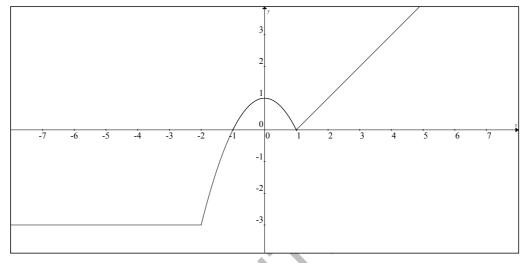


ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL CURSO DE NIVELACIÓN INTENSIVO OCTUBRE 2017

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS EXAMEN FINAL DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN COMERCIAL **GUAYAQUIL, 29 DE NOVIEMBRE DE 2017**

HORARIO: 11H30 - 13H30 **VERSIÓN CERO**

1) Dada la gráfica de la función $f: \mathbb{R} \to \mathbb{R}$ en el plano cartesiano:



Si se define la función $g\colon \mathbb{R} \mapsto \mathbb{R}$ tal que g(x) = -f(x) , entonces el valor de g(-3) + g(0) - g(1) es igual a:

a)
$$-3$$

b)
$$-2$$

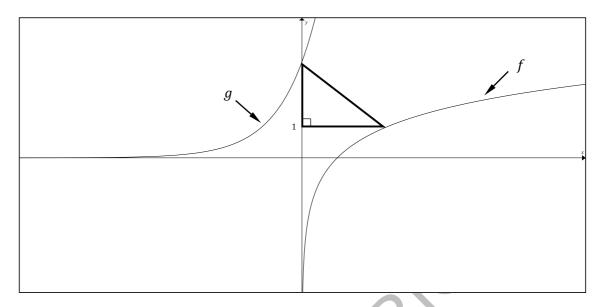
2) Dados los números $a=[\![-e]\!]-2$ y $b=-sgn\left(log_{1/3}(9)\right)$, la cantidad de números enteros que pertenecen al intervalo (a, b] es:

- a)
- b)

3) Dadas las matrices $A=\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$ y $B=\begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}$, el determinante de la matriz A^TB es igual a:

b)
$$-4$$
 c) 0

Dadas las gráficas de la función $f: \mathbb{R}^+ \to \mathbb{R}$ definida por f(x) = ln(x) y su función inversa desplazada $g(x) = f^{-1}(x+1)$.



El área de la superficie del triángulo rectángulo de la figura, en u^2 , es igual a:

a)
$$\frac{e^2 - e^2}{2}$$

b)
$$\frac{e^2}{2}$$

c)
$$\frac{e^2 + e^2}{2}$$

b)
$$\frac{e^2}{2}$$
 c) $\frac{e^2 + e}{2}$ d) $\frac{e^2 - e}{4}$ e) e^2

5) El período fundamental T de la función $f: \mathbb{R} - \left\{ \left(\frac{2n+1}{4}\right)/n \in \mathbb{Z} \right\} \mapsto \mathbb{R}$ tal que $f(x) = tan(2\pi x)$ es igual a la longitud r del radio de la circunferencia que se encuentra centrada en el origen de coordenadas. Por lo tanto, la ecuación general de esta circunferencia es:

a)
$$x^2 + y^2 - 1 = 0$$

b)
$$x^2 + y^2 - 2 = 0$$

a)
$$x^2 + y^2 - 1 = 0$$

b) $x^2 + y^2 - 2 = 0$
c) $2x^2 + 2y^2 - 1 = 0$
d) $4x^2 + 4y^2 - 1 = 0$

d)
$$4x^2 + 4y^2 - 1 = 0$$

e)
$$16x^2 + 16y^2 - 1 = 0$$

Considerando los valores para los cuales está definida la expresión algebraica:

$$\frac{x^3 - x}{\frac{1}{x^{-1}}} + \frac{x - 4}{4 - x} - \left(\frac{\mu(\sqrt{5})}{\log\left(\frac{1}{10}\right)}\right)^{-1}$$

al simplificarla, se obtiene:

a)
$$x^4 - x^2$$

b)
$$x^2 - 1$$

c)
$$x^2 - 3$$

d)
$$x^2 + 1$$

e)
$$x^2 + 2$$

- 7) Considere las proposiciones simples:
 - a: Toda función polinomial es suave y continua.
 - b: El grado de una función polinomial coincide con la cantidad de raíces reales que tiene.
 - c: Toda función racional tiene asíntotas verticales.

