

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS CÁLCULO VECTORIAL PAO1 2022

SOLUCIÓN y RÚBRICA - PRIMERA EVALUACIÓN

Tema 1a:

Dada la superficie S: $2x^2 + 3y^2 + z^2 = 20$, entonces el plano tangente a S en el punto (2,1,3) es paralelo a la recta: $l(t) = (-5 + 3t, 2 + 2t, 3 - 6t), t \in \mathbb{R}$.

Solución:

El vector normal a S en el punto indicado es:

$$2x^{2} + 3y^{2} + z^{2} - 6 = 0$$

$$F(x, y, z) = 2x^{2} + 3y^{2} + z^{2} - 6$$

$$N = \nabla F = (4x, 6y, 2z)$$

$$N|_{(2,1,3)} = (8,6,6)$$

Para que el plano sea paralelo a la recta, el vector normal del plano debe ser perpendicular al vector director de la recta:

$$(8,6,6) \cdot (3,2,-6) = 8(3) + 6(2) - 6(6) = 0$$

La proposición es VERDADERA.

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	No sabe	Sabe cómo	Sabe cómo	Sabe cómo
emplear los	cómo	determinar el	encontra el	determinar el
conceptos	determinar	plano tangente,	planos	planos tangente,
aprendidos	el plano	pero no usa la	tangente, usa	usa
sobre planos	tangente.	información	la información	correctamente la
tangentes a		correctamente.	pero comete	información
una superficie.			errores al	conseguida y
			relacionar los	justifica el valor
			vectores	de verdad de la
			característicos.	proposición.
	0	1-2	3-4	5

Tema 1b:

Considere la función vectorial $r: \mathbb{R} \to \mathbb{R}^n$, $r(t) = (f_1(t), f_2(t), ..., f_n(t))$. El dominio de la función r(t) es igual a la UNIÓN de los dominios de las funciones coordenadas componentes $f_i(t)$; es decir:

$$dom\ r = \bigcup_{i=1}^{n} dom\ f_{i}$$

Solución:

Si consideramos una función vectorial:

$$r(t) = \left(\sqrt{t}, t\right)$$

La primera función componente tiene como dominio: t>0; mientras que la segunda función componente tiene como dominio $t\in\mathbb{R}$, la unión de ambos dominios es $t\in\mathbb{R}$. Como el dominio de r(t) son los puntos donde todas las funciones componentes existan, la unión no es el dominio correcto pues la primera componente no admite valores menores que cero.

La proposición es FALSA.

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe analizar el	No sabe	Sabe cómo	Sabe cómo	Sabe determinar el
dominio de	cómo	determinar el	determinar el	dominio de una
funciones	determinar	dominio de una	dominio de una	función vectorial,
vectoriales.	el dominio	función	función	muestra un
	de una	vectorial, pero	vectorial,	contraejemplo
	función	no utiliza un	plantea un	adecuado y
	vectorial.	buen	contraejemplo,	concluye el valor
		contraejemplo.	pero concluye	correctamente el
			erróneamente	valor de verdad de
			el valor de	la proposición.
			verdad.	
	0	1-2	3-4	5

Tema 1c:

El conjunto $A = \{(x, y) \in \mathbb{R}^2; \ 1 < x^2 + y^2 < 4\} \cup \{(0, 0)\}$ tiene como conjunto de puntos frontera al conjunto $Fr(A) = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 = 1 \ \land \ x^2 + y^2 = 4\}$

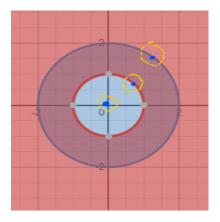
Solución:

El conjunto frontera de A es:

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 : 1 = x^2 + y^2 \land x^2 + y^2 = 4\} \cup \{(0, 0)\}$$

Justificación:

- Los ecuaciones $1 = x^2 + y^2 \wedge x^2 + y^2 = 4$ representan las circunferencias que constituyen los conjuntos de puntos que rodean a la región A.
- El punto (0,0) es punto frontera del conjunto A por pertenecer a él y ser un punto aislado.
- En el siguiente gráfico se puede observar que en cada uno de esos puntos y para cada bola con centro en ellos la bola intercepta al conjunto y a su conjunto complemento.



