

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Aplicación AMEF en la unidad de licuación de cloro para disminuir paradas no programadas en una Planta de producción de cloro y soda"

PROYECTO DE TITULACIÓN

Previo a la obtención del Título de:

MAGÍSTER EN MEJORAMIENTO DE PROCESOS

Presentada por:

María Fernanda Desiderio Moreira

GUAYAQUIL – ECUADOR Año: 2021

AGRADECIMIENTO

A mi director de proyecto,
PhD Marcos Buestán, a mi
equipo de trabajo, en
especial a Fernando,
Christian, Gregorio por su
total apoyo y compromiso en
lograr los objetivos de este
trabajo, a mi esposo, Nicolás,
por su paciencia y su
acompañamiento a lo largo
de este trayecto.

DEDICATORIA

Para ti Nicolás y por nuestro futuro hijo.

TRIBUNAL DE TITULACIÓN

Marcos Buestán, Ph.D. Director del proyecto

María Fernanda LópezMSc. Vocal

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este proyecto de titulación, me corresponden exclusivamente; y el patrimonio intelectual del mismo a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

María Fernanda Desiderio Moreira

RESUMEN

El siguiente proyecto tuvo como finalidad reducir las paradas no programadas de la unidad de licuación a 0 horas basado en el análisis de modo y efecto de falla. De acuerdo con este análisis se buscó aumentar la confiabilidad de los equipos de planta, mejorar la planificación de mantenimiento preventivo y a su vez capacitar al personal en las buenas prácticas de operación y cuidado que requiera la unidad. En el Ecuador, la industria química de producción de cloro e hidróxido de sodio es esencial para los procesos de limpieza y desinfección del agua, a su vez para la elaboración de productos de uso personal diario. Con la metodología utilizada que incluyó el levantamiento de información de todos los equipos de la unidad, desarrollo del AMEF, la determinación de equipos críticos e implementación de mejoras se logró alcanzar una reducción de horas de paradas no programadas del 63% desde diciembre del 2020 hasta agosto 2021.

SUMMARY

The following project aimed to reduce unscheduled shutdowns of the chlorine liquefaction unit to 0 hours based on the failure mode and effect analysis. According to this analysis, it was sought to increase the reliability of plant equipment, improve preventive maintenance planning and train personnel in good operating and care practices required by the unit. In Ecuador, the chemical industry of chlorine is essential for water cleaning and disinfection processes, also for the elaboration of products for daily personal use. With the used of the following methodology, which included the gathering of information from all the equipment of the unit, development of the FMEA, the determination of critical equipment and implementation of improvements, it was possible to achieve a reduction of hours of unscheduled stops of 63% from December 2020 to August 2021.

ÍNDICE GENERAL

RESUMEN	6
SUMMARY	6
ÍNDICE GENERAL	7
SIMBOLOGÍA	8
ÍNDICE DE FIGURAS	9
ÍNDICE DE TABLAS	10
CAPÍTULO 1	11
1.1 Generalidades	11
1.1.1. Área de estudio	11
1.1.2. Descripción del proceso	11
1.2. Planteamiento del problema	14
1.3. Objetivos	17
1.3.1. Objetivo general	17
1.3.2. Objetivos Específicos	17
1.4. Metodología	17
1.5. Análisis de modo y efecto de fallas	18
CAPÍTULO 2	22
2. Desarrollo de la metodología	22
2.1. Levantamiento de información	22
2.2. Desarrollo de AMEF de proceso	24
2.3. Equipos críticos	34
2.4. Implementación de mejoras	36
CAPITULO 3	52
3.1. Resultados	52
CAPITULO 4	56
4.1. Conclusión	56
4.2. Recomendaciones	56
RIRI IOCRAFÍA	57

SIMBOLOGÍA

°C Kg TON Grados centígrados kilogramos Toneladas

ÍNDICE DE FIGURAS

Figura 1. Diagrama de proceso de licuación - recorrido del cloro	12
Figura 2. Diagrama de sistema frigorífico para licuación de cloro – lado freón	13
Figura 3. Horas de paradas de licuación por mes en el año 2020	14
Figura 4 Línea de tiempo de porcentaje de paradas no programadas	16
Figura 5. Road map de la metodología a aplicar para reducir las paradas no programadas en la unidad de licuación	18
Figura 6 Ejemplo de clasificación del valor de gravedad para el AMEF	19
Figura 7. Ejemplo de clasificación del valor de ocurrencia para el AMEF	20
Figura 8. Ejemplo de clasificación del valor de detección para el AMEF	20
Figura 9. Bomba de cloro líquido en operación	38
Figura 10. Instalación de bota que retiene las virutas de hierro antes de que sean succionadas por la bomba de cloro líquido	
Figura 11. Pantallas de sala de control antes de habilitar los enclavamientos de P	
Figura 12. Manómetro con switch de presión instalado en la descarga de la bomba	a 39
Figura 13. Pantallas de sala de control después de habilitar el trip por baja presión descarga	
Figura 14. Sensor de temperatura y vibración instalado	40
Figura 15. Aspirador de cloro K-401 integrado por motor, bandas y voluta	41
Figura 16. Visualización de sensores de temperatura en la cajera y entrada de air sello	
Figura 17. Cambio de rotámetro por uno de mayor flujo	43
Figura 18. Consumo de bandas para el aspirador K-401 en SAP	44
Figura 19. Tanque T-406 que recibe el cloro líquido que se genera en el licuador	45
Figura 20. Visualización de sensores de nivel bajo diferentes principios de medicio	ón. 46
Figura 21. Diferencias de la medición de nivel entre los dos sensores	47
Figura 22. Cajetín que mantiene libre de humedad el computador UNISAB del compresor de freón Sabroe.	47
Figura 23. Licuador de cloro/ Evaporador de freón E-405	49
Figura 24. Instalación de ojos de buey para visualización de nivel de freón líquido evaporador	
Figura 25. Horas de paradas de licuación por mes en el año 2021	52
Figura 26 Porcentaje de paradas de planta por mes, año 2020-2021	54

ÍNDICE DE TABLAS

Tabla 1. Detalle de paradas de unidad de licuación por fallo	. 14
Tabla 2. Porcentaje de paradas de planta no programadas evaluada por motivo	. 15
Tabla 3. Descripción de equipos del lado cloro de la unidad de licuación	. 22
Tabla 4. Descripción de los equipos del lado Freón de la unidad de licuación	. 23
Tabla 5. Evaluación de la gravedad o severidad del fallo para el proceso de licuación	
Tabla 6. Evaluación de la ocurrencia del fallo para el proceso de licuación	. 25
Tabla 7. Evaluación de detección de fallo de la unidad de licuación	. 25
Tabla 8. Desarrollo de AMEF en la unidad de licuación	. 27
Tabla 9. Resumen de modos y efectos de falla con mayor número NPR	. 34
Tabla 10. Tabla de criterios para establecer las consecuencias en la matriz de criticidad	. 35
Tabla 11. Matriz de criticidad	. 35
Tabla 12. Resumen de mejoras implementadas	. 51
Tabla 13. Detalle de paradas de unidad de licuación por fallo	. 52
Tabla 14. Comparación de porcentajes de parada de planta periodo 2020-2021	. 54
Tabla 15. Cuadro comparativo de horas de paradas no programadas 2020-2021	. 55

CAPÍTULO 1

1.1 Generalidades

1.1.1. Área de estudio

En una Planta Química se obtienen los siguientes materiales por medio de electrólisis de salmuera: Cloro gas húmedo, hidróxido de sodio 32%, Hidrógeno y salmuera desgastada. Estos materiales se combinan mediante diferentes operaciones unitarias para obtener productos finales tales como: Hipoclorito de sodio, ácido clorhídrico 32%, cloro líquido y más hidróxido de sodio.

El hipoclorito de sodio es obtenido mediante la reacción exotérmica del cloro gas húmedo y el hidróxido de sodio diluido. La síntesis de ácido clorhídrico se obtiene a partir de la combustión de hidrógeno y cloro gas húmedo para luego ser absorbido por agua desmineralizada. Para obtener el cloro líquido es necesario que el cloro gas húmedo pase por un proceso de secado con ácido sulfúrico y luego a la unidad de licuación donde cambiará su estado bajando su temperatura a una presión determinada. Todos estos productos finales son consumidores de cloro gas húmedo.

Actualmente se producen 21,5 TON de cloro gas húmedo a una carga máxima de 16 KA que son repartidas entre los diferentes consumidores de la siguiente manera: 10 TON en hipoclorito, 3,5 TON en ácido clorhídrico y 8 TON en cloro líquido y a esa misma carga se obtienen aproximadamente 76 TON de hidróxido de sodio al 32%. Entre todos los procesos la unidad de licuación de cloro es aquella parte de planta Cloro Soda que limita la capacidad de producción de los otros materiales cuando para debido a que obliga a bajar carga y a producir menos hidróxido de sodio, sustancia necesaria para la elaboración de diferentes productos de uso diario como: jabones, desinfectantes, etc.

Cuando la unidad de licuación se para por falla en uno de sus equipos, las 8,5 TON de cloro gas húmedo no tendrían donde consumirse por lo que serían enviadas a la unidad de hipoclorito de sodio. Sin embargo, esta última unidad se limita a consumir solamente 12 TON de cloro gas húmedo por lo que enviar 6,5 TON extras provocaría una sobrecarga en el sistema. Si esto sucede no hay más opción que bajar carga del electrolizador para producir menos cloro gas húmedo y por ende menos hidróxido de sodio.

1.1.2. Descripción del proceso

El cloro gas húmedo obtenido por electrólisis pasa por un proceso de secado con ácido sulfúrico antes de ingresar a la unidad de licuación. Luego de ese proceso, el cloro fluye por la válvula PV-402 y eleva su presión luego de que es aspirado por el soplador de cloro K-401, como se muestra en la figura 1. Al comprimirse el cloro gas seco se calienta por lo que será necesario el intercambiador E-404 para extraer su calor, una parte del cloro recirculará hacia el aspirador para mantenerlo refrigerado y otra parte seguirá su

camino hacia el licuador E-405 donde el cloro gas intercambiará su calor con el sistema de refrigeración que utiliza freón para cambiar su estado a líquido. Como el proceso no es 100% eficiente, una parte del cloro gas retornará a la unidad de hipoclorito. Una vez obtenido el cloro líquido este será almacenado en el tanque T-406 provisionalmente y será enviado por control de nivel hacia un Isotanque mediante la bomba de alta presión P-405. El producto final debe ser calentado a cierta temperatura para su almacenamiento y posterior envasado por eso antes de llegar al isotanque es necesario que pase por otro intercambiador de calor, el E-407/E-408 para calentarlo. Una vez en almacenamiento este será utilizado para llenar cilindros ya sea de 1000 kg, 907 kg o 68 kg.

