapezoidal

Longitud	6113,22	[m]
Pendiente	0,024	%
Ancho inferior	4,40	[m]
Calado normal	2,50	[m]
Borde libre	0,63	[m]
Velocidad de flujo	1,39	[m/s]
Ancho total de la plataforma	12,85	[m]
Ancho total del corte	25,78	[m]

• Sección Túnel Tipo Baúl

Longitud	817,54	[m]
Pendiente	0,105	%
Diámetro interior de la bóveda	3,51	[m]
Ancho interior del cajón	3,51	[m]
Alto interior del cajón	1,34	[m]
Calado normal	2,5	[m]
Borde libre	0,6	[m]
Velocidad de flujo	2,32	[m/s]
Revestimiento de hormigón en toda su longitud		

6.2. Obra Hidráulica

6.2.1. Túnel de trasvase

De acuerdo al estudio geológico – geotécnico, el túnel no necesitará ser revestido, debido a que atraviesa por roca de la formación Macuchi, a excepción de los portales de entrada y salida que atravesara por material coluvial. Las características relevantes se indican a continuación:

Caudales

Q diseño	9,43	[m ³ /s]
Q máximo admisible	10,00	[m ³ /s]

• Túnel (Sección: Baúl inscrito en cuadrado)

Diámetro equivalente	2,82	[m]
Pendiente Constante	0,20	%
Longitud Total	827,26	[m]
Longitud de túnel en roca	727,26	[m]
Longitud con revestimiento en la entrada y salida	50,00	[m]
Espesor del de hormigón	0,20	[m]
Canal abierto de salida	7,00	[m]
Cota Inicial del Agua en el túnel	776,83	msnm
Cota a la salida del túnel	775,17	msnm

6.2.2. Reservorio de Regulación y Tanque de Cabecera

Las condiciones iniciales de colocación de la energía firme establecían que la central solo trabajara 4 horas diarias a su máxima capacidad y las veinte horas restantes trabajaría a un 24% de su capacidad instalada.

A continuación se presenta una breve descripción de las obras. (Ver planos N° 0221–C–601 y N° 0221–C–700)

Volumen útil de agua	182000	[m³]
Volumen para acumulación de sedimentos en un año	11300	$[m^3]$
Longitud útil aproximada	750	[m]
Profundidad teórica para sedimentos	0,24	[m]
Profundidad útil para regulación	3,48	[m]
Vertedero de excesos con sistema de purga y limpieza Tanque de cabecera		
Canal by-pass		

6.2.3. Conducto de baja presión

Conduce los caudales del reservorio de regulación diaria hacia la tubería de presión propiamente dicha. Los rasgos relevantes se enuncian a continuación: (Plano Nº 0221–C–701)

Sección Inicial

Sección Cuadrada	2,0x2,0	[m]
Pendiente	0	%
Longitud	5,0	[m]

• Sección Circular Primer Tramo

Sección Circular (Diámetro)	2,3	[m]
Pendiente		0,0	%

• Sección Circular Segundo Tramo

Sección Circular (Diámetro)	2,30	[m]
Pendiente	1,82	%

Longitud

Primer tramo	70.50	r 7
Plataforma con relleno compacto	70,50	[m]
Segundo tramo (Túnel)	102,20	[m]
Tercer tramo	107,30	[m]
Plataforma con relleno compacto	107,50	נייין
Cuarto tramo (Túnel)	115,24	[m]
Longitud total entre plataforma y túnel	335,24	[m]
Material a emplearse: hormigón armado		

6.2.4. Chimenea de equilibrio

La chimenea de equilibrio es utilizado para absorber oscilaciones de nivel debido a las maniobras de rechazo y demanda de carga de los grupos turbo – generadores y es donde se reflejan las ondas causadas por el golpe de ariete. Para este proyecto se va a utilizar una chimenea de equilibrio tipo orificio restringido.

Diámetro Interno		5,00	[m]
Altura (incluido orificio y márgenes seguridad superior e inferior)	de	21,06	[m]
Oscilaciones Ascendentes		777,98	msnm
Oscilaciones Descendentes		759,99	msnm

6.2.5. Tubería de presión

La tubería de presión va desde el final del conducto de baja presión hasta las válvulas esféricas de admisión en las turbinas. Se incluye un tramo corto final de la bifurcación o manifold para la alimentación a los dos grupos turbogeneradores. (Ver planos N° 0221–C–800, N° 0221–C–801, N° 0221–C–802, N° 0221–C–803)

Se ha dispuesto colocar bloques de anclaje de hormigón armado en todos los cambios de dirección del eje de la tubería. Bajo el eje de la tubería se dejará una plataforma de 2,00 m que servirá de vía peatonal para inspección y mantenimiento. Las cunetas de drenaje se hallan en los extremos, paralela a la tubería.

Longitud en el eje	1480,4 m hasta la bifurcación
Diámetro óptimo	2,15 m
Material	Acero ASTM A-210 – grado B
Espesor Variable desde	8 mm hasta 34 mm
Apoyos	Tipo anillo
Mainfold	Diámetro = 1,52 m
Dos ramificaciones	Longitud = 22,19 m
	Espesor = $26,00 \text{ mm}$
Presión máxima a la entrada de válvula esférica	35,14[kg/cm ²]
Presión mínima a la entrada de válvula esférica	23,19[kg/cm ²]

6.2.6. Casa de máquinas y restitución

La Casa de Máquinas será de tipo superficial o a cielo abierto. El piso principal de casa de máquinas se hará sobre una plataforma en la cota 460,00 msnm, y el distribuidor se encuentra en la cota 455,00 msnm. La

restitución de las aguas turbinadas será mediante canales independientes para cada grupo, directamente al río Sinde.

Las características principales de Casa de Máquinas se detallan a continuación: (Ver plano N° 0221–C–900)

Tipo	Superficial o a cielo abierto
Longitud	31,80 [m]
Ancho	20,60 [m]
Cubierta	metálica, con techo de asbesto – cemento

Niveles

Fondo de los pozos de descarga	452,20 msnm
Nivel normal del río Sinde en la restitución	452,00 msnm
Nivel máximo de creciente frente a casa de máquinas	455,00 msnm
Piso de distribuidores	456,45 msnm
Eje de turbina	457,80 msnm
Piso de turbinas	460,15 msnm
Piso de generadores	464,05 msnm
Nivel de instalación del puente grúa	472,65 msnm

Puente Grúa

_Capacidad 7	0 toneladas
--------------	-------------

6.2.7. Características del sistema hidráulico

Las características del diseño hidráulico, necesarias para el cálculo y análisis de la chimenea, se resumen a continuación

Nivel de agua máximo normal en tanque de cabecera	770,23	msnm
Nivel de agua mínimo en el tanque de cabecera	766,75	msnm
Nivel de restitución(eje de turbina)	457,80	msnm
Diámetro del conducto de baja presión	2,30	[m]
Longitud del conducto de baja presión	450,00	[m]
Rugosidad absoluta máxima anticipada	0,00030	[m]
Rugosidad absoluta mínima anticipada	0,00025	[m]
Coeficiente de perdidas menores máximo anticipado	0,20	[m]
Coeficiente de perdidas menores mínimo anticipado	0,07	[m]
Coeficiente de perdidas menores medio anticipado	0,135	[m]
Caudal con dos grupos y nivel máximo en reservorio	19,63	[m³/s]

6.3. Equipos Mecánicos

6.3.1. Turbinas

Para seleccionar el tipo de turbina ideal para las condiciones del proyecto descritas en capítulos anteriores usamos un software interactivo propiedad de ALSTOM con el cual se obtienen las características técnicas de la turbina seleccionada. A más de la frecuencia a la cual va a operar la unidad, el programa requiere la especificación de al menos dos de tres datos entre la altura del proyecto, el caudal de descarga por unidad y la potencia por unidad para seleccionar el tipo de turbina a diseñar, como lo muestra el gráfico 6.1.

Bajo el esquema utilizado el tipo de turbina se encuentra entre las franjas de Pelton y Francis. El criterio de selección por el cual se opto por una turbina Pelton es que dichas turbinas poseen eficiencias altas, aun cuando la carga y el gasto son menores que los de diseño, y además, porque es el tipo de turbina más conveniente de instalar cuando el agua presenta un alto contenido de sedimento, como es en el presente caso.

También hay que señalar que en las turbinas Pelton no existe el compromiso entre la sobrepresión y la sobrevelocidad, como es el caso de las turbinas Francis, lo que permite ajustar el valor de la inercia del rotor del generador solamente en función de la calidad de regulación de frecuencia que se quiera obtener.

Los resultados obtenidos por el programa fueron los siguientes:

Turbina tipo Pelton Eje tipo Vertical

Numero de inyectores 4

Velocidad nominal 450 rpm

Una vez seleccionada la turbina y obtenido los datos del fabricante, procedemos a dimensionar la turbina basándonos en la formulación planteada en el libro "Energía Electrica, Turbrinas y Plantas Generadoras" por Viejo Zubicaray y Alonso.

Si $C_{\nu}=$ 0.97 para una turbina Pelton

67

Velocidad de la turbina en su diámetro de paso

$$u = 0.44\sqrt{2gH_n}$$
 [6.1]
 $u = 34.32[m/seg]$

Velocidad tangencial para potencia máxima

$$V_t = 0.798\sqrt{2gh}$$
 [6.2]
$$V_t = 62.24 \left[\frac{m}{seg} \right]$$

Velocidad del agua en el chiflón (velocidad teórica);

$$V_{agua} = 0.98 \sqrt{2gH_n}$$
 [6.3]
 $V_{agua} = 76.43 [m/seg]$

Diámetro de cada chiflón para una Pelton de 4 chiflones

$$d_i = 0.55 \frac{\sqrt{Q/Z}}{\sqrt[4]{H_n}}$$
 [6.4] $d_i = 0.178 [m]$

Diámetro de la rueda

$$D = 84.6 \Phi \frac{\sqrt{H_n}}{n_g}$$
 [6.5], Donde $\phi = \frac{u}{\sqrt{2gH_n}}$ $\phi = 0.44$

$$D = 2.91[m]$$

Una manera de confirmar que el número de chiflones escogidos sea el correcto es que cumplan con la siguiente relación:

$$\frac{D}{d_i} \ge 10 \qquad [6.6]$$

Relación que cumple ya que;

$$\frac{2.91}{0.178} = 16.348 \ge 10$$

Velocidad del agua al salir de la boquilla

$$v = Cv\sqrt{2gh}$$
 [6.7]
$$v = 75.65 \left[\frac{m}{seg} \right]$$

Velocidad especifica de la turbina

$$n_{st} = \frac{n_t P^{\frac{1}{2}}}{H^{\frac{5}{4}}}$$
 [6.8]
 $n_{st} = 57.6 \, rpm$

Valor de velocidad que esta dentro de los parámetros para una turbina Pelton según la clasificación general aproximada de las turbinas según su velocidad específica, que se muestra a continuación.

n > 0	Tino	Caída nota [m]
n _s >0	Tipo	Caída neta [m]
- 18	Pelton 1 chiflón	- 800
18 – 25	Pelton 1 chiflón	800 – 400
26 – 35	Pelton 1 chiflón	400 – 100
26 – 35	Pelton 2 chiflones	800 – 400
36 – 50	Pelton 2 chiflones	400 – 100
51 – 72	Pelton varios chiflones	400 – 100
55 – 70	Francis muy lenta	400 – 200
70 – 120	Francis lenta	200 – 100
120 – 200	Francis media	100 - 50
200 - 300	Francis rápida	50 – 25
300 – 450	Francis muy rápida	25 – 15
400 – 500	Hélice ultrarrápida	Hasta – 15
270 – 500	Kaplan lenta	50 - 15
500 - 800	Kaplan rápida	15 – 5
800 - 1100	Kaplan ultrarrápida	≤ 5

Numero de polos del generador

$$p = \frac{120f}{n_t}$$
 [6.9]
$$p = 16$$

Velocidad del Generador

$$n_g = \frac{60f}{p}$$

$$n_g = 225 rpm$$
[6.10]

Tabla de Resultados

Turbina	Pelton
Eje	Vertical
Numero de inyectores	4
Velocidad nominal	450 rpm
n _{st}	57.6 rpm
Diámetro rueda	2,91 m
Diámetro de inyectores	0,178 m
Numero de polos	16
n _{sg}	225 rpm

6.3.2. Válvula de guardia

Por la caída del proyecto y por garantía en la hermeticidad de los sellos, las válvulas de guardia del tipo esférico son ideales para las turbinas tipo Pelton.

El paso libre del agua por el interior de la válvula disminuye las pérdidas, incrementando la energía a lo largo de la vida de la central.

La velocidad del agua de 2,70 m/s, resultado de la optimización del diámetro (2,15 m) de la tubería de presión, por criterio hidráulico se mantiene en los dos ramales que se dirigen a las turbinas, por lo que su diámetro es de 1,52 m; por requerimiento de diseño de la turbina, el diámetro de entrada al espiral es de 1,32m. El tener dos diámetros relativamente próximos, ha conducido a un fácil dimensionamiento de la válvula esférica, el cual se ha fijado en el mismo diámetro de la entrada de la turbina, esto es 1,32 m y completándose su unión al ramal de la tubería de presión a través de una transición. En caso de emergencia estas válvulas

deberán cerrarse en 100 segundos y en casos normales en 180 segundos.

La apertura de estas válvulas se efectuará mediante el accionamiento de un cilindro oleohidráulico. Cada válvula deberá contar con su propia central oleohidráulica compuesta de tanque reservorio, bomba y controles. Por confiabilidad, el cierre de las válvulas esféricas se realizará por acción de un contrapeso.

6.3.3. Sistema de agua potable y de servicios

Para satisfacer los requerimientos de enfriamiento de las bobinas del generador y de los cojinetes de la turbina y generador, se requiere de agua de servicios, la que será abastecida de la tubería de presión a través de una estación reductora de presión de un separador ciclónico (para eliminar los sedimentos) y de filtros, para finalmente ir a los depósitos principal y de reserva.

6.3.4. Sistema de aire comprimido

Para frenado del generador y para labores de mantenimiento se dispondrá de un compresor de aire, con su respectivo tanque de almacenamiento. El compresor tendrá una capacidad de 8 litros/segundo, y el tanque de almacenamiento será de 1,5 m³.

6.3.5. Sistema de ventilación y aire acondicionado

Para evacuar el calor disipado por los equipos y renovar el aire, se requiere de un equipo de ventilación, compuesto por dos ventiladores del 50% de la capacidad total y de ductos para la distribución en las áreas de las máquinas principales y auxiliares.

Para la sala de control y las áreas en donde se ubiquen los equipos y tableros electrónicos, para mantener la humedad y la temperatura adecuada, se contará con un sistema de acondicionamiento de aire, compuesto por una unidad centralizada y los ductos de distribución correspondientes.

6.3.6. Sistema de drenaje

Para la recolección de agua provenientes de posibles infiltraciones y de los sistemas auxiliares, se instalarán canales y tuberías que conducirán el agua al canal de descarga.

6.4. Equipos Eléctricos

6.4.1. Diagrama unifilar del sistema eléctrico

El diagrama unifilar del Sistema Eléctrico del Proyecto indica el equipamiento y sus especificaciones generales. El proyecto dispone de dos unidades generadoras de 25MVA a 13,8 KV, equipadas con sistemas de regulación de velocidad y de voltaje, además tienen dos disyuntores a través de los cuales se conectan a los transformadores de 30 MVA; 13,8/138 KV.

Los transformadores están unidos a la subestación con un esquema de doble barra de la cual salen 2 líneas a 138 KV hasta la subestación de Quevedo.

6.4.2. Generador

Los generadores tendrán las siguientes características:

Potencia Nominal	23,66	MVA
Voltaje Nominal de Generación	13,8	ΚV
Frecuencia	60	Hz
Número de polos	16	
Velocidad	450	rpm
Velocidad de Embalamiento	855	rpm
Factor de potencia	0,90	
Rendimiento	98	%
Relación de Cortocircuito	1,05	%
Factor desviación onda tensión	5,00	%
Elevación Temperatura	Clase B	
Aislamiento	Clase F	
Posición	Eje Verti	cal

6.4.3. Estator

El núcleo se fabricará con láminas delgadas de acero al silicio de alta calidad a prueba de envejecimiento, barnizadas ambas caras, fijadas adecuadamente a la carcasa del estator y entre si para que puedan resistir sin perturbación las condiciones de esfuerzos de dilatación o vibración de servicio; las láminas se ordenarán en paquetes con medios adecuados para formar ranuras de refrigeración por aire. Los terminales tanto de línea como el punto neutro, serán sacados fuera del estator por medio de aisladores pasatapas de clase 24 KV. La carcasa será construida en chapa de acero soldadas, de

manera que pueda soportar máximos esfuerzos producidos por la unidad en el caso de operaciones anormales.

6.4.4. Rotor

La estrella rotor será de acero forjado o laminado, con brazos de chapas de acero soldados y adecuados para acoplar al eje. Los polos serán de láminas de chapa delgada, asegurados por remaches o pernos fijados a la corona por medio de entalladuras salientes del tipo cola de milano. Las bobinas de campo serán de aislamiento clase F, completamente adherido a las espiras adyacentes de manera tal que se pueda sacar una bobina de campo entera. El rotor estará equipado con devanados de amortiguamiento, distribuidas de manera tal que permitirán retirar uno de los polos sin inconvenientes. El rotor estará dotado de un anillo o pista de frenado.

6.4.5. Cojinetes

Cada generador irá provisto de un cojinete combinado guía y empuje, colocado encima del rotor y un cojinete guía montado por debajo del rotor. El soporte de empuje será de acero estructural y diseñado para soportar el peso de las partes rotativas del generador y la turbina.

El cojinete de empuje será de inmersión en aceite, auto lubricado, con zapatas de compensación automática. Se proveerá una motobomba para suministrar aceite a alta presión al cojinete de empuje durante el arranque y la parada del grupo; sin embargo, debe soportar sin daños la parada sin aplicación de frenos y sin aceite de alta presión.

6.4.6. Ventilación y refrigeración

Cada generador será provisto de un sistema de ventilación de circuito cerrado, efectuándose la circulación de aire por medio de los ventiladores unidos a la corona a través de radiadores refrigerados por agua.

6.4.7. Ejes de acoplamiento

Los ejes serán de acero forjado tipo ASTM – A668, clase D. Poseerán un orificio central perforado axialmente en toda su longitud, estos se acoplarán al eje de la turbina a través de una brida.

6.4.8. Frenos y gatos

Los generadores estarán provistos de frenos accionados por aire de capacidad suficiente para conseguir parar al grupo dentro de un tiempo máximo de 5 minutos a partir del 20% de la velocidad nominal del generador.

6.4.9. Sensores inductivos de proximidad

Cada generador contará con sensores inductivos de proximidad, montado sobre el eje del generador, destinado a enviar información de velocidad al controlador y regulador de velocidad de turbina.

6.4.10. Sistema de excitación

El sistema de excitación será de tipo estático de auto excitación alimentado desde un transformador conectado

a los terminales del generador, dispondrá de 2 puentes completos de rectificadores controlados redundantes. El sistema será de diseño moderno y deberá suministrar al generador una amplia excitación de campo, en forma continua y estable, cuando el generador se encuentre entregando su frecuencia y potencia nominales y con tensión de 0,95 a 1,05 PU de su tensión nominal. El techo de voltaje será de 2 PU, el tiempo de respuesta de tensión será menor a 0,1 seg. El sistema estará equipado con elementos de supresión de excitación. El regulador de tensión tendrá canales independientes para la regulación manual y automática, su cambio podrá realizarse sin avalanchas de potencia activa.

6.4.11. Dispositivos de detección y medición

Cada generador estará equipado con detectores de temperatura, tanto para los bobinados del generador como para el núcleo del estator, el aceite y los cojinetes. Estos serán de tipo resistencia de 100° a 0°C. La unidad dispondrá de sensores de temperatura, switches de fin

de carrera, presostatos, flujostatos, tacómetros, etc. que sirvan para el monitoreo y control de la unidad.

6.4.12. Interruptor del generador

Los interruptores de máquina cumplirán con los estándares ANSI IEEE C37.013/IEC y tendrán las siguientes características:

Tensión Nominal	17,5	KV
Corriente Nominal	2000	Α
Capacidad de Interrupción	50	KA rms
Frecuencia	60	HZ
Tipo	HGF – 2	
Aislado en SF6		

6.4.13. Transformador del generador

Cada generador estará conectado a un transformador de potencia con las siguientes características:

Potencia Nominal	30 MVA	
Tensión Nominal Primario	13, 8 KV	
Tensión Nominal Secundario	138 KV	
Frecuencia	60 Hz	
Sistema de Enfriamiento	OA/FOA	
Regulación de Tomas	± 2 x 2,5 %	
Conexión	Delta – Estrella	

	Primario	Secundario	
Nivel de Aislamiento de los devanados a:			
Baja Frecuencia	39 KV	250 KV	
Impulso Onda Completa 1,2/50 μs	110 KV	510 KV	
Impulso Onda Cortada	130 KV	820 KV	

Nivel de Aislamiento de los pasatapas a:

Baja frecuencia seco/lluvia	50/45	400/350
Impulso Onda 1,2/50 μs	150	900

Núcleo	Estará constituido de láminas de acero eléctrico al silicio de cristales orientados, libre de envejecimiento, con pérdidas reducidas y de una gran permeabilidad; serán diseñados para admitir una corriente de magnetización lo más bajo posible.
Arrollamientos	Serán de cobre electrolítico de alta calidad
Aisladores	Serán de diseño aprobado y
Pasatapas	resistentes al aceite y gases producidos durante fallas
Tanque	El tanque será de chapas de acero soldadas y reforzadas
Conmutador de Tomas	El transformador dispondrá de un conmutador de tomas manual y operable sin carga
Accesorios	Relé Buchholz Indicadores de nivel de aceite Sensores detectores de temperatura Detectores y válvulas de sobrepresión Válvulas de drenaje, tratamiento y tomas de muestras del aceite

6.4.14. Disyuntor 138 KV

Los disyuntores serán del tipo aislado en SF6, adecuados para operar a la intemperie, equipados con cabina de control, en el cual estarán ubicados los controles y mecanismos de operación con:

Número de polos	3	
Frecuencia	60	Hz
Neutro del sistema	Sólido a tie	erra
Corriente continua nominal	400	Α
Capacidad de interrupción trifásica	25	KA
Corriente corta duración	15	KA
Tiempo de Interrupción	3 ciclos	
Voltaje nominal	145	ΚV
Nivel de aislamiento a baja frecuencia	320	ΚV
BIL	700	ΚV
Onda cortada 2 segundos	904	ΚV

6.4.15. Seccionador de 138 KV

Los seccionadores tendrán las siguientes características:

Número de polos	3	
Frecuencia	60	Hz
Voltaje Nominal	145	KV
Corriente continua nominal	400	Α
Valor de cresta admisible	80	KA
Capacidad de interrupción trifásica	31,5	KA
Corriente corta duración	15	KA
BIL entre polos y a tierra	650	KV
BIL entre terminales cuchillas abiertas	750	KV
Cantilever de aisladores	400	daN
Terminales de aluminio		

6.4.16. Pararrayos de **138** KV

Los pararrayos tienen las siguientes especificaciones:

Tipo	Oxido de zinc
Conexión	Fase – tierra
Voltaje de Operación (línea a línea)	145 KV
Voltaje nominal del pararrayos	120 KV
Voltaje a operación continua	95 KV
Máximo voltaje residual a corriente escarpada de impulso (10 KA – 8 x 20 s)	288 KV

Capacidad de energía mínima a voltaje nominal en operación
Distancia mínima de contorneo
Rigidez dieléctrica a onda de impulso

145 KJ/KV 2290 mm 950 KV

6.4.17. Sistema de control y protección

El control y protección de las unidades y subestación, se lo realizará a través de paneles ubicados en el sitio de operación y desde Sala de Control

Control de Unidades

El sistema de arranque, parada, secuencias de bloqueo, órdenes para sistemas de regulación de velocidad, excitación y protecciones de las unidades generadoras serán controlados a través del Sistema de Control Distribuido (DCS).

Se contará con cuatro Controladores Programables Multifuncionales (PMC), uno para cada unidad, uno para subestación y otro para servicios auxiliares, conectados a pantallas que permitan visualizar el proceso a través de una red arc Net.

Control De La Subestación

El control de los disyuntores, seccionadores de línea y seccionadores de puesta a tierra, a parte de poder ser operado desde Sala de Control, también se podrán accionar de forma manual en la propia subestación a través de manijas apropiadas localizadas en cada panel de control del equipo.

Sincronización

Las unidades de generación se sincronizarán a través del disyuntor de 13,8 KV y de ser necesario también se podrá sincronizar en la subestación a partir del disyuntor de 138 KV. La sincronización de las unidades podrá ser de manera automática o manual, para lo cual se dispondrá de un sincronizador automático que sea capaz de controlar voltaje y velocidad de la unidad.

Protecciones

Los relés en su mayoría serán de estado sólido utilizando alta tecnología en este campo para garantizar la seguridad de las unidades de generación.

Tanto la turbina como el generador disponen de equipo de protección propio, presóstatos, flujómetros, de sobreexcitación, etc, que ordenarán el disparo de disyuntores y la parada de la unidad en caso de anomalías.

6.4.18. Servicios auxiliares

La central dispondrá de servicios auxiliares en 480 V a través de transformadores instalados en la barra de 13,8 KV del generador. Cada unidad se conectará a un centro de carga de la central y de aquí a un panel del centro de carga de cada unidad.

6.4.19. Sistema de iluminación

Cuenta con dos sistemas de iluminación; el sistema de emergencia que se alimenta con 125 V_{cc} que usa lámparas incandescentes y el sistema de iluminación normal con lámparas fluorescente y de baja presión de sodio de 220 V_{ac} .

6.4.20. Sistemas de ductos y bandejas

Tanto la central como la subestación dispondrán de ductos y bandejas metálicas para que alojen los conductores de baja tensión. Se deberán utilizar ductos y bandejas independientes para los conductores de control y fuerza, a fin de evitar inducciones que afecten el normal funcionamiento de las instalaciones.

6.4.21. Sistema de tierra y apantallamiento

La central y la subestación tendrán mallas de tierra independientes, las cuales deben ser interconectadas. El valor de resistencia será menor que 0,5 ohmios. La subestación será apantallada adecuadamente con cable de acero galvanizado. Se sugiere instalar un sistema de tierra aislada para todos los equipos electrónicos instalados en la central.

6.4.22. Sistema De Transmisión

El sistema de transmisión del proyecto desde la central hidroeléctrica hasta la subestación de Quevedo, será realizado a través de una línea de transmisión de 138 KV

de 45 Km. de longitud aproximadamente, doble circuito que utilice cable ASCR de 266,80 MCM, con 18 hilos de aluminio y 1 de acero, montados en estructura metálica.

CAPÍTULO 7

7. PRESUPUESTO DE OBRAS

Una vez establecida todas las obras civiles, hidráulicas y electromecánicas que se ejecutarán para llevar a cabo el proyecto hidroeléctrico, procedemos a detallar el presupuesto referencial para la construcción del Proyecto Hidroeléctrico Angamarca – Sinde.

Las cantidades de obra se han fijado con base en estimaciones de los planos, propuestas por los fabricantes, relacionadas entre costos de obras principales y los diversos métodos que son usuales para este objetivo. Dentro del presupuesto esta considerada la ingeniería del proyecto y la mano de obra.

A continuación se detalla los distintos rubros de todo el proyecto.

7.1. Obras Civiles

Los rubros principales de la obra civil se desglosan a continuación. (Ver Cuadro 7.1)

- Bocatoma del río Angamarca
- Bocatoma del río Sinde
- Obras de Trasvase
- Conducción
- Reservorio de Regulación
- Tubería de Conducción de Baja Presión y Chimenea de Equilibrio
- Tubería de Presión
- Casa de Máquinas
- Terrenos y Servidumbre
- Accesos
- Medidas de Mitigación Ambiental

7.2. Equipos Electromecánicos e Hidromecánicos

Para fijar los rubros de los equipos electromecánicos se considero los equipos principales tales como la turbina, generador, transformador, subestación y sistema de transmisión, además de los equipos auxiliares y de control. (Ver Cuadro 7.2)

Dentro de los rubros de los equipos hidromecánicos consideramos los siguientes equipos: tubería de presión, compuertas, reguladores de velocidad, válvulas, puentes grúas.

7.3. Interconexión con el Sistema Nacional

El costo de las obras de interconexión con el Sistema Nacional (SNI), depende de la distancia entre la central y la Subestación de Quevedo. (Ver Cuadro 7.3)

7.4. Presupuesto Referencial

Al costo directo de construcción, se le adiciona el 10% del mismo que es destinado para la ingeniería y administración del proyecto, 8% destinado para los imprevistos que se pudieren presentar en la construcción del mismo, además del 12% del IVA (Impuesto al Valor Agregado). (Ver Cuadro 7.4)

Obteniendo una inversión inicial que asciende a los \$90.393.214, obteniendo el valor de 1.807,96 \$/KW.

CAPÍTULO 8

8. EVALUACION ECONÓMICA Y FINANCIERA

Para realizar la evaluación económica se procedió a actualizar la información técnica del proyecto que comprende: hidrología en la zona de la cuenca hidroenergética, cálculo de las producciones energéticas, revisión del cronograma de construcción de las obras, presupuesto de construcción, calendario de inversiones y reposiciones intermedias durante la vida útil del proyecto.

De acuerdo con la información hidrológica que recoge 38 años de registros en el río Pilaló, en base a los que se ha podido extender una estadística de caudales para el río Angamarca y Sinde, se calculó la producción energética.

El presupuesto de construcción de las obras civiles y del equipamiento se actualizó a enero del 2006, con algunos correctivos que permitieron ajustar de mejor manera el presupuesto a la realidad de la obra. El cronograma de ejecución de la obra ha sido actualizado acortando los tiempos de ejecución. Consecuentemente, se ha calculado el nuevo calendario de inversiones para la construcción de la obra.

8.1. Evaluación Económica

A continuación se describen todas las hipótesis asumidas y en el Cuadro 8.1 se detalla todos los cálculos realizados para el análisis económico del proyecto.

8.1.1. Costos de Inversión y de Operación – Mantenimiento (O&M)

El costo de inversión referencial del proyecto está basado en los precios del mercado y no considera la inflación. Los costos de O&M se han estimado como un porcentaje de los costos de inversión, siendo estos iguales al 1,50%. Todos estos costos se resumen en el siguiente cuadro.

Costos de Inversión	90'393.214,00	[US\$]
Costos de O&M	1′355.898,21	[US\$]
Tiempo de Construcción	2	[Años]

8.1.2. Vida Útil

El estudio cubre el período de vida útil del proyecto de generación de 50 años y el sistema de transmisión en 35 años.

8.1.3. Tasa de Descuento

La tasa de descuento utilizada en los procesos de actualización de flujos y cálculos del valor actual neto (VAN) es el 10%.

8.1.4. Reposiciones Intermedias

Los costos por concepto de reposiciones intermedias de equipos durante la vida útil del proyecto de generación se determinan según se indica a continuación:

Concepto	Vida Útil [años]	% del costo de Inversión
Turbinas	30	11,90
Generadores	35	7,30
Equipo Electromecánico	35	7,90
Equipo de Control	30	1,60
Accesorios	40	4,50
Sistema de Transmisión	35	100,00

8.1.5. Precios de Venta de la Potencia y Energía

Se ha tomado como referencia los siguientes precios de venta de potencia y energía para este análisis, con el fin de cuantificar los beneficios del Proyecto por la venta de su producción energética.