La proposición es FALSA.

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
interpreta un conjunto de acuerdo con su representación en el plano y distingue elementos de topología, en este caso, su	No sabe definir conjunto frontera y por lo tanto no puede determinar valor de verdad.	Define o dibuja correctamente el conjunto frontera pero no expone argumentos de justificación del valor de verdad.	Define o dibuja correctamente el conjunto frontera pero no justifica completamente el valor de verdad.	Define o dibuja correctamente el conjunto frontera y justifica cabalmente el valor de verdad de la proposición.
frontera.	0	1-2	3-4	5

Tema 1d:

Dada la superficie S en coordenadas esféricas $4 - \rho \cos(\varphi) = \rho^2 sen^2(\varphi)$, entonces el área de la región encerrada por su curva de nivel correspondiente a k = 2 es igual a $4\pi u^2$.

Solución:

Escribiremos la ecuación de la superficie en coordenadas rectangulares.

Note que:

- $\rho cos(\varphi) = z$
- $\rho sen(\varphi) = r \Rightarrow \rho^2 sen^2(\varphi) = r^2 \Rightarrow \rho^2 sen^2(\varphi) = x^2 + y^2$

Luego:

$$4 - \rho cos(\varphi) = \rho^2 sen^2(\varphi)$$

$$4 - z = x^2 + y^2$$

$$z = 4 - x^2 - y^2$$

Con la superficie escrita en coordenadas cartesianas, escribiremos la ecuación de la curva de nivel k=2:

$$2 = 4 - x^2 - y^2$$
$$x^2 + y^2 = 2$$

Como la curva de nivel es una circunferencia centrada en el origen de radio $\sqrt{2}$, la región que encierra es un círculo de área $2\pi~u^2$.

La proposición es FALSA.

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	No sabe	Sabe cómo	Sabe cómo	Sabe cómo escribir
interpretar y	cómo	escribir la	escribir la	la ecuación de la
hallar la	encontrar	ecuación de la	ecuación de la	superficie en
ecuación de una	una curva de	superficie en	superficie en	coordenadas
curva de nivel	nivel de una	coordenadas	coordenadas	rectangulares, sabe
de una	superficie en	rectangulares,	rectangulares,	hallar la ecuación
superficie con	coordenadas	pero no cómo	sabe hallar la	de la curva de nivel
ecuación en	esféricas.	hallar la	ecuación de la	e intepretarla para
coordenadas		ecuación de una	curva de nivel	calcular el área que
esféricas.		curva de nivel.	pero no cómo	encierra y concluye
			interpretarla.	correctamente.
	0	1-2	3-4	5

Tema 2a:

Considere la función
$$f(x,y) = \begin{cases} \frac{1-\cos(x^2+y)}{(x-\sqrt{-y})^2}, & x \neq \sqrt{-y} \\ a, & x = \sqrt{-y} \end{cases}$$

- a) Determine si existe el valor real de a para que la función f(x,y) sea continua en el punto $(x_0,y_0)=(1,-1)$.
- b) Estudie la diferenciabilidad de la función f(x, y) en el punto (1,-1).

Solución:

Calculemos
$$\lim_{(x,y)\to(1,-1)} \frac{1-\cos(x^2+y)}{(x-\sqrt{-y})^2}$$

Sabemos que, en la vecindad de 0, es válido $1 - \cos x \sim \frac{x^2}{2}$. Luego,

$$\lim_{(x,y)\to(1,-1)}\frac{1-\cos(x^2+y)}{(x-\sqrt{-y})^2}=\lim_{(x,y)\to(1,-1)}\frac{(x^2+y)^2}{2(x-\sqrt{-y})^2}=\lim_{(x,y)\to(1,-1)}\frac{(x+\sqrt{-y})^2}{2}=2$$

Por lo tanto, existe a = 2 = f(1, -1) que hace que la función sea continua en $(x_0, y_0) = (1, -1)$.

Otra forma.