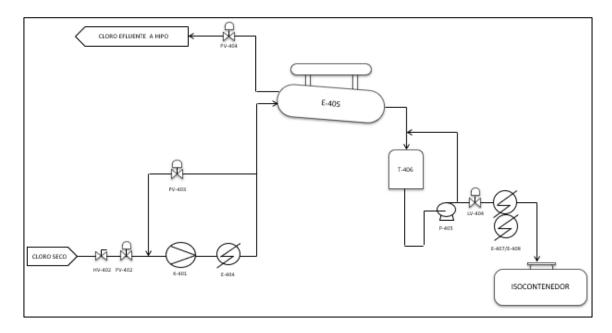


Figura 1. Diagrama de proceso de licuación - recorrido del cloro

Por otro lado, la licuación ocurre gracias al sistema de refrigeración, como se muestra en la figura 2, debido a que el freón es el que permite absorber el calor del cloro para que este pueda cambiar su estado a líquido. El sistema de freón se compone de un compresor, equipo que permite que se eleve su presión y temperatura, luego es enviado hacia un condensador que utiliza agua de enfriamiento para bajar la temperatura del freón y cambiar su estado a líquido. El freón líquido viaja por tubería hacia el evaporador, que en este caso es el E-405 donde se licua el cloro, pero antes de llegar debe disminuir su presión con la ayuda de una válvula de expansión. En el E-405 su temperatura se eleva al absorber el calor del cloro y regresa al compresor en estado de gas.

Todos estos equipos forman parte del sistema de licuación y permiten mantener la planta operativa a la máxima carga. Cada equipo tiene su función determinada por lo que la disponibilidad operativa es esencial. Sin el aspirador K-401 no será posible elevar la presión de cloro para que este pueda llegar a licuarse, sin el intercambiador E-404 no será posible el enfriamiento del aspirador por medio de la recirculación y tampoco podrá llegar a la temperatura adecuada para que cambie su estado a líquido en el evaporador. Sin la bomba P-405 no será posible bajar el nivel del tanque reservorio T-406 y no se llenará el isotanque. Como se explica, si alguno de estos equipos sufre un desperfecto será obligatorio hacer el mantenimiento correctivo.

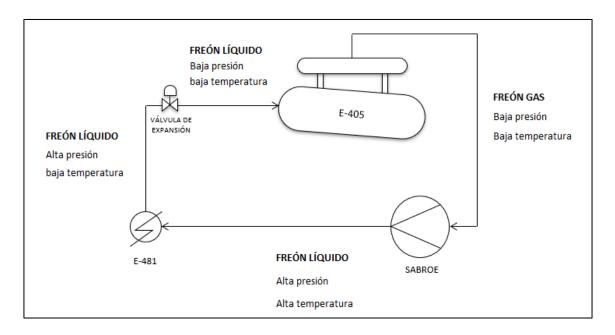


Figura 2. Diagrama de sistema frigorífico para licuación de cloro – lado freón

El daño en alguno de estos equipos, como se menciona anteriormente, supondría perjuicios de diferentes magnitudes para la planta ya que se tendría que parar la unidad para reparación inmediata y esto implicaría bajar carga del electrolizador lo cual perjudicaría el índice de producción de hidróxido de sodio. La operación de la unidad de hipoclorito se vuelve inestable debido a que estaría operando a su capacidad máxima y frenaría otras actividades que se realizan en planta como el llenado de cilindros de cloro. Para que la planta opere normalmente es necesario mantener una carga estable.

1.2. Planteamiento del problema

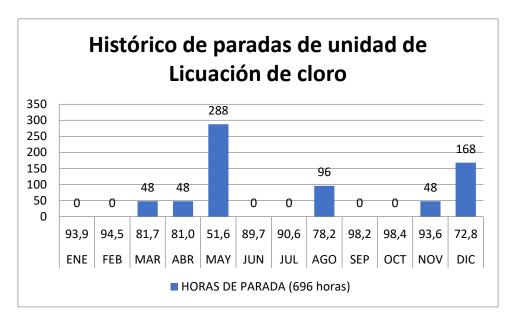


Figura 1. Horas de paradas de licuación por mes en el año 2020 Planta Química, Data link departamento de producción

Tabla 1. Detalle de paradas de unidad de licuación por fallo

RAZÓN DE PARADA	%	HRS
		PARADAS
LICUACIÓN	12,2%	84:47:00
MANTENIMIENTO GENERAL	30,9%	215:17:59
ELECTROLIZADOR	52,5%	365:08:00
CORTES EXTERNOS, FALLAS MENORES	4,5%	31:19:12
	100%	696:32:11

Planta Química, Departamento de mantenimiento

Los datos de las horas de las paradas de la unidad de licuación se obtienen del histórico (Data link de Planta Química) de encendido del compresor Sabroe, debido a que cuando para esta unidad necesariamente para todo el proceso.

Durante el año 2020, las paradas de la unidad de licuación suman aproximadamente 696 horas (figura 3), de ese total el 12,3% fueron problemas causados por los equipos de ese proceso. El 31,2% de esas horas fueron aquellas que están programadas para mantenimiento general anual. El 53% fueron paradas del electrolizador por problemas en el tratamiento de la salmuera y por cambio de membranas debido al tiempo de operación. El 4,5% restante fueron por cortes de energía externos y fallos menores.

El 12,3% representan 85 horas de paradas no programadas en la unidad de licuación que provocaron una pérdida de producción de 31,5 TON de cloro líquido y 66 TON de

hidróxido de sodio por operación a baja carga. Esto da como resultado una pérdida de \$71.908,59 solamente para dar las condiciones de trabajo sin contar el mantenimiento correctivo que a su vez fue de \$15.350. En total para el año 2020 hubo un total de pérdidas de capital de \$88.000 por la no producción de cloro líquido e hidróxido de sodio y el respectivo mantenimiento. De enero a mayo del 2021, el costo de mantenimiento correctivo debido a fallos de la unidad va sumando \$16.838 debido a reparaciones de bombas de cloro P-405, revisión de instrumentos, fugas de cloro en las líneas entre otros problemas menores.

Es de vital importancia para la empresa que la unidad de licuación se mantenga operativa para cumplir con la demanda de hidróxido de sodio actual y por la seguridad del proceso. Dicha unidad es la que permite mantener la máxima carga del electrolizador para producir las 76 TON de hidróxido de sodio diarias necesarias para el consumo en el proceso y para la venta al cliente final. Adicional, la empresa tiene entre sus objetivos mantener menos del 2,5% o 18 horas máximas de paradas no programadas mensuales y el cuidado de la salud de sus trabajadores.

Los eventos ocurridos en el año 2020 se resumen en el siguiente cuadro (Tabla 2), esta información fu solicitada al área de mantenimiento que es el área responsable de llevar el control de las horas de paradas no programadas ya sea por mantenimiento o por instrumentación.

Tabla 2. Porcentaje de paradas de planta no programadas evaluada por motivo

PARADAS NO PROGRAMADAS CLSO 2020 [2,5%-18h]

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Días [#]	31,0	29,0	31,0	30,0	31,0	30,0	31,0	31,0	30,0	31,0	30,0	31,0
Electromecánico - Licuación [h]	0,0	0,0	8,5	0,0	6,2	0,0	0,0	0,0	0,0	0,0	8,0	17,6
Instrumentación - Licuación [h]	0,0	0,0	4,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Paradas Varías [h]	0,9	6,4	39,7	11,3	23,9	5,8	9,1	1,6	0,0	4,0	20,8	37,7
Total Planta parada (%)	0,1	0,9	7,0	1,6	4,0	0,8	1,2	0,2	0,0	0,5	4,0	7,4

Planta Química, Departamento de mantenimiento

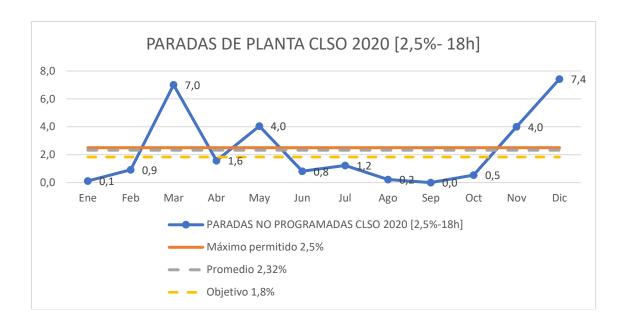


Figura 2 Línea de tiempo de porcentaje de paradas no programadas Planta química, Departamento de mantenimiento.

El límite de horas de paradas de planta, que incluyen la parada de la unidad de licuación, NO programadas establecido por la empresa es de máximo 2,5%, es decir, 18 horas mensuales, valor que es declarado ante el sistema de gestión ISO 9001-2015. Como se observa en la línea de tiempo (figura 4) existen valores por encima del promedio exigido en los meses de marzo, abril, noviembre y diciembre. El promedio anual de paradas no programadas del año 2020 fue de 2,3%, con este proyecto se plantea reducir hasta un 1,8% de las horas de paradas no programadas debido a fallos en la unidad de licuación.

Como se ha descrito en el proceso, es necesario aclarar que estos datos pertenecen a las paradas de planta general que por ende paran la unidad de licuación. Las paradas de licuación no siempre terminan en una parada de planta general sino también en una disminución de carga del electrolizador. Estas dos situaciones representan igual una pérdida de producción para la empresa equivalente a horas de parada general.

Otra de las razones por la cual es de suma importancia para la empresa reducir las horas de parada de planta no programadas de la unidad de licuación es el riesgo que implica tener el sistema inundado ya sea con cloro gas o cloro líquido. El cloro es una sustancia gaseosa muy tóxica a mínimas concentraciones por lo cual no es seguro que haya fugas de este al ambiente. Si los equipos llegarán a fallar es muy probable que se rompan los sellos de agua que controlan la presión diferencial del electrolizador y haya fuga de gas al ambiente debido a que la cantidad de cloro que no se envía a licuación debe ser absorbido rápidamente por los otros procesos de hipoclorito y ácido clorhídrico que como antes se menciona trabajan ya al límite de su capacidad.

1.3. Objetivos

1.3.1. Objetivo general

Reducir el tiempo de paradas no programadas implementando el análisis de modo y efecto de falla de los equipos de la unidad de licuación a cero horas y, por tanto, reducir el porcentaje de paradas no programadas en un 20% hasta el año 2022.

1.3.2. Objetivos Específicos

- Levantar información de equipos y proceso de acuerdo con históricos de operación
- Desarrollar AMEF e identificar los equipos y procesos críticos de la unidad
- Mejorar la disponibilidad de los equipos por medio de la gestión de mantenimiento y las buenas prácticas de operación.

1.4. Metodología

La unidad de licuación cloro es aquella parte de planta Cloro Soda que al estar fuera de servicio limita la capacidad de producción de los otros materiales. Por esa razón que uno de los principales enfoques de este trabajo se basa en la gestión de mantenimiento y operación de los equipos involucrados en la unidad.

Se establece la metodología como se muestra en la figura 5 que inicia con el levantamiento de los datos e información de los equipos involucrados y como estos están operando actualmente para luego desarrollar el análisis de modo y efecto de falla en el proceso, el cual se explicará más adelante. Esto nos ayudará a identificar los equipos que representan la mayor pérdida de producción relacionada a las toneladas de hidróxido de sodio si estos llegaran a fallar.