Concepto	Precio de venta
Potencia [US\$/KW/año]	68,40
Energía [US\$/MWh]	40,00

8.1.6. Costos y Beneficios Actualizados

Los costos actualizados del Proyecto han sido calculados llevando a valor presente los desembolsos por concepto de la inversión en la construcción más los costos por reposiciones intermedias y los gastos anuales en la operación y mantenimiento. Los beneficios del Proyecto están representados por la venta de producción energética, estos valores están expresados en valores anuales que son llevados también al presente.

8.2. Evaluación Financiera

Para el análisis financiero del proyecto se consideran, además de las hipótesis asumidas para el análisis económico, las hipótesis que a continuación se describen.

8.2.1. Costos de Depreciación

Se considera una depreciación lineal durante la vida útil del Proyecto. Además asumimos que la vida útil de la obra civil y equipamiento electromecánico son de 20 y 10 años respectivamente.

8.2.2. Prima por Seguros

La prima por concepto de seguro de la central hidroeléctrica durante la vida de operación se determinó mediante métodos de cálculos realizado en el presente por compañías aseguradoras.

8.2.3. Impuestos

A la utilidad generada por el Proyecto Angamarca – Sinde, se han restado los valores por concepto del impuesto a la renta equivalente al 25% de la utilidad gravable.

8.2.4. Financiamiento

Se considera que el 30% del costo total del proyecto Angamarca – Sinde será cubierto con recursos propios del inversionista y el 70% a través de un crédito externo. Las condiciones asumidas para el crédito externo son las siguientes:

• Tasa de interés real 10 % anual

• Plazo de reembolso 10 años

• Período de gracia 2 años

• Forma de amortización cuotas anuales constantes

Los cálculos de amortización del crédito, estado de pérdidas y ganancias, flujo anual de fondos y rendimiento interno de la inversión se presentan en el Cuadro 8.2.

OBSERVACIONES Y RECOMENDACIONES

Las diversas observaciones que constan se resaltan por considerarse muy importantes para la ejecución de esta obra, las mismas se detallan a continuación:

- En la toma sobre el río Angamarca, especialmente aquella de la margen izquierda en la que se desarrollará el canal de desvío de este río, se observa una zona relativamente inestable, la misma que ha sido atacada por un proceso activo de erosión, el mismo que podría afectar la estabilidad de dicho canal.
- La estación limnigráfica Angamarca en Pihuapungo, instalada en 1984, no fue utilizada en nuestro análisis, a pesar de ubicarse en el sitio exacto de la bocatoma del río Angamarca, debido a que se cuenta con poca información.

- Tomando en cuenta todas las medidas y normas que este tipo de proyecto deben cumplir para no afectar al medio ambiente, se recomienda dejar un 10% del caudal medio de cada río como caudal ecológico para que se preserve la vida a lo largo del cauce normal del río y para que sirva para proyectos de riego. Se sugiere mantener aguas abajo del represamiento, necesitan mantener un caudal adecuado para la supervivencia de los peces. El promedio de profundidad desagua es de 80 cm., ya que en ciertos lugares del río hay profundidades de 1,50 m., en otros sitios entre 30 y 40 cm. En algunos afluentes terciarios la profundidad desagua alcanza 30 cm.
- En la población de Moraspungo, se encuentra ubicada una pequeña central hidroeléctrica llamada Central Hidroeléctrica Catazacón, con una capacidad de 800KW, por lo que se recomienda un caudal de 3 m³/seg de reserva para la operación de esta central en miras a expandir su capacidad.
- Como recomendación emergente se deberá implementar más estaciones meteorológicas e hidrológicas a lo largo de la cuenca del río Guayas con el fin de obtener datos más confiables, tanto antes como después de la ejecución del proyecto.

- Previa la ejecución del proyecto debe realizarse un estudio más completo de sedimentación, aumentando el número de aforos de gasto sólido en la estación Angamarca en Pihuapungo, para evitar, a largo plazo, problemas similares a los que esta enfrentando la central Hidroeléctrica Paute.
- Los resultados obtenidos en la corrida del software Pfirm nos arroja una energía media anual de 342 GWh, similar al resultado obtenido mediante tablas y gráficas, lo que nos indica que los datos son confiables y torna el proyecto energéticamente atractivo.
- Los diseños para la obra civil incluida dentro de este estudio fueron realizados por el INECEL de tal manera que el río Angamarca sería usado solo para períodos secos, pero con las actuales exigencias ambientales sumada la demanda de caudal de la Central Hidroeléctrica Catazacón, fue necesario reestructurar este esquema, manteniendo la misma obra civil pero variando la captación del río Angamarca a seis meses al año, manteniendo así el caudal de diseño del proyecto piloto
- Se recomienda que los valores obtenidos teóricamente en el diseño de la turbina deben revisarse para compensar los efectos de fricción tanto en

los cangilones, como en las chumaceras por la acción del aire en el interior de la turbina, además de ser sometidos a las pruebas correspondientes para evitar pérdidas y vibraciones en el diseño final.

- Para el diseño de subestación se recomienda el sistema de doble barra debido a su confiabilidad y a la flexibilidad de operación.
- Debido a la cantidad de equipos electrónicos dentro de la central se recomienda utilizar conductor apantallado para el cableado de los tableros de instrumentación lo que permitirá evitar problemas de falsas señales por interferencias externas.

CONCLUSION

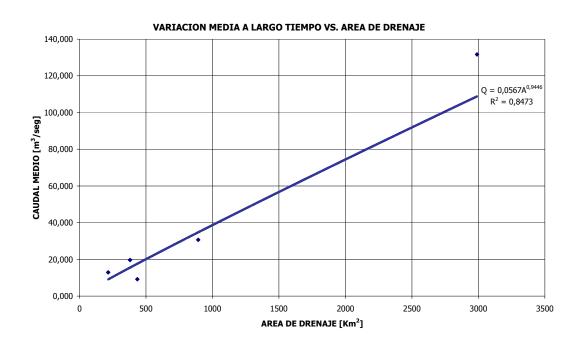
Este estudio nos lleva a concluir una sola cosa, el mismo que, luego de actualizar los precios para establecer el presupuesto referencial de la obra y realizar una evaluación económica – financiera, arrojó una tasa interna de retorno (TIR) de alrededor del 15%, la misma que esta tres puntos por encima de la tasa interna de retorno de las entidades bancarias, por lo que el proyecto es factible y por lo tanto se justifica invertir en su ejecución.

APENDICES

APENDICE A

TRANSPOSICION DE CAUDALES

Al no obtener información hidrológica de un punto especifico a lo largo de una cuenca en proceso de estudio; es necesaria la aplicación del método de transposición de caudales. Método qué, recurriendo al área de drenaje de ríos con topografía, geología y vegetación semejantes al río en estudio, permite referir datos hidrológicos hacia el punto de interés mediante un factor constante, llamado Factor de Transposición de Caudales.


Para determinar el Factor de Transposición de Caudales, se seleccionan la mayor cantidad de estaciones hidrológicas cercanas al área en estudio, en un radio promedio de 50Km, de los cuales se procesan los siguientes datos:

- Historial de Caudales Medios Diarios.
- Área de Drenaje.

Para este proyecto en particular, la estación base seleccionada es Pilaló en La Esperanza, y, las estaciones semejantes son; Las Juntas DJ Sinde (Umbe DJ PIN), Echeandía en Echeandía y Zapotal en Lechugal.

CODIGO	IGO NOMBRE DE LA ESTACION		AREA DE	CAUDAL MEDIO
CODIGO	NOMBRE DE LA ESTACION		DRENAJE	[m³/seg]
H329	PILALO EN LA ESPERANZA	920	216	12,907
H343	ECHEANDIA EN ECHEANDIA	425	380	19,647
H346	ZAPOTAL EN LECHUGAL	18	2990	131,659
H378	LAS JUNTAS DJ SINDE(UMBE DJ PIN.)	150	893	30,650
H397	ANGAMARCA EN PIHUAPUNGO	750	435	9,170

Utilizando los valores de caudal medio y área de drenaje, se elabora un gráfico, donde se obtiene una ecuación representativa de caudales en función de áreas de drenaje.

La ecuación obtenida con un factor de correlación de 0,8473 es:

$$Q = 0.0567 \quad A^{0.9446} \qquad \left[m^{3} / \right]$$
 (A.1)

Donde se obtienen los siguientes caudales;

$$Q_{SINDE} = 17,495 \quad \begin{bmatrix} m^3 \\ s \end{bmatrix}$$

$$Q_{ANGAMARCA} = 19,194 \quad \begin{bmatrix} m^3 \\ s \end{bmatrix}$$

$$Q_{QUEB.LLOAVI} = 1,087 \quad \begin{bmatrix} m^3 \\ s \end{bmatrix}$$

$$Q_{QUEB.\ LAFLORIDA} = 1,320 \quad \begin{bmatrix} m^3 \\ s \end{bmatrix}$$

El factor de transposición es la relación entre el caudal medio obtenido y el caudal medio de la estación base.

SITIO/ESTACION	СОТА	AREA DE DRENAJE [m2]	CAUDAL MEDIO [m³/seg]	COEFICIENTE DE TRANSPOSICION
PILALO	920,00	216,00	12,9070	1,0000
SINDE EN LA TOMA	763,50	390,00	15,8892	1,2311
ANGAMARCA EN LA TOMA	770,80	435,00	17,6157	1,3648
QUEBRADA LLOAVI	780,00	14,76	0,7209	0,0559
QUEBRADA LA FLORIDA	780,00	18,56	0,8951	0,0694

APENDICE B

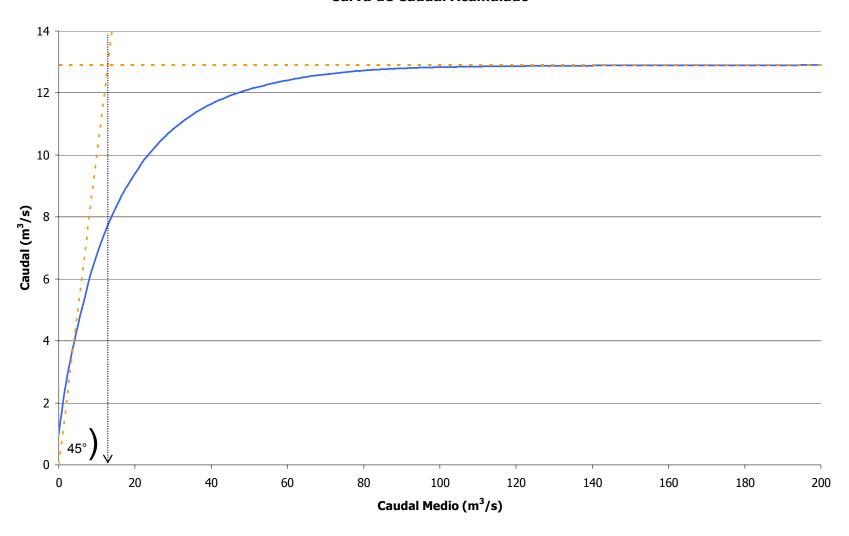
CAUDAL DE DISEÑO

De la curva de duración de caudales diarios se usa información que sirven para construir un gráfico Caudal Medio [m³/s] vs. Caudal Acumulado [m³/s] de donde se obtiene el caudal de diseño tal como se muestra en el Cuadro y en el Gráfico a continuación.

La Potencia (MW) se determina mediante la fórmula:

$$P = \frac{\rho.g.\eta_t.\eta_G.Q.H_n}{1000}$$

Para el ejemplo presentado, con un Caudal de Diseño Aproximado de 15 m³/s, la potencia obtenida es:


$$P = \frac{1000 * 9,8 * 0,95 * 0,96 * 15 * 310}{1000}$$

$$P = 41,56 \ MW$$

CAUDAL DE DISEÑO

Duración [%]	Caudal [m³/s]	Potencia [MW]	Área de Caudal	Q acumulada	Área de Potencia	P acumulada
0,008	368,368	1008,22	0,000	12,91200	0,00000	35,341
0,618	88,088	241,10	0,006	12,78300	0,01700	34,971
1,143	77,077	210,96	0,012	12,69500	0,03200	34,715
1,598	70,07	191,78	0,016	12,60700	0,04500	34,464
2,062	65,065	178,08	0,021	12,52200	0,05800	34,217
2,571	60,06	164,38	0,026	12,41200	0,07200	33,902
3,027	54,054	147,95	0,031	12,24700	0,08600	33,438
4,208	48,048	131,51	0,043	12,04700	0,11900	32,860
4,448	47,047	128,77	0,046	12,00600	0,12500	32,741
5,444	43,043	117,81	0,056	11,81900	0,15400	32,203
5,992	41,041	112,33	0,062	11,70900	0,17000	31,887
6,78	39,039	106,85	0,071	11,58800	0,19400	31,537
7,375	38,038	104,11	0,075	11,52200	0,20500	31,343
7,961	36,036	98,63	0,082	11,37700	0,22500	30,925
8,695	34,034	93,15	0,092	11,21700	0,25100	30,465
9,629	33,033	90,41	0,099	11,13100	0,27100	30,214
10,571	31,031	84,93	0,109	10,94000	0,29700	29,659
15,66	24,024	65,75	0,162	10,08400	0,44300	27,185
21,05	19,019	52,06	0,216	9,22400	0,59100	24,684
25,266	16,016	43,84	0,263	8,57200	0,72000	22,787
31,575	13,013	35,62	0,328	7,77900	0,89800	20,457
37,205	11,011	30,14	0,390	7,14600	1,06700	18,585
40,71	10,01	27,40	0,421	6,79000	1,15200	17,518
46,919	8,008	21,92	0,488	5,97900	1,33500	15,128
50,556	7,007	19,18	0,523	5,52700	1,43000	13,793
57,027	5,005	13,70	0,593	4,51700	1,62200	10,844
61,382	4,004	10,96	0,656	3,96200	1,79600	9,221
69,745	3,003	8,22	0,783	3,36900	2,14400	7,425
86,788	2,002	5,48	0,932	2,71300	2,55000	5,281
99,359	1,001	2,74	0,998	1,92900	2,73100	2,731
100	0,000	0,00	0,000	1,00000	0,00000	0,000

Curva de Caudal Acumulado

APENDICE C

CAUDAL DE RECURRENCIA

Caudal de recurrencia se define como el caudal que se presenta de forma repetitiva cada determinado tiempo. Este caudal es importante definirlo debido a que en base de éste se dimensionaran las obras de desvío mientras se construye la Central Hidroeléctrica Angamarca — Sinde. Para determinar el caudal de recurrencia, se utiliza el método probabilístico llamado Ley de Distribución de Gumbel.

De acuerdo a esta Ley estadística, el tiempo de recurrencia "Tr" de un evento de magnitud especificada " X_t " se define como el intervalo de recurrencia promedio entre eventos que igualan o superan dicha magnitud. Por tanto la relación entre la probabilidad $P = P(X \ge X_t)$ de ocurrencia de un evento $X \ge X_t$ en cualquier observación y tiempo de recurrencia es:

$$p = P(X \ge X_t) = \frac{1}{Tr}$$

$$F(x) = 1 - P(X \ge X_t) = 1 - p = 1 - \frac{1}{Tr}$$

Debido a que se deben construir obras de desvío tanto en el río Angamarca, como en río Sinde, se establecerán valores de caudales de recurrencia para 5, 10, 50 y 100 años respectivamente.

AÑOS	CAU	CAUDAL [m³/s]										
	Río Angamarca	Río Sinde	Casa de									
	en la Toma	en la Toma	Máquinas									
5	66,87	58,73	60,59									
10	10 84,14 74,27 76,9											
20	100,71	89,17	92,73									
50	122,15	108,46	113,10									
100	138,22	122,92	128,36									
1000	191,32	170,70	178,80									

ANEXO DE CUADROS

CUADRO 2.1

GEOLOGIA Y GEOTECNIA DE LOS SITIOS DE OBRAS

SECTOR	AREA		DESCRIPCION					
	Cauce	Depósitos aluviales sobre terraza superior constituidos por arena, gravas y bloques con diámetro de 3 o 4 metros sobre formación Macuchi meteorizada						
		Potencia de 6 m						
Toma Angamarca y Obras	Margen derecha	Pequeña terraza aluvial de entre 10 y 25 m de sobre formación Macuchi meteorizada						
Auxiliares		Potencia de 15 m						
	Margen izquierda	m correspondient sobre formación N	e terraza superior con ancho de hasta 60 les a los aluviales de la terraza superior Macuchi meteorizada					
		Potencia de 15 m						
		uir el efecto erosivo provocado por el río en esta área, deberá ella bloques de piedra o rocas del mayor volumen posible						
		Ubicado al margen izquierda del Angamarca						
Túnel de Trasvase	Portal de entrada	Será excavado aproximadamente 5-10 m en los depósitos de terrazas aluviales, para luego atravesar 30-35 m. de rocas meteorizadas de formación Macuchi y continuar en las rocas frescas de la mencionada formación						
11 asvase	Portal de salida	Será excavado en 15 m de material coluvial, para luego atravesar 35-40 m. de lava meteorizada de formación Macuchi y continuar en las rocas frescas de la mencionada formación						
	Margen derecha	Terraza superior	Depósitos aluviales con espesor de 7 m. formados por rodados, gravas y arena					
	derecha	Terraza inferior	Depósitos coluviales con espesor de 7 m formados por rodados y gravas					
Sinde y Obras	Margen izquierda	Terraza aluvial superior	Formada por radados, gravas y arena sin cohesión Potencia de hasta 1 m Espesor de 7 m					
Complementarias		Terraza aluvial inferior						
	En la toma impermeabiliz por aluviales r	ación en el sector	Sinde se requerirá una pantalla de del cauce actual que se halla constituido					
	de flujo		al que se evite la concentración de líneas					
	Se recomienda que la fundación de la loza se ubique a 3 m bajo la superficie							

	1								
Canal de		aluviales modernos, terrazas aluviales, cono de deyección,							
Conducción	coluviales, su	coluviales, suelos residuales y lavas de formación Macuchi							
Túnel	Sería excavado en lavas de formación Macuchi y lavas meteorizadas								
Embalse de compensación	Deberá preve paredes latera	Formado por coluviales de 4-5 m de espesor que cubren suelos residuales Deberá preverse la colocación de una capa superficial en el piso y las paredes laterales de recubrimiento impermeable							
Tubería de Presión	Formado por depósitos coluviales de entre 2 y 25 m de espesor								
		En el cauce del río Sinde							
	Depósitos aluviales	Formación de suelo vegetal, coluvial tipo liso-arcilloso							
		Compuesto de rodados y grava mitológicamente pertenecientes a lavas de formación Macuchi							
Casa de Máquinas	Depósitos coluviales	En taludes que rodean a la pequeña terraza Formados por fragmentos rocosos en una matriz limo- arcilloso							
		Constituye el basamento de toda la zona							
	Roca intrusiva	Compuesto por granodiorita gris, cristalina finaron máficos formado por piroxenos y siálicos formados por plagioclasa y cuarzo							

CUADRO 3.1

VULNERABILIDAD A LA EROSIÓN Y MOVIMIENTOS EN MASA

Tipo de zona	Localización y superficie	Características
Estables	La Providencia, El Descanso Angamarca, Simiatug	Aluviales, Coluvio Aluviales
Estables	La i Tovidencia, Li Descanso Angamarca, Simiatag	Pendientes Inferiores a 12%
Medianamente	Partes medias de la subcuenca del río Angamarca.	Pendientes entre 25 y 40%
Estables	Tartes medias de la sabedenea del 110 Angamarea.	Rocas volcánicas
Inestables	Sobre los 2800 m.s.n.m de las dos subcuencas analizadas	Pendientes mayores 70%
		Pendientes mayores al 100%.
Man To a stable	Ocupan el sector central de las dos subcuencas	
Muy Inestables	investigadas, y las poblaciones Facundo Vela, Pinllopata, Mindina, Chincholoma	Cultivos anuales y semipermanentes (fréjol, mora, caña) y pastizales.

CUADRO 3.2

ECOSISTEMAS NATURALES

Tipo de Ecosistema	Localización y superficie	Características	Bienes y servicios		
Davis	Sobre los 3300m.s.n.m.	El clima es frío y húmedo debido a su gran altitud	Captación de agua; control de erosión		
Paramos	17362,11 ha. del río Angamarca 10467,29 ha. del río Sinde.	Los vientos son de alta intensidad	Proporciona alimento para ganado y fauna silvestre		
Daarwaa da	Entre 2800 – 3300 m.s.n.m.	Madera para construcció			
Bosques de Estribación	6728,16 ha. en el río Angamarca 1926,01 ha. en el río Sinde.	El clima es húmedo a muy húmedo y frío a temperado.	Provee refugio para la fauna silvestre.		
Bosques de	Bajo los 3500 m.s.n.m.	Pendientes fuertes y abruptas.	Provee leña; controla la erosión.		
Estribación Degradados	3446,59 ha. en el río Angamarca 1577,61 ha. en el río Sinde.	El clima es frío a temperado y húmedo.	Hábitat para fauna		
Bosques de	Bajo los 2000 m.s.n.m.	Pendientes que sobrepasan el 70%	Control de erosión; provee leña		
Galería o de Ribera	1929,25 ha. en el río Angamarca 1951,14 ha. en la del Sinde	Sectores inferiores, con relieves más suaves y regulares.	Hábitat para fauna silvestre.		

CUADRO 3.3

ECOSISTEMAS ARTIFICIALES

Tipo de Ecosistema	Localización y superficie	Características		
Agro Ecosistemas de Ladera	De 2800 a más de 3600 m.s.n.m.	Pendientes variables.		
de Altura o de Clima Frío	3446,58 ha. en el río Angamarca 12778,71 ha. en el río Sinde.	El clima es húmedo a muy húmedo; frío a muy frío; alta incidencia de neblina y garúa.		
Anna Faraistana a da Ladana	De1600 a 3000 m.s.n.m.	Pendientes generalmente.		
Agro Ecosistemas de Laderas de Clima Templado	5352,32 ha. en el río Angamarca 8177,87 en el río Sinde.	El clima varía de frío a temperado húmedo a muy húmedo.		
	De 450 a 1600 m.s.n.m.	Relieves regulares.		
Agro Ecosistemas de Ladera				
de Clima Subcálido	6578,68 ha. en el río Angamarca 5004,07 en el río Sinde.	El clima es húmedo a muy húmedo y temperado — subcálido; la neblina es menor más luminosidad.		

CUADRO 4.1 Página 1 de 2

ESTACIONES HIDROMÉTRICAS

COD	NOMBRE DE LA ESTACION	RIO	TIPO	L	ATIT	UD	L	ONG	ITUD	ALTURA	PROVIN-	INSTITU-	FECHA DE
COD	HOMBRE DE LA ESTACION	KIO	1170	GG	MM	SS	GG	MM	SS		CIA	CION	INSTALACION
H329	PILALO EN LA ESPERANZA	PILALO	LM	0 o	51	' 45 "S	79 °	5	' 10 "O	920	13	INAMHI	62 / 6 / 1
H343	ECHEANDIA EN ECHEANDIA	SOLOMA	LG	1 °	26	' 5 " S	79 °	15	' 55 " O	425	15	INAMHI	64 / 12 / 1
H344	UMBE EN QUINSALOMA	UMBE	LG	10	12	' 48 "S	79 °	18	' 10 "O	170	22	INAMHI	82 / 2 / 15
H346	ZAPOTAL EN LECHUGAL	ZAPOTAL	LG	1°	23	' 15 "S	79 °	21	' 15 " O	18	22	INAMHI	63 / 2 / 1
H378	LAS JUNTAS DJ SINDE(UMBE DJ PIN.) UMBE	LM	10	12	' 35 "S	79 °	17	' 35 " O	150	15	INAMHI	63 / 12 / 3
H397	ANGAMARCA EN PIHUAPUNGO	ANGAMARCA	LG	10	7	' 48 "S	79 °	6	' 58 " O	750	13	INECEL	84 / 4 / 25
H415	SAN PABLO EN LA MANA	SAN PABLO	LG								13	CEDEGE	84 / 5 /

CUADRO 4.1 Página 2 de 2

ESTACIONES METEOROLÓGICAS

COD	NOMBRE DE LA ESTACION	TIPO	L	JTITA.	JD	LC	ONGIT	UD	ALTURA	PROVIN-	INSTITU-	FECHA DE
СОВ	NOMBRE DE LA ESTACION	IIPO	GG	MM	SS	GG	MM	SS		CIA	CION	INSTALACION
M122	PILALO	CO	0 o	56'	35 " S	78 °	59'	29 " O	2520	13	INAMHI	62 / 7 / 1
M123	EL CORAZON	CO	1 º	12'	2 " S	79 °	6'	35 " O	1560	13	INAMHI	63/8/16
M124	SAN JUAN LA MANA	CO	0 o	57'	15 " S	79 °	19'	8 " O	223	13	INAMHI	64/ 4/1
M366	ANGAMARCA	PV	1 º	6'	50 " S	78°	55'	42 " O	3000	13	INAMHI	63 / 10 /
M367	PINLLOPATA	PV	1 º	8'	31 " S	79 °	1'	32 " O	2360	13	INAMHI	63 / 11 / 1
M368	MORASPUNGO-COTOPAXI	PV	1 º	10'	10 " S	79 °	11'	0 " O	450	13	INAMHI	63/ 9/1
M370	RAMON CAMPANNA	PV	1 º	6'	40 " S	79°	5'	0 " O	1560	13	INAMHI	67 / 10 / 1
M374	SAN ANTONIO DEL DELTA(PATE)	PV	0 o	52'	9"S	79°	14'	34" O	223	13	INAMHI	68/ 1/1
M383	ECHEANDIA	PV	10	25'	55 " S	79 °	16'	16 " O	370	15	INAMHI	67/8/9
M385	SALINAS-BOLIVAR	PV	1 º	24'	13 " S	79°	1'	6"O	3600	15	INAMHI	69 / 7 / 23
M387	FACUNDO VELA	PV	10	12'	0 " S	79 °	3'	0 " O	1300	15	INAMHI	76/ 11/3
M389	SIMIATUG	PV	10	17'	10 " S	78 °	57'	26 " O	3160	15	INAMHI	69 / 7 / 24
M465	VENTANAS INAMHI	PV	10	27'	25 " S	79 °	28'	26 " O	20	22	INAMHI	63 / 9 / 25

CUADRO 4.2

TEMPERATURA Y HUMEDAD RELATIVA

ESTACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	ОСТ	NOV	DIC	ANUAL
C Temperatura Media [°C]	12,31	12,49	12,74	12,89	12,98	12,63	12,40	12,47	12,45	12,65	12,60	12,50	12,59
Temperatura Máxima Absoluta	17,59	18,23	18,32	18,70	19,25	18,81	19,24	19,37	19,26	19,23	19,03	19,14	18,96
Temperatura Mínima Absoluta	5,43	5,94	5,91	5,98	5,90	5,15	5,03	5,13	5,65	5,48	5,27	5,16	5,59
Humedad Relativa [%]	94,18	93,75	92,89	93,45	92,83	92,22	90,46	89,25	91,00	90,52	90,31	92,50	91,70
Temperatura Media [°C]	17,52	17,63	17,95	18,12	18,20	18,15	18,11	18,08	18,19	18,10	18,00	17,78	17,99
Temperatura Máxima Absoluta	22,14	22,25	22,93	23,08	23,13	23,17	23,68	23,94	24,03	23,86	23,64	23,40	23,32
Temperatura Mínima Absoluta	13,58	13,99	13,99	14,22	14,01	13,64	13,02	12,80	12,84	12,87	12,94	13,21	13,34
☐ Humedad Relativa [%]	96,09	96,01	95,57	95,66	95,30	94,62	94,21	93,82	93,94	94,25	94,59	95,35	94,98
Temperatura Media [°C]	24,36	24,66	25,07	25,12	24,56	23,59	23,08	23,09	23,19	23,15	23,36	23,95	23,95
Temperatura Máxima Absoluta	31,43	31,54	31,95	32,11	31,20	30,65	30,05	30,87	31,42	31,18	30,53	31,69	31,05
Temperatura Mínima Absoluta	18,87	18,79	18,76	18,97	18,46	17,90	17,09	17,04	17,38	17,70	17,20	18,03	18,00
Humedad Relativa [%]	89,64	89,13	88,72	89,04	90,00	91,12	90,62	89,68	88,96	88,96	88,25	88,22	89,05
역 Temperatura Media [°C]	10,05	10,53	10,10	10,35	11,00	10,70	10,65	10,80	10,63	11,20	11,18	10,85	10,90
Temperatura Máxima Absoluta	18,15	18,00	18,03	18,33	18,40	18,23	19,13	19,13	18,85	19,20	19,00	18,20	18,42
Temperatura Mínima Absoluta	3,25	3,90	3,77	5,03	3,40	3,80	3,67	2,73	3,90	4,00	4,80	3,00	4,18
Humedad Relativa [%]	84,00	85,33	87,00	86,00	84,50	84,00	80,50	89,00	83,00	82,00	81,67	83,00	84,19

CUADRO 4.3 Página 1 de 4

TEMPERATURA MEDIA [°C]

Estación: Pilaló

Altura: 2520 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964	12,90	12,80	13,00	12,90	12,80	11,90	12,20	12,10	12,00	12,00	12,10	11,50	12,35
1965	11,50	12,00	12,50	12,40	12,90	12,30	12,30	11,80	12,20	12,70	12,80	12,60	12,33
1966	13,20	13,30	12,90	12,80	12,90	12,70	12,70	12,60	12,80	13,20	13,00	12,90	12,92
1967	12,90	12,60	13,00	12,90	13,20	13,00	12,60	13,00	12,70	12,90	13,00	13,10	12,91
1968	13,10	12,90	12,90	13,30	13,10	12,90	12,60	12,60	12,70	12,70	12,60	12,90	12,86
1969	12,90	12,60	13,20	13,10	13,00	13,30	12,90	13,00	13,30	12,80	12,90	12,80	12,98
1970					,			12,50	12,50	12,60	12,40	12,10	12,42
1971	11,80	12,20	12,40	12,60	12,50	11,70	12,00	12,00	11,80	11,80	11,70	11,80	12,03
1972	11,77	12,20	12,00	12,47	12,70	12,40	12,37	12,17	12,53	12,33	12,27	12,73	12,33
1973	13,20	12,90		13,00	12,60	12,60	12,40		10,80	11,80	12,20	11,60	12,31
1974	11,20	11,30	11,97	12,60	12,40	12,00	11,87	11,90	11,57	11,87	11,97	11,77	11,87
1975	11,90	12,10	12,40	12,60	12,30	11,60	11,40	11,40	11,90	11,90	11,80		11,94
1976	11,20	11,50	12,20	12,80	12,60	12,00	11,90	11,90	12,20	12,50	12,20	12,20	12,10
1977	12,20	12,60	13,10	12,80	12,40	12,10	12,00	12,40	12,20	12,60	12,50	12,50	12,45
1978	12,30	13,20	12,80	12,90	12,80	12,30	11,90	12,20	12,10	12,50	12,50	12,30	12,48
1979	11,90	12,40	12,30	13,00		12,60	11,80	12,60	12,70	13,20	13,00	12,60	12,55
1980	12,50	12,70	13,00	13,10	13,20	13,10	12,30	12,60	12,60		12,40	12,50	12,73
1981		12,70	13,20	13,50	13,10	12,90	13,50	12,60	12,60		13,30		13,04
1982			12,30	12,30				12,30		12,40			12,33
1983	12,40												12,40
1984													
1985													
1986													
1987													
1988													
1989	12,10	12,20	12,80	12,80	12,90	12,70	12,50	12,70	12,30	12,50	12,30	12,30	12,51
1990													
1991					13,50	13,30	12,70	12,60	12,90	13,00	13,20	12,80	13,00
1992				13,50	13,30		12,10	12,70	12,60	13,10	13,00	12,60	12,86
1993	12,60				13,30	13,20	12,80		13,30	13,30	13,50	12,90	13,11
1994	12,70	12,50	12,80	13,30	13,40	13,30	12,50	12,40	13,10	13,40	12,90	13,10	12,95
1995	12,80	12,90	13,10		13,50	13,20	13,10	13,20	12,90	12,80	13,00	12,90	13,04
1996	12,10	12,70			13,40					12,90	12,40	11,90	12,57
1997	12,20	12,80	13,60	13,10	13,70	13,20	13,10	13,70	13,10	13,60	13,10	13,90	13,26
1998													
1999	12,10	12,20	12,80	12,80	12,90	12,70	12,50	12,70	12,30	12,50	12,30	12,30	12,51
мах	13,20	13,30	13,60	13,50	13,70	13,30	13,50	13,70	13,30	13,60	13,50	13,90	13,26
MIN	11,20	11,30	11,97	12,30	12,30	11,60	11,40	11,40	10,80	11,80	11,70	11,50	11,87
MED	12,31	12,49	12,74	12,89	12,98	12,63	12,40	12,47	12,45	12,65	12,60	12,50	12,59

CUADRO 4.3 Página 2 de 4

TEMPERATURA MEDIA [°C]

Estación: El Corazón Altura: 1560 m.s.n.m.