Notemos que:

$$\frac{1 - \cos(x^2 + y)}{(x - \sqrt{-y})^2} = \frac{1 - \cos^2(x^2 + y)}{(x - \sqrt{-y})^2 \cdot (1 + \cos(x^2 + y))} = \frac{\sin^2(x^2 + y)}{(x^2 + y)^2} \cdot \frac{(x^2 + y)^2}{(x - \sqrt{-y})^2} \cdot \frac{1}{1 + \cos(x^2 + y)}$$

Como

$$\lim_{(x,y)\to (1,-1)}\frac{sen^2(x^2+y)}{(x^2+y)^2}=\lim_{u\to 0}\frac{sen^2(u)}{u^2}=1 \ \ \mathsf{y} \lim_{(x,y)\to (1,-1)}\frac{1}{1+\cos(x^2+y)}=\frac{1}{2},$$

Ahora calculemos

$$\lim_{(x,y)\to(1,-1)} \frac{(x^2+y)^2}{(x-\sqrt{-y})^2} = \lim_{(x,y)\to(1,-1)} \left[\frac{x^2+y}{x-\sqrt{-y}} \cdot \frac{x+\sqrt{-y}}{x+\sqrt{-y}} \right]^2$$

$$= \lim_{(x,y)\to(1,-1)} \left[\frac{(x^2+y)\cdot(x+\sqrt{-y})}{x^2+y} \right]^2 = \lim_{(x,y)\to(1,-1)} \left[x+\sqrt{-y} \right]^2 = 4$$

Por lo tanto:

$$\lim_{(x,y)\to(1,-1)}\frac{1-\cos(x^2+y)}{(x-\sqrt{-y})^2}=\lim_{(x,y)\to(1,-1)}\frac{sen^2(x^2+y)}{(x^2+y)^2}\cdot\frac{(x^2+y)^2}{(x-\sqrt{-y})^2}\cdot\frac{1}{1+\cos(x^2+y)}=2$$

Para estudiar la diferenciabilidad calculemos las derivadas parciales:

$$\frac{\partial f}{\partial x}(1,-1) = \lim_{t \to 0} \frac{f((1,-1) + t(1,0)) - f(1,-1)}{t} = \lim_{t \to 0} \frac{f(1+t,-1) - 2}{t}$$

$$= \lim_{t \to 0} \frac{\frac{1 - \cos(1 + 2t + t^2 - 1)}{[(1 + t) - \sqrt{-(-1)}]^2} - 2}{t} = \lim_{t \to 0} \frac{1 - \cos(2t + t^2) - 2t^2}{t^3} = \lim_{t \to 0} \frac{(2 + 2t) \cdot sen(2t + t^2) - 4t}{3t^2}$$

N. Córdova - C. Hernández - M. Pastuizaca - L. Pérez - P. Ramos - L. Rodríguez

$$=\lim_{t\to 0}\frac{2\operatorname{sen}\left(2t+t^2\right)+(2+2t)^2\cdot\cos(2t+t^2)-4}{6\,t}\to\infty$$

La derivada parcial respecto a x no existe por lo que podemos concluir que la función no es diferenciable en el punto (1, -1).

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	No sabe cómo	No plantea el	Plantea el	Plantea el
plantear el	plantear el	criterio de	criterio de	criterio de
criterio de	criterio de	continuidad,	continuidad,	continuidad,
continuidad en	continuidad, no	pero muestra	muestra que el	muestra que el
un punto y	calcula el límite,	que el límite	límite existe,	límite existe,
estudiar la	no calcula las	existe,	concluyendo	concluyendo que
existencia o no	derivadas	concluyendo	que la función	la función es
del límite para	parciales para	que la función	es continua en	continua en
concluir al	concluir	es continua en	dicho punto.	dicho punto.
respecto. Sabe	respecto a la	dicho punto.	Calcula las	Calcula las
calcular las	diferenciabilidad		derivadas	derivadas
derivadas	de la función en		parciales, pero	parciales y
parciales en un	el punto		no concluye	concluye que al
punto. Sabe	indicado.		respecto a la	no existir al
utilizar los			diferenciabilidad	menos una de
teoremas para			de la función.	ellas le permite
concluir				concluir que la
respecto a la				función no es
diferenciabilidad				diferenciabilidad
de la función en				en dicho punto.
un punto.	0	1-8	9-15	16-20

Tema 2b:

Dada la función:

$$f(x,y) = \begin{cases} \frac{3x^2y - y^3}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$$

- a) Determine si f(x, y) es continua en (0,0).
- b) Determine $\frac{\partial f}{\partial v}$ en el origen para toda dirección no nula dada por $v=(cos(t),sen(t));t\in\mathbb{R}.$
- c) Determine si f(x, y) es diferenciable en (0,0).
- d) Determine o justifique si f(x, y) es clase C^1 .