Reconocidos los equipos críticos y mediante la formación de equipos de trabajo multidisciplinarios se deberá realizar un análisis de causa-raíz y establecer los motivos por los cuales se dan las paradas en la unidad y las posibles soluciones que permitan aumentar la confiabilidad y disponibilidad de los equipos. Se identificará la causa – raíz de los modos de fallos por medio del análisis de los 5 porqués. Este análisis permitirá obtener la información adecuada para mejorar la situación actual y esta pueda ser llevada a la excelencia operativa. Se determina la causa raíz de los paros no programados y se definen acciones correctivas para luego comprobar su eficacia. Adicional, se deja constancia de las observaciones encontradas por escrito para que la empresa tenga la información en el momento oportuno. (Parra C., 2021)

Una vez obtenidas las causas principales de los fallos en la unidad de licuación, se reunirá el equipo de trabajo, áreas de mantenimiento y producción, para la elaboración de la lluvia de ideas para establecimiento de mejoras. Las cuáles serán implementadas una vez que el personal de producción sea capacitado para la correcta operación de los equipos y así estén pendientes de cualquier condición subestándar.

Las mejoras implementadas en la gestión de mantenimiento y operación serán medidas con el número de horas de paradas no programadas durante el periodo 2021-2022.

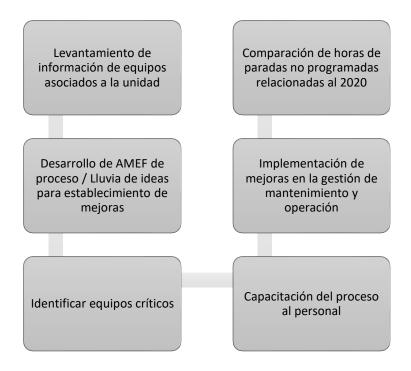


Figura 3. Road map de la metodología a aplicar para reducir las paradas no programadas en la unidad de licuación.

1.5. Análisis de modo y efecto de fallas

El análisis de modo y efecto de fallas aplicado al proceso ayuda a entender de manera más exhaustiva los modos de fallos, sus causas y efectos. Estos permiten planificar las tareas de mantenimiento de tal manera que aumente la confiabilidad del sistema y reduzcan considerablemente las paradas no programadas de la unidad. (Aguilar-Otero J., 2010)

El AMEF es aquel proceso que permite identificar los problemas antes de que sucedan, asignando valores a la severidad, recurrencia y capacidad de ser detectados por controles ya establecidos y a su vez determinar planes de acción para evitarlos. (Martínez, 2004)

Es un procedimiento estructurado que identifica y previene tanto como sea posible todos los modos de fallas que tiene un equipo o proceso. Para obtener la información del análisis es necesario seguir los siguientes pasos de implementación:

- Identificar todas las funciones de los equipos del proceso de licuación que generan mayor impacto económico.
- Identificar los modos de falla potencial del equipo en estudio.

- Identificar los posibles efectos que conlleva ese modo de falla.
- Identificar las posibles soluciones para que la falla no ocurra.
- Especificar la clasificación de gravedad, ocurrencia y número de prioridad de riesgo en el proceso.
- Proponer mejoras para cumplir con el objetivo de eliminar los paros no programados de la unidad de licuación de cloro.

El valor de gravedad calcula que tanto impacta o que tan intenso es el efecto del fallo en el resultado final del proceso. Se califica del 1 al 10 en donde 1 representa el menor efecto posible y 10 como fallas y efectos fatales.

CLASIFICACIÓN	ESCALA	EJEMPLO
No resulta/ Ninguno	1	No hay efecto en la calidad
Muy Menor	2	Calidad con características que no perturban
Menor	3	Pequeños consecuencias a la calidad
Muy Bajo	4	Pequeños daños
Bajo	5	Fallos que resultan en algunas insatisfacciones
Moderado	6	Fallos que ocasionan inconvenientes
Alto	7	Calidad insatisfactoria
Muy Alto	8	Calidad muy insatisfactoria
Peligroso con Advertencias	9	Causas que potencian malos efectos
Peligroso sin Advertencias	10	Modos de fallas y efectos que son fatales para la calidad

Figura 6 Ejemplo de clasificación del valor de gravedad para el AMEF (Salazar, Mosquera, Suarez, & Mendoza)

El valor de ocurrencia es la posibilidad de que se dé la causa por la cual una falla ocurra durante cierto periodo de tiempo. Este valor también se calcula mediante una escala del 1 al 10, siendo 1 que el evento no ocurra y 10 que el evento sea muy seguro de dar falla.

Tabla 2. Rangos de ocurrencia.

CLASIFICACIÓN	ESCALA	CRITERIO
Nunca	1	Historial de no fracaso
Ocasionalmente	2	Posibles fallas muy raras
Muy poco	3	La posibilidad de falla es muy poco
Poco de todo	4	La calidad sufre molestias menores
Bajo	5	Algunas posibles fallas
Medio	6	Se da la posibilidad de fallo
Poco alto	7	La posibilidad de fracaso es suficientemente alta
Alto	8	Numero de fallas alto
Managalian	0	El número de las posibilidades de fallo es
Muy alto	9	extremadamente alto
Casi seguro	10	El fracaso es casi seguro

Figura 7. Ejemplo de clasificación del valor de ocurrencia para el AMEF

(Salazar, Mosquera, Suarez, & Mendoza)

El valor de detección es aquel que identifica los controles para que el modo de falla o la causa del fallo no se dé. El rango de este valor también se lo establece del 1 al 10 como 1, el control está definitivamente detectado, y 10 como no existen controles que permitan detener el modo de falla.

Tabla 3. Rangos de detección.

CLASIFICACIÓN	ESCALA	CRITERIO
Casi seguro	1	Controles definitivamente detectados
Muy alto	2	Control casi detectado
Alto	3	Controles con mayor posibilidad de detectar
Moderadamente alto	4	Detección de los controles suficientemente altos
Moderado	5	Detección de los controles moderadamente altos
Bajo	6	Detección de los controles bajo
Muy bajo	7	Detección de los controles son muy bajas
Remoto	8	Detección de los controles son muy pocas
Muy remoto	9	Los controles pueden no detectar
Imposible	10	Los controles ciertamente no detectan

Figura 8. Ejemplo de clasificación del valor de detección para el AMEF

(Salazar, Mosquera, Suarez, & Mendoza)

Luego de obtener los tres valores se procede al cálculo del número de prioridad de riesgo (RPN) que es el producto de la severidad, ocurrencia y detección. Las actividades con mayor número RPN representan aquellos equipos a los que se le debe dar mayor importancia para mejorar el proceso.

El AMEF permite evaluar eficaz y ampliamente cualquier proceso productivo para el desarrollo de la mejora continua, es por eso que la elección de esta metodología se hace de vital importancia para el proceso continuo de producción de cloro líquido y estabilidad de la planta química. (Salazar, Mosquera, Suarez, & Mendoza)

CAPÍTULO 2

2. Desarrollo de la metodología

2.1. Levantamiento de información

Como primer paso, se recolecta información sobre los equipos que componen la unidad de licuación y se describen sus funciones.

Lado Cloro

- Aspirador de cloro K-401
- Intercambiador de calor E-404
- Licuador de cloro E-405
- Tanque reservorio T-406
- Bomba de cloro líquido P-405
- Intercambiador de calor E-407/E-408
- Isocontenedor
- Válvulas de control PV-402/PV-403/PV-404/LV-404

Lado freón

- Compresor de freón
- Condensador de freón
- Válvula de expansión
- Evaporador de freón E-405

La función de cada uno de ellos se describe en las siguientes tablas:

Tabla 3. Descripción de equipos del lado cloro de la unidad de licuación

LADO CLORO							
Equipo	Función	¿Podría parar la unidad?					
Aspirador de cloro K-401	Aspirar el cloro del electrolizador para la unidad de licuación y aumenta su presión para llegar a la temperatura de licuación.	Si, sin él no podría llegar cloro a la unidad					
Intercambiador de calor E-404	Enfriar el cloro luego del aspirador para poder llegar a la temperatura adecuada de licuación.	Si el intercambiador tiene fuga de cloro o del lado agua, si será necesario parar planta.					
Licuador de cloro E- 405	Convierte el cloro gas en cloro líquido por medio del intercambio de calor con el refrigerante	Sin el no es posible realizar el cambio de estado del cloro de gas a liquido y por ende no tendríamos producto final					
Tanque reservorio T-406	Almacena momentáneamente el cloro liquido	Si, depende del daño que presente.					
Bomba de cloro líquido P-405	Transfiere el cloro liquido hacia el Isocontenedor	Si, porque es la que mantiene el nivel del tanque T-406, sin ella tendríamos que parar la unidad					

Intercambiador de calor E-407/E-408	Aumenta la temperatura del cloro luego del Licuador para su almacenamiento final	No
Isocontenedor	Almacena el producto final para luego llevarlo a diferentes presentaciones	Si
Válvula de control PV-402	Permite el paso del cloro a la unidad de licuación y regula el flujo de consumo para mantener la presión del electrolizador estable	No
Válvula de control PV-403	Permite recircular parte del cloro enfriado en el intercambiador E-404 para mantener temperatura estable en el aspirador de cloro K-401	Si, si no abre no se podrá enfriar el aspirador de cloro
Válvula de control PV-404	Permite enviar cloro que no paso a estado líquido a la unidad de hipoclorito	No
Válvula de control LV-404	Permite controlar el nivel del tanque T-406 y enviar el cloro al isotanque	Si, sin ella no se controla el nivel del tanque de cloro líquido T-406

Tabla 4. Descripción de los equipos del lado Freón de la unidad de licuación.

LADO FREÓN						
Equipo	Función	Para planta				
	Comprimir el freón de tal manera que	Si, es el responsable del ciclo				
Compresor de freón	pueda llegar a su temperatura de	frigorífico del freón para poder				
	condensación	absorber el calor del cloro gas				
Condensador de	Condensa el freón comprimido y lo	Si, licua el freón necesario para el				
freón	envía al evaporador	evaporador				
Válvula de	Baja la presión del líquido para que	Si, expande el freón para que				
	este baje su temperatura en el	llegue a la temperatura adecuada				
expansión	evaporador	de operación				
	El freón intercambia calor de tal					
Evaporador de freón	manera que este se calienta para	Si, intercambia calor con el cloro				
	enfriar el cloro hasta su punto de	para poder cambiar su estado				
	licuación					

Cada uno de estos equipos tiene una función determinada en el proceso de licuación de cloro y la importancia de que se mantengan operativos radica en la seguridad y estabilidad de planta ligado a pérdidas de producción y costos por mantenimiento correctivo.