1964 17,10 17,30 1965 16,10 17,00 1966 18,30 17,70 1967 17,30 17,30 1968 16,80 16,60 1969 17,30 17,40	17,20 17,60 18,00 17,50 16,70	17,50 17,80 18,10 18,00	17,90 17,90 17,90	17,20 17,60	17,30	17,30	17,50	17,00	16,80	16,70	17,23
1966 18,30 17,70 1967 17,30 17,30 1968 16,80 16,60	18,00 17,50	18,10		17.60				,	10,00	10,70	17,20
1967 17,30 17,30 1968 16,80 16,60	17,50		17.00		17,70	17,60	17,50	17,80	17,60	17,20	17,45
1968 16,80 16,60		18.00	17,50	17,30	17,50	17,70	18,10	17,80	17,50	17,10	17,75
	16,70	,	17,90	17,60	18,00	17,90	17,80	17,90	17,90	17,40	17,71
1060 17.20 17.40		17,00	17,50	17,60	17,80	18,00	18,30	18,10	17,90	17,70	17,50
1969 17,30 17,40	18,10	18,80	18,70	18,20	18,50	18,60	18,30	17,90	18,30	17,60	18,14
1970 17,60 17,60	17,60	18,70	18,00	17,50	17,70	17,50	17,60	18,20	16,90	17,40	17,69
1971 16,80 16,80	17,00	17,30	18,00	17,50	17,50	17,80	17,60	17,50	17,50	17,10	17,37
1972 17,20 17,40	17,90	18,10	18,30	18,20	18,50	18,30	19,30	18,80	18,60	18,80	18,28
1973 18,90 18,57	18,83	18,50	18,43	18,40	18,43	18,53	18,63	18,70	18,47	18,43	18,57
1974 17,80 17,47	17,53	17,33	17,57	17,70	17,53	18,00	17,90	18,13	17,87	17,57	17,70
1975 17,67 17,50	17,70	17,57	17,60	17,87	17,23	17,13	18,00	17,63	17,53	17,27	17,56
1976											
1977 17,10 17,47	17,57	17,57	17,83	17,87	17,90	17,57	18,03	18,13	17,53	17,20	17,65
1978 16,90 17,60	17,80	17,43	17,70	17,77	17,77	17,63	17,73	17,83	17,73	17,13	17,59
1979 16,90 17,20	17,63	18,27	18,10	17,93	18,40	18,10	18,00	18,00	17,93	17,73	17,85
1980 17,40 17,00	17,30	17,70	17,70	17,90	17,90	18,00	17,90	17,70	17,70	17,40	17,63
1981	17,90	17,60	18,10	18,00	17,60	17,60	17,70	17,70	17,70	17,40	17,73
1982 17,00 17,00		17,50	17,70	18,00	18,20	18,30	18,00	16,60	16,60	16,90	17,44
1983 17,30 17,80	18,10	18,40	18,10	18,10	18,30	18,00	18,00	18,00	17,80	17,50	17,95
1984 16,70 17,20	17,70	17,80	18,60		18,60			18,70	18,70	17,90	17,99
1985 17,60 17,10	17,50	17,70	18,10	18,20	18,20	17,80	18,50	18,30	17,90	17,40	17,86
1986 17,10 17,30	17,60	17,90	18,20	18,40	18,00	18,40	18,10	18,30	18,30	18,20	17,98
1987 17,70 18,30	18,60	18,60	18,50	18,80	18,80	18,40	18,50	18,50	18,60	18,40	18,48
1988 18,50 18,60	18,60	18,70	18,80	18,50	18,20	18,30	18,40	18,60	18,60	18,40	18,52
1989 17,90 17,90	17,90	18,10	17,90	18,20	17,90	18,40	18,30	17,80	18,10	18,10	18,04
1990 17,60 17,50		18,10	18,20	18,30	18,00	18,00	18,30	18,10	18,50		18,06
1991 17,40	18,10	18,00	18,30	18,60	18,30	18,20	18,50	18,30	18,30	17,80	18,16
1992 17,60 17,80	18,60	18,60	18,70	18,50	18,10	18,30	18,40	18,30	18,70	18,10	18,31
1993 17,60 17,50	18,40	18,70		19,20	19,30	18,60	18,60	18,80	18,50	18,10	18,48
1994 18,10 18,50	18,80	18,90	18,90	19,00	19,10	19,20	19,20	19,00	19,00	18,80	18,88
1995 18,50 18,40	18,10	18,20	18,30	18,40	18,30	18,20	18,50	18,50	18,30	18,60	18,36
1996 17,60 17,70	18,00	18,10	18,60	18,60	18,30	18,10	18,40	18,20	18,20	18,00	18,15
1997 17,30 17,70	18,50	18,60	18,90	18,80	18,70	18,80	18,80	18,80	18,70	19,40	18,58
1998 19,70 19,90	19,90	20,10	19,70	19,20	18,60	18,60	18,40	18,50	18,40	18,50	19,13
1999 17,30 17,70	18,00	18,90	18,00	18,00	17,60	17,90	17,70	17,50	17,40	17,20	17,77
M4X 19,70 19,90	19,90	20,10	19,70	19,20	19,30	19,20	19,30	19,00	19,00	19,40	19,13
MIN 16,10 16,60	16,70	17,00	17,50	17,20	17,23	17,13	17,50	16,60	16,60	16,70	17,23
MED 17,52 17,63	17,95	18,12	18,20	18,15	18,11	18,08	18,19	18,10	18,00	17,78	17,99

CUADRO 4.3 Página 3 de 4

TEMPERATURA MEDIA [°C]

Estación: La Mana Altura: 223 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964													
1965	23,60	24,40	24,60	24,60	24,70	24,20	23,20	22,60	23,00	23,00	22,70	23,80	23,70
1966	27,70	24,50	24,50	24,70	24,20	22,60	21,90	22,70	22,80	22,80	23,00	23,10	23,71
1967	23,60	24,30	24,40	25,30	24,30	22,30	21,50	22,40	22,30	22,70	22,30	23,20	23,22
1968	23,40	23,90	24,20	24,30	23,10	22,00	22,10	22,40	23,20	22,50	23,00	24,00	23,18
1969	24,30	24,70	25,30	25,50	25,50	24,80	23,40	23,10	23,50	23,50	23,70	24,40	24,31
1970	24,60	24,70	24,70	24,80	24,00	23,10	22,20	22,10	22,50	22,80	22,50	23,30	23,44
1971	23,30	23,40	24,40	24,30	23,30	22,70	22,20	22,20	22,60	22,40	22,40	23,70	23,08
1972	24,30	24,87	25,17	25,20	25,23	24,73	24,83	24,10	23,87	23,73	23,40	24,53	24,50
1973	24,87	25,00	25,20	25,33	24,40	23,57	22,73	22,60	22,70	22,60	22,70	22,70	23,70
1974	23,37	23,53	24,27	24,47	24,17	23,07	21,87	22,23	22,13	22,13		23,00	23,11
1975	23,10	23,70	24,70	24,70	22,80	22,70	23,20	23,70	22,50	22,70	22,80	22,20	23,23
1976						23,60			22,90				23,25
1977							23,00		23,70	23,80	23,70	24,70	23,78
1978													
1979	24,30	25,00	25,00	25,60	25,50	24,40	23,10	24,00	24,00		24,50	25,10	24,59
1980			25,40	26,30			23,60		23,40	24,10		25,30	24,68
1981	24,20	24,10	25,30	25,20	24,00	22,90	23,00	22,70	23,40	23,60	23,50	24,40	23,86
1982	24,10	24,70	25,20	25,00	24,20	23,40	23,20	23,70	24,90	24,10	25,00	25,50	24,42
1983	25,70	26,10	26,20	26,10	26,00	25,90	25,50	24,90	24,40	23,70		23,90	25,31
1984	24,70	24,60	25,00	24,80	25,00	23,80	22,10	23,00	22,60	23,20	23,60	24,30	23,89
1985	23,40	24,40	24,90	24,70	24,00	23,50	21,60	22,20	23,00	23,20	24,10	24,00	23,58
1986	23,90	24,40	24,70	24,60	24,00	22,70	22,80					24,40	23,94
1987	24,60	25,60	25,60	25,60	25,10	24,60	23,80						24,99
1988					24,20	22,80	23,90	23,90	23,30	22,80	22,90	23,10	23,36
1989											23,90	24,10	24,00
1990					24,30		22,90	22,70	23,10	22,80	23,40	24,10	23,33
1991	24,40	25,40	25,60	25,50	25,40	24,70	23,60	23,10	22,50	23,10	23,90	23,90	24,26
1992													
1993	24,30												24,30
1994													
1995	24,90	24,90	25,40	25,40	24,70	24,20		23,00	23,50	23,50	23,30	24,30	24,28
1996	24,00	24,80	25,20	24,90	24,50	22,50	22,40	22,90	23,80	23,40	23,20	24,20	23,82
1997	24,00	24,60	25,40	25,00	25,60		25,50	25,10					25,03
1998	26,30	26,40	26,50	26,40	26,30	25,50	24,50	23,60	23,80	23,40	23,70	23,90	25,03
1999	24,30	24,50	25,10	24,70	24,70	23,00	22,50	22,30	22,70	23,20	23,50	23,60	23,68
MAX	27,70	26,40	26,50	26,40	26,30	25,90	25,50	25,10	24,90	24,10	25,00	25,50	25,31
MIN	23,10	23,40	24,20	24,30	22,80	22,00	21,50	22,10	22,13	22,13	22,30	22,20	23,08
MED	24,36	24,66	25,07	25,12	24,56	23,59	23,08	23,09	23,19	23,15	23,36	23,95	23,95

TEMPERATURA MEDIA [°C]

Estación: Simiatug

Altura: 3160 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964													
1965													
1966													
1967													
1968													
1969													
1970													
1971													
1972													
1973													
1974													
1975													
1976													
1977											11,70		11,70
1978		11,00	10,50		11,50		10,10	10,90	10,50		10,30	10,00	10,60
1979	9,30	10,10	9,60	10,50	10,70	10,70	11,20	10,40	10,80	11,20	11,50	11,70	10,64
1980	10,80	10,50	10,20	10,20	10,80	10,70		11,10	10,60		11,20		10,68
1981													
1982													
1983													
1984													
1985													
1986													
1987													
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996													
1997													
1998													
1999													
MAX	10,80	11,00	10,50	10,50	11,50	10,70	11,20	11,10	10,80	11,20	11,70	11,70	11,70
MIN	9,30	10,10	9,60	10,20	10,70	10,70	10,10	10,40	10,50	11,20	10,30	10,00	10,60
MED	10,05	10,53	10,10	10,35	11,00	10,70	10,65	10,80	10,63	11,20	11,18	10,85	10,90

CUADRO 4.4 Página 1 de 4

HUMEDAD RELATIVA [%]

Estación: Pilaló

Altura: 2520 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964	91,00	89,00	90,00	90,00	91,00	92,00	88,00	89,00	90,00	90,00	92,00	91,00	90,25
1965	95,00	94,00	93,00	94,00	93,00	92,00	87,00	87,00	90,00	90,00	88,00	91,00	91,17
1966	92,00	90,00	93,00	94,00	91,00	91,00	92,00	89,00	89,00	85,00	87,00	90,00	90,25
1967	91,00	94,00	92,00	92,00	91,00	91,00	90,00	89,00	89,00	91,00	89,00	90,00	90,75
1968	91,00	92,00	93,00	91,00	90,00	91,00	86,00	88,00	89,00	89,00	88,00	87,00	89,58
1969	92,00	94,00	91,00	92,00	92,00	92,00	92,00	90,00	89,00	91,00	90,00	92,00	91,42
1970								88,00	90,00	90,00	91,00	93,00	90,40
1971	93,00	93,00	91,00	91,00	90,00	89,00	89,00	89,00	89,00	90,00	90,00	89,00	90,25
1972	91,00	92,00	91,00	91,00	91,00	91,00	89,00	90,00	91,00	90,00	92,00	90,00	90,75
1973	93,00	90,00		91,00	93,00	92,00	88,00		90,00	92,00	91,00	88,00	90,80
1974	93,00	96,00	92,00	92,00	92,00	93,00	88,00	88,00	92,00	93,00	93,00	94,00	92,17
1975	96,00	95,00	95,00	95,00	94,00	95,00	93,00	93,00	93,00	94,00	93,00		94,18
1976	96,00	96,00	96,00	95,00	95,00	94,00	91,00	90,00	91,00	84,00	93,00	94,00	92,92
1977	96,00	95,00	96,00	95,00	94,00	94,00	92,00	90,00	91,00	92,00	86,00	94,00	92,92
1978	95,00	95,00	95,00	95,00	94,00	87,00	89,00	84,00	91,00	85,00	90,00	95,00	91,25
1979	96,00	94,00	94,00	98,00		92,00	91,00	91,00	92,00	90,00	89,00	93,00	92,73
1980	96,00	95,00	95,00	94,00	94,00	93,00	90,00	91,00	90,00		92,00	93,00	93,00
1981		95,00	94,00	93,00	90,00	89,00	85,00	83,00	86,00		81,00		88,44
1982			85,00	86,00				87,00		85,00			85,75
1983													
1984													
1985													
1986													
1987													
1988													
1989	98,00			97,00	96,00	97,00	95,00	93,00	95,00	94,00	94,00	97,00	95,60
1990													
1991					92,00	90,00	91,00	90,00	92,00	93,00	95,00	96,00	92,38
1992				96,00	97,00		93,00	87,00	91,00	92,00	90,00	92,00	92,25
1993	94,00				94,00	91,00	90,00		95,00	92,00	89,00	93,00	92,25
1994	04.00				01.00		04.00			04.00			01.00
1995	94,00	93,00	93,00		91,00	93,00	91,00	89,00	88,00	91,00	92,00	90,00	91,36
1996	95,00	96,00	06.00	07.00	91,00	05.00	06.00	04.00	07.00	91,00	82,00	94,00	91,50
1997	96,00	97,00	96,00	97,00	96,00	95,00	96,00	94,00	97,00	95,00	97,00	97,00	96,08
1998 1999	00.00			07.00	06.00	07.00	95,00	02.00	05.00	04.00	94.00	07.00	05.40
1999	98,00			97,00	96,00	97,00	90,00	93,00	95,00	94,00	94,00	97,00	95,60
мах	98,00	97,00	96,00	98,00	97,00	97,00	96,00	94,00	97,00	95,00	97,00	97,00	96,08
MIN	91,00	89,00	85,00	86,00	90,00	87,00	85,00	83,00	86,00	84,00	81,00	87,00	85,75
MED	94,18	93,75	92,89	93,45	92,83	92,22	90,46	89,25	91,00	90,52	90,31	92,50	91,70

CUADRO 4.4 Página 2 de 4

HUMEDAD RELATIVA [%]

Estación: El Corazón Altura: 1560 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964	96,00	96,00	94,00	94,00	90,00	90,00	88,00	91,00	89,00	91,00	93,00	93,00	92,08
1965	97,00	95,00	95,00	93,00	93,00	93,00	89,00	88,00	91,00	91,00	92,00	92,00	92,42
1966	95,00	96,00	95,00	94,00	95,00	93,00	92,00	91,00	90,00	92,00	92,00	96,00	93,42
1967	96,00	95,00	95,00	95,00	95,00	94,00	94,00	93,00	93,00	88,00	87,00	92,00	93,08
1968	94,00	96,00	93,00	95,00	92,00	91,00	91,00	89,00	89,00	90,00	92,00	91,00	91,92
1969	94,00	95,00	93,00	93,00	93,00	93,00	92,00	90,00	92,00	92,00	92,00	94,00	92,75
1970	94,00	95,00	94,00	94,00	95,00	95,00	94,00	94,00	93,00	93,00	93,00	93,00	93,92
1971	95,00	94,00	94,00	95,00	95,00	94,00	94,00	94,00	94,00	95,00	95,00	96,00	94,58
1972	96,00	96,00	96,00	95,00	95,00	96,00	96,00		94,00	95,00	95,00	95,00	95,36
1973	96,00	95,00	95,00	95,00	96,00	95,00	94,00	95,00	95,00	95,00	95,00	95,00	95,08
1974	96,00	96,00	96,00	96,00	96,00	95,00	96,00	96,00	95,00	95,00	95,00	96,00	95,67
1975	96,00	96,00	95,00	96,00	96,00	94,00	91,00	92,00	91,00	94,00	94,00	95,00	94,17
1976													
1977	95,00	94,00	95,00	95,00	93,00	93,00	91,00	92,00	89,00	91,00	90,00	95,00	92,75
1978	97,00	96,67	95,67	95,67	95,33	92,33	90,67	92,00	96,33	91,00	93,67	96,33	94,39
1979	96,00	95,67	93,67	93,67	93,67	94,00	91,33	92,33	94,67	94,67	95,33	95,33	94,19
1980	96,00	97,00	97,00	96,00	97,00	96,00	95,00	96,00	96,00	95,00	96,00	96,00	96,08
1981			95,00	96,00	96,00	94,00	95,00	95,00	93,00	94,00	96,00	96,00	95,00
1982	95,00	97,00		96,00	95,00	96,00	97,00	96,00	96,00	97,00	96,00	97,00	96,18
1983	96,00	96,00	97,00	97,00	97,00	95,00	97,00	97,00	97,00	96,00	96,00	97,00	96,50
1984	96,00	96,00	95,00	96,00	97,00		97,00			97,00	97,00	97,00	96,44
1985	97,00	95,00	96,00	97,00	96,00	95,00	96,00	92,00	93,00	95,00	96,00	98,00	95,50
1986	98,00	97,00	97,00	97,00	97,00	96,00	96,00	96,00	97,00	96,00	97,00	96,00	96,67
1987	97,00	97,00	97,00	97,00	97,00	96,00	96,00	95,00	95,00	96,00	96,00	96,00	96,25
1988	96,00	97,00	96,00	96,00	96,00	96,00	95,00	95,00	95,00	94,00	95,00	95,00	95,50
1989	95,00	95,00	96,00	96,00	95,00	93,00	93,00	92,00	93,00	94,00	94,00	93,00	94,08
1990	96,00	96,00		96,00	96,00	96,00	96,00	95,00	95,00	96,00	96,00		95,80
1991	98,00		97,00	97,00	97,00	97,00	97,00	96,00	96,00	97,00	97,00	98,00	97,00
1992	97,00	97,00	97,00	97,00	97,00	97,00	96,00	96,00	97,00	97,00	96,00	97,00	96,75
1993	98,00	98,00	97,00	97,00		96,00	96,00	97,00	97,00	97,00	96,00	97,00	96,91
1994													
1995	97,00	97,00	97,00	97,00	97,00	96,00	96,00	96,00	95,00	96,00	97,00	97,00	96,50
1996	97,00	97,00	97,00	97,00	97,00	97,00	96,00	95,00	95,00	96,00	95,00	96,00	96,25
1997	97,00	97,00	97,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,25
1998	96,00	96,00	95,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	95,92
1999	96,00	96,00	96,00	96,00	93,00	92,00	93,00	92,00	92,00	92,00	94,00	94,00	93,83
мах	98,00	98,00	97,00	97,00	97,00	97,00	97,00	97,00	97,00	97,00	97,00	98,00	97,00
MIN	94,00	94,00	93,00	93,00	90,00	90,00	88,00	88,00	89,00	88,00	87,00	91,00	91,92
MED	96,09	96,01	95,57	95,66	95,30	94,62	94,21	93,82	93,94	94,25	94,59	95,35	94,98

CUADRO 4.4 Página 3 de 4

HUMEDAD RELATIVA [%]

Estación: La Mana Altura: 223 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964													
1965	87,00	86,00	87,00	87,00	88,00	88,00	88,00	87,00	88,00	89,00	89,00	86,00	87,50
1966	88,00	89,00	88,00	87,00	89,00	90,00	90,00	89,00	86,00	88,00	85,00	87,00	88,00
1967	88,00	87,00	87,00	83,00	89,00	91,00	92,00	88,00	88,00	88,00	87,00	87,00	87,92
1968	89,00	88,00	86,00	88,00	89,00	92,00	91,00	88,00	89,00	89,00	89,00	86,00	88,67
1969	89,00	88,00	90,00	90,00	90,00	91,00	90,00	88,00	88,00	86,00	87,00	88,00	88,75
1970	88,00	88,00	89,00	91,00	91,00	92,00	91,00	90,00	88,00	88,00	88,00	89,00	89,42
1971	89,00	89,00	88,00	88,00	90,00	91,00	91,00	88,00	89,00	89,00	89,00	87,00	89,00
1972				89,00	88,00	89,00	89,00	90,00	89,00	88,00	89,00	89,00	88,89
1973	90,00	88,00	88,00	84,00	90,00			91,00	91,00	91,00	90,00	90,00	89,30
1974	90,00	90,00	90,00	90,00	90,00	92,00	92,00	92,00	92,00	90,00		91,00	90,82
1975	93,00	91,00	90,00	89,00	95,00	95,00	92,00	95,00	96,00	97,00	96,00	96,00	93,75
1976						94,00			93,00				93,50
1977							91,00		87,00		88,00	88,00	88,50
1978													
1979	90,00	88,00	90,00	96,00	87,00	88,00	89,00	87,00	88,00		84,00	84,00	88,27
1980			87,00	84,00			87,00		84,00	88,00		79,00	84,83
1981	87,00	90,00	89,00	88,00	90,00	91,00	90,00	90,00	89,00	88,00	88,00	88,00	89,00
1982	91,00	90,00	88,00	89,00	89,00	91,00	91,00	88,00	87,00	90,00	90,00	90,00	89,50
1983	90,00	90,00	91,00	92,00	90,00	91,00	91,00	89,00	90,00	91,00		93,00	
1984	94,00	94,00	93,00	94,00	94,00	95,00	96,00	94,00	94,00	94,00	94,00	95,00	
1985	95,00	90,00	87,00	88,00	91,00	88,00	91,00	89,00	87,00	86,00	82,00	85,00	
1986	90,00	87,00	87,00	91,00	91,00	91,00	90,00					93,00	
1987	94,00	94,00	93,00	93,00	95,00	94,00	94,00						
1988					92,00	94,00	93,00	91,00	93,00	91,00	92,00	92,00	
1989											91,00	90,00	90,50
1990								93,00	91,00	93,00	93,00		
1991	94,00	94,00	96,00	94,00	92,00	94,00	94,00	92,00	89,00	86,00	85,00	88,00	91,50
1992													
1993	92,00												92,00
1994													
1995	88,00	89,00	87,00	90,00	92,00	91,00		91,00	87,00	88,00	87,00	85,00	88,64
1996	86,00	86,00	86,00	86,00	86,00	89,00	88,00	86,00	83,00	82,00	84,00	83,00	85,42
1997	86,00	88,00	87,00	89,00	88,00	07.00	87,00	89,00	00.00	07.00	06.00	05.00	87,71
1998	88,00	88,00	88,00	87,00	87,00	87,00	89,00	89,00	89,00	87,00	86,00	85,00	87,50
1999	85,00	87,00	86,00	88,00	87,00	89,00	89,00	88,00	87,00	88,00	85,00	88,00	87,25
мах	95,00	94,00	96,00	96,00	95,00	95,00	96,00	95,00	96,00	97,00	96,00	96,00	93,75
MIN	85,00	86,00	86,00	83,00	86,00	87,00	87,00	86,00	83,00	82,00	82,00	79,00	84,83
MED	89,64	89,13	88,72	89,04	90,00	91,12	90,62	89,68	88,96	88,96	88,25	88,22	89,05

CUADRO 4.4 Página 4 de 4

HUMEDAD RELATIVA [%]

Estación: Simiatug

Altura: 3160 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1964													
1965													
1966													
1967													
1968													
1969													
1970													
1971													
1972													
1973													
1974													
1975													
1976													
1977													
1978		89,00	90,00				81,00		81,00		81,00	84,00	84,33
1979	83,00	84,00	86,00	87,00	83,00	83,00	80,00		81,00	82,00	81,00	82,00	82,91
1980	85,00	83,00	85,00	85,00	86,00	85,00		89,00	87,00		83,00		85,33
1981						,							
1982													
1983													
1984													
1985													
1986													
1987													
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996													
1997													
1998													
1999													
мах	85,00	89,00	90,00	87,00	86,00	85,00	81,00	89,00	87,00	82,00	83,00	84,00	85,33
MIN	83,00	83,00	85,00	85,00	83,00	83,00	80,00	89,00	81,00	82,00	81,00	82,00	82,91
MED	84,00	85,33	87,00	86,00	84,50	84,00	80,50	89,00	83,00	82,00	81,67	83,00	84,19

CUADRO 4.5

PRECIPITACION MEDIA MENSUAL [mm]

ESTACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
PILALO	212,37	229,52	281,11	190,72	96,18	42,44	19,37	16,43	58,69	101,81	76,42	125,67	1172,27
EL CORAZON	421,69	497,84	563,97	473,81	254,93	77,92	32,54	23,54	53,94	70,60	95,66	266,46	2586,30
LA MANA	473,32	528,52	568,58	469,96	296,18	118,83	50,45	39,33	51,55	69,25	69,00	241,56	2812,58
ANGAMARCA	90,92	124,82	94,46	84,98	45,41	27,89	14,00	9,50	35,53	54,90	47,38	64,69	632,36
PINLLOPATA	266,28	280,33	252,49	249,95	117,78	55,18	7,70	7,83	25,04	39,17	27,44	105,69	1138,48
MORASPUNGO-COTOPAXI	423,15	500,49	519,50	395,27	209,68	125,95	35,41	27,82	39,40	53,71	78,76	173,60	2254,67
RAMON CAMPANNA	455,30	507,35	498,20	432,26	226,33	82,70	33,59	25,40	59,36	59,11	87,97	251,99	2532,43
SAN ANTONIO DEL DELTA(PATE)	468,21	599,48	572,01	501,67	248,88	122,52	46,13	34,17	60,32	81,30	100,18	230,41	2912,10
ECHEANDIA	360,10	459,55	484,81	376,23	170,80	68,19	36,00	17,92	37,34	53,79	59,60	206,76	2159,80
SALINAS - BOLIVAR	153,82	191,62	239,83	274,03	150,03	66,30	26,65	53,54	132,62	132,39	83,42	115,00	1461,73
FACUNDO VELA	316,32	332,98	306,20	321,42	172,06	66,58	16,15	3,45	47,03	53,70	44,28	128,05	1406,58
SIMIATUG	195,41	249,95	220,64	213,77	101,09	21,43	12,61	16,54	40,34	73,62	71,03	173,29	1208,25
VENTANAS INAMHI	431,14	529,13	590,30	449,82	235,44	69,35	33,27	33,74	35,87	52,77	88,47	174,68	2500,33

CUADRO 4.6 Página 1 de 13

PRECIPITACION MEDIA [mm]

Estación: Pilaló

Altura: 2520 m.s.n.m.