Solución:

a) Se toma el límite usando el sistema de coordenadas polares:

$$\lim_{\substack{(x,y)\to(0,0)}} \frac{3x^2y - y^3}{x^2 + y^2} = \lim_{\substack{(x,y)\to(0,0)}} \frac{r^3(3\cos^2\theta\sin\theta - \sin^3\theta)}{r^2} = 0$$

$$\therefore f \text{ si es continua en } (0,0)$$

b) Se emplea la definición de derivada direccional:

$$\frac{\partial f}{\partial v}(0,0) = \lim_{h \to 0} \frac{f((0,0) + h(\cos t, \sin t)) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h\cos t, h\sin t) - 0}{h}$$

$$= \lim_{h \to 0} \frac{\frac{3h^3 \cos^2 t \sin t - h^3 \sin^3 t}{h}}{h}$$

$$= \lim_{h \to 0} 3 \cos^2 t \sin t - \sin^3 t$$

$$\frac{\partial f}{\partial v}(0,0) = 3 \cos^2 t \sin t - \sin^3 t$$

 Se consiguen las derivadas en el origen con la formula encontrada en b) pues la variable t representa la dirección en la cual se deriva.

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial v}(0,0)_{t=0} = 3\cos^2 t \sin t - \sin^3 t|_{t=0} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \frac{\partial f}{\partial v}(0,0)_{t=\frac{\pi}{2}} = 3\cos^2 t \sin t - \sin^3 t|_{t=\frac{\pi}{2}} = -1$$

Luego la diferenciabilidad:

$$\lim_{\substack{(h_1,h_2)\to(0,0)}} \frac{r(h_1,h_2)}{||(h_1,h_2)||}$$

$$\lim_{\substack{(h_1,h_2)\to(0,0)}} \frac{f(h_1,h_2)-f(0,0)-Df(0,0)(h_1,h_2)^T}{\sqrt{h_1^2+h_2^2}}$$

$$\lim_{\substack{(h_1,h_2)\to(0,0)}} \frac{\frac{3h_1^2h_2-h_2^3}{h_1^2+h_2^2}-0-[0\ -1]\begin{bmatrix}h_1\\h_2\end{bmatrix}}{\sqrt{h_1^2+h_2^2}} = \lim_{\substack{(h_1,h_2)\to(0,0)}} \frac{\frac{3h_1^2h_2-h_2^3}{h_1^2+h_2^2}+h_2}{\sqrt{h_1^2+h_2^2}}$$

$$\lim_{\substack{(h_1,h_2)\to(0,0)\\ \text{f no es diferenciable en } (0,0)}} \frac{4h_1^2h_2}{(h_1^2+h_2^2)^{\frac{3}{2}}} = \lim_{r\to 0} \frac{4r^3\cos^2\theta\sin\theta}{r^3} = 4\cos^2\theta\sin\theta$$

d) Como f no es diferenciable en (0,0) entonces f no es de clase C¹ en el punto (0,0).

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	No sabe cómo	Plantea el	Determina la	Determina la
determinar	plantear el	criterio de	continuidad en el	continuidad en el
continuidad en	criterio de	continuidad y	punto , calcula	punto , calcula
un punto,	continuidad, no	muestra que el	correctamente la	correctamente la
anlaizar la	calcula el límite,	límite existe,	derivada	derivada
existencia de	no calcula las	concluyendo	direccional	direccional
derivadas	derivadas	que la función	solicitada,	solicitada, obtiene
direccionales,	parciales para	es continua en	obtiene las	las derivadas
analizar	concluir	dicho punto.	derivadas	parciales en el
difrenciabilidad	respecto a la	Emplea la	parciales en el	origen, aplica la
de una función	diferenciabilidad	definición de	origen, aplica la	expresión de
en un punto y	de la función en	derivada	expresión de	diferenciabilidad
emplear el	el punto	direccional y	diferenciabilidad,	concluyenco la no
teorema de la	indicado.	obtiene	pero tiene	diferenciabilidad
diferenciabilidad		correctamente	problemas en su	en el origen y
para concluir si		la derivada	desarrollo o no	aplica bien el
una función es		solicitada.	concluye	teorema
de clase C1.			correctamente.	concluyendo que
				la función no es de
				Clase C ¹ .
	0	1-10	11-16	17-20