Para realizar el AMEF es necesario indagar en los históricos de mantenimiento SAP donde se listan las fallas PM01 (correctivos) por equipo del año 2020 -2021:

Compresor Sabroe de Freón: 2 fallas por reparación de computadora UNISAB (control del equipo)

Aspirador de cloro K-401: 3 fallas por bandas rotas y fuga de cloro por sello

Líneas de freón: 2 fallas por fugas en diferentes partes de las

líneas

Líneas de cloro: 4 fallas por fugas en líneas o bridas

Bomba de cloro P-405: 5 fallas por aspiración de sólidos, baja presión de descarga, equipo atorado

Tanque de cloro líquido T-406: 1 falla por instrumento de sensor de nivel

Las fugas de freón son manejables ya que no provocan una parada en la unidad de licuación, pero si baja la eficiencia del compresor ya que no habrá suficiente refrigerante que permita convertir el cloro gas a líquido. Las fugas de cloro son un peligro para el personal y conllevan a una parada inminente de la unidad. Las fugas de cloro gas no son iguales a las de cloro líquido, en volumen, el líquido es 460 veces el volumen del gas por lo que sería más perjudicial una fuga en del mismo.

Desde el año 2020, la bomba de cloro líquido P-405 es la que ha tenido mayor cantidad de paros no programados y es uno de los equipos más costosos en reemplazar. Una bomba nueva tiene un costo aproximado de \$30,000, mientras que el costo de reparación varía entre \$5,000 y \$15,000 según el daño detectado.

2.2. Desarrollo de AMEF de proceso

Para el desarrollo del análisis de modo y efecto de fallo se tomará en cuenta las siguientes tablas de evaluación de Gravedad, Ocurrencia y Detección de los posibles fallos de la unidad de licuación según lo investigado y compartido entre el equipo de mantenimiento y producción.

Tabla 5. Evaluación de la gravedad o severidad del fallo para el proceso de licuación

EVALUACIÓN DE LA GRAVEDAD O SEVERIDAD DEL FALLO

GRAVEDAD	ESCALA	CRITERIO DE GRAVEDAD
MENOR	1	Escasa importancia, no influirá en el proceso. No parará la unidad.
BAJA	2	Fallo que se puede detectar y que puede ser reparado en las
DAJA	3	paradas de planta generales, no influirá en la producción.
	4	
MODERADA	5	Fallo que puede o no parar la unidad. Puede suponer ciertos gastos para eliminar el conflicto.
	6	
ALTA	7	Fallo grave que permite definir cuando va a ser necesaria la
ALIA	8	parada de la unidad. Gastos de reparación y no producción altos.
MUY ALTA	9	Fallo muy grave que aparece sin advertencia previa, conlleva una parada inminente de la unidad, gastos de reparación altos, y
MOT ALTA	10	peligro de fuga de cloro al ambiente.

Tabla 6. Evaluación de la ocurrencia del fallo para el proceso de licuación

TABLA DE EVALUACIÓN DE OCURRENCIA DEL FALLO

PROBABILIDAD	ESCALA	CRITERIO DE OCURRENCIA									
ESCASA	1	Esta establecido mtto predictivo, Experiencia muy remota, muy improbable que ocurra									
BAJA	2	Esta establecido mtto preventivo y autocontrol, experiencia muy									
BAJA	3	remota, improbable que ocurra									
MEDIANA	4	Establecido mtto preventivo y auto control no eficaz, experiencias									
WEDIANA	5	concurrentes									
	6										
ALTA	7	No hay establecido autocontrol pero si preventivo no eficaz, experiencias concurrentes									
MUY ALTA	8	·									
	9	No hay establecido mtto preventivo ni auto control, experiencias									
	10	concurrentes									

Tabla 7. Evaluación de detección de fallo de la unidad de licuación

TABLA DE EVALUACIÓN DE DETECCIÓN DEL FALLO

DETECCION	ESCALA	CRITERIO DE DETECCION							
MUY ALTA	1	Controles seguros de detectar							
MOTALIA	2	Controles casi seguros de detectar							
ALTA	3	Las controles tionen una buona apartunidad de datectar							
ALIA	4	Los controles tienen una buena oportunidad de detectar							
MODERADA	5	Los controles pueden detectar							
MODERADA	6	Los controles pueden delectal							
DAIA	7	Los controles tienen noce enertunidad de detección							
BAJA	8	Los controles tienen poca oportunidad de detección							
MUY BAJA	9	Los controles probablemente no detectarán							
CASI IMPOSIBLE	10	Certeza absoluta de no detección							

Se establece el siguiente equipo de trabajo conformado por:

Jefe de Planta Química

Ingeniero de producción: Ing. María Desiderio

Supervisor de mantenimiento

Supervisor de Instrumentación

Operador de mantenimiento

Trainee de producción

Para el desarrollo de los modos y efectos de fallas de los equipos de la unidad de licuación, se deja por escrito las causas definidas (tabla 8) por cada modo de fallo por medio de un intercambio de ideas y se firma el acta de reunión.

Tabla 8. Desarrollo de AMEF en la unidad de licuación

	AMEF DE:		ANÁLISIS DE MODO Y EFECTO DE FALLA AMEF No. 0001					GERENCIA: Operaciones		INGENIERO: Ma	ría E	esi	derio	o					
EQUIPO 🗆	PROCESO	DISEÑO □		AMEF No	o. 0001					DEPARTAMENTO: Produce	ción CloroSoda	FECHA:							
PROVEEDO	R AFECTADO	DESCRIPCIÓN	NOM	BRE DEL PROCES	O: Licuación d	e clo	oro			DEPARTAMENTOS IN\	OLUCRADOS:	HOJA 1	DE	7					
- M				2	SITUACI	ÓN	ACT	UAL		Mantenimiento / P	roducción	SITUACIÓN	PRĆ	XIM	Α				
DESCRIPCIÓN DEL EQUIP	FUNCIÓN DEL EQUIPO	MODODEFALLA	EFECTO DE LA FALLA	CAUSA DE FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDADAS	RESPONSABLE	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR			
		Daño de las		Mala instalación	Ninguno	6	5	4	120	Capacitación al personal de mantenimiento para correcta instalación de bandas	Sup. de mtto	Capacitación de proveedor externo para el personal de mantenimiento	6	1	1	6			
	bar une	bandas que une el motor con el aspirador	Paro de la unidad de licuación	Cumplimiento de vida útil	Ninguno	6	2	3	36	Instalar Horometros para realizar los cambios de forma preventiva	Sup. de mtto	Establecer cambios por horas de trabajo	6	1	1	6			
		sión del ro que esa a la dad de temperatura		Desalineación por exceso de vibración	Revisión de vibración con proveedor externo	6	3	1	18	Revisión de vibración con equipos propios de planta de acuerdo al tiempo establecido	Sup. Producción	Establecer revisión de vibración mensual	6	1	1	6			
Aspirador de cloro K-401	Auentar la presión del cloro que			Desalineación	Medición en línea de sensores de temperatura	4	2	1	8	Instalar Horometros para realizar los cambios de forma preventiva	Dep. instrumentación	Establecer cambios por horas de trabajo	4	1	1	4			
CIOIO K-40 I	cloro que ingresa a la unidad de licuación. Daño en lo			Alineación de equipos con proveedor externo	6	2	1	12	Capacitación al personal de mantenimiento para correcta alineacón	Op. de mtto	Capacitación de proveedor externo para el personal de mantenimiento	6	1	1	6				
						-	Daño en el sello	Vida útil	8	2	8	128	Instalar Horometros para realizar los cambios de forma preventiva	Dep. instrumentación	Establecer cambios por horas de trabajo	6	1	1	6
		Daño en el sello	Fuga de cloro al ambiente Degradación de aceite Daño de rodamientos	Falta de aire en el sello del sistema	Rotámetro de de aire instalado subdimensio nado	9	3	5	135	Correcto dimensionamiento y cambio de rotámetro instalado	Dep. instrumentación / Dep. producción	Instalación de rotámetro y correcto flujo de aire seteado	6	1	2	12			

	AMEF DE:		AN	ÁLISIS DE MODO Y	EFECTO DE F	ALL	A			GERENCIA: Operaciones		INGENIERO: Ma	ría E)esi	derio	o	
EQUIPO 🗆	PROCESO ■	DISEÑO □		AMEF No	. 0001					DEPARTAMENTO: Produce	ción CloroSoda	FECHA:					
	OR AFECTADO	DESCRIPCIÓN	NON	IBRE DEL PROCESO	0 : Licuación d	e clo	oro			DEPARTAMENTOS INV	OLUCRADOS:	HOJA 2	DE	7			
EQUIP				ב	SITUACI	ÓN A	ACT	UAL		Mantenimiento / P	roducción	SITUACIÓN	PRĆ	XIM	Α		
DESCRIPCIÓN DEL EQ	FUNCIÓN DEL EQUIPO	MODO DE FALLA	EFECTO DE LA FALLA	CAUSA DE FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDADAS	RESPONSABLE	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	
	Aspirar el cloro	Daño de polea de transmisión	Desgaste de	Cumplimiento de vida útil	Ninguno	2	1	1	2	Revisión de último mtto por histórico SAP	Sup. de mtto	Cambio de polea cada 4 años	1	1	1	1	
	del electrolizador para la unidad	entre el motor y la voluta	bandas	Corrosión	Control Visual	1	1	1	1	Recubrimiento con pintura epóxica que evite la corrosión	Op. de mtto	Mantenimiento anual	1	1	1	1	
Aspirador de cloro K-401	y aumentar la presión del	Dano en sensores de vibración	Falsa Lectura	Dano en conexiones eléctricas	Ninguno	1	1	2	2	Revisión de conexiones electricas	Dep. mtto	Mantenimiento anual	1	1	1	1	
	mismo para Ilegar a la temperatura de	mismo para llegar a la managatura do	Daño en Sensores de temperatura	Trip por alta temperatura	Daño en conexiones electrónicas	Ninguno	5	1	2	10	Revisión de conexiones electrónicas	Dep. instrumentación	Mantenimiento anual	1	1	1	1
	licuación.	temperatura	que puede ser falsa lectura	Ambiente corrosivo	Ninguno	3	1	2	6	Recubrimiento plástico	Instrumentista	Cambio de plásticos mensual	1	1	1	1	
Intercambiad or de calor E- 404 Tipo:	luego del	Pitting en tuberías internas dando	Entrada de húmedad en las tuberías de acero	El cloro que entra no está totalmente seco						Medir humedad en el sistema.	Dep. instrumentación	Instalar Medidor de humedad en línea					
Casco (Agua helada) y tubo (cloro gas)	poder llegar a la temperatura adecuada de licuación.	lugar a la entrada del agua al lado de cloro	Corrosión del sistema	Agua sin tratamiento químico que conlleva a la corrosión de las tuberías del intercambiador	Ninguno	10	1	10	100	Implementar tratamiento químico al agua helada para evitar la corrosión de los equipos	Dep. producción	Dosificación de producto químico adecuado para sistemas cerrados de agua	5	1	1	5	