~ "												
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC ANUAL
1962							15,00		46,50	45,10	75,60	48,60 230,80
1963	231,70	182,00	286,50	123,40	73,60	30,80	10,60	2,70	7,10	31,80	34,70	146,10 1161,00
1964	125,40	143,10	111,30	123,30	51,80	65,90	19,10	28,00	48,30	84,40	47,70	109,40 957,70
1965	227,70	97,30	189,20	336,70	131,80	30,30	2,00	5,60	55,30	66,80	136,10	108,50 1387,30
1966	155,80	193,30	118,40	111,60	79,60	34,60	22,60	5,80	21,70	84,90	54,10	226,50 1108,90
1967	249,20	326,80	65,80	47,30	86,60	31,00	8,70	0,00	24,30	136,60	95,20	120,80 1192,30
1968	479,30	264,90	283,70	72,40	16,30	4,40	15,60	14,40	70,50	46,90	1,00	68,80 1338,20
1969	292,00	322,50	380,00	509,60	203,70	185,20	133,60	35,80	203,60	146,40	195,00	183,70 2791,10
1970								15,60	20,00	135,00	102,10	97,60 370,30
1971	292,50	333,00	386,40	169,10	101,60	66,20	4,40	14,20	137,10	154,20	75,40	74,30 1808,40
1972	193,00	326,30	283,10	189,60	91,90	90,10	9,00	35,80	13,40	66,30	313,80	147,40 1759,70
1973	194,10	98,20		201,10	131,40	62,30	23,90		63,70	61,10	50,50	101,70 988,00
1974	165,20	342,10	272,70	147,00	102,30	43,40	9,50	23,20	95,10	83,90	75,00	178,40 1537,80
1975	191,90	363,00	259,40	180,20	118,30	60,70	48,10	36,80	34,20	65,30	76,30	1434,20
1976	263,70	225,40	325,70	230,40	123,00	21,90	5,70	6,20	22,70	41,70	55,60	140,10 1462,10
1977	159,50	112,60	210,20	165,40	60,60	43,40	13,30	8,70	81,70	50,00	18,40	72,60 996,40
1978	214,50	164,60	229,70	255,60	151,90	5,10	32,60	6,70	71,30	16,60	25,90	125,60 1300,10
1979	112,80	133,30	270,90	120,30	130,10	19,10	8,10	39,60	89,80	69,20	10,50	41,40 1045,10
1980	162,70	266,00	141,10	262,60	49,50	25,80	1,90	49,10	22,70		82,20	124,40 1188,00
1981		292,30	825,00	0,00	0,00	28,00	5,00	0,00	13,00		0,00	1163,30
1982			534,60	291,80	87,30	0,00	0,00	0,20		885,60		1799,50
1983						0,00						0,00 0,00
1984												
1985												
1986												
1987												
1988												
1989												
1990												
1991					116,70	18,00	28,00	14,30	40,40	26,00	53,70	142,30 439,40
1992				256,50	118,70		15,80	10,50	19,10	75,10	34,80	65,70 596,20
1993	217,80				110,80	18,30	6,50		130,10	36,90	30,20	238,00 788,60
1994	201,30	256,90	264,60	221,10	69,00	10,90	7,50	3,10	25,80	22,80	54,70	227,20 1364,90
1995	163,90	112,40	183,90		68,70	31,50	38,30	40,90	8,50	82,00	81,20	117,10 928,40
1996	243,40	241,90	263,10	179,60	128,60	48,70				59,90	29,60	84,40 1279,20
1997	270,30	128,30	340,90	174,70	69,10	110,40	25,20	9,20	110,70	152,30	310,00	203,50 1904,60
1998	72,70							16,50	30,00	46,10	45,00	41,90 252,20
1999	216,50	352,80	239,40	208,00	123,90	59,80	12,90	4,40	136,60	77,70	51,90	282,80 1766,70
мах	479,30	363,00	825,00	509,60	203,70	185,20	133,60	49,10	203,60	885,60	313,80	282,80 2791,10
MIN	72,70	97,30	65,80	0,00	0,00	0,00	0,00	0,00	7,10	16,60	0,00	0,00 0,00
MED	212,37	229,52	281,11	190,72	96,18	42,44	19,37	16,43	58,69	101,81	76,42	125,67 1172,27

CUADRO 4.6 Página 2 de 13

PRECIPITACION MEDIA [mm]

Estación: El Corazón Altura: 1560 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962		120	HIM	Abix	111/51	3014	302	Ado	OLI I	001	1401	Die	MOME
1963								0,00	97,00	16,50	5,80	159,30	278,60
1964								0,00	37,00	10,00	0,00	105,00	2,0,00
1965	458,20	350,30	409,90	565,30	359,00	101,30	25,80	10,90	46,40	57,20	35,30	242.10	2661,70
1966	172,90	473,90	355,20	261,40	311,40	54,30	0,00	8,50	61,10	133,20	52,70		2045,00
1967	141,40	459,80	206,10	402,30	182,70	67,00	0,00	1,70	23,10	31,40	10,90		1665,50
1968	439,70	383,60	343,30	411,10	55,40	27,00	26,20	10,30	30,50	87,40	45,20		2039,20
1969	392,10	274,00	542,60	624,20	248,20	231,60	10,50	50,20	47,20	41,20	47,90		2763,50
1970	503,30	444,20	306,80	632,40	364,10	98,20	26,80	20,90	0,30	13,90	82,40		2619,40
1971	353,30	391,20	790,40	578,80	150,00	87,60	24,30	5,80	75,70	28,30	44,40		2626,40
1972	479,70	655,20	607,40	416,00	225,10	316,90	51,10	91,90	63,60	81,60	227,50		3440,30
1973	675,40	1252,20	1544,20	1418,00	515,10	121,70	35,20	0,00	46,00	25,60	89,70	555,40	6278,50
1974	934,70	1561,30	1648,40	1065,30	992,00	160,60	121,80	50,80	285,40	265,80	495,70	2041,00	9622,80
1975					74,80	101,50	130,20	64,40	48,40	101,30	65,90	75,00	661,50
1976	1698,40	977,20	1799,80	1818,30	1281,20	60,60	46,40	45,70	22,30	19,00	71,40	276,00	8116,30
1977	328,00	292,80	453,30	521,00	140,60	105,60	15,10	3,60	73,20	20,50	16,60	121,10	2091,40
1978	477,10	248,90	337,70	391,00	245,20	8,60	24,50	0,90	16,00	15,10	57,30	281,60	2103,90
1979	319,30	340,10	442,20	213,00	166,00	11,60	2,50	32,30	72,10	44,10	13,40	73,50	1730,10
1980	355,80	414,90	372,20	425,30	182,60	11,10	0,00	8,20	8,00	32,90	29,20	63,00	1903,20
1981			292,00	194,60	134,50	3,40	7,70	3,50	14,70	8,50	17,10	130,80	806,80
1982	195,10	390,00		94,60	81,80	3,30	0,00	0,00	66,70	501,40	743,60	948,10	3024,60
1983	636,80	225,80	563,90	339,00	381,50	295,80	109,40	100,60	106,00	61,50	95,00	227,20	3142,50
1984	126,80	481,00	347,00	226,40	129,10	47,10	9,90	8,00	27,60	35,20	80,40	232,70	1751,20
1985													
1986													
1987	275,30	269,20	275,50	344,30	272,50	5,20	16,50	35,50	26,10	65,50	48,80	126,00	1760,40
1988	289,90	334,50	256,10	204,00	123,50	13,20	37,30	7,60	35,40	13,00	36,90	41,10	1392,50
1989	689,20	887,40	477,80	436,70	114,00	26,10	2,50	6,70	30,10	100,10	52,70	142,10	2965,40
1990	164,40	355,60		257,40	63,20	34,20	13,60	3,40	11,40	60,30	27,40		990,90
1991	250,70			333,20	198,90	34,30	18,90	2,80	2,60	8,70	50,50	168,50	1069,10
1992	240,30	216,80	191,30	219,40	13,80	68,00	8,70	3,80	11,30	22,50	13,20	117,20	1126,30
1993	208,90	545,20	195,30	243,40		20,50	1,70	13,30	41,00	47,20	26,30	231,60	1574,40
1994	363,20	494,60	437,30	266,30	171,90	11,80	0,90	2,90	0,00	23,80	7,80		1967,00
1995	540,20	565,90	578,50	22,6,5	51,10	56,30	102,30	25,30	0,50	63,90	73,90	· ·	2173,30
1996	442,90	390,90	415,40	377,30	106,20	15,10	15,00	26,70	39,30	38,60	58,20	83,60	2009,20
1997	293,50	352,80	556,50	249,70	198,80	187,40	112,00	99,90	239,20	224,60	350,50	550,50	3415,40
1998	387,10	322,70	346,70	327,40	385,20	140,70	51,40	45,80	34,30	37,10	31,50	73,10	2183,00
1999	238,90	583,30	1262,30	830,90	238,20	43,60	25,50	8,50	131,60	73,60	147,40	351,00	3934,80
МАХ	1698,40	1561,30	1799,80	1818,30	1281,20	316,90	130,20	100,60	285,40	501,40	743,60	2041,00	9622,80
MIN	126,80	216,80	191,30	94,60	13,80	3,30	0,00	0,00	0,00	8,50	5,80	41,10	278,60
MED	421,69	497,84	563,97	473,81	254,93	77,92	32,54	23,54	53,94	70,60	95,66	266,46	2586,30

CUADRO 4.6 Página 3 de 13

PRECIPITACION MEDIA [mm]

Estación: La Maná Altura: 223 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962	EIVE	FEB	MAK	ADK	MINT	JUN	JUL	Ado	DEPT	UCI	NOV	DIC	ANOAL
1963													
1964													
1965	486,80	328,50	525,10	803,40	631,20	292,90	32,50	11,40	58,20	97,40	24,50	272.20	3565,20
1966	847,20	647,10	586,20	196,60	225,90	49,10	6,70	61,60	41,70	79,40	30,70		2878,30
1967	602,90	688,50	539,50	162,00	234,70	34,70	21,00	10,10	34,00	38,90	16,70		2457,80
1968	401,90	382,90	403,00	259,60	68,40	60,90	5,90	11,80	118,50	30,40	35,40		1953,20
1969	379,00	355,00	779,60	645,20	338,10	333,50	24,00	18,30	31,40	23,10	36,00	•	3162,20
1970	578,80	628,70	241,00	522,70	509,10	76,40	18,20	11,40	31,60	29,90	51,20		2870,20
1971	408,10	540,10	1040,90	634,80	60,80	87,00	7,70	13,60	71,90	37,90	38,00		3197,10
1972	399,60	464,80	700,60	643,20	431,10	511,80	60,00	100,70	33,50	103,20	103,10		3892,50
1973	728,40	848,20	504,70	761,80	442,90	140,60	35,30	35,90	108,80	32,30	67,40		3882,90
1974	279,00	441,40	416,50	443,40	134,60	38,10	2,50	26,70	27,90	66,60	07,70		2126,00
1975	183,00	10,80	478,20	332,20	300,00	118,30	40,50	126,50	150,40	332,50	225,50		3053,30
1976	587,00	372,20	474,50	354,20	300,00	226,60	20,40	120,30	19,40	332,30	الدردعة	733,40	2054,30
1977	367,00	3/2,20	4/4,30	334,20		220,00	20,40	9,00	77,90	12,40	4,10	279,50	403,20
1978	355,60	496,10	442,90	498,90	307,50	16,10	32,00	4,80	15,30	55,00	27,00	-	2430,60
1979	345,00	384,20	946,20	262,20	70,40	97,20	0,00	13,50	45,50	33,00	4,00		2211,90
1980	494,30	556,30	314,60	520,30	293,30	25,30	0,70	21,20	3,40	45,20	31,70		2306,30
1981	181,00	577,40	520,50	317,80	33,50	0,00	6,30	6,80	18,50	16,30	37,20		1905,30
1982	491,60	599,90	377,40	392,90	165,70	2,50	13,80	26,70	7,50	383,40		1034,80	
1983	1207,80	627,60	786,00	630,40	765,20	368,30	495,40	159,60	307,20	53,40	311,50		5744,10
1984	132,80	796,10	594,60	272,50	145,80	156,50	22,50	14,30	50,00	31,30	62,00		2565,90
1985	132,00	790,10	394,00	2/2,30	143,00	130,30	22,30	14,30	30,00	31,30	02,00	207,30	2303,90
1986													
1987	656,20	653,10	879,10	454,70	399,40	22,10	16,70	55,00	0,00	78,30	62,30	224.10	3511,00
1988	570,20	780,40	309,50	737,70	260,00	46,40	22,70	25,00	41,20	33,50	53,90		2325,90
1989	578,20	525,20	541,90	522,00	209,00	54,00	25,40	16,60	23,10	68,90	73,90		2777,40
1990	276,40	394,90	230,90	322,00	132,20	20,70	26,70	3,10	5,70	23,70	13,70		1277,10
1991	147,60	499,30	491,00	259,90	159,60	36,30	11,60	5,30	9,90	17,20	44,00		1951,60
1992	117,00	100,00	151,00	200,00	100,00	30,30	11,00	3,30	2,20	17,20	11,00	200,00	1551,00
1993													
1994													
1995	458,50	292,40	544,40	375,70	190,30	108,40		30,00	5,30	90,90	57,90	175.80	2329,60
1996	297,00	457,60	830,10	315,70	55,00	16,30	16,50	36,30	20,90	10,10	84,60		2260,00
1997	415,50	407,80	695,10	594,90	662,80	10,00	305,90	213,60	20,50	10,10	01,00	110,00	3295,60
1998	881,00	888,50	629,10	854,90	753,30	352,00	153,30	67,00	46,20	19,70	46,60	54.20	4745,80
1999	356,00	682,10	665,60	656,90	313,30	35,30	18,50	4,80	90,00	58,80	50,60		3234,90
1999	330,00	502,10	303,00	000,50	الارددد	الاردد	10,00	7,00	30,00	30,00	30,00	303,00	0207,50
мах	1207,80	888,50	1040,90	854,90	765,20	511,80	495,40	213,60	307,20	383,40	511,90	1034,80	5744,10
MIN	132,80	10,80	230,90	162,00	33,50	0,00	0,00	3,10	0,00	10,10	4,00	0,00	403,20
MED	473,32	528,52	568,58	469,96	296,18	118,83	50,45	39,33	51,55	69,25	69,00	241,56	2812,58

CUADRO 4.6 Página 4 de 13

PRECIPITACION MEDIA [mm]

Estación: Angamarca Altura: 3000 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962										20,30	28,20	80,30	128,80
1963													
1964	95,10	31,40	70,30	141,80	91,10	14,00	0,90	7,40	22,50	44,40	75,60	41,40	635,90
1965	42,30	112,60	99,30	33,30	15,00	7,40	7,40	6,40	8,40	56,70	47,40	134,20	570,40
1966	90,10	115,90	43,20	34,60	20,70	40,40	12,30	4,10	11,40	51,00	19,90	14,40	458,00
1967	107,50	94,40	107,10	52,70	7,30	15,00	19,00	1,80	28,90	72,00	29,10	59,20	594,00
1968	54,60	62,60	65,60	147,40	7,30	42,40		8,90	35,00	38,00	78,30	82,90	623,00
1969	175,00	142,80	62,40	79,00	118,40	10,10	3,70	1,80	17,10	26,70	60,30	48,20	745,50
1970	104,20	190,20	176,90	53,20	9,80	57,60	5,10	8,50	28,10	51,60	52,60	50,30	788,10
1971	126,10	167,00	200,00	140,00	22,50	43,70	19,40	14,10	2,00	36,60	77,90	47,10	896,40
1972	46,80	138,70	102,00	110,40	48,00	24,30	20,10	5,70	43,50	28,00	20,70	66,30	654,50
1973	63,70	226,40	158,50	61,70	51,40	30,50	14,20	2,20	52,00	49,40	76,40	103,90	890,30
1974	109,80	249,00	186,10	67,80	78,60	100,40	4,30	12,20	12,60	121,70	69,60	95,40	1107,50
1975	169,10	103,40	93,00	81,70	11,80	5,80	3,60	0,80	7,20	40,50	19,50	12,30	548,70
1976	15,40	103,40	40,90	54,20	7,00	19,00	5,00	2,20	4,40	16,30	8,10	57,50	333,40
1977	33,20	14,00	9,00	123,30	31,00	15,00	12,00	5,40	12,00	6,60	0,70	68,70	330,90
1978	59,70	63,80	121,70	92,30	48,10	0,00	1,00	20,70	33,60	13,00	8,00	4,00	465,90
1979	58,10	156,50		115,70	28,60	51,10	39,80	47,50	33,20	49,50	10,80	14,20	605,00
1980	105,90	147,60	14,30	3,50	62,90	19,00	2,70	0,00	0,00	90,00	0,00	61,30	507,20
1981	127,20	198,20	58,30	69,10	162,10	0,00	45,20	10,90	179,50	160,30	140,60		1151,40
1982	91,30								143,60	125,30	123,90	187,60	671,70
1983	143,20	53,60	91,60	152,90	41,20	34,20	36,30	19,90					572,90
1984													
1985													
1986													
1987													
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996													
1997													
1998													
1999													
мах	175,00	249,00	200,00	152,90	162,10	100,40	45,20	47,50	179,50	160,30	140,60	187,60	1151,40
MIN	15,40	14,00	9,00	3,50	7,00	0,00	0,90	0,00	0,00	6,60	0,00	4,00	128,80
MED	90,92	124,82	94,46	84,98	45,41	27,89	14,00	9,50	35,53	54,90	47,38	64,69	632,36

CUADRO 4.6 Página 5 de 13

PRECIPITACION MEDIA [mm]

Estación: Pinllopata Altura: 2360 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963										12,50	6,20		18,70
1964													
1965	194,70	224,40	165,40	375,30	225,40	144,30	0,70	3,60					1333,80
1966	44,90	239,10	478,30	397,20	44,40	2,50	6,00	3,90	9,60				1225,90
1967				84,90	104,90	27,40	6,20	2,70	7,40	37,40	19,30	81,60	371,80
1968	236,10	223,40	220,40	226,30	16,00	17,80	12,20	12,70	36,70	61,70	26,00	102,10	1191,40
1969	236,90	191,80	229,00	283,90	139,50	68,00	6,40	8,20	28,70	24,80	47,80	127,10	1392,10
1970	256,50	309,10	149,10		167,80	47,60	11,20	3,00	9,60	25,90	38,80	94,00	1112,60
1971	287,10	366,70	383,50	115,70	42,10	58,70	2,40	1,10	40,20	20,40	22,60	115,90	1456,40
1972	259,60	287,00	394,80	199,90	137,50	105,10	7,30	29,50	20,50	27,00	57,90	117,20	1643,30
1973	202,20	299,80	251,90	316,40	182,40	38,80	22,90	11,70	39,00	22,10	28,40		1517,50
1974													
1975													
1976													
1977													
1978													
1979													
1980													
1981													
1982													
1983													
1984													
1985													
1986													
1987													
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996	678,50	381,70	0,00			41,60	1,70	1,90	33,70	120,70	0,00		1259,80
1997													
1998													
1999													
мах	678,50	381,70	478,30	397,20	225,40	144,30	22,90	29,50	40,20	120,70	57,90	127,10	1643,30
MIN	44,90	191,80	0,00	84,90	16,00	2,50	0,70	1,10	7,40	12,50	0,00	81,60	18,70
MED	266,28	280,33	252,49	249,95	117,78	55,18	7,70	7,83	25,04	39,17	27,44	105,69	1138,48

CUADRO 4.6 Página 6 de 13

PRECIPITACION MEDIA [mm]

Moraspungo-Cotopaxi 450 m.s.n.m. Estación:

Altura:

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962										20,80	11,20	207,90	239,90
1963													
1964													
1965	591,10	462,10	871,60	919,10	342,20	262,30	30,20	17,00	94,60	64,70	24,60	211,10	3890,60
1966	633,10	646,70	548,40	342,00	179,00	75,30	10,90	46,30	19,20	58,80	57,10	106,30	2723,10
1967	889,30	615,30	539,80	307,60	124,00	66,10	19,70	8,50	7,00	23,20	5,70	98,80	2705,00
1968	450,30	243,50	361,80	300,20	35,30	38,00	5,30	10,30	29,60	19,40	34,40	101,70	1629,80
1969	280,20	261,40	633,10	654,70	180,70	334,10	15,70	26,10	38,30	19,60	40,20	209,70	2693,80
1970	663,20	356,40	340,10	509,20	479,70	65,70	21,40	4,90	12,30	7,70	56,30	116,40	2633,30
1971	261,50	430,10	369,10	197,00	89,40	42,00	3,00	1,30	58,80	74,70	28,70	147,70	1703,30
1972	382,00	428,50	606,40	325,30	140,30	402,80	15,10	82,50	117,20	153,90	210,10	106,80	2970,90
1973	365,20	719,50	505,30	721,30	475,20	286,20		23,10	114,90	75,00	66,70	151,50	3503,90
1974	206,10	435,10	386,10	436,20	201,00	137,90	6,10	8,80	28,00	85,80	99,40		2030,50
1975	601,50	688,40	447,50	613,80		168,10	12,00	12,30	13,50	35,40	17,00	138,00	2747,50
1976	507,20	494,40	735,00	482,00	253,30	157,20	175,10	4,30	11,20	12,80	13,10	20,60	2866,20
1977	416,40	293,80	429,30	354,70	15,00	97,50	2,90	2,70	41,90	7,50	2,20		1663,90
1978	329,40	325,90	388,00	280,40	114,70	5,20	1,10	0,30	23,50	7,30	10,50	57,80	1544,10
1979	275,80	476,00	691,20	226,70	112,50	32,60	1,60	2,90	14,20	9,40	1,10	31,60	1875,60
1980	342,70	341,20	155,30	140,20	113,00	10,90	1,20	2,00	1,70	3,70	6,60	8,50	1127,00
1981	49,00		367,40	298,70	8,90	0,10		0,00	0,00	4,00		186,10	914,20
1982	334,80	262,30		131,20						210,20	323,10	584,40	1846,00
1983								86,50	72,70	65,10	115,00	127,80	467,10
1984	144,90	516,30	401,30	132,30	19,10	33,70	5,50	4,20	41,80	32,30	12,00	108,60	1452,00
1985													
1986													
1987	673,30	949,40	569,50				3,70	71,80		67,30	24,50		2359,50
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996	322,80	714,20	581,20	261,90	105,60	29,50	31,60	14,90	11,70	12,10	68,80	242,40	2396,70
1997	380,10		676,90		414,90	318,30	210,00	184,80		234,00	592,00	608,50	3619,50
1998	815,90	504,70	651,50	626,50	558,10	179,40	123,10	45,20	49,50	20,60	73,90		3694,90
1999	239,90	845,50	692,60	435,00	441,30	28,00	48,50	6,90	65,30	71,10	74,70	374,20	3323,00
мах	889,30	949,40	871,60	919,10	558,10	402,80	210,00	184,80	117,20	234,00	592,00	608,50	3890,60
MIN	49,00	243,50	155,30	131,20	8,90	0,10	1,10	0,00	0,00	3,70	1,10	8,50	239,90
MED	423,15	500,49	519,50	395,27	209,68	125,95	35,41	27,82	39,40	53,71	78,76		2254,67

CUADRO 4.6 Página 7 de 13

PRECIPITACION MEDIA [mm]

Estación: Ramon Campanna Altura: 1560 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963													
1964													
1965													
1966													
1967											12,80	155,70	168,50
1968	481,00	466,60	329,90	248,30	27,50	28,80	11,50	29,00	52,80	42,50	72,80	148,00	1938,70
1969	299,60	294,00	515,70	685,80	465,70	206,40	19,90	24,90	38,80	31,30	58,70	260,60	2901,40
1970	522,60	469,20	222,20	525,60	258,60	71,20	16,10	13,00	13,20	44,10	68,70	144,90	2369,40
1971	477,60	585,30	588,20	261,20	83,20	79,50	9,40	11,30	49,20	8,10	8,80	207,60	2369,40
1972	468,20	432,60	624,60	341,20	258,10	266,10	40,30	87,30	68,20	44,30	155,90	234,80	3021,60
1973	492,50	751,80	692,50	569,40	261,30	118,40	28,40	6,80	61,50	38,10	68,10	146,80	3235,60
1974	252,50	645,20	428,30	292,10	219,00	29,20	16,00	7,60	44,60	57,50	77,20	435,10	2504,30
1975	616,60	613,50	481,90	437,30	169,90	91,60	20,90	32,50	48,80	109,90		264,30	2887,20
1976	481,30	379,30	354,00	441,70		96,30	42,40	51,30	32,90	24,00	50,10	294,90	2248,20
1977	538,20	376,50	591,70	379,90	103,60	69,90	33,60	5,40	80,30	29,30	27,20		2235,60
1978	492,10	526,70	433,30	458,70	286,00	22,30	27,80	4,70	24,00	23,00	63,30	311,50	2673,40
1979	458,50	576,90	713,00	362,90	145,30	45,10	4,40	38,20	79,40	36,60	19,80	110,40	2590,50
1980	338,10	473,30	380,50	607,10	247,70	19,60	2,60	9,40	12,20	73,10	61,70	100,90	2326,20
1981	411,00	569,60	573,70	334,50		2,70	30,20	7,70	20,50	43,50		249,70	2243,10
1982	449,00	483,10	507,90	499,20	194,30	7,90	14,40	10,50	84,80	278,80	557,80	925,30	4013,00
1983	679,50	414,00	613,10	518,20	408,40	252,20	191,90	114,80	157,00	104,00	283,90	279,30	4016,30
1984	203,60	539,60	653,00	420,80	140,20	86,80	7,80	17,80	59,40	45,50	80,60	234,80	2489,90
1985													
1986													
1987	443,70	538,60	535,70	418,60	313,00	51,90	4,90	31,80	15,40	67,90	49,70		2683,90
1988	608,40	698,50	459,40	460,80	237,40	38,00	-	7,70	53,50	45,50	89,60	141,30	2840,10
1989	689,40	558,20	679,40	499,40	160,10	60,90	3,60	4,60	32,30	121,60	60,50	283,90	3153,90
1990	344,70	600,10	400,50	341,80	147,40	135,10	43,30	4,30	6,80	85,70	45,70		2345,10
1991	494,70	516,40	515,40	368,80	272,20	51,80	50,00	8,70	51,50	41,40	92,40	325,40	2788,70
1992	811,80	715,80	594,90	801,10	479,70		79,00		109,40		52,00		3643,70
1993	227,20	411,00	360,70	276,40	5,00	53,00		0,00	24,60	14,80	26,30	206,10	1605,10
1994													
1995													
1996	295,10	368,20	303,30	367,30	93,60	13,40	18,40	29,00	37,10	37,70	34,00	115,50	1712,60
1997	432,60	438,60	535,10	393,30	161,30			88,20	267,20				2316,30
1998		212,90	371,30	359,60	489,10	188,90	95,40		36,80	32,30	32,10		1818,40
1999	283,70	550,40	490,30		256,90	63,30	27,50	14,00	99,90	56,40	137,50	320,60	2300,50
мах	811,80	751,80	713,00	801,10	489,10	266,10	191,90	114,80	267,20	278,80	557,80	925,30	4016,30
MIN	203,60	212,90	222,20	248,30	5,00	2,70	2,60	0,00	6,80	8,10	8,80	100,90	168,50
MED	455,30	507,35	498,20	432,26	226,33	82,70	33,59	25,40	59,36	59,11	87,97		2532,43

CUADRO 4.6 Página 8 de 13

PRECIPITACION MEDIA [mm] San Antonio del Delta(PATE)

Estación:

223 m.s.n.m. Altura:

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963													
1964													
1965													
1966													
1967													
1968	418,80	390,00	328,20	232,40	92,20	78,80	10,80	10,90	130,30	34,30	41,00	219,40	1987,10
1969	414,40	329,30	746,30	795,40	264,20	266,50	48,80	52,20	2,50	73,30	73,00	197,30	3263,20
1970	463,20	547,80	211,00	539,40	277,10	192,50	33,60		58,90	57,70	58,50	124,80	2564,50
1971	475,00	530,30		595,60	53,60	85,00	10,30		67,80	54,40	36,60	261,70	2170,30
1972	457,20	396,80	774,10	569,80	471,90	395,60	97,60	96,20	51,50	135,70	116,30	467,60	4030,30
1973	704,50		489,50	782,50	302,60	128,80	57,20		105,10		56,80	201,10	2828,10
1974	253,30	544,50		582,00	152,90	40,60	7,60	29,20	45,70	60,90	86,30		1803,00
1975	633,20	835,00	565,10	565,90	231,00	155,00	39,50	24,90		100,40	39,70		3189,70
1976	734,70	772,50	1000,10	808,70	315,80	230,60	44,30	28,80	25,80	33,70	41,10	250,30	4286,40
1977	549,70	469,60	829,80	501,50	173,20	214,00	15,60	20,80	50,60	39,50	7,40	324,40	3196,10
1978	488,80	467,30	560,40	494,70	314,50	25,70	39,40	11,00	26,80	36,40	53,40	161,10	2679,50
1979	357,10	368,80	914,20	424,10	171,50	91,30	10,70	26,00	48,10	41,80	8,10	63,70	2525,40
1980	513,60	626,20	190,70	425,10	272,70	50,50	6,50	17,60	9,90	75,40	41,90	68,30	2298,40
1981	226,40	574,30	552,30	342,40	37,50	18,80	37,50	26,80	34,00	39,60	67,20	238,30	2195,10
1982	512,10	448,20	451,20	305,50	142,70	7,40	18,50	39,80	320,10	586,40	1012,60		3844,50
1983	298,00	775,10	752,20	412,40	595,60	338,50	438,00	190,20	265,80	80,80	238,30	296,50	4681,40
1984	180,30	639,30	564,60	343,10	234,90	171,80	34,00	24,80	70,00	52,60	101,30	293,50	2710,20
1985													
1986													
1987	662,10	669,60	773,70	488,90	440,30	22,30	17,10	63,30	26,60	93,10	-	259,60	3516,60
1988	545,50	836,60	265,80	510,20	313,80	42,80	21,60	17,30	44,80	31,60	69,60	191,50	2891,10
1989	568,10	755,50	644,10	570,10	178,90	48,30	21,20	15,60	22,50	86,40	63,50	155,90	3130,10
1990	245,70	602,40	305,50	517,30	204,30	24,70	41,00	5,30	7,50	40,10	45,10	179,20	2218,10
1991	304,60	689,70	589,10	312,20	38,40	38,40	11,50	7,10	10,50	53,00	42,60		2434,60
1992	519,00	887,60	911,90	434,40	567,20	221,40	50,90	8,20	23,70	47,90	17,80		3774,20
1993	601,50	944,40	512,90	518,70	220,00	106,50	11,10	32,00	33,10	36,80	40,30		3057,30
1994	608,10	597,10	292,60	469,40	155,10	67,10	4,90	4,70	19,50	76,30	45,90	470,30	2811,00
1995	438,50	289,10	502,90				70,20	33,30	6,90	64,50	-	222,90	1628,30
1996													
1997													
1998													
1999													
мах	734,70	944,40	1000,10	808,70	595,60	395,60	438,00	190,20	320,10	586,40	1012,60	470,30	4681,40
MIN	180,30	289,10	190,70	232,40	37,50	7,40	4,90	4,70	2,50	31,60	7,40		1628,30
MED	468,21	599,48	572,01	501,67	248,88	122,52	46,13	34,17	60,32	81,30	100,18		2912,10

CUADRO 4.6 Página 9 de 13

PRECIPITACION MEDIA [mm]

Estación: Echeandía Altura: 370 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963													
1964													
1965													
1966													
1967													
1968						21,00	0,00	6,40	21,10	59,40	14,50	56,00	178,40
1969	248,00	172,00	373,00	413,00	166,00	91,00	9,00	30,00	8,00	13,50	32,00	68,70	1624,20
1970	437,00	240,40	141,90	472,30	348,30	30,50	4,90	0,00	18,70	6,60	23,50	85,20	1809,30
1971	132,50	560,40	634,90	200,90	100,30	24,80	2,30	2,50	18,50	8,10	24,90	187,20	1897,30
1972	446,30	450,20	864,60	566,90	192,90	262,00	23,70	36,20	27,00	83,90	145,60	304,20	3403,50
1973	418,00	705,50	409,00	440,30	293,60	65,20	9,00	9,10	51,70	29,10	17,20	91,20	2538,90
1974	242,30	442,40	387,40	289,50	108,70	18,80	11,20	25,80	23,50		40,10	259,90	1849,60
1975	281,00		554,00	431,50	102,60	77,80	13,50	16,80	3,20				1480,40
1976	463,60	722,00	775,80		219,70	70,50	2,30	8,40	17,90	8,10	54,00	150,00	2492,30
1977	345,90	305,30	521,10	353,00	45,40	31,50	35,30	18,00	70,50	15,10	12,40		1753,50
1978	371,70	431,60	413,70	211,30	126,00	11,30	12,30	3,60	35,80	29,80	18,70	132,50	1798,30
1979	348,20	486,30	386,00	329,30	36,60	8,50	2,00	10,60	22,10	11,60	4,10	17,30	1662,60
1980	312,60	489,20	279,50	768,50		7,30			5,20	16,70		27,30	1906,30
1981	183,30	484,30	356,60	282,80	11,30	1,40	13,90	0,70	1,00	4,30	11,60	90,20	1441,40
1982	353,50	382,60	155,00	218,30	26,60	0,30			62,40	140,60		765,30	2104,60
1983		514,80	727,00	657,90	570,00	333,90	294,00	70,30	159,90	109,70	188,00	765,30	4390,80
1984	100,80	797,00	457,60	239,00	5,10	43,70	4,90	4,00	25,60	18,40	28,60	129,80	1854,50
1985													
1986													
1987		75,80	80,60	54,40	27,00	3,70	3,30	13,50	2,70	6,60	18,40	45,00	331,00
1988	40,30	54,70	32,40	45,60	23,30	10,60	14,50	15,50	23,70	340,50	10,60	101,20	712,90
1989	870,40	215,80	1446,30	724,80	234,50	103,00	36,20	6,00	53,00	125,50	84,90	169,70	4070,10
1990	319,70	608,50	456,10	634,90	134,90	69,00	26,20	4,80	24,40	65,40	32,20	150,20	2526,30
1991	150,80	761,90	449,50	129,00	106,80	11,70	8,00	16,20	8,90	25,40	25,10	258,10	1951,40
1992	633,00	492,10	816,10	480,10	496,20	161,20	44,10	13,70	40,30	29,80	27,10	69,80	3303,50
1993	528,10	673,60	771,10	502,70	0,30	42,50	9,90	12,70	47,70	11,10	24,70		2810,70
1994	472,30	534,80	366,00	40,8,0	166,30	28,00	11,50	19,10	34,70	38,20	40,10	224,40	1935,40
1995	593,40	321,30	259,00	414,70	42,10	21,30	56,00	18,90	17,30	32,80	43,50		1898,40
1996	317,40	534,60	394,00	183,80	32,30	12,20	58,90	4,50	26,00	14,00	57,20		1756,20
1997	317,80	420,10	606,80	363,80	302,90	279,30	142,40	89,70	221,50	140,90	497,50		4210,20
1998	539,10	390,00	421,10		633,50	188,60	122,80	36,00	18,30	48,80	41,90		2507,60
1999	255,60	600,30	523,30	373,70	229,10	15,00	35,80	8,80	29,70	72,30	90,80	360,10	2594,50
	075 15	707.55	1115	700 70	505 =5	000 00	001.55	00.75	004 ==	0.40 ===	107.75	007.7	1000 55
МАХ	870,40		1446,30	768,50	633,50	333,90	294,00	89,70	221,50	340,50	497,50		4390,80
MIN	40,30	54,70	32,40	45,60	0,30	0,30	0,00	0,00	1,00	4,30	4,10	17,30	178,40
MED	360,10	459,55	484,81	376,23	170,80	68,19	36,00	17,92	37,34	53,79	59,60	206,76	2159,80

