espol

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO: 2019 - 2020	PERIODO: SEGUNDO TÉRMINO	
MATERIA: ECUACIONES	PROFESORES: P1: Antonio Chong Escobar;	
DIFERENCIALES	P4&6&11: Jennifer Avilés Monroy; P5&12: José Castro	
COORDINADOR:	Carrasco; P7&17: C. Mario Celleri Mujica; P8&14: Elvis	
Antonio Chong Escobar	Aponte Valladares; P9&15: Hernando Sánchez Caicedo; P16:	
Timomo enong 25000m	Liliana Rebeca Pérez. (P: Paralelo)	
EVALUACIÓN: SEGUNDA	FECHA: 27 DE ENERO DE 2020	

COMPONENTE TEÓRICO	
EXAMEN (50 Puntos)	•
PROM. LECCIONES +	
PROM. PRUEBAS DE	
LECTURA	
TOTAL (100 Puntos)	

COMPROMISO DE I	HONOR QUE DEBE LLENAR PARA QUE SU EXA	MEN SEA CALIFICADO
compromiso, reconozco que el pre electrónicos, que sólo puedo usar la y, cualquier instrumento de comun que haya traído conmigo. Además, y que los temas debo desarrollarlos Firmo al pie del presente compron	sente examen está diseñado para ser resuelto de manera individual, quápiz o esferográfico, que sólo puedo comunicarme con la persona respo icación que hubiere traído, debo apagarlo y depositarlo en la parte fron reconozco que no debo consultar libros, notas, ni apuntes adicionales de manera ordenada. niso, como constancia de haber leído y aceptar la declaración anterio comprometo a combatir la mediocridad y actuar con honestidad, por e	ne NO puedo usar calculadora ni equipos nsable de la recepción de esta evaluación tal del aula, junto con algún otro material a las que se entreguen en esta evaluación r.
FIRMA:	NÚMERO DE MATRÍCULA:	PARALELO:
Tema 1 (5 Puntos: 1 punt Complete las siguientes fr		
a) Se conoce que $f(x)$ =	$= x \text{ y } g(x) = x^{-1} \text{ son soluciones linealmente in}$	ndependientes de la ecuación
$x^2y''(x) + xy'(x) - y$	$f(x) = 0$. Las funciones $h_1(x)$ y $h_2(x)$ de una so	olución particular de la forma
$y_p(x) = x h_1(x) + x^{-1}$	$h_2(x)$ para la ecuación $x^2y''(x) + xy'(x) - y(x)$	$= x \ln(x)$ deben satisfacer el
sistema de ecuaciones:	·	
b) La transformada inversa	a de Laplace de $F(s) = 2 + 7e^{-s}$ es:	·
c) La transformada de Lap	place de la función $f(t) = \mu_{\pi}(t)\mu_{2\pi}(t)$ es igual a _	·
d) La transformada inversa	a de Laplace de la función $\frac{e^{-3S}}{S^2 - \pi^2}$ es igual a	
	4 valores propios reales y diferentes, tal que V_i es u 1,2,3,4. Entonces, la solución general del sistem $V_i = S_i w(t)$ es:	

Tema 2 (9 Puntos)
Resuelva el sistema $\begin{cases} y''(t) - 4z(t) = 0 \\ z''(t) - 4y(t) = 0 \end{cases}$, empleando el método del operador diferencial.

Tema 3 (9 Puntos)

Usando el método de los coeficientes indeterminados, halle la solución general de la ecuación diferencial: $\theta''(t) - 2\theta'(t) = cos(t) - sen(2t).$

Tema 4 (9 Puntos)

Sea F(s) = L[f(t)] la transformada de Laplace de f(t). Determine f(t) si $F(s) = \frac{1}{(s-4)^7} + \frac{1}{2}ln\left(\frac{s^2}{s^2+1}\right)$.

Tema 5 (9 Puntos)

Resuelva el siguiente sistema de ecuaciones diferenciales, utilizando la transformada de Laplace:

$$\begin{cases} x' + 4 \int_0^t y(x) dx = t - sen t \\ x' = y' - sen t \end{cases}, \text{ tal que } x(0) = y(0) = 0.$$

Tema 6 (9 Puntos)

Para la ecuación xy''(x) + y(x) = 0 determine los puntos ordinarios y los puntos singulares. Luego, realice el cambio de variable z = x - 1 para determinar la solución y(x) alrededor de $x_0 = 1$.