	AMEF DE: QUIPO □ PROCESO ■ DISEÑO □		AN	ÁLISIS DE MODO Y	EFECTO DE FA	4LL/	١			GERENCIA: Operaciones		INGENIERO: Ma	ría D	esi(derio)
EQUIPO 🗆	PROCESO ■	DISEÑO □		AMEF No	o. 0001					DEPARTAMENTO: Produce	ción CloroSoda	FECHA:				
PROVEEDO	OR AFECTADO	DESCRIPCIÓN	NOM	IBRE DEL PROCES	O: Licuación d	e clo	ro			DEPARTAMENTOS INV	OLUCRADOS:	HOJA 3	DE	7		
				ב	SITUACI	ÓN A	ACT	UAL		Mantenimiento / P	roducción	SITUACIÓN	PRĆ	XIM	Α	
DESCRIPCIÓN DEL EQUIPO	FUNCIÓN DEL EQUIPO	MODODE FALLA	EFECTO DE LA FALLA	CAUSA DE FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDADAS	RESPONSABLE	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR
Licuador de cloro E-405 / Evpaorador	Convierte el cloro gas en cloro líquido por medio del	Mal ajuste de bridas o empaques	Fuga de cloro al ambiente	Empaques mal colocados y bridas desajustadas	Inspección con solución de amoniaco	10	1	10	100	Ajuste de bridas por medio de torquímetro	Dep. mtto	Revisión de ajuste de bridas y empaques en paradas de planta generales (Anual)	10	1	1	10
de freón	intercambio de calor con el refrigerante	Pittings en las tuberías que se conectan y salen del licuador	Fuga de cloro al ambiente	Humedad dentro del sistema de cloro	Ninguna	10	3	8	240	Cambio de tramos de tubería por tiempo de vida útil	Dep. mtto	Cambio de tramos de tubería anual	5	2	3	30
		Pittings en las tuberías que se conectan y salen del tanque	Fuga de cloro al ambiente	Humedad dentro del sistema de cloro	Ninguna	10	1	8	80	Cambio de tramos de tubería por tiempo de vida útil	Dep. mtto	Cambio de tramos de tubería anual	5	2	3	30
Tanque reservorio de cloro líquido T-406	Almacena momentáneam ente el cloro liquido	Falsa señal en	No visualización	Descalibración	Ninguna	5	3	8	120	Instalar sensor de nivel por onda guiada. Habilitar trips por alto y bajo nivel	Dep. instrumentación	Instalar sensor de nivel por onda guiada. Habilitar trips por alto y bajo nivel	4	1	1	4
		sensor de nivel	de nivel del tanque	Congelamiento de sensores por mal recubrimiento	Ninguna	5	1	10	50	Revisión periodica de protecciones de los sensores	Dep. instrumentación	Revisión mensual de protecciones de los sensores	4	1	1	4

	AMEF DE:		AN	ÁLISIS DE MODO Y	Y EFECTO DE F	ALL/	۸.			GERENCIA: Operaciones		INGENIERO: Ma	ría E	esio	deri	5
EQUIPO 🗆	PROCESO	DISEÑO 🗆		AMEF No	o. 0001					DEPARTAMENTO: Produce	ción CloroSoda	FECHA:				
	R AFECTADO	DESCRIPCIÓN	NOM	BRE DEL PROCES	O : Licuación d	e clc	ro			DEPARTAMENTOS IN	/OLUCRADOS:	HOJA 4	DE	7		
Şο	_ 0]	ш	_ w	SITUACI					Mantenimiento / F		SITUACIÓN	_			
DESCRIPCIÓN DEL EQUIPO	FUNCIÓN DEL EQUIPO	MODO DE FALL	EFECTO DE LA FALLA	CAUSA DE LA FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDA DAS	RESPONSAB	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCE	DETECCIÓN	NPR
		No eleva la presión de descarga	No se bombea cloro líquido hacia el isotanque	Nivel de Tanque de cloro líquido muy bajo T-406 Giro invertido Bomba atorada	Manómetro	10	4	1	40	Instalar swicth de presión que pare la bomba cuando la presión baje de 100 psi (operación normal 150 psi)	Dep. instrumentación	Instalar de switch de presión en la descarga de p-405	10	1	1	10
		D	No se bombea cloro	Suciedad y virutas de hierro	Filtro Y en la	10	3	5	450	Limpieza o cambio de filtro en y para eliminación de impurezas	Dep. instrumentación / Dep. producción	Cambiar de filtros en parada de planta	10	4	0	20
		Bomba atorada	líquido hacia el isotanque	en la succión de la bomba	succión de la bomba	10	3	5	150	Retener las virutas de hierro antes de que la bomba lo succione	Dep. mtto	Construcción de bota para la parte más baja del tanque T-406	10	1	2	20
Bomba de cloro líquido	Transfiere el cloro liquido hacia el Isocontenedor	Aumento de temperatura de estator	El bobinado se quema y aumenta la presión del cloro dentro de la misma lo que puede provocar una explosión	Giro invertido, roce entre el estator y rotor Se taparon los orificios de enfriamiento No tiene circulación de cloro liquido por encendido con succión cerrada	Ninguno	10	2	10	200	Sensor de temperatura	Dep. instrumentación	Instalar sensor de temperatura	10	1	1	10
		Aumento de desplazamient o de rotor	Daño en los impulsores	Daño en el sello de carbón	Medición en línea de desplazamie nto del rotor	6	1	7	42	Análisis mensual de medición en línea de desplazamiento del rotor	Sup. de producción	Revisión mensual de promedio de medición en línea de desplazamiento	6	1	3	18
		Daño en el	Se eleva la corriente y se	Se queda sin líquido el tanque T406	Nivel de tanque de cloro líquido	10	1	10	100	Cambiar tipo de medición de nivel	Dep. instrumentación / Dep. producción	Instalación de sensor de nivel ultrasónico	9	1	1	9
		sello de carbón	tripea el guardamotor	Se tapa por llegada de basura	Ninguna					Retener las virutas de hierro antes de que la bomba lo succione	Dep. mtto	Construcción de bota para la parte más baja del tanque T-406				
		Trip de guardamotor	Rotor atascado	Daño en el sello e impulsores	Ninguno	8	1	10	80	Revisar planificación de mtto	Dep. mtto	Establecer mtto cada 6 meses	10	1	1	10
		Desgaste de bocines	Pérdida de presión de descarga	Cumplimiento de tiempo de horas de servicio	Horas de servicio	8	1	7	56	Revisar planificación de mtto	Dep. mtto	Establecer mtto cada 6 meses	10	1	1	10

	AMEF DE: QUIPO □ PROCESO ■ DISEÑO I		AN	ÁLISIS DE MODO	Y EFECTO DE FA	ALL	Α			GERENCIA: Operaciones		INGENIERO: Ma	ría E	esi	deri	0
EQUIPO 🗆	PROCESO ■	DISEÑO 🗆		AMEF N	o. 0001					DEPARTAMENTO: Produc	ción CloroSoda	FECHA:				
PROVEEDO	OR AFECTADO	DESCRIPCIÓN	NOM	IBRE DEL PROCES	O : Licuación d	e clo	oro			DEPARTAMENTOS IN	VOLUCRADOS:	HOJA 5	DE	7		
e e				2	SITUACI	ÓN A	ACT	UAL		Mantenimiento /	Producción	SITUACIÓN	PRÓ	XIV	IA	
DESCRIPCIÓN DEL EQUIP	FUNCIÓN DEL EQUIPO	MODO DE FALLA	EFECTO DE LA FALLA	CAUSA DE FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDADAS	RESPONSABLE	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR
			Fuga por vástago	Corrosión por húmedad	Ninguno	8	3	7	16	Control de humedad en líneas de aire seco	Dep. calidad	Medición de humedad en el aire mensual	8	1	5	40
Isocontened	Almacena el producto final para luego	Falla en válvula de entrada	No cierra	Tiempo de vida útil	Ninguno	8	1	7	56	Cambio de válvulas de acuerdo al tiempo de vida útil	Dep. mtto	Cambio de válvulas cada 2 años de funcionamiento	8	1	4	32
or de cloro liquido	llevarlo a diferentes presentacione s	diferentes es entacione s Falla en válvul:	No abre Fuga por vástago	Corrosión por húmedad	Ninguno	8	3	3 7	16	Control de humedad en líneas de aire seco	Dep. calidad	Medición de humedad en el aire mensual	8	1	5	40
		de salida	No cierra No abre	Tiempo de vida útil	Ninguno	8	1	7	56	Cambio de válvulas de acuerdo al tiempo de vida útil	Dep. mtto	Cambio de válvulas cada 2 años de funcionamiento	8	1	4	32
Válvula de control PV- 403	Permite recircular parte del cloro enfriado en el intercambiador E-404 para mantener temperatura estable en el aspirador de cloro K-401	Actuador no cierra	Al no tener recirculación no se mantiene la presión de entrada del aspirador de cloro	Falta de mtto	Ninguna	4	1	3	12	? Mtto periódico	Dep. instrumentación	Establecer mtto cada 6 meses	4	1	1	4
Válvula de control LV- 404	Permite controlar el nivel del tanque T-406 y enviar el cloro al isotanque	Válvula tapada	No permite el paso del cloro no licuado a la unidad de hipoclorito	Falta de mtto	NInguna	4	1	3	12	? Mtto periódico	Dep. instrumentación	Establecer mtto cada 6 meses	4	1	1	4

	AMEF DE:		AN	ÁLISIS DE MODO Y	Y EFECTO DE FA	ALL	Δ.			GERENCIA: Operaciones		INGENIERO: Ma	ıría E	esi	derio)
EQUIPO	□ PROCESO ■	DISEÑO 🗆		AMEF No	o. 0001					DEPARTAMENTO: Produc	ción CloroSoda	FECHA:				
PROVEE	OOR AFECTADO	DESCRIPCIÓN	NOM	IBRE DEL PROCES	O : Licuación d	e clc	oro			DEPARTAMENTOS IN	VOLUCRADOS:	HOJA 6	DE	7		
Ĭ.				2	SITUACI	ÓN A	ACT	UAL		Mantenimiento / F	Producción	SITUACIÓN	PRĆ	XIM	Α	
DESCRIPCIÓN DEL EQUIP	FUNCIÓN DEL EQUIPO	MODO DE FALLA	EFECTO DE LA FALLA	CAUSA DE FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDADAS	RESPONSABLE	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR
		Succión de líquido	Daño en pistones	Mucho freón en el sistema que no logra evaporarse	Medición de recalentamie nto en la succión	10	3	1	30	Instalar control de nivel visual para el correcto ingreso de freón en el sistema	Dep. mtto / Dep. Producción	Instalación de ojos de buey para medición visual de nivel de freón líquido en el evaporador		1	1	9
		Fuga de aceite	Para el equipo por bajo nivel de aceite	Daño de empaques	Visor de nivel	10	2	2	40	Revisión de último mtto por histórico SAP	Dep. mtto	Cambio de empaques en paradas de planta general como mtto preventivo	5	1	1	5
Compresc	r Comprimir el	Fuga de agua	Para el equipo por alta temperatura en cabezote	Daño de empaques o rotura en tuberías de agua de enfriamiento	Ninguno	10	1	2	20	Revisión de último mtto por histórico SAP	Dep. mtto	Cambio de empaques en paradas de planta general como mtto preventivo	5	1	1	5
de freón	freón	Alta vibración	Daño en bocines	Desalineación	Mtto predictivo	7	1	1	7	' Ninguna	Dep. mtto	mtto predictivo	7	1	1	7
		Daño de rodamientos del motor	Sube la corriente, trip del guardamotor	Desalineación, vida útil	Ninguno	10	1	3	30	Alineación periodica por parte de proveedor externo	Dep. mtto	Alineación en paradas de planta general como mtto preventivo	8	1	1	8
		Daño en computador UNISAB Controlador de variables del equipo	No visualización de las variables del proceso, para el equipo	Cortocircuito, corrosión, humedad	Ninguno	10	3	6	180	Implementar recubrimiento que no permita la entrada de humedad en el sistema	Dep. instrumentación	Instalación de caja con ventilación de aire seco para cuidado de computador Unisab	10	1	1	10