CUADRO 4.6 Página 10 de 13

PRECIPITACION MEDIA [mm]

Estación: Salinas-Bolivar Altura: 3600 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963													
1964													
1965													
1966													
1967													
1968													
1969							0,00	13,00	90,70	33,40	138,20	202,00	477,30
1970	233,20	251,80	363,50	265,50	243,60	12,60	0,20	0,70	105,90	84,10	201,50	69,40	1832,00
1971	131,00	294,90	422,30	184,40	72,30	76,50	0,20	29,30	116,60	18,80	30,90	24,10	1401,30
1972	164,10	97,70	288,80	57,30	106,90	58,80	0,70	62,30	25,50	49,00	28,90	87,90	1027,90
1973	95,30	316,10		248,90	108,80	42,20	25,50	58,10	153,60	39,30	7,30	30,10	1125,20
1974													
1975	112,40	319,60	226,00	215,70	163,40	48,80	96,70	58,70	52,90	116,60	45,40	65,60	1521,80
1976	115,30	208,20	298,10	228,20	91,80	19,20	4,30	0,00	57,20	38,20	81,30	77,90	1219,70
1977	217,80	77,10	159,30	148,80	26,50	59,50	6,30	15,20	93,70	103,40	19,00		926,60
1978	175,50	103,60	208,00	161,30	149,70	8,70	61,60	8,00	97,20	22,50	6,00	112,40	1114,50
1979	79,00	77,60	217,60	135,90	259,70	21,50	4,30	83,30			0,00	17,90	896,80
1980	79,60	355,30	140,80	156,80	29,70	5,40	6,50	3,30	34,20	132,40	125,80	70,60	1140,40
1981	49,80	112,80	116,70	180,90	45,40	25,30	15,10	1,90	12,60	100,70	27,00	103,10	791,30
1982	130,20	188,00	184,90	164,30	195,20	3,60	16,20	2,90		198,50	400,00	294,50	1778,30
1983	252,60	46,90	251,70		167,50	39,60	6,90	75,90	5,00	157,40	109,40	233,60	1346,50
1984	252,50	263,30	384,70	346,20	209,10	14,00	3,60	21,60	64,80	223,40		72,50	1855,70
1985													
1986													
1987	208,60	245,50	218,80	185,60	217,80	1,50		12,10		37,80			1127,70
1988													
1989				1560,00		614,80	189,00	751,00	1421,00	1179,10	33,50	189,10	5937,50
1990													
1991	81,20	172,80	250,90	194,70	139,90	69,60	62,50	24,00	91,00	77,80	129,90	126,30	1420,60
1992	99,30	155,80	209,00	244,30	166,60	8,60	2,00				14,00	96,40	996,00
1993	210,50	216,20	236,10	349,40	102,70	6,40	24,20	25,90	85,50	42,80	53,20	126,90	1479,80
1994	212,00	160,00	241,90	292,60	132,30	34,90	22,80	3,30	39,90	58,40	112,00	110,30	1420,40
1995	89,30	139,70	183,20	132,50		30,50	46,50	17,30	18,90	91,40	69,60	80,50	899,40
1996	105,90	179,70	227,50	203,50	112,60	27,90	3,60	0,00	44,50	76,00	30,90	55,00	1067,10
1997	173,60	125,90	273,30	246,60	78,50	61,00	0,00	0,00	45,30	48,00	227,00	195,60	1474,80
1998	175,90	185,50	222,30	282,40	196,70	41,50	31,00	0,00				24,00	1159,30
1999	247,10	304,90	190,70	390,90	433,90	325,20	36,60	70,60	129,00	116,00	27,80	294,30	2567,00
44474	2E2.60	2EE 20	400.00	1560.00	400.00	614.00	100.00	751.00	1401.00	1170.10	400.00	204.52	E007 E0
MAX	252,60	355,30		1560,00	433,90	614,80	189,00		1421,00		400,00		5937,50
MIN	49,80	46,90	116,70	57,30	26,50	1,50	0,00	0,00	5,00	18,80	0,00	17,90	477,30
MED	153,82	191,62	239,83	274,03	150,03	66,30	26,65	53,54	132,62	132,39	83,42	115,00	1461,73

CUADRO 4.6 Página 11 de 13

PRECIPITACION MEDIA [mm]

Estación: Facundo Vela **Altura:** 1300 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963													
1964													
1965													
1966													
1967													
1968													
1969													
1970													
1971													
1972													
1973													
1974													
1975													
1976											57,90	119,30	177,20
1977	310,30	190,90	343,00	297,30	99,20	62,00	24,50	1,20	71,80	127,40	18,70		1546,30
1978	604,20	569,30		668,90	367,00	49,00	39,80	0,00		5,20	21,30	181,80	2506,50
1979	248,70	233,80	380,20	158,20	97,90	12,30	0,00	12,60	55,20	33,70	1,10	37,60	1271,30
1980	203,50	321,10	163,00	311,60	254,70	209,60	0,30	0,00	14,10	48,50	122,40	173,50	1822,30
1981	214,90	349,80	338,60	171,10	41,50	0,00							1115,90
1982													
1983													
1984													
1985													
1986													
1987													
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996													
1997													
1998													
1999													
мах	604,20	569,30	380,20	668,90	367,00	209,60	39,80	12,60	71,80	127,40	122,40	181,80	2506,50
MIN	203,50	190,90	163,00	158,20	41,50	0,00	0,00	0,00	14,10	5,20	1,10	37,60	177,20
MED	316,32	332,98	306,20	321,42	172,06	66,58	16,15	3,45	47,03	53,70	44,28	128,05	1406,58

CUADRO 4.6 Página 12 de 13

PRECIPITACION MEDIA [mm]

Estación: Simiatug

Altura: 3260 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962													
1963													
1964													
1965													
1966													
1967													
1968													
1969							0,00	21,30	99,20	65,80	61,80	100,70	348,80
1970	185,40	182,50	75,30	85,40	126,70	20,50	16,90	6,10	3,00	29,00	81,60	85,00	897,40
1971	179,20	203,10	157,90	54,30	25,00	35,80	1,50	27,70	16,40	38,20	39,30	76,90	855,30
1972	131,80	119,80	197,10	178,80	25,30	35,30	0,00	30,10	0,00	11,30	74,20	0,00	803,70
1973	34,50	138,90	134,90	132,00	33,80	11,30	27,60	13,70	61,10	46,60	25,70	125,90	786,00
1974	91,90	334,40	200,20	60,90	63,80	33,80	4,20	0,10	49,50	118,90	89,90	170,10	1217,70
1975	88,00	198,70	160,20	97,00	56,00	49,10	46,10	21,40	10,10	58,60	47,50		832,70
1976													
1977										78,30	6,40	57,00	141,70
1978	170,90	72,80	103,90	172,00	72,10	23,10	27,40	22,80	10,90		8,60	148,10	832,60
1979	74,70	92,30	192,10	106,90	79,40	8,30	0,00	65,50	72,20	16,20	5,90	15,40	728,90
1980	226,20	218,50	102,90	248,00	38,50	5,50	0,40	3,60	8,10	47,20	163,70		1062,60
1981	84,20	132,90	289,50	237,60	7,10	6,30	10,90	1,50	0,00	17,90	33,30	244,20	1065,40
1982	295,90	581,40	308,00	229,60		8,50	9,70	5,10			209,60	558,20	2206,00
1983	851,00	644,10	442,40	788,20	466,20	0,30	19,20	2,60	8,80	163,00	94,50	413,30	3893,60
1984	126,60	329,90	503,90	388,30	219,20	40,80		10,00	185,10	266,10	123,50	258,00	2451,40
1985													
1986													
1987													
1988													
1989													
1990													
1991													
1992													
1993													
1994													
1995													
1996													
1997													
1998													
1999													
мах	851,00	644,10	503,90	788,20	466,20	49,10	46,10	65,50	185,10	266,10	209,60	558,20	3893,60
MIN	34,50	72,80	75,30	54,30	7,10	0,30	0,00	0,10	0,00	11,30	5,90	0,00	141,70
MED	195,41	249,95	220,64	213,77	101,09	21,43	12,61	16,54	40,34	73,62	71,03	173,29	1208,25

CUADRO 4.6 Página 13 de 13

PRECIPITACION MEDIA [mm]

Estación: Ventanas-INAMHI

Altura: 20 m.s.n.m.

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962										0,90	2,70		3,60
1963													
1964													
1965	388,50	262,70	742,20	963,30	622,30	146,00	2,60	0,00	18,90	12,10	10,00	214,60	3383,20
1966	734,90	515,90	583,80	379,60	48,20	20,30	0,90	8,60	4,00	23,80	2,00	34,80	2356,80
1967	726,20	609,00	299,80	272,20	45,90	20,80	2,10	1,20	0,60	0,70	0,00	11,90	1990,40
1968													
1969	120,20	112,90	477,60	274,30	249,20	123,60						58,00	1415,80
1970	349,90	299,80	335,10	531,70	574,50	17,80	0,00					109,80	2218,60
1971	282,10	458,50	614,20	214,50	26,30	18,80		0,00	0,00	0,00	0,00	102,00	1716,40
1972	351,40	575,80	900,00	436,50	220,70								2484,40
1973	676,10	410,60	556,00	623,70	248,50	19,70	0,00		12,20		0,00	88,90	2635,70
1974	242,50	269,10	288,00	343,60	77,30	14,80	0,00	0,00	0,00	6,90	27,70	233,40	1503,30
1975	528,10	859,80	805,90	392,50	6,60	45,50	6,10	0,00	0,00	68,50	0,00	65,80	2778,80
1976	602,20	688,40	942,60	301,50	287,90	75,40	0,00	0,00	0,00	0,00	0,00	93,50	2991,50
1977	333,80	475,30	445,30	126,50									1380,90
1978	245,20	429,40	342,40	250,40	97,20	0,70	0,50	0,00	0,00	0,00	0,00	30,00	1395,80
1979	164,40	674,30	408,80	408,50	2,50	16,50	0,00	0,00	10,80	0,00	0,00	9,00	1694,80
1980	172,40	269,40	344,30	414,40	183,40	0,00	0,00	0,00	0,00	0,00	8,40	111,20	1503,50
1981	293,70	638,60	638,70	265,80	0,00	0,50	10,50	0,00		0,00	5,00	103,70	1956,50
1982	262,50	265,80	183,00	263,60	35,10	0,00	0,00	3,10	9,90	110,10	582,60	571,50	2287,20
1983	719,50	260,70	600,70	299,20	592,10	138,70	238,60	16,20	20,00	182,10	62,80	87,30	3217,90
1984		796,30	351,10	273,10	0,00	0,00	0,00	0,00	10,50	0,00	10,50	239,10	1680,60
1985													
1986													
1987													
1988													
1989													
1990													
1991	149,80	731,40	306,00		0,00	0,00	8,50	0,00	0,00	0,00	0,00	31,20	1226,90
1992	425,40	219,20	1080,00	1441,40	1127,80	0,20	1,10	0,00	0,00	0,00	10,00	180,00	4485,10
1993													
1994													
1995													
1996	362,50	1043,50	750,60	45,50	1,10	0,00	0,00	0,00	0,00	0,00	0,00	116,20	2319,40
1997	601,60		1120,00		472,00	450,00	160,00	620,00	623,00	686,00	1151,00	1220,00	8178,80
1998	1457,00	1434,00	1093,00	757,00	482,50	485,80	260,50	25,70	4,00	6,90	55,30	62,40	6124,10
1999	157,50	398,60	548,40	441,70	249,50	0,00	7,30	0,00	3,50	10,20	18,40	243,40	2078,50
мах	1457,00	1434,00	1120,00	1441,40	1127,80	485,80	260,50	620,00	623,00	686,00	1151,00	1220,00	8178,80
	120,20	112,90	183,00	45,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9,00	3,60
MIN	120,20												

REGISTRO DE AFOROS

Estación: Pilaló en la Esperanza Área de Drenaje: 216 Km² 920 m.s.n.m Cota: Subcuenca: Rio Pilaló

AFORO	FECHA	LECTURA LIMNIM. [m]	CAUDAL [m ³ /seg]	VELOCIDAD MEDIA [m/seg]	AREA SECCION TRANSV [m ²]	CONCENTRACION MEDIA [kg/m³]	GASTO SOLIDO [kg/seg]
1	26-ago-62	0,370	2,870	0,634	4,530		
2	17-oct-62	0,400	1,950	0,500	3,900		
3	24-ene-63	0,640	4,100				
4	14-mar-63	1,290	14,400				
5	12-may-63	1,030	6,720				
6	5-jul-63	0,610	3,740	0,720	5,200		
7	8-ago-63	0,520	2,940	0,565	5,200		
8	4-nov-63	0,350	1,530	0,460	3,320		
9	8-ene-65	0,540	3,540				
10	18-oct-65		2,460	0,326	7,540		
11	8-sep-66	0,290	2,200	0,545	4,040		
12	30-nov-66	0,250	1,680	0,448	3,760		
13	3-nov-67	0,280	1,440	0,332	4,300		
14	7-sep-68	0,280	2,250	0,500	4,490		
15	16-dic-68	0,205	1,570	0,459	3,420		
16	28-sep-74	0,215	2,460	0,740	3,310		
17	27-ago-80	0,340	2,080	0,480	4,320		
18	29-sep-81	0,240	1,985	0,540	3,673		
19	22-ene-83	1,510	26,443	1,830	13,510	0,1980	5,0791
20	24-abr-83	1,400	23,000	1,870	12,290		·
21	24-abr-83	1,380	23,530	1,880	12,500		

REGISTRO DE AFOROS

Estación: Las Juntas DJ Sinde (UMBE DJ PIN.) Área de Drenaje: 893 Km²

Área de Drenaje: 893 Km²
Cota: 150 m.s.n.m
Subcuenca: Rio Umbe

AFORO	FECHA	LECTURA LIMNIM. [m]	CAUDAL [m ³ /seg]	VELOCIDAD MEDIA [m/seg]	AREA SECCION TRANSV [m ²]	CONCENTRACION MEDIA [kg/m³]	GASTO SOLIDO [kg/seg]
1	19-dic-63	0,610	6,320	0,547	11,560		
2	16-ago-64	0,745	10,950	0,666	16,400		
3	22-sep-64	0,700	9,300	0,620	15,000		
4	19-nov-64	0,620	6,100	0,488	12,520		
5	24-feb-65	1,175	44,000	1,630	27,000		
6	24-feb-65	1,175	44,600	1,650	26,980		
7	21-ene-83	1,620	110,350	2,220	49,680		
8	11-sep-84	0,230	10,230		14,249		
9	14-sep-84	0,230	9,167		14,260		
10	14-sep-84	0,230	9,290		14,207		
11	2-oct-84	0,220	9,604		14,180		
12	2-oct-84	0,220	9,401		14,425		
13	31-oct-84	0,240	10,314		14,776		
14	31-oct-84	0,240	10,284		14,611		
15	5-dic-84	0,240	10,306		15,027		
16	5-dic-84	0,230	10,656		14,652		
17	7-dic-84	0,220	10,049		14,326		
18	7-dic-84	0,220	10,467		14,351		
19	9-dic-84	0,240	10,983		15,137		
20	9-dic-84	0,240	11,283		14,577		
21	12-feb-85	0,415	21,704		21,132		
22	12-feb-85	0,420	22,071		21,537		
23	14-feb-85	0,410	21,869		20,917		
24	14-feb-85	0,410	21,508		21,587		
25	16-may-85	0,530	31,080		25,377		
26	16-may-85	0,520	31,498		26,294		
27	18-may-85	0,540	31,281		25,454		
28	18-may-85	0,530	33,683		27,228		
29	19-feb-88	0,690	36,150				
30	14-feb-98	0,730	50,300	1,660	30,350		

REGISTRO DE AFOROS

Estación: Angamarca en Pihuapungo Área de Drenaje: 435 Km² 750 m.s.n.m Cota: **Subcuenca: Rio Angamarca**

AFORO	FECHA	LECTURA LIMNIM. [m]	CAUDAL [m ³ /seg]	VELOCIDAD MEDIA [m/seg]	AREA SECCION TRANSV [m ²]	CONCENTRACION MEDIA [kg/m³]	GASTO SOLIDO [kg/seg]
1	25-abr-84	0,780	18,320	1,600	11,460	0,4930	9,0400
2	27-abr-84	0,780	20,220	1,720	11,780		
3	28-abr-84	0,850	20,600	1,640	12,330		
4	28-abr-84	0,820	21,370	1,630	13,120	0,3680	7,8630
5	30-abr-84	0,910	25,840	1,980	13,040	0,4920	12,7050
6	1-may-84	1,190	43,910	2,820	15,580	·	
7	1-may-84	1,190	42,270	2,740	15,450		
8	12-sep-84	0,300	5,520	0,860	6,440	0,0015	0,0810
9	13-sep-84	0,280	4,110	0,690	5,980	0,0470	0,1930
10	1-nov-84	0,280	4,730	0,740	6,350	0,0290	0,1380
11	1-nov-84	0,280	4,920	0,810	6,100	·	·
12	3-nov-84	0,270	4,620	0,770	6,000	0,0310	0,1420
13	3-nov-84	0,270	4,780	0,810	5,890		-
14	4-dic-84	0,300	5,430	0,810	6,700	0,0100	0,0600
15	4-dic-84	0,300	5,400	0,800	6,750		-
16	6-dic-84	0,290	5,030	0,790	6,350	0,0200	0,1000
17	6-dic-84	0,290	4,970	0,790	6,320		-
18	8-dic-84	0,280	4,710	0,750	6,320	0,0200	0,1200
19	8-dic-84	0,280	4,870	0,770	6,330		-
20	11-feb-85	0,500	8,630	1,040	8,270	0,0200	0,1700
21	11-feb-85	0,500	8,220	1,040	7,890		-
22	13-feb-85	0,490	8,530	1,030	8,320	0,0200	0,1700
23	13-feb-85	0,490	8,360	1,030	8,120		
24	17-may-85	0,630	13,070	1,310	9,980	0,0930	1,2210
25	17-may-85	0,630	13,100	1,290	10,180		
26	19-may-85	0,640	12,470	1,240	10,040	0,2060	2,5730
27	19-may-85	0,690	14,930	1,390	10,740	·	
28	9-nov-87	0,180	2,740	0,500	5,470	0,0310	0,0850
29	20-abr-89	0,780	18,070	1,730	10,480	·	
30	28-jun-89	0,590	8,370	1,130	7,410		
31	30-ágo-89	0,370	4,360	0,830	5,270		
32	30-Ago-89	0,370	4,230	0,810	5,260	0,0150	0,0670
33	7-nov-89	0,340	3,950	0,760	5,190	0,0270	0,1070
34	7-nov-89	0,340	3,480	0,730	4,790		
35	23-mar-90	0,730	14,650	1,410	10,370	0,0420	0,6140
36	30-ene-91	0,480	7,640	1,090	7,040	0,0370	0,2820
37	17-abr-91	0,880	16,870	1,480	11,380	_,	,

CUADRO 4.8 Hoja 1 de 3

CAUDALES MEDIOS MENSUALES [m³/seg]

ESTACIÓN: PILALÓ EN LA ESPERANZA

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1962						4,805	3,227	2,290	2,394	2,223	2,174	2,079	2,742
1963	4,377	10,049	12,855	11,651	7,863	4,899	3,674	3,001	2,452	1,996	1,639	1,668	5,510
1964	4,093	8,832	11,269	15,436	9,642	5,858	4,180	3,341	2,964	2,650	2,452	2,746	6,122
1965	6,957	10,496	11,808	17,139	16,435	3,749	1,872	1,290	1,121			1,112	7,198
1966	1,961	10,994	7,641	7,014	3,184	1,511	1,272	1,139	1,671	2,537	2,247	2,292	3,622
1967	6,524	20,477	14,987	6,727	5,186	4,495	3,456	2,757	2,316				7,436
1968	3,290	6,931	12,551	10,314	5,420	3,558	3,009	2,495	2,388	2,267	2,067	1,961	4,688
1969	4,009	5,599	9,439	23,817	12,596	7,715	5,767	4,548	3,811	3,437	3,284	4,099	7,343
1970	8,827	26,559	23,814	13,916	15,332	7,666	4,504	3,072	2,456	2,309	2,033	2,302	9,399
1971	7,083	35,770	47,382	23,297	7,201	3,777	2,550	1,829	1,832	1,608	1,668	1,750	11,312
1972	9,040	19,982	30,459	32,196	24,082	15,994	7,961	3,817	3,203	2,723	2,467	2,705	12,886
1973	4,478	22,475	15,563	21,251	21,959	7,923	4,538	3,051	2,795	2,622	2,153	2,423	9,269
1974	3,490	29,221	38,029	10,450	10,983	4,849	3,155	2,227	2,052	2,021	1,987	4,470	9,411
1975	19,534	47,103	36,876	20,006	9,997	5,317	3,306	2,260	1,966	1,874	1,838	2,081	12,680
1976	20,122	42,176	43,472	50,541	24,480	10,094	4,502	3,217	2,659	2,268	2,150	2,491	17,348
1977	5,922	15,438	24,004	25,943	12,075	5,352	3,680	2,701	2,740	2,385	2,044	2,298	8,715
1978	8,179	20,244	27,036	40,006	27,249	8,982	4,328	3,224	2,324	2,047	1,978	2,075	12,306
1979	4,090	7,127	29,584	22,622	15,339	10,039	6,506	4,319	3,023	2,052	1,887	1,861	9,037
1980	1,082	32,386	20,334	43,834	29,667	5,792	2,935	2,420	1,970	2,072	2,547		13,185
1981													
1982	6,542	26,804	24,065	27,241	17,915	10,577	4,391	2,665	2,186	2,251	13,887		12,593
1983	31,551	28,413	28,536	32,317	24,406	13,097	4,582	2,608	1,925	1,538	1,382	3,049	14,450
1984	3,486	15,813	20,937	19,781	13,101	3,673	2,015	1,391	1,119	1,206	0,918	1,613	7,088
1985	6,184	6,578	16,327	9,020	5,850	3,016	2,218	1,683	1,395	1,265	1,054	1,360	4,662
1986	10,300	17,877	15,928	23,361	10,597	3,584	2,049	1,387					10,635
1987	3,130	5,667	14,500	19,948	17,359	6,444	3,465	2,480	1,733	1,317	1,245	1,537	6,569
1988	5,218	17,132	14,991	15,181	12,936	4,234	2,514	1,616	1,145	1,672	1,448	1,285	6,614
1989	13,466	35,668	27,863	28,270	24,149	14,111	9,161	7,166	5,564	6,590	6,355	6,598	15,413
1990	8,307	20,787	15,569	21,678	15,977	11,500	10,329	8,499	7,565	7,421	6,635	6,937	11,767
1991	10,127	18,642	23,430	21,642	17,643	11,700	10,360	8,998	7,724	7,777	7,454	8,437	12,828
1992	11,318		28,630	36,531	18,000	9,102		3,885	3,349	3,249	2,983	3,054	12,010
1993	5,788	29,769	42,695	42,384	21,124	10,038	4,853	3,057	2,642	2,526	2,484	5,221	14,382
1994	14,189	101,251	83,072	78,620	43,478	25,513	19,504	15,569	13,066	12,514	11,226	15,410	36,118
1995	26,626	37,299	37,226	42,251		15,060	11,136	9,394	8,473	8,620	8,867	9,381	19,485
1996	14,555	47,266	68,104	48,765	29,328	21,606	16,434	13,759	11,849	10,878	10,023	10,134	25,225
1997	18,214	34,172	66,883	50,524	34,597	24,911	15,953	13,506	12,894	15,869	44,483	57,459	32,455
1998	37,158	47,731	40,526	44,071	64,843	29,838	19,208	15,112	12,397	10,870	10,324	8,279	28,363
1999	13,432	63,801	66,790	65,085	42,581	24,793	18,262	14,763	13,378	12,354	11,719	21,977	30,745
Q _{MAX}	37,158	101,251	83,072	78,620	64,843	29,838	19,504	15,569	13,378	15,869	44,483	57,459	36,118
Q_{MIN}	1,082	5,599	7,641	6,727	3,184	1,511	1,272	1,139	1,119	1,206	0,918	1,112	2,742
Q_M	10,074	26,472	29,255	28,412	19,216	9,869	6,413	4,879	4,293	4,324	5,268	6,125	12,746

CAUDALES MEDIOS MENSUALES [m³/seg]

ESTACIÓN: LAS JUNTAS DJ SINDE (UMBE DJ PIN)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1963												8,045	8,045
1964	18,742	37,361	32,065	48,797	27,076	20,069	13,515	10,503	11,056	8,502	6,705	7,701	20,174
1965	24,529	40,587	56,850	163,085	130,253	45,873							76,863
1966	43,628	131,338	114,534	104,371	44,149	20,926	14,484	9,483	6,646	7,970	8,226	8,148	42,825
1967	66,732	163,726	149,867	51,304	31,361	27,049	17,049	10,317	5,461	10,087	10,843	9,290	46,090
1968	22,251	75,078	98,739	92,199	28,846	14,291	10,997	7,678	5,518	4,339	7,225	4,793	30,996
1969	24,112	13,676	102,218	156,481	100,693	36,902	18,616	10,797	7,993	6,813	6,419		44,065
1970												4,845	4,845
1971	9,469	13,944	98,287	87,930	28,594	14,881	18,563	7,666					34,917
1972													
1973													
1974													
1975													
1976													
1977													
1978													
1979													
1980													
1981													
1982													
1983													
1984													
1985													
1986	49,353	50,525	46,991	50,931	38,793	18,166	15,555	10,503	7,809	7,522	7,343	7,515	25,917
1987	27,089	50,521	51,316	48,688	44,850	30,249	13,799	10,766	8,065	7,309	6,204	6,617	25,456
1988	21,105	49,161	40,659	41,054	33,945	18,187	14,460	9,879	8,587	8,359	10,091	8,654	22,012
1989													
1990	13,804	22,617	34,332	40,332	28,658	17,732	12,606	9,174	6,913	9,162	5,997	7,230	17,380
1991	14,730	40,233	49,007	39,670	29,607	19,305	15,124	11,710	8,182	7,501	6,436	9,632	20,928
1992	26,833	45,980	53,882	51,469	45,741	27,051	14,675	8,936	6,645	4,779	3,580	4,425	24,500
1993	16,810	66,786	61,626	59,955	32,586	22,106							43,312
1994													
1995	18,205	42,763	38,702	40,160	25,227	15,997	11,315	7,310	4,660	3,787	4,557	0,798	17,790
1996													
1997													
1998													
1999													
	66 700	160 705	1.40.000	160.005	100.050	45.030	10.616	11 710	0.505	10.00=	10.010	0.505	70.000
Q _{MAX}				163,085		45,873	18,616	11,710	8,587	10,087	10,843	9,632	76,863
QMIN	9,469	13,676	34,332	39,670	25,227	14,291	10,997	7,310	4,660	3,787	3,580	0,798	4,845
Q_M	27,046	57,638	71,215	73,402	45,950	23,480	14,770	9,518	6,953	7,057	6,993	6,541	31,860

CUADRO 4.8 Hoja 3 de 3

CAUDALES MEDIOS MENSUALES [m³/seg]

ESTACIÓN: ANGAMARCA EN PIHUAPUNGO

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	OCT	NOV	DIC	ANUAL
1984													
1985	10,565	12,348	19,264	15,468	13,530	8,791	6,793	6,171	4,930	4,500	3,812		9,652
1986					14,448	8,264	6,769	4,736	4,401	4,326	4,187	4,098	6,404
1987	8,609	15,528	18,449	16,709	17,870	10,123	6,440	5,066	3,852	3,705	3,054	3,113	9,377
1988	5,356	13,497	12,727	15,352	11,432	5,418	4,022	2,926	2,539	2,661	3,518	2,787	6,853
1989	12,004	25,568	22,270	17,580	17,752	10,852	7,710	5,084	4,024	4,356	3,722	3,517	11,203
1990													
1991	7,662	16,479	21,767	17,652	12,920	7,431	6,090	4,900					11,863
1992													
1993													
1994													
1995													
1996	3,154	8,205	19,441	12,817	8,015	4,973	3,285	2,786	2,577	2,375	2,015	1,848	5,958
1997	4,956	11,111	28,937	19,873	14,638	11,786	8,002	7,384	8,105	6,324	9,118		11,840
1998													
1999													
QMAX	12,004	25,568	28,937	19,873	17,870	11,786	8,002	7,384	8,105	6,324	9,118	4,098	11,863
Q_{MIN}	3,154	8,205	12,727	12,817	8,015	4,973	3,285	2,786	2,539	2,375	2,015	1,848	5,958
Q_M	7,472	14,676	20,408	16,493	13,826	8,455	6,139	4,882	4,347	4,035	4,204	3,072	9,143