Tema 3a:

Dada la función $z=rac{1}{y}[f(ax+y)+g(ax-y)]$, demuestre que si z es de clase C^2 se cumple que $rac{\partial^2 z}{\partial x^2}=rac{2a^2}{y}rac{\partial z}{\partial y}+a^2rac{\partial^2 z}{\partial y^2}$

Solución:

Calculamos las derivadas parciales primera y segunda de f con respecto de x:

$$\frac{\partial z}{\partial x} = \frac{1}{y} [f'(ax + y)a + g'(ax - y)a] = \frac{a}{y} f'(ax + y) + \frac{a}{y} g'(ax - y)$$
(I)
$$\frac{\partial^2 z}{\partial x^2} = \frac{a^2}{y} f''(ax + y) + \frac{a^2}{y} g''(ax - y)$$
(II)

Calculemos las derivadas parciales primera y segunda con respecto de y:

$$\frac{\partial z}{\partial y} = \frac{[f'(ax+y) - g'(ax-y)]y - [f(ax+y) + g(ax-y)]}{y^2}$$
$$= \frac{1}{y}f'(ax+y) - \frac{1}{y}g'(ax-y) - \frac{1}{y^2}f(ax+y) - \frac{1}{y^2}g(ax-y)$$

$$\frac{\partial^{2}z}{\partial y^{2}} = \frac{f''(ax+y)y - f'(ax+y)}{y^{2}} - \frac{[-g''(ax-y)y - g'(ax-y)]}{y^{2}}$$

$$-\frac{[f'(ax+y)y^{2} - f(ax+y)2y]}{y^{4}} - \frac{[-g'(ax-y)y^{2} - g(ax-y)2y]}{y^{4}}$$

$$= \frac{1}{y}f''(ax+y) + \frac{1}{y}g''(ax-y) - \frac{2}{y^{2}}f'(ax+y) + \frac{2}{y^{2}}g'(ax-y)$$

$$+ \frac{2f(ax+y)}{y^{3}} + \frac{2g(ax-y)}{y^{3}} \qquad (III)$$

Sustituyendo (I) Y (III) en $\frac{2a^2}{v} \frac{\partial z}{\partial v} + a^2 \frac{\partial^2 z}{\partial v^2}$, se tiene:

$$\frac{2a^2}{y}\frac{\partial z}{\partial y} + a^2\frac{\partial^2 z}{\partial y^2} = \frac{2a^2}{y} \left[\frac{1}{y} f'(ax+y) - \frac{1}{y} g'(ax-y) - \frac{1}{y^2} f(ax+y) - \frac{1}{y^2} g(ax-y) \right]
+ a^2 \left[\frac{1}{y} f''(ax+y) + \frac{1}{y} g''(ax-y) - \frac{2}{y^2} f'(ax+y) + \frac{2}{y^2} g'(ax-y) + \frac{2f(ax+y)}{y^3} + \frac{2g(ax-y)}{y^3} \right]
= \frac{a^2}{y} f''(ax+y) + \frac{a^2}{y} g''(ax-y)$$

De (II), se tiene
$$\frac{\partial^2 z}{\partial x^2} = \frac{2a^2}{y} \frac{\partial z}{\partial y} + a^2 \frac{\partial^2 z}{\partial y^2}$$

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
debe estar en la	Aplica	Calcula	Calcula	Calcula
capacidad de	linealidad en	correctamente	correctamente	correctamente las
demostrar o	la función,	las derivadas	las derivadas	derivadas parciales
resolver	pero no	parciales de	parciales de	de primer y segundo
ecuaciones en	calcula o	primer orden con	primer y	orden con respecto
derivadas	calcula de	respecto a x,y.	segundo orden	de x, y, logra
parciales,	forma	Pero, no calcula o	con respecto de	demostrar la
utilizando regla	incorrecta	calcula de forma	x, y, pero no	ecuación que se
de la cadena y	las derivadas	incorrecta las	logra	desea demostrar.
técnicas de	parciales de	parciales	demostrar la	
derivación	primer y	segundas con	ecuación que	
	segundo	respecto a x, y.	se desea, por	
	orden.		cometer	
			algunos	
			errores.	
	0-1	2-8	0-16	17-20