AMEF DE:									GERENCIA: Operaciones		INGENIERO: María Desiderio					
EQUIPO 🗆	PROCESO ■	DISEÑO □		AMEF No	o. 0001					DEPARTAMENTO: Produce	ción CloroSoda	FECHA:				
PROVEEDO	R AFECTADO	DESCRIPCIÓN	NON	IBRE DEL PROCES	O : Licuación d	e clc	oro			DEPARTAMENTOS INV	OLUCRADOS:	HOJA 7	DE	7		
를				2	SITUACI	ÓN A	ACT	UAL		Mantenimiento / P	roducción	SITUACIÓN	PRĆ	MIX	Α	
DESCRIPCIÓN DEL EQUIP	FUNCIÓN DEL EQUIPO	MODO DE FALLA	EFECTO DE LA FALLA	CAUSA DE FALLA	ACCIONES ACTUALES	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR	ACCIONES RECOMENDADAS	RESPONSABLE	ACCIONES ADOPTADAS	GRAVEDAD	OCURRENCIA	DETECCIÓN	NPR
Condensado r de freón	Condensa el freón comprimido y lo envía al	Fisura en los tubos del intercambiador	Paso de freón a lado de agua, Disminución de nivel de freón en el sistema que luego pararía el compresor	Corrosión de tubos	Ninguno	8	1	10	80	Control de húmedad en el sistema de cloro	Dep. calidad	Medición de humedad en el aire mensual	8	1	1	8
	evaporador		No condensa el freón para poder transferir calor en el evaporador	Falta de flujo de agua de enfriamiento	Ninguno	10	1	7	70	Toma de temperatura de freón	Dep. instrumentación	Instalación de termómetro	10	1	2	20
Valorio di	Baja la presión del líquido para	Daño en vástago	flujo de freón adecuado para la transferenci a de calor	Tiempo de vida útil	Ninguno	10	2	3	60	Revisión de último mtto por histórico SAP	Op. de mtto	Cambio de vástago según mtto histórico cada 3 años	10	1	1	10
Válvula de expansión	que este baje su temperatura en el evaporador	Taponamient o	No regula el flujo de freón adecuado para la transferenci a de calor	Suciedad en la línea	filtros piedra	10	1	5	50	Limpieza de filtros por tiempo de operación	Op. de mtto	Limpieza de filtros por tiempo de operación	10	1	1	10

2.3. Equipos críticos

Antes de definir los equipos críticos se enlistan los fallos con mayor número NRP (mayor a 100) detallados en el AMEF para la implementación de mejoras como se observa en la tabla 9.

Tabla 9. Resumen de modos y efectos de falla con mayor número NPR

		Efecto de la	Causa de la	
Equipo	Modo de falla	falla	falla	NPR
Bomba de cloro líquido P-405	Aumento de temperatura de estator	El bobinado se quema Aumento de Presión Posible explosión del equipo	Giro invertido No circula cloro líquido y por tanto no se enfría	200
Bomba de cloro líquido P-405	Bomba atorada	No bombea cloro líquido a isotanque	Suciedad o virutas de hierro en la succión de la bomba	150
Aspirador de Cloro K-401	Daño en rodamientos	Aumento de temperatura en la cajera	Daño en el sello	128
Aspirador de Cloro K-401	Daño en el sello	Daño en rodamientos	Falta de aire en el sistema	135
Aspirador de cloro K-401	Daño de bandas del motor del aspirador	Paro de la unidad de licuación	Mala instalación	120
Intercambiador de calor E-404	Enfriar el cloro luego de ser aspirado por el K-401	Pitting en las tuberías	Entrada de cloro húmedo al sistema	100
Licuador de cloro E-405	Mal ajuste en bridas o empaques	Fuga de cloro	Empaques mal colocados	100
Tanque reservorio de cloro líquido T- 406	Falsa señal en sensor de nivel	No visualización de nivel del tanque	Falta de calibración	120
Isocontenedor	Falla en válvulas	Fuga por vástago	Corrosión por humedad	168
Compresor de freón	Daño de computador UNISAB	No visualización de variables de proceso	Humedad	180

Los equipos críticos deberán considerar los siguientes aspectos:

- La probabilidad de aparición del fallo y la severidad o su impacto en la producción de acuerdo con la matriz de criticidad.
- El número NRP antes de la implementación de mejoras

Se establece el siguiente método de evaluación para establecer los equipos críticos de la unidad de licuación. El análisis de criticidad basada en la teoría del riesgo permite

establecer el nivel de importancia para atacar el fallo y su impacto en la organización de acuerdo con la siguiente ecuación:

Riesgo = Frecuencia x consecuencia.

Donde la frecuencia determina la cantidad de fallos o eventos en un tiempo determinado y la consecuencia como el resultado de dicho evento ya sea como pérdida de producción, impacto ambiental, mantenimiento o seguridad.

Se determina la probabilidad o frecuencia según el número de ocurrencia de fallos y se establece el siguiente puntaje:

1 Evento sumamente improbable: menos de 1 fallo en 5 años

2 Evento improbable: 1 fallo cada 5 años

3 Evento Posible: 1 fallo en 3 años

4 Evento probable: de 1 a 3 fallos al año5 Evento frecuente: más de 3 fallos al año

Para determinar las consecuencias, la empresa establece los criterios de importancia de la siguiente manera en las tablas 10 y 11:

Tabla 10. Tabla de criterios para establecer las consecuencias en la matriz de criticidad

Puntaje	Seguridad y medio ambiente	Producción/mantenimiento				
Α	No hay impacto	Pérdidas menores de producción y costos de mtto al 5%				
В	Efectos sobre la salud y ambiente menores	Pérdidas de producción y costos de mtto entre el 5% - 24%				
С	Efectos sobre la salud temporales y afectación moderada del medio ambiente	Pérdidas de producción y costos de mtto entre el 25% - 49%				
D	Efectos sobre la salud de por vida y afectación sensible al ambiente	Pérdidas de producción y costos de mtto entre el 50% - 74%				
Ε	Pérdida humana y cierre total de operaciones	Pérdidas de producción y costos de mtto entre el 75% - 100%				

Tabla 11. Matriz de criticidad

Matriz	z de			CONSECUENC	IAS	
critici	idad	А	В	С	D	Е
9	5	MEDIO	ALTO	ALTO	MUY ALTO	MUY ALTO
ZID/	4			ALTO	ALTO	MUY ALTO
ABII	3	BAJO	MEDIO	MEDIO	ALTO	MUY ALTO
PROBABILIDAD	2	BAJO	BAJO		ALTO	ALTO
Ą	1	BAJO	BAJO	MEDIO	MEDIO	ALTO

(Parra C., 2021)

Para los equipos de la unidad de licuación se considera su criticidad como el producto entre la probabilidad del fallo y su consecuencia basándonos en el histórico de fallas del año 2020.

Compresor Sabroe de Freón: 2 fallas

Probabilidad del fallo: 4 x Consecuencia: C = Alto

Fallos con NPR alto:

Aspirador de cloro K-401: 3 fallas

Probabilidad del fallo: 4 x Consecuencia: C = Alto

Bomba de cloro P-405: 5 fallas

Probabilidad del fallo: 5 x Consecuencia: E = Muy alto

Tanque de cloro líquido T-406: 1 falla

Probabilidad del fallo: 4 x Consecuencia: C = Alto

De acuerdo con las fallas en la bomba de cloro líquido P-405 del 2020 (periodo de 1 año), se define su criticidad como muy alta. Adicional, el aspirador de cloro, el compresor de freón y el tanque de cloro líquido también son equipos que se consideran críticos en un nivel alto.

Una parada para corregir una falla en la bomba de cloro líquido debe ser mínimo de 18 horas que incluyen 4 horas de barrido de las líneas de cloro, 10 horas de trabajo de mantenimiento y 4 horas de secado de las líneas con aire. Debido a esto, las pérdidas de producción por una parada de 18 horas x (8,5 ton de cloro líquido / 24 horas de producción) equivale a 6,4 ton de cloro líquido. Adicional, al tener parada la unidad de licuación, la carga del electrolizador debe bajar a 11 KA lo que significaría a una pérdida de producción de hidróxido de sodio de 17,9 ton.

El análisis de criticidad para los 4 equipos que presentaron fallas en el 2020 permite establecer mejoras de manera prioritaria porque no solo afecta a la organización como pérdida de producción de cloro líquido o de hidróxido de sodio, sino que también es un grave riesgo en la seguridad de las personas por la liberación de cloro al ambiente.

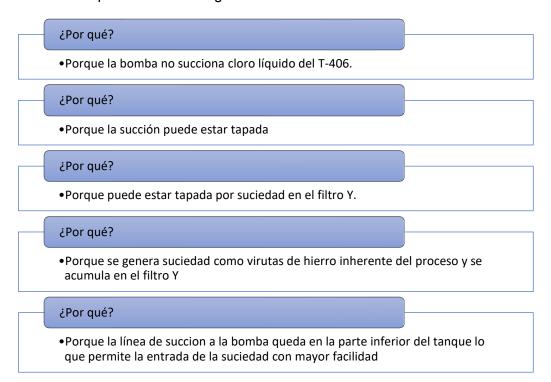
2.4. Implementación de mejoras

En la implementación de mejoras en la unidad de licuación se estable como prioridad el equipo crítico, es decir, la bomba de cloro líquido P-405. Luego de eso se han ido implementando mejoras en los equipos que también presentaron un alto nivel de criticidad: el aspirador de cloro, el tanque de cloro líquido y compresor Sabroe.

Se trataron las variables con el número más alto de NPR del análisis AMEF y se establecieron las soluciones después de una evaluación de la causa raíz del problema encontrado.

A continuación se describen las mejoras implementadas por equipo.

P- 405 BOMBA DE CLORO LÍQUIDO


En diciembre del 2020 se presentaron varios problemas en la bomba de cloro líquido entre ellos el taponamiento del equipo que no permitía subir la presión de descarga.

En ese momento la bomba trabajaba en forma manual y eso implicaba que no tenía ningún enclavamiento por baja presión de descarga. La consecuencia de no haberse apagado fue la pérdida total del equipo.