CUADRO 4.9 Hoja 1 de 2

ANÁLISIS FÍSICO – QUÍMICO DEL AGUA

Parametro			Angamarca	Angamarca	Angamarca	Angamarca
Descripcion		Unidades	en Puente	en Puente	en Puente	en Puente
Fecha:		1	31-May-83	16-Oct-83	01-Nov-84	03-Nov-84
Temperatura Del Agua		°C	17,00	17,00	24,00	25,00
Temperatura Ambiental		°C				
Temperatura Del Ensayo		°C	17,00	17,00	24,00	25,00
Color		Unid. de color	120,00	1700,00	125,00	130,00
Conductividad Electrica		Unid. de color	80,00	144,00	217,00	220,00
Turbiedad		NTU	24,00	480,00	40,00	38,00
P.H.		Unid. en PH	7,65	6,70	6,95	7,00
Anhidrido Carbonico		mg/l (p.p.m.)	7,65	10,00	2,00	4,00
Alcalinidad A La Fenolftaleina		mg/l (p.p.m.)	4,00	0,00	0,00	0,00
Alcalinidad Total Como		mg/l (p.p.m.)	0,00	50,00	60,00	55,00
Dureza Total Como	CaCO ₃	mg/l (p.p.m.)	40,00	70,00	55,00	50,00
Dureza Por Calcio Como	CaCO ₃	mg/l (p.p.m.)	25,00	40,00	37,00	30,00
Dureza Por Magnesio Como	CaCO ₃	mg/l (p.p.m.)	15,00	30,00	18,00	20,00
Carbonatos	CO ₃	mg/l (p.p.m.)	0,00	0,00	0,00	0,00
Bicarbonatos	CO₃H	mg/l (p.p.m.)	55,00	60,00	73,00	67,00
Hidroxidos	OH	mq/l (p.p.m.)	0,00	0,00	0,00	0,00
Boro	В	mg/l (p.p.m.)				
Fluor	F	mg/l (p.p.m.)				
Cloruros	CL	mg/l (p.p.m.)	4,00	20,00	3,50	10,00
Calcio	CaCO ₃	mg/l (p.p.m.)	10,00	16,00	30,00	12,00
Magnesio	Mg	mg/l (p.p.m.)	4,00	7,00	8,50	4,80
Sulfatos	SO ₄	mg/l (p.p.m.)	8,00	20,00	15,00	12,00
Hierro	Fe	mg/l (p.p.m.)	0,00	0,18	0,00	0,00
Manganeso	Mn	mg/l (p.p.m.)	0,00	0,00	0,50	0,60
Cobre	Co	mg/l (p.p.m.)	0,08	0,15	0,20	0,20
Silice Como	SiCO2	mg/l (p.p.m.)	21,00	24,00		
Nh4+		mg/l (p.p.m.)				
Nh3-		mg/l (p.p.m.)				
Nitratos Como	NO_3	mg/l (p.p.m.)	0,22	8,80	0,00	0,00
Nitritos Como	NO ₂	mg/l (p.p.m.)	0,06	0,10	0,13	0,11
Solidos En Suspension		mg/l (p.p.m.)	30,00	290,00	30,00	25,00
Solidos Totales Disueltos		mg/l (p.p.m.)	50,00	96,00	139,00	141,00
Solidos Totales Fijos		mg/l (p.p.m.)	57,00	275,00	136,00	135,00
Solidos Totales Volatiles		mg/l (p.p.m.)	23,00	111,00	33,00	31,00
Solidostotales		mg/l (p.p.m.)	80,00	386,00	169,00	166,00
INDICE DE SATURACION (Langelier)		mg/l (p.p.m.)	-1,70	-2,30	-1,65	-1,21
Indice De Estabilidad		mg/l (p.p.m.)	11,06	11,30	10,25	11,20
Oxigeno Disuelto		mg/l (p.p.m.)	85,00	8,00		
D.B.O		mg/l (p.p.m.)				
Fosfato Total		mg/l (p.p.m.)				
Metafosfato		mg/l (p.p.m.)				
Ortofosfato Como	PO ₄	mg/l (p.p.m.)				
Lectura Limnimetrica		m				

ANÁLISIS FÍSICO – QUÍMICO DEL AGUA

Parametro			Angamarca	Angamarca	Angamarca
Descripcion		Unidades	Bocatoma	Sitio (1)	Sitio (2)
Fecha:			30-Abr-85	11-May-85	11-May-85
Temperatura Del Agua		°C	22,00		
Temperatura Ambiental		°C	32,00		
Temperatura Del Ensayo		°C	22,00		
Color		Unid. de color	75,00		
Conductividad Electrica		Unid. de color	105,00	65,20	64,40
Turbiedad		NTU	18,00		
P.H.		Unid. en PH	7,15	7,80	7,70
Anhidrido Carbonico		mg/l (p.p.m.)	6,00	0,80	3,00
Alcalinidad A La Fenolftaleina		mg/l (p.p.m.)	0,00		
Alcalinidad Total Como	CaCO ₃	mg/l (p.p.m.)	40,00	40,00	42,00
Dureza Total Como	CaCO ₃	mg/l (p.p.m.)	30,00	20,00	24,00
Dureza Por Calcio Como	CaCO ₃	mg/l (p.p.m.)	20,00		
Dureza Por Magnesio Como	CaCO ₃	mg/l (p.p.m.)	10,00		
Carbonatos	CO3	mg/l (p.p.m.)	0,00	0,00	0,00
Bicarbonatos	CO₃H	mg/l (p.p.m.)	49,00	48,80	51,10
Hidroxidos	ОН	mg/l (p.p.m.)	0,00		
Boro	В	mg/l (p.p.m.)	·	n.d.	0,01
Fluor	F	mg/l (p.p.m.)		0,20	0,30
Cloruros	CL	mg/l (p.p.m.)	5,00	6,00	7,00
Calcio	CaCO ₃	mg/l (p.p.m.)	8,00	7,20	8,00
Magnesio	Mg	mg/l (p.p.m.)	2,43	0,50	0,90
Sulfatos	SO ₄	mg/l (p.p.m.)	0,00		
Hierro	Fe	mg/l (p.p.m.)	0,05	1,10	1,20
Manganeso	Mn	mg/l (p.p.m.)	0,00	0,00	0,00
Cobre	Co	mg/l (p.p.m.)	0,00		
Silice Como	SiCO2	mg/l (p.p.m.)		22,00	23,00
Nh4+		mg/l (p.p.m.)			
Nh3-		mg/l (p.p.m.)			
Nitratos Como	NO_3	mg/l (p.p.m.)	0,00		
Nitritos Como	NO ₂	mg/l (p.p.m.)	0,07	n.d.	n.d.
Solidos En Suspension		mg/l (p.p.m.)	45,00	110,00	120,00
Solidos Totales Disueltos		mg/l (p.p.m.)	67,00	90,00	102,00
Solidos Totales Fijos		mg/l (p.p.m.)	90,00		
Solidos Totales Volatiles		mg/l (p.p.m.)	22,00		
Solidostotales		mg/l (p.p.m.)	112,00		
INDICE DE SATURACION (Langelier)		mg/l (p.p.m.)	-2,40	-1,37	-1,45
Indice De Estabilidad		mg/l (p.p.m.)	11,95		
Oxigeno Disuelto		mg/l (p.p.m.)	6,00		
D.B.O		mg/l (p.p.m.)			
Fosfato Total		mg/l (p.p.m.)			
Metafosfato		mg/l (p.p.m.)		0,00	0,00
Ortofosfato Como	PO ₄	mg/l (p.p.m.)			
Lectura Limnimetrica		m			

PRESUPUESTO REFERENCIAL DE LA OBRA CIVIL

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO USD	PRECIO TOTAL USD	SUBTOTAL USD
Bocatoma Angamarca		•			
Replanteo, desbroce y limpieza	ha	3,00	3.422,64	10.267,91	
Construcción y mantenimiento de las Ataguias	gl	2,00	30.802,92	61.605,84	
Desvió del río	gl	5,00	30.802,92	154.014,59	
Excavación para azud	m³	7.100,00	6,47	45.906,72	
Excavación para muros	m³	40.000,00	9,04	361.583,01	
Rellenos con material clasificado	m³	36.000,00	14,93	537.555,02	
Hormigón para azud	m³	4.500,00	137,69	619.605,28	
Hormigón para zampeado	m³	300,00	184,71	55.414,36	
Hormigón para muros, vigas y semejantes	m³	3.600,00	214,26	771.342,49	
Hormigón para reptantillos	m³	350,00	149,80	52.430,57	
Acero de refuerzo	kg	310.000,00	1,56	482.595,00	
Inyección a presión para pantalla de impermeabilización	m	170,00	436,17	74.148,90	3.226,469,69
Bocatoma Sinde					
Replanteo, desbroce y limpieza	ha	4,50	3,422,64	15.401,86	
Construcción y mantenimiento de las Ataguias	gl	3,00	30.802,92	92.408,75	
Desvió del río	gl	10,00	30.802,92	308.029,18	
Excavación para azud	m³	16.000,00	6,47	103.451,76	
Excavación para muros	m³	84.000,00	9,04	759.324,32	
Rellenos con material clasificado	m³	50.000,00	14,93	746.604,19	
Hormigón para azud	m³	6.700,00	137,69	922.523,42	
Hormigón para zampeado	m³	1.030,00	184,71	190.255,97	
Hormigón para muros, vigas y semejantes	m³	8.400,00	214,26	1.799.799,15	
Hormigón para reptantillos	m³	600,00	149,80	89.880,98	
Acero de refuerzo	kg	630.000,00	1,56	980.757,59	
Inyección a presión para pantalla de impermeabilización	m	270,00	436,17	117.765,90	6.126.203,07
Obra de Trasvase					
Excavación sin clasificar - Trasvase	m³	1.170,00	4,58	5.354,94	
Excavación en roca	m³	6.700,00	70,67	473.489,00	
Drenajes	m	820,00	5,49	4.498,76	
Hormigón de revestimiento y portales	m³	350,00	182,41	63.843,69	
Hormigón proyectado con fibra metálica (e= 5 cm - Subterráneo)	m²	2.121,00	20,63	43.754,11	
Hormigón proyectado con fibra metálica (e= 10 cm - Subterráneo)	m²	2.215,00	39,92	88.425,02	
Hormigón proyectado con fibra metálica (e= 15 cm - Subterráneo)	m²	644,00	54,20	34.901,90	
Hormigón proyectado con fibra metálica (e= 20 cm - Subterráneo) Pernos de Anclaje (diam.=20 mm, incluye: perforación,	m²	886,00	68,68	60.846,05	
inyección de mortero de cemento y elementos de fijación)	m	3.687,00	28,35	104.526,45	
Marcos de acero para sostenimiento - (ASTM - A36)	kg	194.000,00	3,39	657.660,00	1.537.299,92

PRESUPUESTO REFERENCIAL DE LA OBRA CIVIL

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO USD	PRECIO TOTAL USD	SUBTOTAL USD
Conducción					
Obra en superficie					
Replanteo, desbroce y limpieza	ha	280,00	3.422,64	958.338,20	
Excavación sin clasificar - Plataforma	m³	1.165.300,00	2,95	3.434.677,42	
Excavación en roca - Plataforma	m³	61.300,00	10,90	668.243,46	
Excavación sin clasificar - Cajón	m³	206.600,00	4,58	945.581,08	
Excavación en roca - Cajón	m³	36.500,00	22,24	811.792,26	
Hormigón de revestimiento para canal	m³	19.100,00	182,41	3.484.041,18	
Orenaje canal	m³	9.730,00	5,49	53.381,62	
5ub-base para pavimento del camino	m³	8.500,00	10,64	90.421,70	
Rellenos con material clasificado para plataforma y terraplén	m³	71.600,00	14,93	1.069.137,20	
Excavación sin clasificar - Obras de Arte	m³	1.200,00	6,80	8.157,41	
Hormigón para muros, vigas tablero de obras de arte	m³	1.140,00	214,26	244.258,46	
Acero de refuerzo	kg	130.000,00	1,56	202.378,55	
Obra en superficie - (Tapa de hormigón)		.	·	· .	
Hormigón para muros, vigas tablero de obras de arte	m³	9.748,00	214,26	2.088.624,06	
Acero de refuerzo	kg	292.440,00	1,56	455.258,33	
Obra en subterraneo - (Túnel a flujo libre)					
Excavación en coluvión	m³	518,40	4,58	2.372,65	
Excavación en roca - (Subterráneo)	m³	9.849,60	70,67	696.071,23	
Hormigón estructural de cemento pórtland - (f´c=240	m³	2.573,00	213,99	550.606,50	
kg/cm2 - túnel) Acero de refuerzo en barras - (fy= 4200 kg/cm2) -	+ "' +	2.373,00	210,99	330.000,30	
5ubterráneo	kg	77.190,00	1,62	125.047,80	
Hormigón proyectado con fibra metálica (e= 5 cm - Subterráneo)	m²	2.430,00	20,63	50.128,47	
Hormigón proyectado con fibra metálica (e= 10 cm - Subterráneo)	m²	3.137,00	39,92	125.232,18	
Hormigón proyectado con fibra metálica (e= 15 cm - Subterráneo)	m²	636,00	54,20	34.468,34	
Hormigón proyectado con fibra metálica (e= 20 cm - Subterráneo)	m²	1.260,00	68,68	86.530,50	
Pernos de Anclaje (diam.=20 mm, incluye: perforación, nyección de mortero de cemento y elementos de fijación)	m	4.704,00	28,35	133.358,40	
Marcos de acero para sostenimiento - (ASTM - A36)	kg	197.000,00	3,39	667.830,00	16.985.937,00
Reservorio					
Replanteo, desbroce y limpieza	ha	10,00	3,422,64	34.226,36	
Excavación sin clasificar	m³	1.200.000,00	2,95	3.536.954,35	
Hormigón de revestimiento	m³	14.200,00	182,41	2.590.229,57	
Hormigón para muros	m³	450,00	178,04	80.118,55	
Acero de refuerzo	kg	51.120,00	1,56	79.581,47	6.321.110,30
Conducción a baja presión y Chimenea		- 1	- 1		
Replanteo, desbroce y limpieza	ha	1,00	3,422,64	3,422,64	
Excavación sin clasificar	m³	22.500,00	2,95	66.317,89	
Relleno simple	m³	12.000,00	1,58	19.013,86	
Hormigón para conducto y chimenea	m³	882,00	292,22	257.741,79	
Acero de refuerzo	kg	100.200,00	1,56	155.987,16	502.483,34
Tubería de Presión	1		-,50		
Replanteo, desbroce y limpieza	ha	3,00	3,422,64	10.267,91	
Excavación sin clasificar - Tubería de presión		70.400.001	6.801	478,568,191	
Excavación sin clasificar - Tubería de presión Relleno simple	m³	70.400,00 11.000,00	6,80 1,58	478.568,19 17.429,38	

PRESUPUESTO REFERENCIAL DE LA OBRA CIVIL

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO USD	PRECIO TOTAL USD	SUBTOTAL USD
Casa de Máquinas					
Excavación sin clasificar - Casa de maquinas	m³	6.000,00	6,80	40.787,06	
Excavación en roca - Casa de Maquinas	m³	600,00	22,24	13.344,53	
Rellenos con material clasificado para Casa de maquinas	m³	9.400,00	14,93	140.361,59	
Hormigón estructural	m³	1.017,00	159,06	161.763,17	
Hormigón para Apoyo de equipos	m³	750,00	211,24	158.431,27	
Hormigón para Paredes	m³	53,00	184,71	9.789,87	
Cubierta metálica	m²	514,00	51,69	26.568,66	
Acabados arquitectónicos	gl	12,30	20.108,24	247.331,35	798.377,50
Terrenos y Servidumbres					
Terrenos	Ha	150,00	3.500,00	525.000,00	525.000,00
Accesos					
Camino de acceso - (Toma del río Sinde)	km	2,00	78.248,08	156.496,16	
Camino de acceso - (Toma del río Angamarca)	km	2,00	78.248,08	156.496,16	
Camino de acceso - (Reservorio)	km	3,00	97.810,10	293.430,30	
Camino de acceso - (Casa de Máquinas)	km	4,00	78.248,08	312.992,32	
Mejoramiento de caminos existentes	km	6,00	42.614,79	255.688,74	1.175.103,68
Medidas de Mitigación Ambiental					
Mitigación Ambiental	gl	500.000,00	1,00	500.000,00	500.000,00

CUADRO 7.2

PRESUPUESTO REFERENCIAL DE EQUIPOS

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO USD	PRECIO TOTAL USD	SUBTOTAL USD
Equipos Electromecánicos					
Turbinas	gl	1,00	4.342.431,33	4.342.431,33	
Generadores	gl	1,00	4.776.665,73	4.776.665,73	
Transformadores	gl	1,00	521.098,74	521.098,74	
Tableros de control	gl	1,00	3.300.255,66	3.300.255,66	
Equipos auxiliares, incluido generador de emergencia y tableros de comunicación	gl	1,00	977.038,32	977.038,32	
Subestación - (Obra civil y Equipos)	gl	1,00	1.488.828,62	1.488.828,62	
Otros Equipos	gl	1,00	2.279.785,17	2.279.785,17	
Línea de transmisión - (Obra civil y Equipos)	gl	1,00	2.820.000,00	2.820.000,00	20.506.103,57
Equipos Hidromecánicos	•				
Tubería de Presión	tn	1.490,00	3.642,64	5.427.533,60	
Compuertas radiales	tn	64,00	6.027,95	385.788,56	
Compuertas planas	tn	111,20	4.305,68	478.791,15	
Reguladores de velocidad	u	2,00	118.015,08	236.030,16	
Válvulas esféricas	u	2,00	413.052,77	826.105,54	
Puente grúa	u	1,00	212.427,14	212.427,14	
Sistemas auxiliares	gl	1,00	118.015,08	118.015,08	7.684.691,23

CUADRO 7.3

PRESUPUESTO REFERENCIAL DE LÍNEA DE TRANSMISIÓN

DESCRIPCION	UNIDAD	CANTIDAD	SUBTOTAL USD
Línea de Transmisión: Angamarca-Sinde / Quevedo	km	43,00	
Línea de Transmisión: Quevedo / Quevedo Norte	km	2,00	
Línea de Transmisión: Quevedo / Quevedo Centro	km	2,00	
TOTAL		47,00	60.000,00

CUADRO 7.4

PRESUPUESTO REFERENCIAL

RESUMEN GENERAL :		SUBTOTAL [\$]	%
OBRA CIVIL		39.745.423,04	58,5%
Bocatoma Angamarca		3.226.469,69	4,7%
Bocatoma Sinde		6.126.203,07	9,0%
Obra de Trasvase		1.537.299,92	2,3%
Conducción		16.985.937,00	25,0%
Reservorio		6.321.110,30	9,3%
Conducción a baja presión y Chimenea		502.483,34	0,7%
Tubería de Presión		2.047.438,54	3,0%
Casa de Máquinas		798.377,50	1,2%
Terrenos		525.000,00	0,8%
Accesos		1.175.103,68	1,7%
Medidas de Mitigación Ambiental		500.000,00	0,7%
EQUIPOS		28.190.794,80	41,5%
Equipos Electromecánicos		20.506.103,57	30,2%
Equipos Hidromecánicos		7.684.691,23	11,3%
COSTO DIRECTO DE CONSTRUCCION		67.936.217,84	100,0%
Ingeniería y Administración	10%	6.793.621,78	
Imprevistos	8%	5.978.387,17	
COSTO TOTAL DE CONSTRUCCION		80.708.226,79	
Impuesto al Valor Agregado [IVA]	12%	9.684.987,21	
INVERSION TOTAL DEL PROYECTO		90.393.214,00	

EVALUACION ECONÓMICA DEL PROYECTO ANGAMARCA SINDE

 DATOS BASICOS:

 Potencia Instalada
 43.457 KW
 Precio de Venta
 COSTOS DE CONSTRUCCION
 [US\$]

 Potencia Remunerada
 32.610 KW
 68,40 US\$/KW/año
 GENERACION
 87.573.214

 Energía Media
 349.180 MWh
 40,00 US\$/MWh
 TRANSMISION
 2.820.000

 Energía Firme
 81.260 MWh
 TOTAL
 90.393.214

 OPERACIÓN Y MANTENIMIENTO
 1.355.898

OPERACION Y MANTENIMIENTO 1.355.898											
AÑO			BOLSOS			RESOS POR VEN		INGRESOS		RES ACTUALIZ	
		REPOSICION	0&M	TOTAL	POTENCIA	ENE. PRIMAR	TOTAL	NETOS	COSTOS		B. NETOS
-4	200,000			200.000	-	-	-	-200.000	292.820	-	-292.820
-3				650,000	-	-	-	-650.000	865.150	-	-865.150
-2	42.980.743			42.980.743	-	-	-	-42.980.743	52.006.699	-	-52.006.699
-1 1	46.562.471		1.355.898	46.562.471 1.355.898	2.230.524	13.967.200	- 16.197.724	-46.562.471 14.841.826	51.218.718 1.232.635	- 14.725.204	-51.218.718 13.492.569
			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	1.120.577	13,386,549	12.265.972
2			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	1.018.706	12,169,590	11.150.883
4			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	926.097	11.063.263	10.137.167
5			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	841.906	10.057.512	9.215.606
6			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	765,369	9.143.193	8.377.824
7			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	695,790	8.311.994	7.616.203
8			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	632,537	7.556.358	6.923.821
9			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	575.033	6.869.416	6.294.383
10			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	522.757	6.244.924	5.722.166
11			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	475.234	5.677.203	5.201.969
12			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	432.031	5.161.094	4.729.063
13			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	392.755	4.691.904	4.299.148
14			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	357.050	4.265.367	3.908.317
15			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	324.591	3.877.606	3.553.015
16			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	295.083	3,525,097	3.230.014
17			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	268.257	3.204.633	2.936.376
18 19			1.355.898	1.355.898	2.230.524 2.230.524	13.967.200	16.197.724	14.841.826	243.870	2,913,303	2.669.433
20			1.355.898 1.355.898	1.355.898 1.355.898	2.230.524	13.967.200 13.967.200	16.197.724 16.197.724	14.841.826 14.841.826	221.700 201.546	2.648.457 2.407.688	2.426.757 2.206.143
21			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	183.223	2,188,808	2.005.584
22			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	166.567	1,989,825	1.823.259
22 23			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	151.424	1.808.932	1.657.508
24			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	137.658	1.644.484	1.506.825
25			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	125.144	1.494.985	1.369.841
26			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	113.767	1.359.077	1.245.310
27			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	103,425	1.235.525	1.132.100
28			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	94.023	1.123.204	1.029.182
29			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	85,475	1.021.095	935.620
30		12.203.084	1.355.898	13.558.982	2.230.524	13.967.200	16.197.724	2.638.742	777.046	928.268	151.222
31			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	70.641	843.880	773.240
32			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	64.219	767.164	702.945
33			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	58.381	697.422	639.041
34		14 550 740	1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	53.073	634.020	580.946
35 36		16.559.769	1.355.898	17.915.667	2.230.524	13.967.200 13.967.200	16.197.724	-1.717.943	637.513 43.862	576.381	-61.131
37			1.355.898 1.355.898	1.355.898 1.355.898	2.230.524 2.230.524		16.197.724 16.197.724	14.841.826 14.841.826	39.875	523.983 476.349	480.121 436.474
38			1.355.898	1.355.898	2.230.524	13.967.200 13.967.200	16.197.724	14.841.826	36.250	476.348 433.044	396.794
39			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	32.954	393.676	360.722
40		4.067.695	1.355.898	5,423,593	2.230.524	13.967.200	16.197.724	10.774.131	119.834	357.888	238.054
41			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	27.235	325.352	298.117
42			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	24.759	295.775	271.016
43			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	22.508	268.886	246.378
44			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	20.462	244.442	223.980
45			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	18.602	222.220	203.618
46			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	16.911	202.018	185.107
47			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	15.373	183.653	168.279
48			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	13.976	166.957	152.981
49			1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	12.705	151.779	139.074
50 TOTAL		22 020 547	1.355.898	1.355.898	2.230.524	13.967.200	16.197.724	14.841.826	11.550	137.981	126.431
TOTAL	40.343.214	32.030.547	67.794.911	141.018.015	111.526.200	698.360.000			119.205.347	100.597.429	41.392.081
							TASA INTERNA I				15,20%
							RELACION BENE		/h FIRME (ctvs. L	ic4)	1,35
											166,86
							COSTO DE PROL	POCCION DEL KW	Vh MEDIO (ctvs. l	JD\$)	25,75

EVALUACION FINANCIERA DEL PROYECTO ANGAMARCA SINDE

 DATOS BASICOS:

 Potencia Instalada
 43.457 KW
 Precio de Venta
 COSTOS DE CONSTRUCCION
 [US\$]

 Potencia Remunerada
 32.610 KW
 68,40 US\$/KW/año
 GENERACION
 87.573.214

 Energía Media
 349.180 MWh
 40,00 US\$/MWh
 TRANSMISION
 2.820.000

 Energía Firme
 81.260 MWh
 TOTAL
 90.393.214

 OPERACIÓN Y MANTENIMIENTO
 1.355.898

AÑO				_	MBOL505					INGRESOS P			INGRESOS
		REPOSICION	0&M	PRIMA SEG.	IMPUESTOS	CREDITO	TOTAL	V. ACTUAL	POTENCIA	ENE. PRIMAR	TOTAL	V. ACTUAL	NETO5
-4	200.000			-	-	-	200.000	292.820	-	-	-	-	-200.000
-3	650.000			-	-	-	650,000	865.150	-	-	-	-	-650.000
-2	12.203.084			-	-	-	12.203.084	14.765.732	-	-	-	-	-12.203.084
-1	14.064.880			-	-	-	14.064.880	15.471.368	-	-	-	-	-14.064.880
1			1.355.898	227.176	641.295	11.871.253	14.095.621	12.814.201	2.230.524	13.967.200	16.197.724	14.725.204	2.102.103
2			1.355.898	227.176	755.717	11.871.253	14.210.044	11.743.838	2.230.524	13.967.200	16.197.724	13.386.549	1.987.680
3			1.355.898	227.176	881.581	11.871.253	14.335.908	10.770.780	2.230.524	13.967.200	16.197.724	12.169.590	1.861.816
4			1.355.898	227.176	1.020.032	11.871.253	14.474.358	9.886.182	2.230.524	13.967.200	16.197.724	11.063.263	1.723.366
5			1.355.898	227.176	1.172.327	11.871.253	14.626.654	9.082.001	2,230,524	13.967.200	16.197.724	10.057.512	1.571.070
6			1.355.898	227.176	1.339.853	11.871.253	14.794.180	8,350,929	2.230.524	13.967.200	16.197.724	9.143.193	1.403.544
7			1.355.898	227.176	1.524.130	11.871.253	14.978.457	7.686.317	2.230.524	13.967.200	16.197.724	8.311.994	1.219.267
8			1.355.898	227.176	1.726.836	11.871.253	15.181.163	7.082.125	2.230.524	13.967.200	16.197.724	7.556.358	1.016.561
9			1.355.898	227.176	1.949.812	11.871.253	15.404.139	6.532.859	2.230.524	13.967.200	16.197.724	6.869.416	793,585
10			1.355.898	227.176	2.195.086	11.871.253	15.649.413	6.033.526	2.230.524	13.967.200	16.197.724	6.244.924	548.311
11			1.355.898	227.176	3.169.657	-	4.752.731	1.665.803	2.230.524	13.967.200	16.197.724	5.677.203	11.444.993
12			1.355.898	227.176	3.169.657	-	4.752.731	1.514.367	2.230.524	13.967.200	16.197.724	5.161.094	11.444.993
13			1.355.898	227.176	3.169.657	-	4.752.731	1.376.697	2,230,524	13.967.200	16.197.724	4.691.904	11.444.993
14			1.355.898	227.176	3.169.657	-	4.752.731	1.251.543	2.230.524	13.967.200	16.197.724	4.265.367	11.444.993
15			1.355.898	227.176	3.169.657	-	4.752.731	1.137.766	2.230.524	13.967.200	16.197.724	3.877.606	11.444.993
16			1.355.898	227.176	3.169.657		4.752.731	1.034.333	2.230.524	13.967.200	16.197.724	3.525.097	11.444.993
17			1.355.898	227.176	3.169.657		4.752.731	940.303	2.230.524	13.967.200	16.197.724	3.204.633	11.444.993
18			1.355.898	227.176	3.169.657		4.752.731	854.821	2.230.524	13.967.200	16.197.724	2.913.303	11.444.993
19			1.355.898	227.176	3.169.657		4.752.731	777.110	2.230.524	13.967.200	16.197.724	2.648.457	11.444.993
20			1.355.898	227.176	3.169.657		4.752.731	706.463	2.230.524	13.967.200	16.197.724	2,407,688	11.444.993
21			1.355.898	227.176	3.653.662		5.236.737	707.643	2.230.524	13.967.200	16.197.724	2.188.808	10.960.987
22			1.355.898	227.176	3.653.662		5.236.737	643.312	2.230.524	13.967.200	16.197.724	1.989.825	10.960.987
23			1.355.898	227.176	3.653.662		5.236.737	584.829	2.230.524	13.967.200	16.197.724	1.808.932	10.960.987
24			1.355.898	227.176	3.653.662		5.236.737	531.663	2.230.524	13.967.200	16.197.724	1.644.484	10.960.987
25			1.355.898	227.176	3.653.662		5.236.737	483.330	2.230.524	13.967.200	16.197.724	1.494.985	10.960.987
26			1.355.898	227.176	3.653.662		5.236.737	439.391	2.230.524	13.967.200	16.197.724	1.359.077	10.960.987
27			1.355.898	227.176	3.653.662		5.236.737	399,446	2.230.524	13.967.200	16.197.724	1.235.525	10.960.987
28			1.355.898	227.176	3.653.662		5.236.737	363.133	2.230.524	13.967.200	16.197.724	1.123.204	10.960.987
29			1.355.898	227.176	3.653.662		5.236.737	330.121	2.230.524	13.967.200	16.197.724	1.021.095	10.960.987
30		12.203.084	1.355.898	227.176	3.653.662		17.439.821	999.451	2.230.524	13.967.200	16.197.724	928.268	-1.242.097
31			1.355.898	227.176	3.653.662		5.236.737	272.827	2.230.524	13.967.200	16.197.724	843.880	10.960.987
32			1.355.898	227.176	3.653.662		5.236.737	248.025	2.230.524	13.967.200	16.197.724	767.164	10.960.987
33			1.355.898	227.176	3.653.662		5.236.737	225.477	2.230.524	13.967.200	16.197.724	697.422	10.960.987
34			1.355.898	227.176	3.653.662		5.236.737	204.979	2.230.524	13.967.200	16.197.724	634.020	10.960.987
35		16.559.769	1.355.898	227.176	3,653,662		21.796.505	775.609	2.230.524	13.967.200	16.197.724	576.381	-5.598.781
36		10,005,1705	1.355.898	227.176	3,653,662		5.236.737	169,404	2.230.524	13.967.200	16.197.724	523.983	10.960.987
37			1.355.898	227.176	3,653,662		5.236.737	154.004	2.230.524	13.967.200	16.197.724	476.348	10.960.987
38			1.355.898	227.176	3,653,662		5.236.737	140.003	2.230.524	13.967.200	16.197.724	433.044	10.960.987
39			1.355.898	227.176	3,653,662		5.236.737	127.276	2.230.524	13.967.200	16.197.724	393.676	10.960.987
40		4.067.695	1.355.898	227.176	3,653,662		9.304.431	205.581	2.230.524	13.967.200	16.197.724	357.888	6.893.293
41		1.007.093	1.355.898	227.176	3,653,662		5.236.737	105.187	2.230.524	13.967.200	16.197.724	325.352	10.960.987
42			1.355.898	227.176	3,653,662		5.236.737	95.624	2.230.524	13.967.200	16.197.724	295.775	10.960.987
43			1.355.898	227.176	3,653,662		5.236.737	86.931	2.230.524	13.967.200	16.197.724	268.886	10.960.987
44			1,355,898	227.176	3,653,662		5.236.737	79.028	2.230.524	13.967.200	16.197.724	244,442	10.960.987
45			1,355,898	227.176	3,653,662		5.236.737	71.844	2.230.524	13.967.200	16.197.724	222,220	10.960.987
46			1,355,898	227.176	3,653,662		5.236.737	65.313	2.230.524	13.967.200	16.197.724	202.018	10.960.987
47			1,355,898	227.176	3,653,662		5.236.737	59.375	2.230.524	13.967.200	16.197.724	183.653	10.960.987
48			1.355.898	227.176	3,653,662		5.236.737	53.977	2.230.524	13.967.200	16.197.724	166.957	10.960.987
49			1.355.898	227.176	3,653,662		5.236.737	49.070	2.230.524	13.967.200	16.197.724	151.779	10.960.987
50			1.355.898	227.176	3,653,662		5.236.737	44.609	2.230.524	13.967.200	16.197.724	137.981	10.960.987
	27.117.964	32.830 547			154.513.112	118,712 526					809.886.200	160.597.429	
TOTAL	2111111304	02.0000041	5711 541511	1110001000	1010101112	11011121020	12210211001	17110001737	VALOR PRESENT		00310001200	10010311423	19.243.935