Tema 3b:

Sea
$$z=f(u,v)$$
, donde $u=x-\frac{y}{2}$, $v=x+\frac{y}{2}$. Demuestre que si f es de clase C^2 , entonces, se cumple que $\frac{\partial^2 f}{\partial x^2}-4\frac{\partial^2 f}{\partial y^2}=4\frac{\partial^2 f}{\partial u\partial v}$

Solución:

$$\frac{\partial u}{\partial x} = 1$$
, $\frac{\partial u}{\partial y} = -\frac{1}{2}$, $\frac{\partial v}{\partial x} = 1$, $\frac{\partial v}{\partial y} = \frac{1}{2}$

Calculemos las derivadas parciales primera y segunda de f con respecto de x

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v}$$

Como f es de clase C^2 , las derivadas iteradas o mixtas son iguales

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial u} \right) + \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial v} \right) \\ &= \left(\frac{\partial^2 f}{\partial u^2} \frac{\partial u}{\partial x} + \frac{\partial^2 f}{\partial v \partial u} \frac{\partial v}{\partial x} \right) + \left(\frac{\partial^2 f}{\partial u \partial v} \frac{\partial u}{\partial x} + \frac{\partial^2 f}{\partial^2 v} \frac{\partial v}{\partial x} \right) \\ &= \frac{\partial^2 f}{\partial u^2} + 2 \frac{\partial^2 f}{\partial v \partial u} + \frac{\partial^2 f}{\partial^2 v} \end{split}$$

Calculemos las derivadas parciales primera y segunda de f con respecto de y

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} = -\frac{1}{2} \frac{\partial f}{\partial u} + \frac{1}{2} \frac{\partial f}{\partial v}$$

Como f es de clase C^2 , las derivadas iteradas o mixtas son iguales

$$\begin{split} \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -\frac{1}{2} \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial u} \right) + \frac{1}{2} \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial v} \right) \\ &= -\frac{1}{2} \left(\frac{\partial^2 f}{\partial u^2} \frac{\partial u}{\partial y} + \frac{\partial^2 f}{\partial v \partial u} \frac{\partial v}{\partial y} \right) + \frac{1}{2} \left(\frac{\partial^2 f}{\partial u \partial v} \frac{\partial u}{\partial y} + \frac{\partial^2 f}{\partial^2 v} \frac{\partial v}{\partial y} \right) \\ &= -\frac{1}{2} \left(-\frac{1}{2} \frac{\partial^2 f}{\partial u^2} + \frac{1}{2} \frac{\partial^2 f}{\partial v \partial u} \right) + \frac{1}{2} \left(-\frac{1}{2} \frac{\partial^2 f}{\partial u \partial v} + \frac{1}{2} \frac{\partial^2 f}{\partial^2 v} \right) \\ &= \frac{1}{4} \frac{\partial^2 f}{\partial u^2} - \frac{1}{2} \frac{\partial^2 f}{\partial v \partial u} + \frac{1}{4} \frac{\partial^2 f}{\partial^2 v} \end{split}$$

Así,

$$\frac{\partial^2 f}{\partial x^2} - 4 \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial u^2} + 2 \frac{\partial^2 f}{\partial v \partial u} + \frac{\partial^2 f}{\partial^2 v} + 4 \left(\frac{1}{4} \frac{\partial^2 f}{\partial u^2} - \frac{1}{2} \frac{\partial^2 f}{\partial v \partial u} + \frac{1}{4} \frac{\partial^2 f}{\partial^2 v} \right)$$
$$= 4 \frac{\partial^2 f}{\partial v \partial u}$$