En el análisis de los 5 "por qué" se concluye que es necesario la implementación de las mejoras que involucran la instalación de una bota en la parte inferior del tanque T-406 para que recoja la suciedad antes de llegar al filtro en Y de la succión de la bomba y habilitar los enclavamientos de la bomba para la seguridad en la operación con sus respectivos controles.

Análisis de 5 por qués:

"No sube la presión de descarga de la bomba P-405"

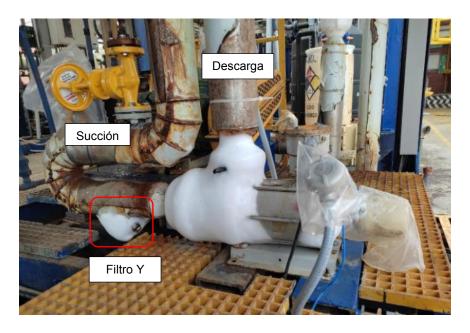


Figura 9. Bomba de cloro líquido en operación

Figura 10. Instalación de bota que retiene las virutas de hierro antes de que sean succionadas por la bomba de cloro líquido

Se instala un tubo para recoger la limalla y virutas de hierro generados por la acción del cloro sobre el acero al carbono con el tiempo de operación antes de la succión de la bomba (Figura 10). Anteriormente solo había una válvula de corte para inspección interna del tanque en paradas de planta.

Fecha de implementación y responsable:

29 de Julio 2021, realizado por el departamento de Mantenimiento

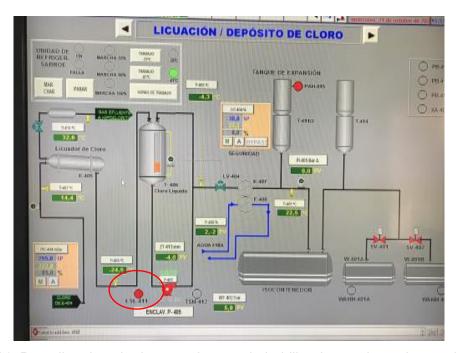


Figura 11. Pantallas de sala de control antes de habilitar los enclavamientos de P-405

El manómetro de descarga de la bomba de cloro es un indicador de presión en campo. La bomba solo trabajaba de forma manual, lo que no permitía habilitar el trip de la bomba una vez que la presión baje del valor estándar de operación. En pantalla ese sensor se mostraba en rojo como lo indica la figura 11.

Figura 12. Manómetro con switch de presión instalado en la descarga de la bomba

Para mejorar el control de los enclavamientos de la bomba se instala manómetro de campo para medir la presión de descarga de la bomba con Switch de presión (Figura 12) y se habilita en pantalla el trip por baja presión de descarga que indica que no hay flujo de cloro (Figura 13).

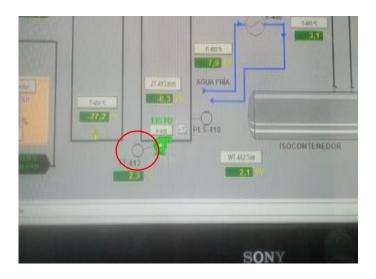


Figura 13. Pantallas de sala de control después de habilitar el trip por baja presión de descarga

Figura 14. Sensor de temperatura y vibración instalado

También se instalan los sensores de temperatura y vibración y se habilitan los siguientes enclavamientos (Figura 14):

Bajo nivel del tanque T-406. Alto peso de isotanque. Muy alto desplazamiento. Muy bajo desplazamiento. Muy alta temperatura

Fecha de implementación y responsable:

ASPIRADOR DE CLORO K-401

Figura 15. Aspirador de cloro K-401 integrado por motor, bandas y voluta

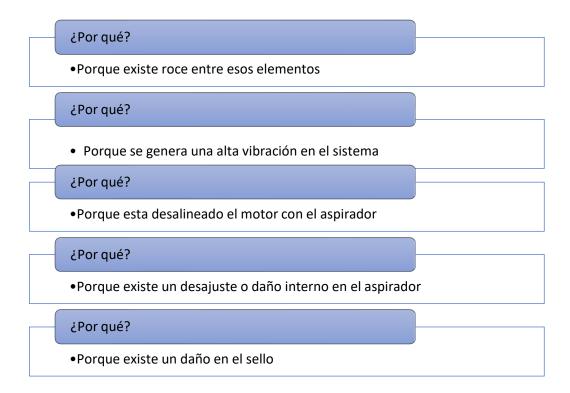


Figura 16. Visualización de sensores de temperatura en la cajera y entrada de aire al sello

Para el año 2020 el aspirador de cloro (figura 15 y 16) presentaba fallas por daño en bandas, en sello y en rodamientos.

Análisis de 5 por qués:

"Daño en rodamientos del motor del aspirador"

El cambio de los rodamientos está establecido para 5000 horas de uso, es decir, se establece el cambio cada 6,5 meses de operación.

"Daño en el sello del aspirador"

¿Por qué?

•Porque existe una sobrepresión del aceite en la cajera

¿Por qué?

• Porque se degrada el aceite con el tiempo de operación

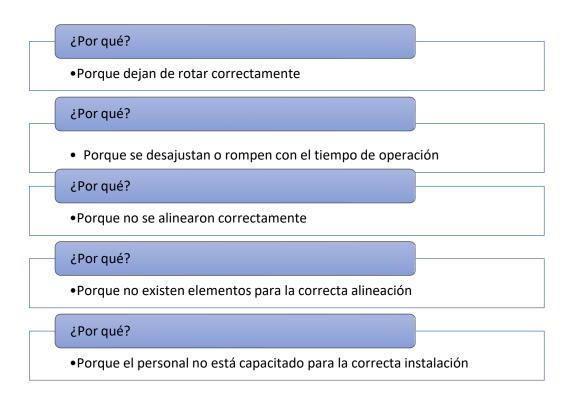
¿Por qué?

• Porque no se cambia el aceite cuando se presentan problemas de cloro

¿Por qué?

•Porque entra cloro a la cajera y daña el aceite

¿Por qué?


 Porque existe falta de aire para proteger el sistema de la entrada de cloro a la cajera donde se encuentra el sello

En el año 2020 el cambio del sello en el aspirador se dió dos veces por el proveedor de mantenimiento externo. Este no lleva registro en SAP debido a que los repuestos se mandan a fabricar bajo medida. La falta de aire en el aspirador debe ser regulada por los operadores de planta y está a cargo del supervisor, de esta manera se establece que la condición para enviar cloro al aspirador es que tenga el aire suficiente para que no haya fuga del gas al ambiente controlando el flujo por medio de un rotámetro (Figura 17).

Figura 17. Cambio de rotámetro por uno de mayor flujo

"Daño en bandas del aspirador de cloro"

Los históricos SAP de cambio de bandas presenta la siguiente novedad durante el año 2020 (Figura18).

Para el aspirador de K-401 se utilizaron 20 unidades de bandas marca Optibelt de enero a diciembre del 2020. Para cada mantenimiento correctivo se utilizan 4 unidades lo que representó 5 cambios durante ese periodo de tiempo. El tiempo estimado para cambio de bandas es cada 2,4 meses, este trabajo demora máximo 20 minutos.

	teria: nomina			EC21 Gu 007-026 BANDA S	5601	uil 700 LISA OP	TIBEL	Ī		
Stock al 01.01.2020 18 PZ Total de entradas 26 PZ Total de salidas 26- PZ Stock al 31.12.2020 18 PZ										
	Alm.	CMv	Ε	Doc.mat.	Pos	Fe.contab.			Cantidad	UMB
	1205	101		5000131215	1	01.07.2020			20	PZ
*		101							20	PZ
	1205	261		4900088395	1	14.02.2020			4-	PZ
	1209	261		4900183933	1	13.04.2020			4-	PZ
	1209	261		4900212369	7	04.05.2020			4-	PZ
	1205	261		4900381902	2	20.08.2020			4-	PZ
	1205	261		4900550380	1	02.12.2020			4-	PZ
*		261							20-	PZ

Figura 18. Consumo de bandas para el aspirador K-401 en SAP

Para realizar el cambio cada 2,4 meses el personal de mantenimiento recibió la capacitación para la correcta alineación en la instalación de las bandas con Vibratec, proveedor externo.

Fecha de implementación y responsable:

Año 2020 por el departamento de matenimiento

TANQUE DE CLORO LÍQUIDO

Figura 19. Tanque T-406 que recibe el cloro líquido que se genera en el licuador Análisis de 5 por qués:

"Medición falsa de nivel de cloro líquido en T-406"

¿Por qué?

 Porque el sensor de nivel por presión diferencial tiene una alta variación en la medición

¿Por qué?

• Porque el control de nivel por recirculación de la bomba genera mucha oscilación en la presión.

¿Por qué?

• Porque el principio de medición no es el correcto para el proceso

¿Por qué?

• Porque se manejan dos fases del mismo material: gas y líquido

¿Por qué?

• Porque para mantener el nivel es necesario el equilibrio de ambas fases

La medición errónea de nivel del tanque T-406 (Figura 19) tiene como consecuencia de que la bomba P-405 se apague por baja presión de descarga, es decir, es posible que en pantalla de sala de control se muestre un nivel alto mientras que la descarga de la bomba este en 0 psi. Esto puede terminar siendo un problema ya que si en algún momento falla el enclavamiento de la bomba P-405 esta puede dañarse.

Figura 20. Visualización de sensores de nivel bajo diferentes principios de medición

Figura 21. Diferencias de la medición de nivel entre los dos sensores.

La implementación de un sensor de nivel más confiable bajo el principio de operación de onda guiada muestra en pantalla un nivel más próximo a la realidad sin variación (figuras 20 y 21). Gracias a esto se logra habilitar el trip para la bomba P-405 por bajo nivel del tanque T-406 teniendo una medida de nivel más estable.

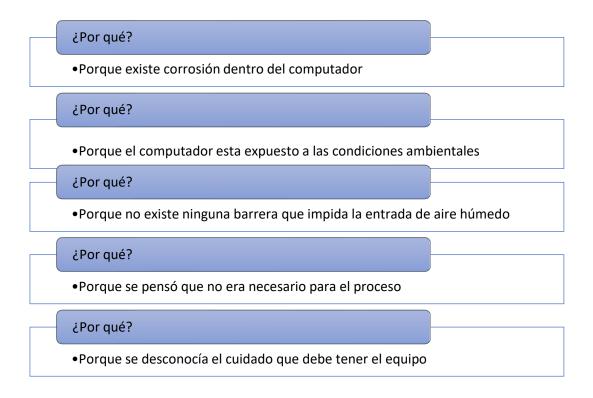

COMPRESOR DE FREÓN SABROE

Figura 22. Cajetín que mantiene libre de humedad el computador UNISAB del compresor de freón Sabroe.

Análisis de 5 por qués:

"Entrada de humedad en computador UNISAB"

El daño en el computador UNISAB en el año 2020 fue provocado por la entrada de humedad en la tarjeta electrónica interna del equipo. El ambiente donde está instalado es muy corrosivo y el equipo necesita de protección para alargar su vida útil.