VALOR PRESENTE	19.243.935
TASA INTERNA DE RETORNO	14,13%
RELACION BENEFICIO/COSTO	1,14
COSTO DE PRODUCCIÓN DEL KWh FIRME [ctvs. US\$]	16,56
COSTO DE PRODUCCIÓN DEL KWh MEDIO [ctvs. US\$]	3,85
COSTO DE KW INSTALADO [US\$]	2.080,06

CUADRO 8.2.b

EVALUACION FINANCIERA DEL PROYECTO ANGAMARCA SINDE CRONOGRAMA DE REEMBOLSO DEL CREDITO

DATOS BASICOS:		CONDICIONES FINANCIERAS	CONDICIONES FINANCIERAS ASUMIDAS				
INVERSION TOTAL	90.393.214 US\$	TASA ANUAL DE INTERES	10,00%				
CAPITAL PROPIO	27.117.964 US\$	PLAZO DE REEMBOLSO	10 AÑOS				
MONTO DE CREDITO	63.275.250 US\$	PERIODO DE GRACIA	2 AÑOS				
		FORMA DE PAGO	Anual Cuota Constante				

AÑO	DESEMBOLSOS DEL CREDITO	INTERESES CAPITALIZADOS	DESEMBOLSOS ACUMULADOS	MONTO DE LA DEUDA	AMORTIZACIO N DE CAPITAL	INTERES A PAGAR	DIVIDENDO A PAGAR
	DEL CKEDITO	CAPTIALIZADOS	ACOMOLADOS	DEODA	N DE CAPITAL	PAGAK	PAGAK
-4	-						
-3	-	-					
-2	30.372.120	3.037.212	33,409,332				
-1	32.903.130	6.631.246	72.943.708	72.943.708			
1				68.366.826	4.576.882	7.294.371	11.871.253
2				63.332.256	5.034.570	6.836.683	11.871.253
3				57.794.229	5.538.027	6.333.226	11.871.253
4				51.702.400	6.091.830	5.779.423	11.871.253
5				45.001.387	6.701.013	5.170.240	11.871.253
6				37.630.273	7.371.114	4.500.139	11.871.253
7				29.522.048	8.108.225	3.763.027	11.871.253
8				20.603.000	8.919.048	2.952.205	11.871.253
9				10.792.048	9.810.953	2.060.300	11.871.253
10				0	10.792.048	1.079.205	11.871.253
11							
12							
13							
14							
15							
TOTAL	63.275.250	9.668.458	72.943.708	72.943.708	72.943.708	45.768.818	118.712.526

EVALUACION FINANCIERA DEL PROYECTO ANGAMARCA SINDE ESTADO DE PERDIDAS Y GANANCIAS

 DATOS BASICOS:

 Potencia Instalada
 43.457
 KW
 Precio de Venta
 COSTOS DE CONSTRUCCION
 [US\$]

 Potencia Remunerada
 32.610
 KW
 68,40
 US\$/KW/año
 GENERACION
 87.573.214

 Energía Media
 349.180
 MWh
 40,00
 US\$/MWh
 TRANSMISION
 2.820.000

 TOTAL
 90.3993.214
 OPERACIÓN Y MANTENIMIENTO
 1.355.898

	OPERACION Y MAINTENIMIENT							ILINI LEINTI MITEINI O	1.355.090	
AÑO	INGRESOS POR VENTAS	GASTOS EN O&M	PRIMA DE SEGUROS	UTILIDAD BRUTA	GASTOS DE DEPRECIACION	UTILIDAD EN OPERACIÓN	GASTOS FINANCIEROS	UTILIDAD GRAVABLE	IMPUESTOS	UTILIDAD NETA
-4	-									
-3 -2										
-1	_									
ī	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	7.294.371	2,565,178	641.295	1.923.884
2	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	6.836.683	3.022.866	755.717	2.267.150
3	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	6.333.226	3.526.323	881.581	2.644.743
4	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	5.779.423	4.080.126	1.020.032	3.060.095
5	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	5.170.240	4.689.309	1.172.327	3.516.982
6	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	4.500.139	5.359.410	1.339.853	4.019.558
7	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	3.763.027	6.096.522	1.524.130	4.572.391
8	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	2.952.205	6.907.344	1.726.836	5.180.508
.9	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	2.060.300	7.799.249	1.949.812	5.849.437
10	16.197.724	1.355.898	227.176	14.614.650	4.755.101	9.859.549	1.079.205	8.780.344	2.195.086	6.585.258
11	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628	-	12.678.628	3.169.657	9.508.971
12	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628		12.678.628	3.169.657	9.508.971
13 14	16.197.724 16.197.724	1.355.898 1.355.898	227.176 227.176	14.614.650 14.614.650	1.936.021 1.936.021	12.678.628 12.678.628	:	12.678.628 12.678.628	3.169.657 3.169.657	9.508.971 9.508.971
15	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628	-	12.678.628	3.169.657	9.508.971
16	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628]	12.678.628	3.169.657	9.508.971
17	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628]	12.678.628	3.169.657	9.508.971
18	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628		12.678.628	3.169.657	9.508.971
19	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628		12.678.628	3.169.657	9.508.971
20	16.197.724	1.355.898	227.176	14.614.650	1.936.021	12.678.628		12.678.628	3.169.657	9.508.971
21	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	_	14.614.650	3.653.662	10.960.987
22	16.197.724	1.355.898	227.176	14.614.650		14.614.650		14.614.650	3.653.662	10.960.987
23	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650		14.614.650	3.653.662	10.960.987
24	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650		14.614.650	3.653.662	10.960.987
25	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
26	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
27	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3,653,662	10.960.987
28	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
29	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
30	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
31	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
32	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
33	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650		14.614.650	3.653.662	10.960.987
34	16.197.724	1.355.898	227.176	14.614.650	_	14.614.650		14.614.650	3.653.662	10.960.987
35 36	16.197.724 16.197.724	1.355.898 1.355.898	227.176 227.176	14.614.650 14.614.650		14.614.650 14.614.650]	14.614.650 14.614.650	3,653,662 3,653,662	10.960.987
37	16.197.724	1.355.898	227.176	14.614.650		14.614.650]	14.614.650	3.653.662	10.960.987 10.960.987
38	16.197.724	1.355.898	227.176	14.614.650		14.614.650]	14.614.650	3.653.662	10.960.987
39	16.197.724	1.355.898	227.176	14.614.650		14.614.650]	14.614.650	3.653.662	10.960.987
40	16.197.724	1.355.898	227.176	14.614.650	_	14.614.650		14.614.650	3.653.662	10.960.987
41	16.197.724	1.355.898	227.176	14.614.650	_	14.614.650		14.614.650	3.653.662	10.960.987
42	16.197.724	1.355.898	227.176	14.614.650	_	14.614.650		14.614.650	3,653,662	10.960.987
43	16.197.724	1.355.898	227.176	14.614.650	_	14.614.650		14.614.650	3.653.662	10.960.987
44	16.197.724	1.355.898	227.176	14.614.650	_	14.614.650	-	14.614.650	3.653.662	10.960.987
45	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650		14.614.650	3.653.662	10.960.987
46	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650		14.614.650	3.653.662	10.960.987
47	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650		14.614.650	3.653.662	10.960.987
48	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3,653,662	10.960.987
49	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
50	16.197.724	1.355.898	227.176	14.614.650	-	14.614.650	-	14.614.650	3.653.662	10.960.987
TOTAL	809.886.200	67.794.911	11.358.808	730.732.481	66.911.217	663.821.264	45.768.818	618.052.446	154.513.112	463.539.335

EVALUACION FINANCIERA DEL PROYECTO ANGAMARCA SINDE FLUJO DE CAJA

DATOS BASICOS:

 INVERSION TOTAL
 90.393.214 U5\$

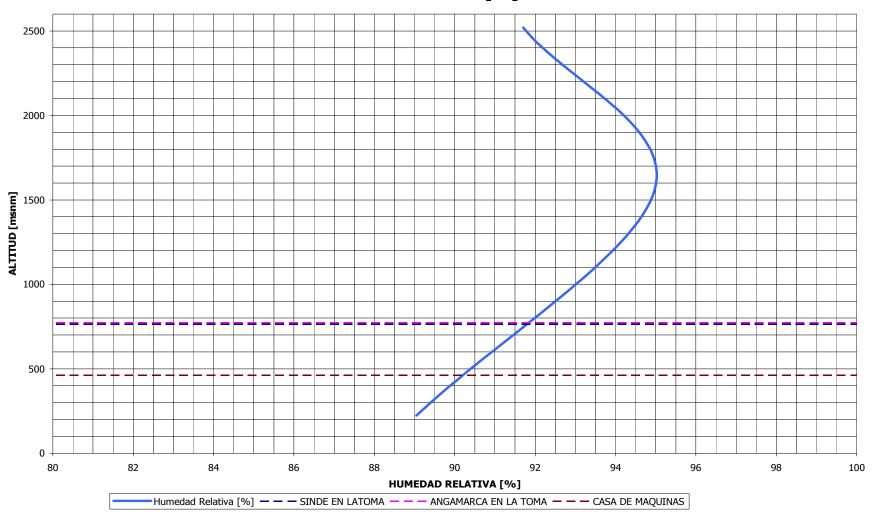
 CAPITAL PROPIO
 30% 27.117.964 U5\$

 MONTO DE CREDITO
 70% 63.275.250 U5\$

AÑO	CAJA AL INICIO	FLUJO MONETARIO	TOTAL FONDOS DISPONIBLES	IMPUESTOS	GASTOS FINANCIEROS	SALDO EN CAJA	REEMBOLSO CAPITAL	CAJA AL FINAL
-4	200.000	-200.000	-	-	-		-	-
-3	650,000	-650.000	-	-	-		-	-
-2	42.980.743	-42.980.743	-	-	-		-	-
-1	46.562.471	-46.562.471	-	-	-		-	-
1	-	14.614.650	14.614.650	641.295	7.294.371	6.678.984	4.576.882	2.102.103
2	2.102.103	14.614.650	16.716.752	755.717	6.836.683	9.124.353	5.034.570	4.089.783
3	4.089.783	14.614.650	18.704.433	881.581	6.333.226	11.489.626	5.538.027	5.951.599
4	5.951.599	14.614.650	20.566.249	1.020.032	5.779.423	13.766.794	6.091.830	7.674.965
5	7.674.965	14.614.650	22.289.614	1.172.327	5.170.240	15.947.047	6.701.013	9.246.035
6	9.246.035	14.614.650	23.860.684	1.339.853	4.500.139	18.020.693	7.371.114	10.649.579
7	10.649.579	14.614.650	25.264.229	1.524.130	3.763.027	19.977.071	8.108.225	11.868.846
8	11.868.846	14.614.650	26.483.495	1.726.836	2.952.205	21.804.454	8.919.048	12.885.407
9	12.885.407	14.614.650	27.500.056	1.949.812	2.060.300	23.489.944	9.810.953	13.678.991
10	13.678.991	14.614.650	28.293.641	2.195.086	1.079.205	25.019.350	10.792.048	14.227.302
11	14.227.302	14.614.650	28.841.952	3.169.657	-	25.672.295	-	25.672.295
12	25.672.295	14.614.650	40.286.945	3.169.657	-	37.117.287	-	37.117.287
13	37.117.287	14.614.650	51.731.937	3.169.657	-	48.562.280	-	48.562.280
14	48.562.280	14.614.650	63.176.930	3.169.657	-	60.007.273	-	60.007.273
15	60.007.273	14.614.650	74.621.922	3.169.657	-	71.452.265	-	71.452.265
16	71.452.265	14.614.650	86.066.915	3.169.657		82.897.258		82.897.258
17	82.897.258	14.614.650	97.511.907	3.169.657		94.342.250		94.342.250
18	94.342.250	14.614.650	108,956,900	3.169.657		105.787.243		105.787.243
19	105.787.243	14.614.650	120.401.892	3.169.657		117.232.235		117.232.235
20	117.232.235	14.614.650	131.846.885	3.169.657		128.677.228		128.677.228
21	128.677.228	14.614.650	143.291.877	3.653.662		139.638.215		139.638.215
22	139.638.215	14.614.650	154.252.864	3.653.662		150.599.202		150.599.202
23		14.614.650	165.213.852	3.653.662		161.560.189		161.560.189
24	161.560.189	14.614.650	176.174.839	3.653.662		172.521.176		172.521.176
25	172.521.176	14.614.650	187.135.826	3.653.662		183.482.164		183.482.164
26	183.482.164	14.614.650	198.096.813	3.653.662		194.443.151		194.443.151
27	194.443.151	14.614.650	209.057.800	3.653.662		205.404.138		205.404.138
28	205.404.138	14.614.650	220.018.788	3.653.662		216.365.125		216.365.125
29	216.365.125	14.614.650	230.979.775	3.653.662		227.326.112	40 000 004	227.326.112
30	227.326.112	14.614.650	241.940.762	3.653.662		238.287.100	12.203.084	226.084.016
31	226.084.016	14.614.650	240.698.665	3.653.662		237.045.003		237.045.003
32	237.045.003	14.614.650	251.659.653	3.653.662		248.005.990		248.005.990
33		14.614.650	262.620.640	3.653.662		258.966.977		258.966.977
34	258.966.977	14.614.650	273.581.627	3,653,662		269,927,965	16 550 760	269.927.965
35	269.927.965	14.614.650	284.542.614	3.653.662		280.888.952	16.559.769	264.329.183
36	264.329.183	14.614.650	278.943.833 289.904.820	3.653.662		275.290.171		275.290.171
37 38	275.290.171	14.614.650 14.614.650	300.865.807	3,653,662		286,251,158		286.251.158
39	286.251.158 297.212.145			3.653.662 3.653.662		297.212.145 308.173.132		297.212.145
40		14.614.650 14.614.650	311.826.795 322.787.782	3,653,662		319.134.119	4.067.695	308.173.132 315.066.425
41	315.066.425	14.614.650	329.681.074	3.653.662		326.027.412	4,007,035	326.027.412
42		14.614.650	340.642.062	3.653.662		336.988.399		336.988.399
43		14.614.650	351.603.049	3.653.662		347.949.386		347.949.386
44		14.614.650	362,564,036	3.653.662		358.910.374		358.910.374
45		14.614.650	373.525.023	3.653.662		369.871.361		369.871.361
46		14.614.650	384.486.011	3.653.662		380.832.348		380.832.348
47		14.614.650	395,446,998	3,653,662		391,793,335		391,793,335
48		14.614.650	406.407.985	3.653.662		402.754.323		402.754.323
49		14.614.650	417.368.972	3.653.662		413.715.310		413.715.310
50		14.614.650	428.329.959	3.653.662		424.676.297		424.676.297

EVALUACION FINANCIERA DEL PROYECTO ANGAMARCA SINDE PRIMA POR CONCEPTO DE SEGURO

ITEM	PRIMA DE SEGURO	SUBTOTAL [\$]	TOTAL [\$]
1.0.0	SEGURO CONTRA INCENDIOS:	• • •	• •
1.1.0	Obra Civil:		
1.1.1	Bocatoma Angamarca	3.226.469,69	
1.1.2	Bocatoma Sinde	6.126.203,07	
1.1.3	Obra de Trasvase	1.537.299,92	
1.1.4	Conducción	16.985.937,00	
1.1.5	Reservorio	6.321.110,30	
1.1.6	Conducción a baja presión y Chimenea	502.483,34	
1.1.7	Tubería de Presión	2.047.438,54	
1.1.8	Casa de Máquinas	798.377,50	
1.1.9	Accesos	1.175.103,68	38.720.423,04
1.2.0	Equipos Electromecánicos		
1.2.1	Turbinas	4.342.431,33	
1.2.2	Generadores	4.776.665,73	
1.2.3	Transformadores	521.098,74	
1.2.4	Tableros de control	3.300.255,66	
1.2.5	Equipos auxiliares, incluido generador de emergencia y tableros de comunicación	977.038,32	
1.2.6	Subestación - (Obra civil y Equipos)	1.488.828,62	
1.2.7	Otros Equipos	2.279.785,17	
1.2.8	Línea de transmisión - (Obra civil y Equipos)	2.820.000,00	20.506.103,57
1.3.0	Equipos Hidromecánicos		
1.3.1	Tubería de Presión	5.427.533,60	
1.3.2	Compuertas radiales	385.788,56	
1.3.3	Compuertas planas	478.791,15	
1.3.4	Reguladores de velocidad	236.030,16	
1.3.5	Válvulas esféricas	826.105,54	
1.3.6	Puente grúa	212.427,14	
1.3.7	Sistemas auxiliares	118.015,08	7.684.691,23
	TOTAL		66.911.217,84


EVALUACION FINANCIERA DEL PROYECTO ANGAMARCA SINDE PRIMA POR CONCEPTO DE SEGURO

2.0.0	SEGURO DE ROTURA DE MAQUINA:		
2.1.0	Equipos Electromecánicos		
2.1.1	Turbinas	4.342.431,33	
2.1.2	Generadores	4.776.665,73	
2.1.3	Transformadores	521.098,74	
2.1.4	Tableros de control	3.300.255,66	
	Equipos auxiliares, incluido generador de emergencia y tableros de comunicación	977.038,32	13.917.489,78
	Equipos Hidromecánicos		
2.2.1	Compuertas radiales	385.788,56	
2.2.2	Compuertas planas	478.791,15	
2.2.3	Reguladores de velocidad	236.030,16	
2.2.4	Válvulas esféricas	826.105,54	
2.2.5	Puente grúa	212.427,14	
2.2.6	Sistemas auxiliares	118.015,08	2.257.157,63
	TOTAL		16.174.647,41
3.0.0	SEGURO DE EQUIPO ELECTRONICO:		2.279.785,17
1.0.0	SEGURO CONTRA INCENDIOS: [PPM]	1,50	100.366,83
	SEGURO CONTRA INCENDIOS: [PPM]	4,50	72.785,91
	SEGURO EQ. ELECTRONICO: [%]	1,00	22.797,85
	TOTAL		195.950,59
	SUPERINTENDENCIA DE BANCOS	3,5%	6.858,27
	DERECHO DE EMISION DE POLIZA (USD 9 C/POLIZA)		27,00
	SUBTOTAL		202.835,86
	IVA	12,0%	24.340,30
	TOTAL DE PRIMA DE SEGURO DEL PROYECTO		227.176,17

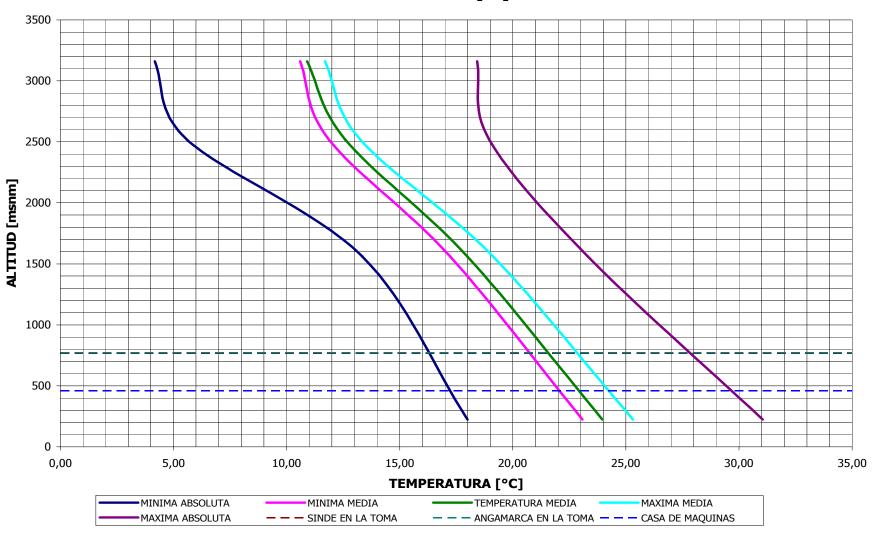
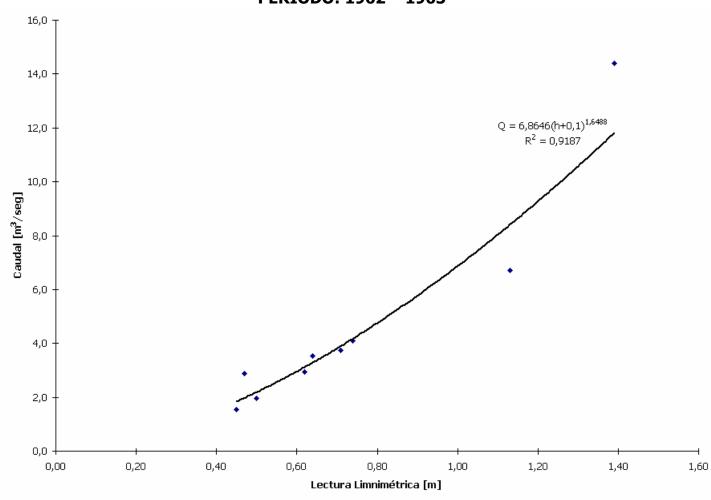
ANEXO DE GRÁFICOS

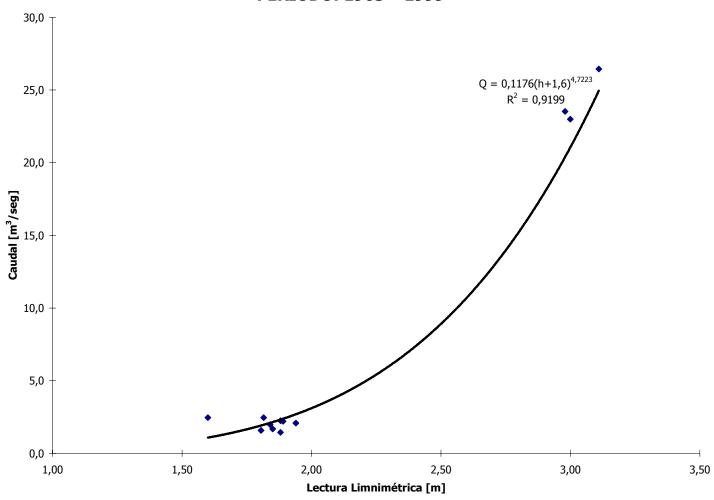
GRÁFICO 4.1

HUMEDAD RELATIVA [%]

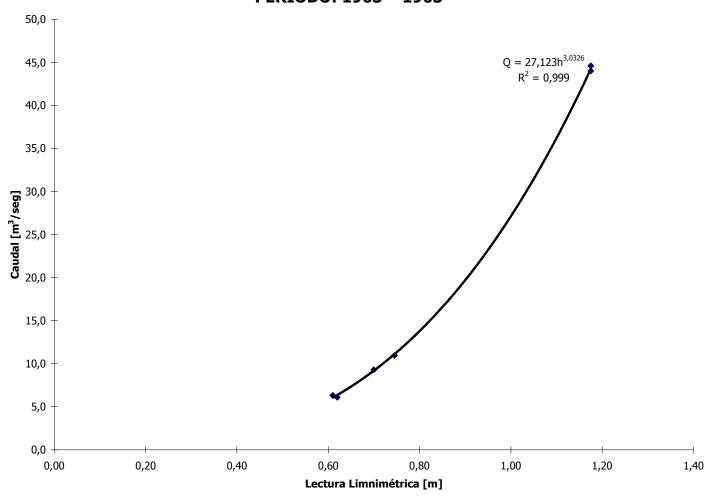
GRÁFICO 4.2

TEMPERATURA [°C]

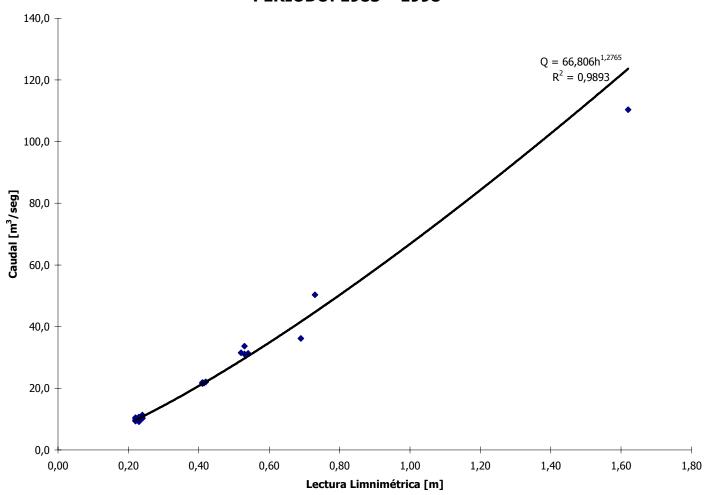




GRÁFICO 4.3(a)

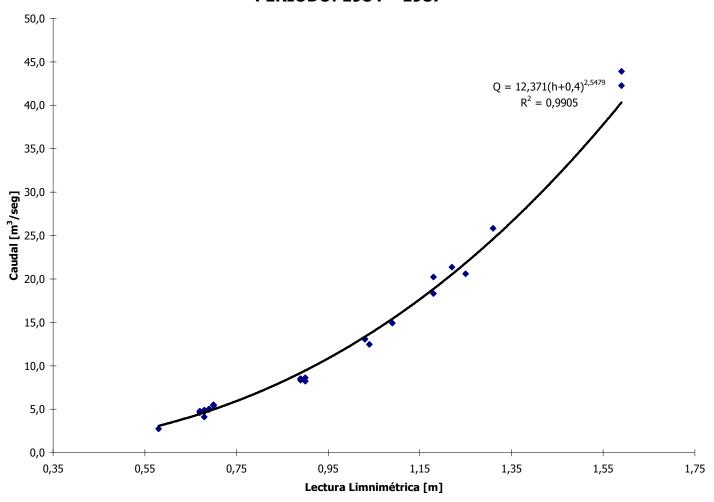
CURVA DE DESCARGA ESTACIÓN: PILALO LA ESPERANZA PERIODO: 1962 – 1965


GRÁFICO 4.3(b)

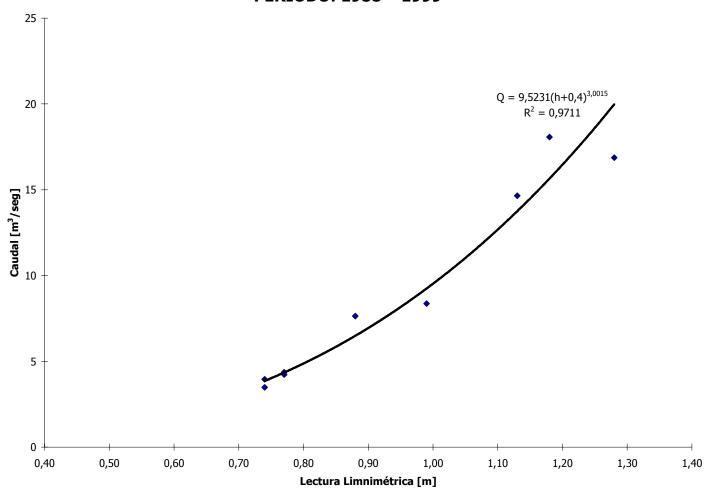
CURVA DE DESCARGA ESTACIÓN: PILALO LA ESPERANZA PERIODO: 1965 – 1999


GRÁFICO 4.4(a)

CURVA DE DESCARGA ESTACIÓN: LAS JUNTAS DJ SINDE PERIODO: 1963 – 1965


GRÁFICO 4.4(b)

CURVA DE DESCARGA ESTACIÓN: LAS JUNTAS DJ SINDE PERIODO: 1983 – 1998


GRÁFICO 4.5(a)

CURVA DE DESCARGA ESTACIÓN: ANGAMARCA EN PIHUAPUNGO PERIODO: 1984 – 1987

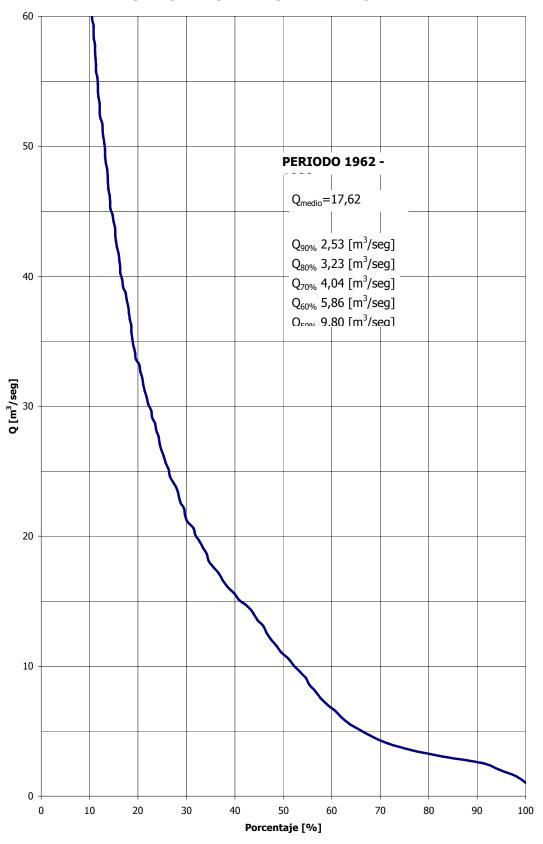
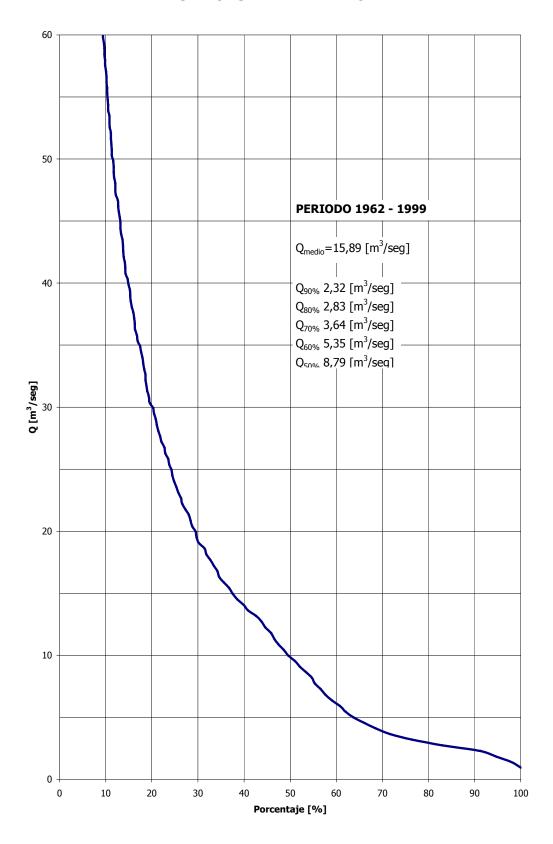
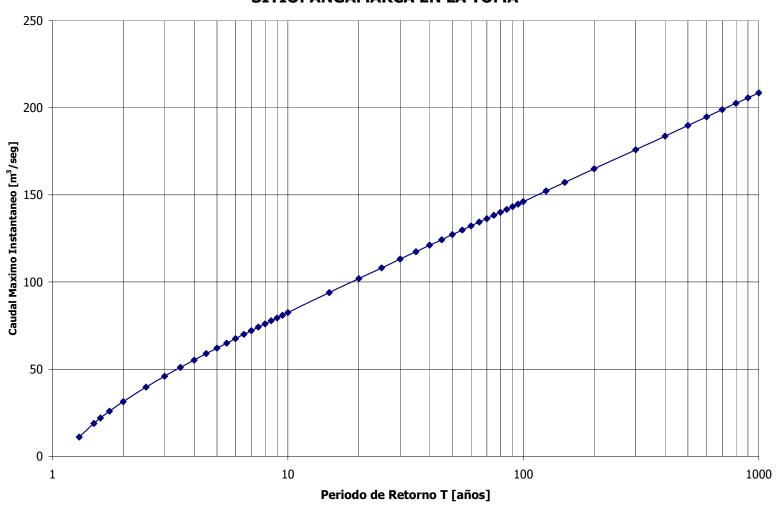