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
debe estar en la	No realiza el	Calcula	Calcula	Calcula
capacidad de	ejercicio o	correctamente las	correctamente las	correctamente
demostrar o	calcula de	derivadas parciales	derivadas parciales	las derivadas
resolver	forma	de u,v con	de u,v con	parciales de
ecuaciones en	incorrecta	respecto a x,y, las	respecto a x,y, las	primer y
derivadas	las derivadas	derivadas parciales	derivadas parciales	segundo
parciales,	parciales de	de f de primer	de f de primer	orden con
utilizando regla	u,v con	orden con	orden con respecto	respecto de x,
de la cadena y	respecto a	respecto a x,y.	a x,y. calcula de	y, logra
técnicas de	x,y.	Pero no calcula o	forma correcta las	demostrar la
derivación.		calcula de forma	parciales segundas	ecuación que
		incorrecta las	de f con respecto a	se desea
		parciales segundas	x, y, pero no logra	demostrar.
		de f con respecto a	demostrar la	
		х, у	ecuación que se	
			desea, por cometer	
			algunos errores.	
	0-1	2-8	9-16	17-20

Tema 4a:

Una inteligencia artificial (IA) está siendo entrenada para que cuando reciba un par $(a,b) \in$ \mathbb{R}^2 prediga un valor $k \in \mathbb{R}$. Al valor que predice la IA le llamaremos z (al final del entrenamiento, z será muy próximo de k). Entrenar una IA significa encontrar los parámetros $(x,y) \in \mathbb{R}^2$ que hacen que el error de predicción E(x,y) sea el menor posible. Inicialmente, la IA asume parámetros aleatorios (x_0, y_0) generando una predicción errada z_0 , el resto del entrenamiento consiste en desplazar ese punto (x_0, y_0) una y otra vez hasta que E sea muy pequeño. Si se conoce que:

$$\bullet \quad E(x,y) = \frac{1}{2}[z(x,y) - k]^2$$

•
$$z(x, y) = f(ax + by)$$

• $f(u) = \frac{1}{1+e^{-u}}$

$$\bullet \quad f(u) = \frac{1}{1 + e^{-u}}$$

a) Si
$$z=f(u)$$
. Demuestre que $\frac{dz}{du}=z(1-z)$.

b) Demuestre que la dirección inicial en que se debe desplazar el punto (x_0,y_0) para que E(x, y) disminuya lo más rápido posible es el vector:

$$v = (-az_0(z_0 - k)(1 - z_0), -bz_0(z_0 - k)(1 - z_0))$$

Solución:

a) Note que $z = f(u) = \frac{1}{1 + e^{-u}}$, entonces:

$$\frac{dz}{du} = \frac{e^{-u}}{(1+e^{-u})^2} = \left(\frac{1}{1+e^{-u}}\right) \left(\frac{e^{-u}}{1+e^{-u}}\right) = \left(\frac{1}{1+e^{-u}}\right) \left(\frac{1+e^{-u}-1}{1+e^{-u}}\right)$$
$$= \left(\frac{1}{1+e^{-u}}\right) \left(\frac{1+e^{-u}}{1+e^{-u}} - \frac{1}{1+e^{-u}}\right) = z(1-z)$$

b) Sabemos que el vector que nos ayudará a reducir el error más rápido es:

$$v = -\nabla E = \left(-\frac{\partial E}{\partial x}, -\frac{\partial E}{\partial y}\right); (x, y) = (x_0, y_0)$$

Entonces, encontraremos las derivadas parciales de E usando regla de la cadena, para lo cual haremos el cambio de variable u = ax + by, y usaremos el resultado demostrado en el literal a), de modo que:

•
$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} = (z - k)(z)(1 - z)(a) = az(z - k)(1 - z)$$
•
$$\frac{\partial E}{\partial y} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial y} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} = (z - k)(z)(1 - z)(b) = bz(z - k)(1 - z)$$

•
$$\frac{\partial E}{\partial y} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial y} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} = (z - k)(z)(1 - z)(b) = bz(z - k)(1 - z)$$

Recordemos que cuando $(x, y) = (x_0, y_0)$, se tiene $z = z_0$. Luego, sustituyendo:

$$v = (-az_0(z_0 - k)(1 - z_0), -bz_0(z_0 - k)(1 - z_0))$$

Rúbrica a):