El departamento de instrumentación implemento un cajetín (Figura 22) que evita la entrada de humedad. El sistema se mantiene ventilado con aire seco que entra a través de una resina que retiene el mínimo rastro de humedad. Fecha de implementación: marzo 2020.

Otra de las mejoras implementadas para mejorar la eficiencia del compresor de freón Sabroe fue la instalación de un visor de nivel en el evaporador (figura 23).

Análisis de 5 por qués:

"Baja eficiencia del compresor de Freón"

¿Por qué?

•Porque existe bajo nivel de freón en el evaporador

¿Por qué?

•Porque no existe un control de nivel de freón en el evaporador

¿Por qué?

•Porque al poner el visor de nivel se congela y no hay visualización

¿Por qué?

•Porque no es el principio correcto de medición

¿Por qué?

• Porque se desconocía la tecnologia adecuada de medición.

Figura 23. Licuador de cloro/ Evaporador de freón E-405

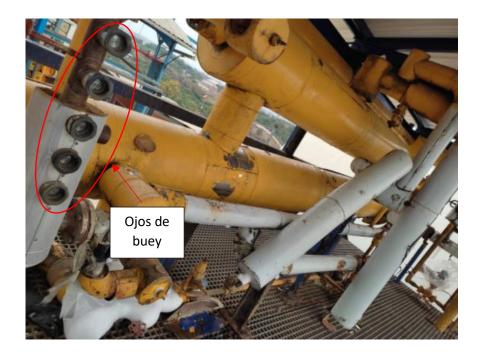


Figura 24. Instalación de ojos de buey para visualización de nivel de freón líquido en el evaporador

La medición de nivel de freón líquido se visualizaba en el condensador, parte inferior del sistema. Este nivel no representaba que tan inundado estaba el evaporador por lo que la eficiencia en la producción de cloro líquido era baja, es decir, no había suficiente freón que pueda condensar el cloro que ingresa a la unidad.

Por esta razón se instalan los ojos de buey (Figura 24) para tener un control visual de la cantidad de freón que inunda el evaporador, de esa manera se ingresa el freón suficiente para licuar las 8,5 ton diarias de cloro líquido manteniendo una operación estable en el compresor de freón al 100% de su capacidad.

Fecha de implementación y responsable:

Diciembre del 2020 por el departamento de mantenimiento.

Hasta el día de hoy, estas han sido las mejoras implementadas en el proceso (tabla 12):

Tabla 12. Resumen de mejoras implementadas

Equipo	Modo de falla	Efecto de la falla	Causa de la falla	Mejora implementada	
Bomba de cloro líquido P-405	Aumento de temperatura de estator	El bobinado se quema Aumento de Presión Posible explosión del equipo	Giro invertido No circula cloro Iíquido y por tanto no se enfría	Control en el nivel del Tanque T-406	
Bomba de cloro líquido P-405	Bomba atorada	No bombea cloro líquido a isotanque	Suciedad o virutas de hierro en la succión de la bomba	Instalación de bota que retiene la suciedad	
Aspirador de Cloro K-401	Daño en rodamientos	Aumento de temperatura en la cajera	Daño en el sello	Cambio cada 6 meses por horas de uso	
Aspirador de Cloro K-401	Daño en el sello	Daño en rodamientos	Falta de aire en el sistema	Mejora el flujo de aire de la unidad por visualización en rotámetro	
Aspirador de cloro K-401	Daño de bandas del motor del aspirador	Paro de la unidad de licuación	Mala instalación	Capacitación al personal para correcta instalación. Cambio cada 2,5 meses por horas de uso.	
Tanque reservorio de cloro líquido T- 406	Falsa señal en sensor de nivel	No visualización de nivel del tanque	Falta de calibración	Control de nivel	
Compresor de freón	Daño de computador UNISAB	No visualización de variables de proceso	Humedad	Instalación de cajetín.	

CAPITULO 3

3.1. Resultados

Las mejoras implementadas en la unidad de licuación hasta agosto del 2021 han sido aquellas que permitieron mantener estable la operación del sistema. En la Figura 25 se muestra el número de horas de paros no programados por mes en la unidad de licuación basado en el histórico de porcentaje de capacidad a la que trabaja el compresor Sabroe, equipo necesario para cambiar el estado del cloro de gas a líquido.

En el periodo de enero a julio del 2021 se suman un total de 192 horas repartidas entre los diferentes motivos: 0% debido a daños en la unidad de licuación, 75% por mantenimientos generales como cambio de transformador y ampliación de la subestación eléctrica, 25% por cambio de celdas en el electrolizador y 0% por cortes externos como se describe en la tabla 13.

Figura 25. Horas de paradas de licuación por mes en el año 2021

Planta Química, Data link departamento de producción

Tabla 13. Detalle de paradas de unidad de licuación por fallo

RAZON DE PARADA	%	HRS PARADAS
LICUACIÓN	0%	00:00:00
MANTENIMIENTO GENERAL	75%	144:00:00
ELECTROLIZADOR	25%	48:00:00
CORTES EXTERNOS, FALLAS MENORES	0%	00:00:00
	100%	192:00:00

Planta Química, Departamento de mantenimiento

En comparación con las 696 horas de paros no programados del año 2020, hasta julio del 2021 se demuestra que el análisis de modo y efecto de falla fue una de las herramientas necesarias para resolver algunos problemas operativos de la unidad de licuación debido a que se logró reducir a 192 horas de paradas.

De la tabla 14 y en la figura 26 se compara el porcentaje de paradas generales entre el año 2020 y el año 2021 hasta el mes de agosto. El promedio de paradas de planta no programadas se redujo de 2,3% a 0,8% luego de haber implementado los cambios en la unidad de licuación desde diciembre del 2020 por lo que se cumple el objetivo de reducir al menos el 20% de paros no programados debido a problemas en la unidad.

Tabla 14. Comparación de porcentajes de parada de planta periodo 2020-2021

PARADAS NO PROGRAMADAS CLSO 2020										PARADAS NO PROGRAMADAS CLSO 2021										
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago
Días [#]	31,0	29,0	31,0	30,0	31,0	30,0	31,0	31,0	30,0	31,0	30,0	31,0	31,0	29,0	31,0	30,0	31,0	30,0	31,0	31,0
Electromecánico - Licuación [h]	0,0	0,0	8,5	0,0	6,2	0,0	0,0	0,0	0,0	0,0	8,0	17,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Instrumentación - Licuación [h]	0,0	0,0	4,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Paradas Varías	0,9	6,4	39,7	11,3	23,9	5,8	9,1	1,6	0,0	4,0	20,8	37,7	2,2	30,6	1,4	9,8	26,2	1,6	106,3	11,1
Total Planta parada (%)	0,1	0,9	7,0	1,6	4,0	0,8	1,2	0,2	0,0	0,5	4,0	7,4	0,3	2,3	0,2	1,4	0,6	0,2	0,0	1,5
Promedio	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8

Planta Química, Data link departamento de producción

Figura 26 Porcentaje de paradas de planta por mes, año 2020-2021

Es importante recalcar que, aunque la unidad tenga horas de paradas no programadas en los meses de febrero, mayo y julio ninguna de ellas fue por fallas directas en la unidad de producción de cloro líquido.

Tabla 15. Cuadro comparativo de horas de paradas no programadas 2020-2021

Año	Horas de paradas no programadas	Horas de parada por problemas en licuación	Pérdidas de producción	Costos de mantenimiento		
2020	696	85	31,5 ton de cloro líquido 66 ton de Hidróxido de sodio	\$32188		
2021	192	0	0 ton de cloro líquido 0 ton de hidróxido de sodio	-		

Como se observa en la tabla 14 se ha logrado reducir las horas de paradas no programadas en la unidad a 0 horas que se traducen en 0 pérdidas de producción. Sin embargo, debido a los problemas suscitados en diciembre del 2020, el costo de mantenimiento a las bombas dañadas en ese tiempo sumó una cantidad monetaria de \$32.188. Luego, no se suman costos por mantenimientos correctivos realizados por problemas en la unidad.

CAPITULO 4

4.1. Conclusión

Como se describe al inicio del presente proyecto, la metodología se desarrollo según los objetivos planteados. Los resultados del trabajo realizado en la unidad de licuación se resumen en las siguientes conclusiones:

- Se levanta la información pertinente de los equipos del proceso, se da a conocer las funciones de cada uno de ellos y la importancia que tienen cada uno de ellos dentro de la unidad.
- Mediante el análisis de modo y efecto de falla se destaca la criticidad de los equipos de acuerdo con el impacto que tendrán los posibles modos de error sobre la empresa ya sea de manera económica, productiva o de seguridad.
- Las mejoras implementadas de enero a julio son las responsables de optimizar la disponibilidad de los equipos para disminuir las horas de paros no programados de la unidad de licuación de 2,32 a 0,8% que equivale a una reducción del 65% de horas, es decir, más del 20% que se tenía provisto en los objetivos de este proyecto.
- Se logra reducir a cero horas de paros por problemas en la unidad hasta julio del 2021, sin embargo, es posible seguir mejorando la disponibilidad de los equipos con una mayor inversión en ingeniería ya que existen controles manuales que pueden automatizarse.

4.2. Recomendaciones

- Las capacitaciones sobre la unidad de licuación hacia el personal deben ser continuas. Conocer el proceso es la base para la correcta operación de los equipos.
- Se debe mantener documentado el proceso para que en futuras ocasiones sirva de base para la implementación de cambios en la unidad.
- Se debe involucrar al personal operativo en la evaluación e implementación de las mejores según los problemas que se vayan presentando ya que son las personas que tienen mayor contacto con los equipos. Las ideas y los análisis realizados por parte de ellos fueron de suma relevancia para el proyecto.

BIBLIOGRAFÍA

- Aguilar-Otero J. (2010). *Análisis de modos de falla, efectos y criticidad (AMFEC) para la planeación del mantenimiento.* Tecnología, Ciencia, Educación vol. 25, núm. 1, 15-26.
- Bollaín, M. (2018). Ingeniería de instrumentación de plantas de proceso. . Diaz de Santos.
- Krajewski, L. J., & Ritzman, L. P. (2000). *Administración de operaciones, estrategia y análisis*.

 Naucalpan de Juárez, México: Pearson Education.
- Martínez, C. (2004). *Implementación de un análisis de modo y efecto de falla en una línea de una línea de manufactura para juguetes.* Nuevo León, México: Universidad autonoma de Nuevo León.
- Mosquera-Artimonov J., A. I. (2014). Diagnóstico del proceso de inspección mediante índices de capacidad. *Ingeniare. Revista chilena de ingeniería*.
- Parra C., G. A. (2021). Caso de estudio: Técnica de Análisis Causa Raíz (RCA.RISK.V1) y Riesgo aplicada en una línea de envasado de cerveza. Técnica de Análisis Causa Raíz.
- Salazar, D., Mosquera, M., Suarez, N., & Mendoza, J. (s.f.). *Importancia de la herramienta AMEF en los procesos industriales*. Cauca: Fundación Universitaria de Popayán.