INGENIERÍA EN LOGÍSTICA Y TRANSPORTE

AÑO:	2019	PERIODO:	PRIMER TÉRMINO
MATERIA:	MODELIZACIÓN DEL TRANSPORTE	PROFESOR:	DAVID DE SANTIS BERMEO
EXAMEN:	TERCERO	FECHA:	11-09-2019

COMPROMISO DE HONOR								
Yo,								
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".								
Firma								

Tema No.1 (50 puntos)

Un problema de transporte consiste en que dos fábricas abastecen cierto artículo a tres tiendas. La cantidad de unidades ofrecidas en las fábricas 1 y 2 es 200 y 300; la que piden las tiendas 1, 2 y 3 es 100, 200 y 50, respectivamente. Las unidades se pueden transbordar entre las fábricas y las tiendas, antes de llegar a su destino final. Los costos de transporte entre las fábricas y tiendas vienen dado en la tabla adjunta

		Fáb	rica	Tienda				
		1	2	1	2	3		
T/0	1	\$0	\$6	\$7	\$8	\$9		
Fábrica	2	\$6	\$0	\$5	\$4	\$3		
	1	\$7	\$2	\$0	\$5	\$1		
Tienda	2	\$1	\$5	\$1	\$0	\$4		
	3	\$8	\$9	\$7	\$6	\$0		

- a) Formule el modelo matemático que le permita atender la demanda de las tiendas minimizando el costo total de transporte.
- b) Implemente el programa en GAMS y responda. ¿Cómo se deberá realizar la distribución? ¿Cuál es el costo total de transporte?

Tema No.2 (50 puntos)

Actualmente usted se encuentra a cargo de la distribución secundaria en la empresa Bebidas S.A Usted tiene que atender la demanda de 11 clientes con los 3 camiones que tiene en su empresa. El costo por km recorrido de cada camión es \$0,5. La distancia entre cada cliente en kilómetros así como su demanda en cajas viene dadas en la tabla adjunta. Cada camión tiene una capacidad de 50 cajas.

	0	1	2	3	4	5	6	7	8	9	10	11	
0	0	157	89	232	249	183	326	58	69	12	308	146	b
1	157	0	68	193	319	37	175	103	92	147	156	100	15
2	89	68	0	203	287	94	242	36	25	80	223	102	13
3	232	193	203	0	186	225	227	224	221	220	218	101	10
4	249	319	287	186	0	356	409	283	288	244	398	223	7
5	183	37	94	225	356	0	167	126	114	175	148	136	8
6	326	175	242	227	409	167	0	278	267	315	19	206	10
7	58	103	36	224	283	126	278	0	11	52	259	125	14
8	69	92	25	221	288	114	267	11	0	62	248	121	10
9	12	147	80	220	244	175	315	52	62	0	296	134	5
10	308	156	223	218	398	148	19	259	248	296	0	191	6
11	146	100	102	101	223	136	206	125	121	134	191	0	11

- a) Formule un modelo matemático que le permita encontrar la distribución óptima, atendiendo la demanda de todos los clientes, sin exceder la capacidad de cada camión minimizando el costo total de transportación.
- b) Implemente el modelo matemático formulado en el literal anterior en GAMS. Indique como sería la planificación óptima, es decir la secuencia de visita de cada camión y el costo total de dicha planificación.
- c) Resuelva el problema planteado utilizando el algoritmo de ahorro y compare la respuesta encontrada en b) ¿De cuánto es la diferencia?.