Identifique la proposición VERDADERA:

- a) $(a \lor b) \rightarrow c$
- b) $(c \wedge a) \vee b$
- c) $\neg b \rightarrow (c \rightarrow a)$
- d) $(b \rightarrow c) \rightarrow \neg a$
- e) $\neg c \land (a \rightarrow b)$
- Dada la función $f: \mathbb{R} \to \mathbb{R}$ definida por:

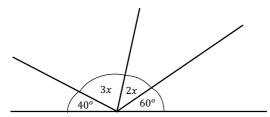
$$f(x) = \begin{cases} 1 - x, & x < -1 \\ x, & -1 \le x \le 1 \\ -x - 1, & x > 1 \end{cases}$$

Identifique la proposición VERDADERA:

- a) f es continua en todo su dominio.
- b) f es impar.
- c) *f* es sobreyectiva.
- d) f no es inyectiva.
- e) f es estrictamente creciente en el intervalo (2,3).
- 9) Dadas las funciones $f: \mathbb{R} \to \mathbb{R}$ y $g: \mathbb{R} \to \mathbb{R}$ tales que $f(x) = sgn(x^2 3x + 2)$ y $g(x) = 2 \operatorname{sen}(\pi x)$, el valor numérico de $\left((f \circ g) \circ g \right) \left(\frac{1}{2} \right) + \left(f \circ (g \circ f) \right) (-2)$ es:
 - a) 0
- c) 2
- d) 3
- e) 4
- 10) Sea el conjunto $Re = \mathbb{C}$ y el predicado p(x): $\frac{1}{2} 3i \sqrt{3} + 7i = x + 4i$. Si $Ap(x) = \{a\}$ es su conjunto de verdad, el valor numérico de $\left[\frac{a+1}{3}\right]$ está en el intervalo:

 - a) [-3, -2) b) [-2, -1) c) [-1, 0) d) [0, 1) e) [1, 2)

11) Con base en la siguiente figura (que no está a escala), se puede AFIRMAR que:



- a) $(x + 84^{\circ})$ es un ángulo agudo.
- b) $(106^{\circ} x)$ es un ángulo recto.
- c) $(x + 154^{\circ})$ es un ángulo llano.
- d) 18^{o} es la medida del ángulo suplementario de 10x.
- e) $(2x + 65^{\circ})$ no es un ángulo obtuso.
- 12) El valor de la proyección escalar del vector $2\vec{A} \vec{B}$ sobre el vector \vec{B} , siendo los vectores $\vec{A} = i + j + k$ y $\vec{B} = -j + k$ es igual a:

 - a) $\frac{1}{2}$ b) $-\frac{1}{2}$ c) -1

13) Dados los conjuntos $Re_x=Re_y=\mathbb{R}$ y el predicado de dos variables

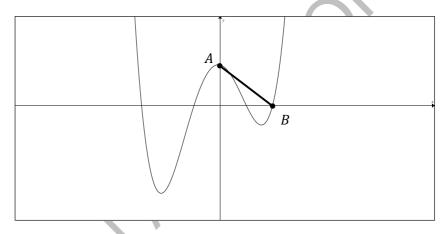
$$p(x,y): \begin{cases} x\left(x^2 + \frac{y^3}{x}\right) = -3xy(x+y) \\ x^3 - 2y^3 = 24 \end{cases} \text{ ; si } Ap(x,y) = \{(a,b)\} \text{ es su conjunto de }$$

verdad, entonces el valor numérico de $\frac{a-b}{2}$ es:

- e)

- 14) Si la función cuadrática $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = -\frac{1}{4}x^2 x + 4$ se expresa en la forma $f(x) = a(x+h)^2 + k$ donde a, h y k son constantes, el valor numérico de (4a + h/2 + k) pertenece al intervalo:
 - a) (0, 1]
 - b) (1, 2]
 - c) (2,3]
 - d) (3, 4]
 - e) (4,5]
- 15) Dada la gráfica de la función polinomial $f: \mathbb{R} \mapsto \mathbb{R}$ cuya regla de correspondencia es $f(x) = x^4 + x^3 - 7x^2 - x + 6$, la longitud del segmento de recta \overline{AB} , en u, es igual a:

- b) $\frac{7\sqrt{6}}{2}$
- c) $3\sqrt{2}$
- d) $2\sqrt{10}$
- e) $6\sqrt{2}$

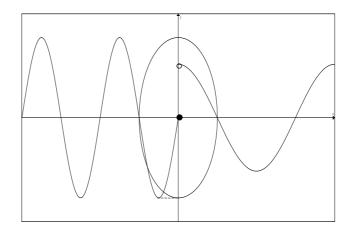


16) Dada la gráfica de la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \begin{cases} 3 \operatorname{sen}\left(\frac{\pi}{2}x\right), & x \leq 0 \\ 2 \cos\left(\frac{\pi}{4}x\right), & x > 0 \end{cases}$

la ecuación de la elipse en forma general es:

- a) $9x^2 + 4y^2 36 = 0$

- b) $9x^2 + 4y^2 1 = 0$ c) $9x^2 + y^2 9 = 0$ d) $4x^2 + 9y^2 36 = 0$ e) $4x^2 + 9y^2 1 = 0$



17) Dadas las curvas en coordenadas polares:

$$\begin{cases} r^2 = -sen(2\theta) \\ r = \sqrt{2} sen(\theta) \end{cases}$$

 $\begin{cases} r^2 = -sen(2\theta) \\ r = \sqrt{2} \ sen(\theta) \end{cases}$ El punto de intersección de estas curvas en el segundo cuadrante tiene la forma $\left(\frac{a}{2}, \frac{\pi}{b}\right)$. Por lo tanto, el valor numérico de (a+b) es:

- a) $\frac{5}{2}$ b) $\frac{11}{5}$ c) $\frac{17}{3}$ d) $\frac{10}{3}$ e) $\frac{16}{5}$

- 18) Dados los conjuntos $Re_x=Re_y=\mathbb{R}$ y el predicado de dos variables $p(x,y)\colon \begin{cases} |y+2| \leq 1 \\ y+|x| \leq 0 \end{cases} \text{, la representación gráfica del conjunto de verdad } Ap(x,y)$ debe ser realizada en los cuadrantes:
 - a) *I* y *II*

- c) III y IV d) I y IV e) I solamente

19) En la siguiente figura (que no está a escala) se han trazado dos circunferencias tangentes interiores en el punto A de centros O_1 y O_2 , donde \overline{AB} es un diámetro de la circunferencia mayor. Si el segmento \overline{CT} es tangente en el punto T, la longitud de la circunferencia mayor es 10π cm, $\overline{AC}=6$ cm y $\overline{CT}=3$ cm, entonces el área del círculo menor, en cm^2 , es:

d)
$$\frac{361}{25} \pi$$

e)
$$\frac{289}{16} \pi$$

20) En un cono recto se conoce que la distancia desde el centro de su base, de $10\ cm$ de diámetro, a la generatriz mide 3 $\it cm$. Por lo tanto, su volumen, en $\it cm^3$, es:

a)
$$\frac{125}{4}\pi$$

b)
$$\frac{25}{4}\pi$$

c)
$$\frac{500}{9}\pi$$

d)
$$\frac{100}{9}\pi$$

c)
$$\frac{500}{9}\pi$$
 d) $\frac{100}{9}\pi$ e) $\frac{200}{3}\pi$