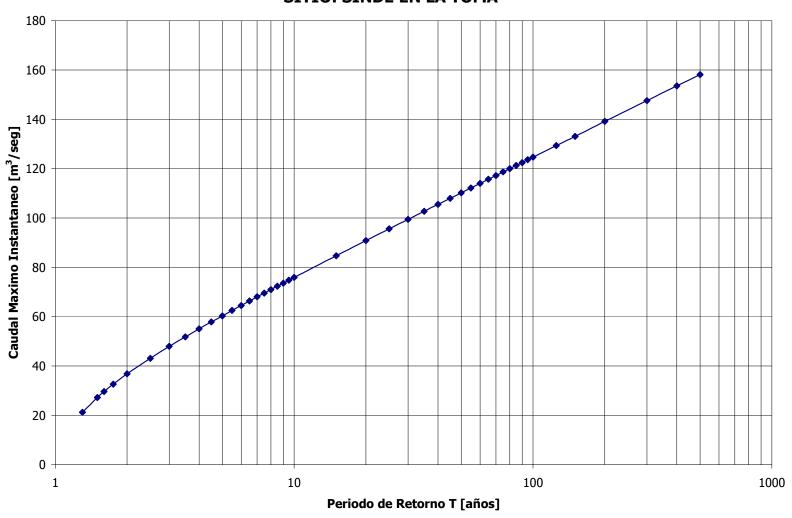
GRÁFICO 4.5(b)


CURVA DE DESCARGA ESTACIÓN: ANGAMARCA EN PIHUAPUNGO PERIODO: 1988 – 1999

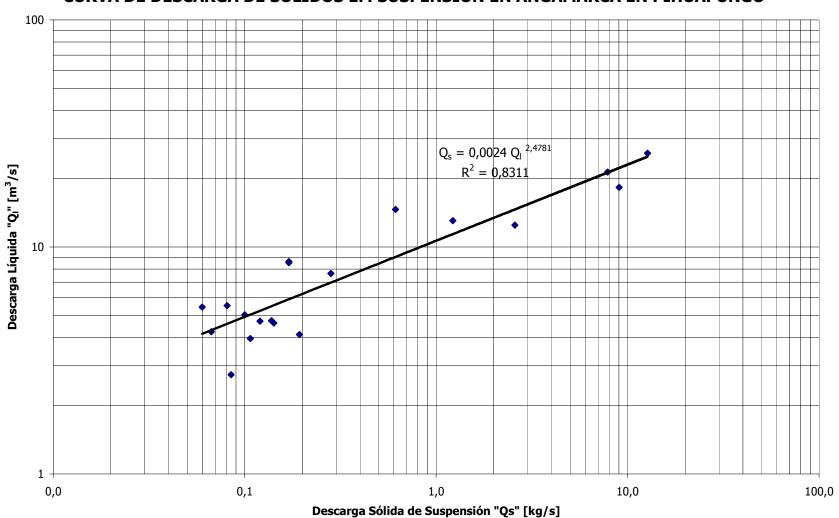
CURVA DE DURACION DE CAUDALES MEDIOS DIARIOS SITIO: ANGAMARCA EN LA TOMA



CURVA DE DURACION DE CAUDALES MEDIOS DIARIOS SITIO: SINDE EN LA TOMA


GRÁFICO 4.7(a)

FRECUENCIA DE CRECIDAS SITIO: ANGAMARCA EN LA TOMA


GRÁFICO 4.7(b)

FRECUENCIA DE CRECIDAS SITIO: SINDE EN LA TOMA

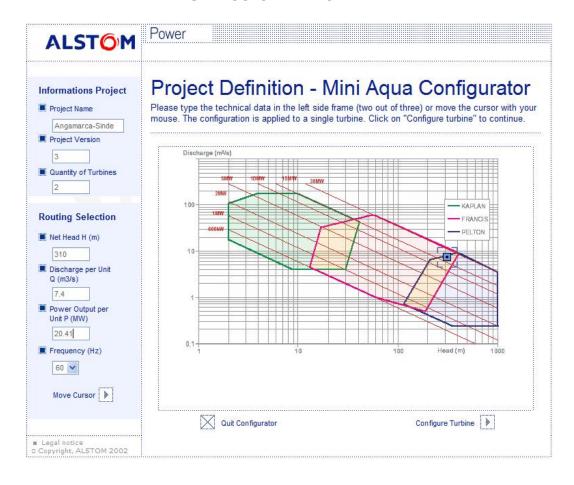

GRÁFICO 4.8

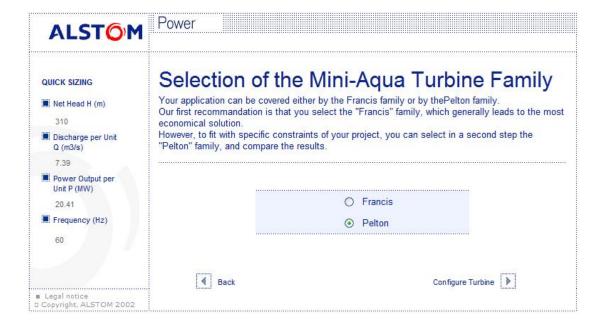
CURVA DE DESCARGA DE SÓLIDOS EM SUSPENSIÓN EN ANGAMARCA EN PIHUAPUNGO

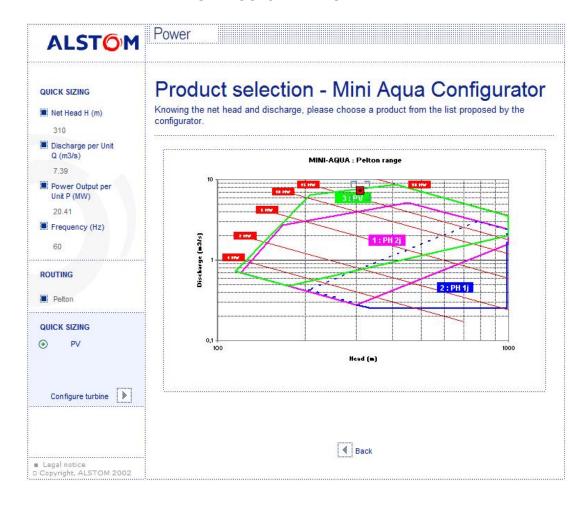
GRÁFICO 5.1

POTENCIA GARANTIZADA

GRÁFICO 5.2 Hoja 1 de 2

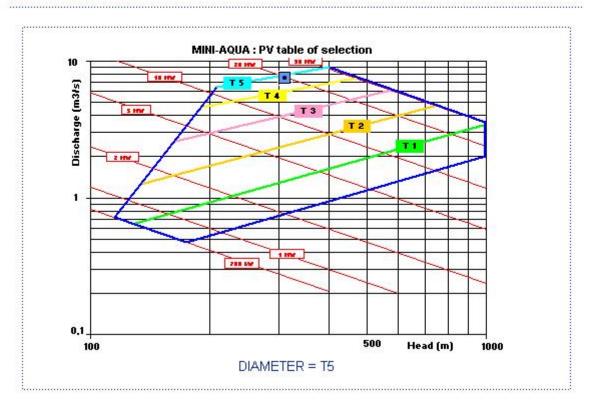

PRODUCCION DE POTENCIA

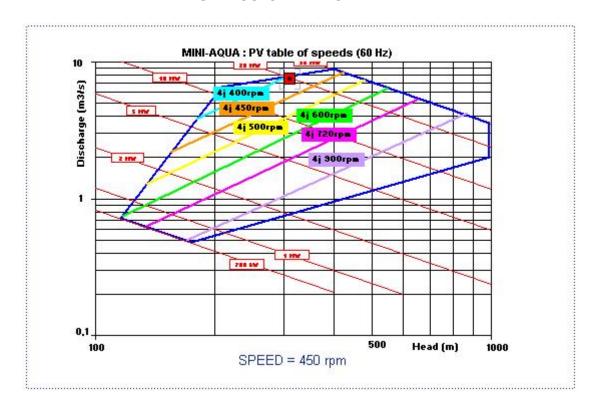

PFIRM - Hydroconditions for Capacity (MW). The probability of each hydrocondition is 10 (%)														
Prob (%)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average	Annual
95,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,08	6,94
85,00	0,00	27,60	0,00	42,78	37,90	4,07	1,00	0,00	0,00	0,00	0,00	0,00	9,45	20,82
75,00	23,79	43,38	46,06	42,78	40,81	42,75	8,02	0,00	3,02	2,01	0,00	0,00	21,05	24,78
65,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	12,00	36,19	36,11	2,08	17,96	33,82	30,73
55,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	43,99	44,23	44,14	45,69	43,90	43,62	35,69
45,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	43,99	44,23	44,14	45,69	43,90	43,62	38,66
35,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	43,99	44,23	44,14	45,69	43,90	43,62	40,64
25,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	43,99	44,23	44,14	45,69	43,90	43,62	42,63
15,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	43,99	44,23	44,14	45,69	43,90	43,62	42,63
5,00	43,61	43,38	46,06	42,78	40,81	42,75	42,13	43,99	44,23	44,14	45,69	43,90	43,62	42,63
Mean	32,91	37,46	36,85	38,50	36,44	34,61	30,49	27,60	30,46	30,29	27,62	28,13	32,61	32,61

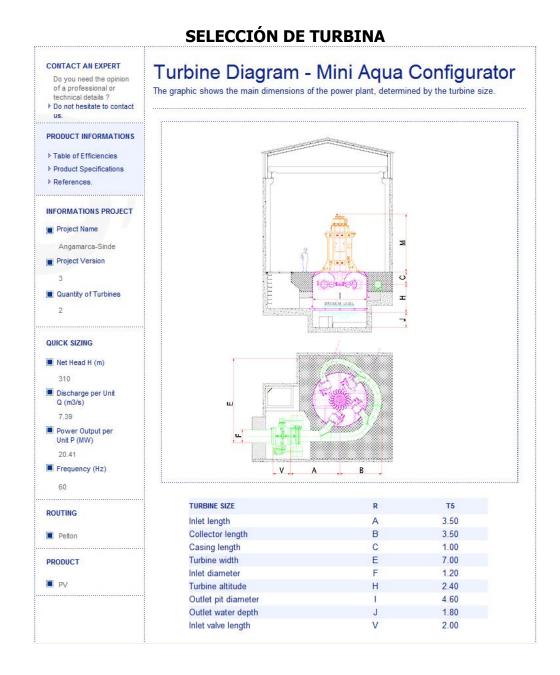

GRÁFICO 5.2 Hoja 2 de 2

PRODUCCION DE ENERGÍA

PFIRM - Hydroconditions for Energy (GWh). The probability of each hydrocondition is 10 (%)														
Prob (%)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Annual
95,00	0,18	0,54	0,64	0,63	0,43	0,36	0,19	0,11	0,10	0,10	0,12	0,08	3,48	37,80
85,00	0,18	11,25	8,11	26,08	8,78	0,89	0,19	0,11	0,10	0,10	0,12	0,08	55,98	115,18
75,00	4,36	23,68	31,18	33,30	21,93	12,12	1,03	0,11	0,40	0,32	0,12	0,08	128,62	170,35
65,00	8,16	30,03	36,00	34,13	31,71	22,64	7,10	1,52	4,33	4,53	0,34	2,19	182,68	218,03
55,00	15,46	32,97	39,71	37,23	32,16	31,18	16,81	5,77	8,57	6,69	10,08	7,79	244,43	274,76
45,00	22,12	44,73	46,72	49,34	33,14	31,36	22,88	12,63	10,65	9,70	15,23	12,06	310,56	344,86
35,00	26,75	56,53	60,08	56,62	35,23	33,48	28,51	19,37	15,23	14,99	23,55	16,42	386,76	397,82
25,00	33,02	64,86	85,81	69,79	39,51	38,82	31,32	25,94	19,75	21,29	31,07	20,73	481,90	515,30
15,00	33,33	102,74	138,13	100,27	50,01	48,11	32,53	32,25	26,02	26,48	32,58	23,87	646,31	575,28
5,00	34,04	246,57	200,71	209,02	74,97	84,67	35,55	33,24	31,67	32,75	35,66	32,23	1.051,07	842,42
Mean	17,76	61,39	64,71	61,64	32,79	30,36	17,61	13,10	11,68	11,69	14,89	11,55	349,18	349,18






Runner Diameter and Speed Selection Mini Aqua Configurator

All informations given hereafter are based on a statistical analysis. They are indicative and could be optimised at final tender stage to fit with actuel site conditions, such as downstream water levels, penstock length, etc...

GRÁFICO 6.1 Página 6 de 6

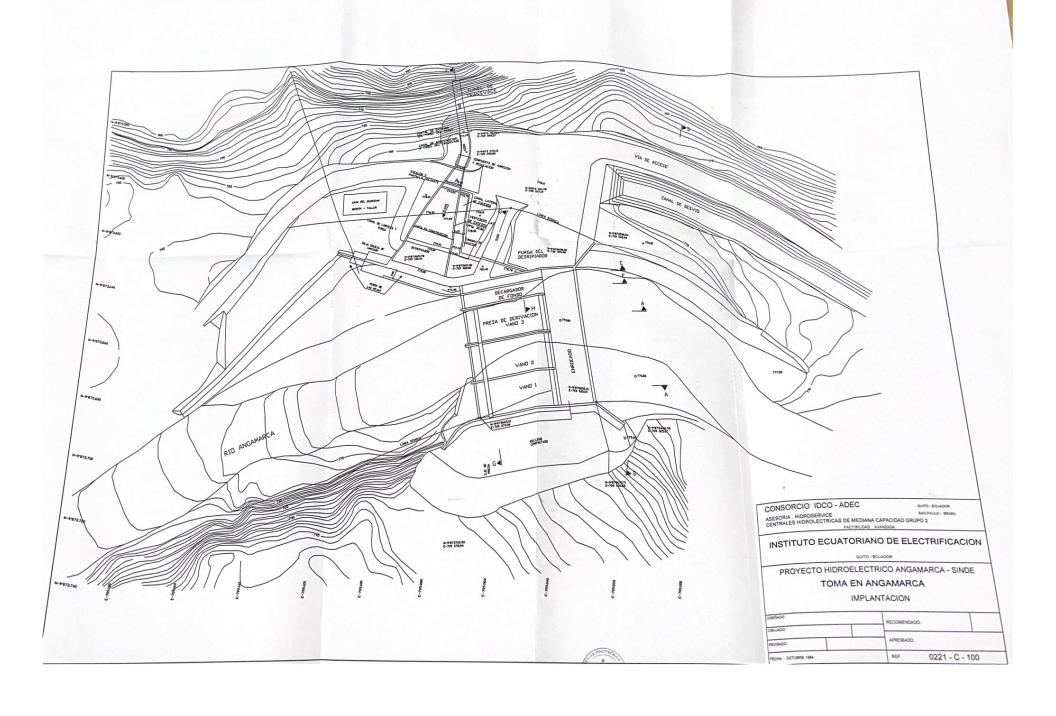
BIBLIOGRAFIA

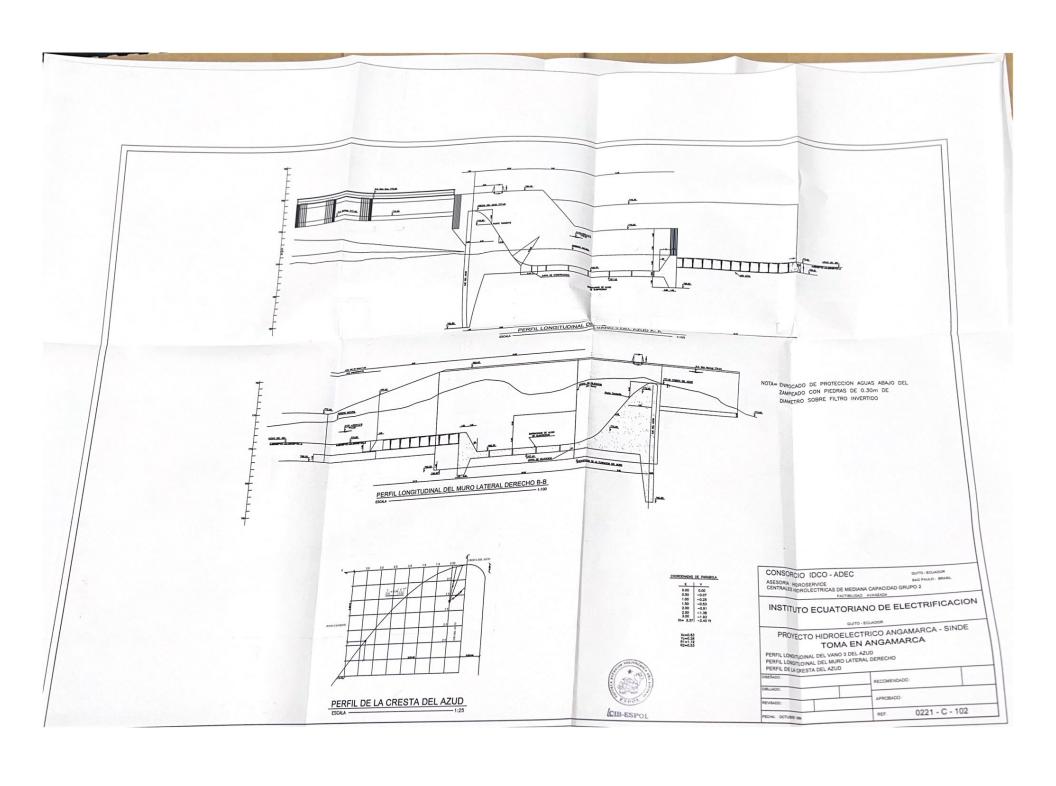
- ARCHIBALD JOSEPH MACINTYRE, Máquinas Motrizes Hidráulicas, Editora Guanabara Dois S.A., Rio de Janeiro, 1983.
- 2. AVELLONE A. EUGENE, BAUMEISTER THEODORE III, Manual del Ingeniero Mecanico, Mc Graw Hill, México, 2002.
- 3. CHERUBINO GUEDES ALESSANDRA (Eng. Eletricista). VIANA ALVES ANA SOFIA (Economista). WILLIAN VIEIRA ANDERSON (Eng. Civil). VERDINI DEMARCUS (Eng. Civil). NASCIMENTO CONCEIÇÃO (Informática). FRAMIL FERREIRA ELIANE (Pedagoga). HORTA NOGUEIRA FABIO JOSE (Eng. Mecânico). TEIXEIRA MENDES MARIA BEATRIZ (Eng. Mecânico). PINTO PINHEIRO RUBENS (Eng. Eletricista). GRANJA JIMENEZ RUTH KATIUSKA (Eng. Mecânico). DE SOUZA BARBOSA TANIA APARECIDA (Bióloga), Projeto de Melhorias Da MCH Da Fazenda Santa Isabel. RHM03 Energização No Meio Rural Através de PCHs. Escola Federal de Engenharia de ITAJUBA EFEI. Brasil.

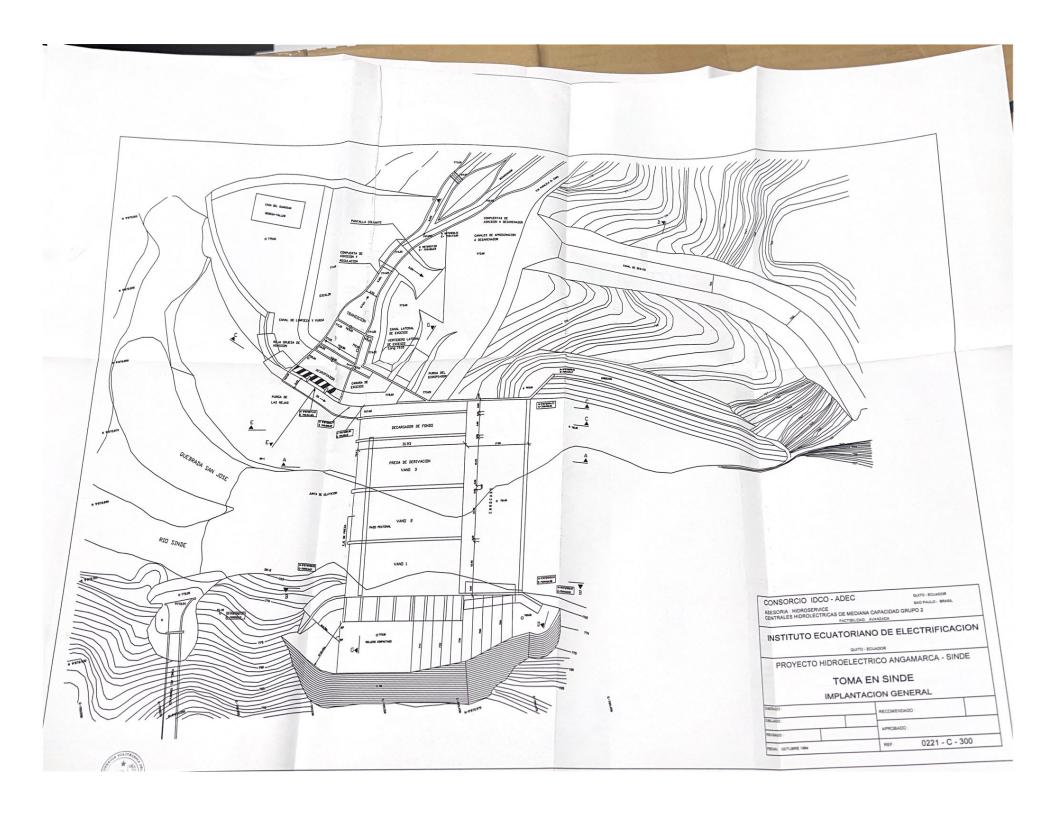
- DE SOUZA ZULCY, Dimensionamento de Máquinas de Fluxo Turbinas-Bombas-Ventiladores, Editora Edgard Blücher LTDA, Rio de Janeiro, 1991.
- DE SOUZA ZULCY. SANTOS M ALONSO H. BORTONI C. EDSON DA. Centrais Hidroelétricas. Estudos Para Implantação. Centrais Elétricas Brasileiras S.A. – Electrobras. Rio de Janeiro, 1999.
- DEGARMO E. PAUL, SULLIVAN G. WILLIAM, BONTADELLI A. JAMES,
 WICKS M. ELIN, Ingenieria Econômica, Prentice Hall, México, 1997.
- EMERY R. DOUGLAS, FINNERTY D. JOHN, STOWE D. JOHN, Fundamentos de Administración Financiera, Pearson Educación, México, 2000.
- EMPRESA ELECTRICA REGIONAL GUAYAS LOS RIOS (EMELGUR).
 Proyecto Hidroeléctrico Angamarca Sinde. Estudios de Factibilidad
 Avanzada. Memoria Técnica Actualizada. Ecuador. Abril 19996.

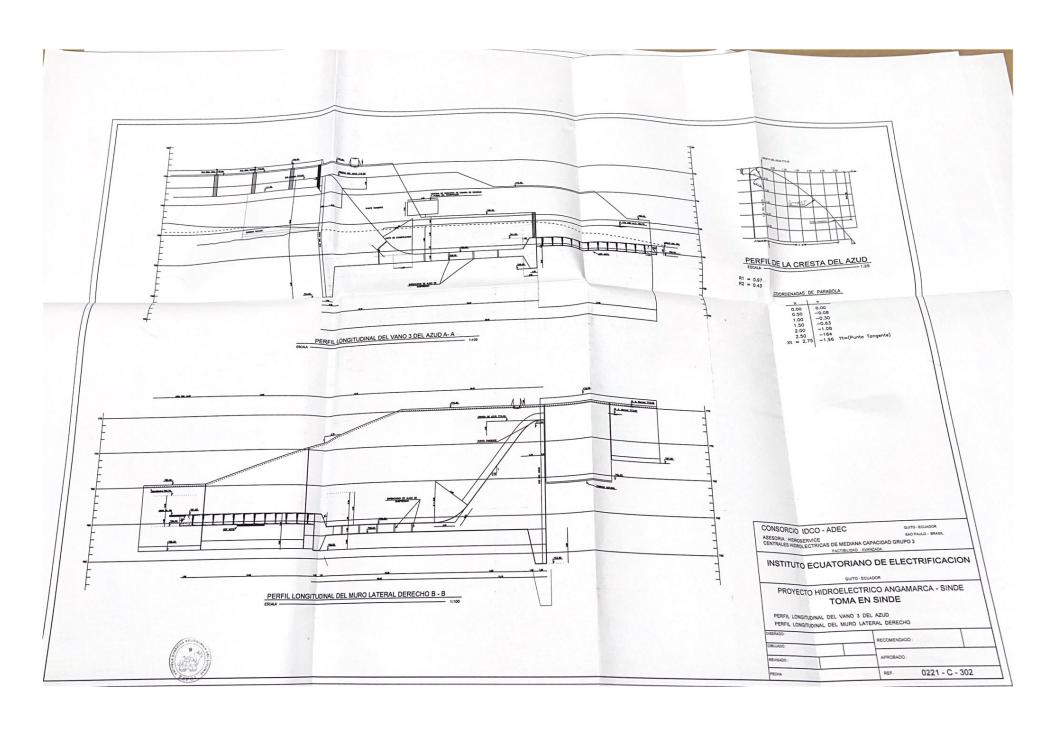
- GRUPO FORMACION DE EMPRESAS ELECTRICAS, Centrales
 Hidroeléctricas (I) Conceptos y Componentes Hidráulicos –
 Información Técnica, España, 1986.
- GRUPO FORMACION DE EMPRESAS ELECTRICAS, Centrales Hidroeléctricas (II) – Turbinas Hidráulicas – Información Técnica, España, 1986.
- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Centrales
 Hidroeléctricas de Mediana Capacidad Grupo II. Informe de Factibilidad
 Avanzada. Tomo I. Resumen del Proyecto. Proyecto Angamarca Sinde.
 Quito Ecuador. 1984.
- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Centrales
 Hidroeléctricas de Mediana Capacidad Grupo II. Informe de Factibilidad
 Avanzada. Tomo II. Geología y Geotecnia. Proyecto Angamarca Sinde.
 Quito Ecuador. 1984.
- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Centrales
 Hidroeléctricas de Mediana Capacidad Grupo II. Informe de Factibilidad

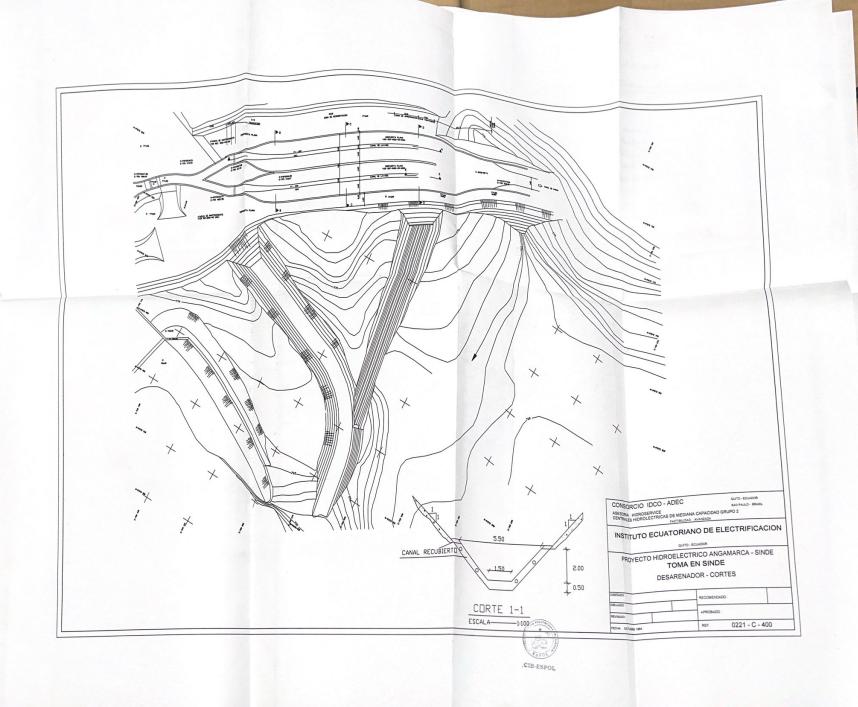
Avanzada. Tomo III. Hidrología. Proyecto Angamarca — Sinde. Quito — Ecuador. 1984.


- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Centrales
 Hidroeléctricas de Mediana Capacidad Grupo II. Informe de Factibilidadd
 Avanzada. Tomo Va. Diseño Hidráulico. Proyecto Angamarca Sinde.
 Quito Ecuador. 1984.
- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Estudio
 Complementario de Impacto Ambiental del Proyecto Hidroeléctrico
 "Angamarca Sinde", Quito.
- 16. INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Estudio de Impacto Ambiental del Proyecto Hidroeléctrico "Angamarca – Sinde" Volumen II Impactos, Medidas de Mitigación y Plan de Manejo, Quito.
- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Estudio de Impacto Ambiental del Proyecto Hidroeléctrico "Angamarca – Sinde" Anexo I, Anexo Metodológico, Quito.


- INSTITUTO ECUATORIANO DE ELECTRIFICACION (INECEL). Centrales
 Hidroeléctricas de Mediana Capacidad Grupo II. Informe de Factibilidad
 Avanzada. Tomo VIII. Costos, Presupuesto y Cronograma Ejecutivo.
 Proyecto Angamarca Sinde. Quito Ecuador. 1984
- FINK G. DONALD / WAYNE H. BEATY, Manual de Ingenieria Electrica, Mc
 Graw Hill, México D.F., 1996.
- MONTOYA ANGEL. MSC. Apuntes de Clase del Curso de Hidrología.
 Guayaquil Ecuador.
- 21. MONTOYA ANGEL. MSC. Ingeniería de Recursos Hidráulicos. Guayaquil Ecuador.
- 22. RAABE JOACHIM. DR. Hydro Power. The Design, Use, and Function of Hydromechanical, Hydraulic, and Electrical Equipment. Graphischer Betrieb, Konrad Triltsch, Würzburg. Germany. 1984.
- TUCCI M CARLOS E. Hidrologia. Ciência e Aplicação. Editora da Universidade. Segunda Edição. Porto Alegre. 2001.


- 24. ZUBICARAY VIEJO Y ALONSO, Energía Eléctrica, Turbinas y Plantas Generadoras, Editorial Limusa, México, 1977.
- 25. COURTLAND A. COLLIER & CHARLES R. GLAGOLA, ENGINEERING ECONOMIC AND COST ANALYSIS, Editora Addison Wesley, California-E.E.U.U., 1998
- 26. AUGUSTO NELSON CARVALHO VIANA Y EDSON DE COSTA BORTONI,


 OPERAÇÃO DE TURBINAS HIDRÁULICAS E REGULADORES DE


 VELOCIDADE, Editorial fupai, Río de Janeiro, 2002.
- BONINI, HAUSMAN Y BIERMAN, Análisis Cuantitativo para los Negocio,
 McGraw–Hill, Santafé de Bogota-Colombia, 2000.

