INGENIERÍA EN LOGÍSTICA Y TRANSPORTE

AÑO:	2020	TÉRMINO:	PRIMERO
MATERIA:	OPTIMIZACIÓN LINEAL	PROFESOR:	DAVID DE SANTIS
EXAMEN:	SEGUNDO	FECHA:	11-09-2020

COMPROMISO DE HONOR					
Yo,					
Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.					
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".					
Firma					

Tema No.1 (30 puntos)

Dado el siguiente problema de programación lineal entera

$$\max F = 3x_1 + 2x_2$$
 Subject to
$$3x_1 + 6x_2 \le 23$$

$$5x_1 + 2x_2 \le 10$$

$$x_1 \ge , x_2 \ge 0 \text{ and both integer}$$

- a) Resolver la relajación lineal del mismo mediante el método gráfico, previamente verifique si puede reducir cada una de las restricciones.
- b) Mediante el algoritmo de corte y ramificación, resolver el problema de programación lineal entero. Escribir la cota superior e inferior, así como el GAP para cada iteración.
- c) Formule las siguiente restricción utilizando programación lineal entera:

Suponga que x_i ser la proporción del componente C_i en una mezcla. Si la proporción de C_1 excede de 0.3, entonces la proporción de C_2 debe ser de al menos 0.1 y la proporción de C_3 no debe exceder 0.2.

d) ¿Si la relajación lineal de un problema de programación lineal tiene solución, el problema de programación lineal entera necesariamente tendrá solución?

Tema No.2 (20 puntos)

Considere el siguiente problema de programación lineal(primal)

Maximizar
$$Z = x_1 - 3x_2 + 2x_3$$
, sujeta a
$$2x_1 + 2x_2 - 2x_3 \le 6 \quad \text{(recurso 1)}$$
$$-x_2 + 2x_3 \le 4 \quad \text{(recurso 2)}$$
 y
$$x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0.$$

- a) Plantee el problema dual del problema primal dado.
- b) Resuelva el problema dual por un método que usted conozca.
- c) A partir de la solución encontrada en b, complete la siguiente tabla(tableau) con la base óptima del método simplex para el problema primal. Escribir los cálculos realizados para completar la tabla.

BASE	x1	x2	х3	s4	s5	
Z						

- d) ¿Cuánto es lo máximo que estaría dispuesto a pagar para adquirir una unidad más del recurso 1?
- e) Suponga que el recurso 1 se incrementa en 2 unidades, es decir de 6 a 8. ¿Cómo esto afecta la solución óptima (variables de decisión y función objetivo)?
- f) Suponga que los coeficientes de la variable x_1 , cambia de 1 unidad a 3 y la variable x_2 cambia de 2 a 4. ¿Cómo esto afecta la solución óptima (variables de decisión y función objetivo)?