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	El estudiante	El estudiante	El estudiante	El estudiante sabe
derivar la	no sabe	sabe cómo	sabe cómo	cómo derivar la
función en	cómo derivar	derivar, pero	derivar la	expresión dada sin
cuestión y sabe	la función en	comete errores	expresión dada	errores y consigue
cómo manipular	cuestión.	algebraicos y	sin errores,	demostrar
correctamente		obtiene una	pero no	exitosamente lo que
las expresiones		derivada errada.	consigue	se solicita en el
algebráicas para			demostrar lo	enunciado.
demostrar lo			que se solicita	
deseado.			en el	
			enunciado.	
	0	1-2	3-4	5

Rúbrica b):

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe interpretar	El estudiante no	El estudiante	El estudiante	El estudiante
el problema,	sabe cómo	sabe cómo	sabe cómo	sabe cómo
plantea que	interpretar el	interpretar el	interpretar el	interpretar el
necesita el	problema y	problema,	problema,	problema, calcula
gradiente y lo	realiza cálculos	indica que	calcula el	el gradiente de
calcula	no relacionados	necesita el	gradiente, pero	forma correcta, y
exitosamente	a lo que se	gradiente, e	tiene pocos	concluye
usando regla de	solicita.	intenta	errores	exitosamente.
la cadena.		calcularlo sin	algebraicos y no	
		éxito.	concluye.	
	0	1-5	6-10	11-15

Tema 4b:

Abigaíl escala una montaña modelada por la función $f(x,y)=1200-\frac{3}{2}x^2-2y^2$ (con x,y,f(x,y) en metros). En cierto momento, se encuentra tomando un descanso en un punto donde (x,y)=(10,10). Abigaíl ya está muy cansada, pero decide avanzar en la dirección donde pueda acercarse más a la cima dando su último esfuerzo de modo que consigue avanzar 10 metros (en el plano XY) para romper su propio récord. Como señal de que ha conseguido superarse, coloca una bandera de forma perpendicular a la superficie en el punto donde se detuyo. Determine:

- a) En qué dirección se desplazó Abigaíl cuando decidió moverse del punto? (10, 10).
- b) Cuál es la nueva altura record a la que llegó Abigaíl en su aventura?
- c) En qué dirección unitaria apunta el asta de la bandera?

Solución:

a) La dirección donde se puede avanzar más rápido a la cima, es la dirección de máximo crecimiento de f, y esta está dada por el gradiente en el punto (10,10):

$$\nabla f(10,10) = \left(f_x(10,10), f_y(10,10) \right) = (-3x, -4y)_{|(x,y)=(10,10)} = (-30, -40).$$

b) Abigaíl se desplazó en la dirección del vector unitario:

$$\frac{\nabla f(10,10)}{||\nabla f(10,10)||} = \frac{(-30,-40)}{\sqrt{(-30)^2 + (-40)^2}} = \left(-\frac{3}{5}, -\frac{4}{5}\right)$$

El punto en final al que llegó avanzando 10 metros en dicha dirección (en el dominio de f) es:

$$(x_f, y_f) = (10,10) + 10\left(-\frac{3}{5}, -\frac{4}{5}\right) = (4,2)$$

Luego, la altura record que alcanza es:

$$h_{record} = f(x_f, y_f) = 1200 - \frac{3}{2}(4)^2 - 2(2)^2 = 1168 \text{ metros}$$

c) La dirección unitaria en la que apunta el asta de la bandera es el vector normal unitario de f en el punto (4,2):

$$v = \frac{\left(f_{x}(4,2), f_{y}(4,2), -1\right)}{\sqrt{\left(f_{x}(4,2)\right)^{2} + \left(f_{x}(4,2)\right)^{2} + \left(-1\right)^{2}}} = \frac{\left(-3(4), -4(2), -1\right)}{\sqrt{\left(-12\right)^{2} + \left(-8\right)^{2} + \left(-1\right)^{2}}} = \left(-\frac{12}{\sqrt{209}}, -\frac{8}{\sqrt{209}}, -\frac{1}{\sqrt{209}}\right)$$

Rúbrica a):

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	El estudiante	El estudiante	El estudiante	El estudiante sabe
interpretar que	no sabe	sabe cómo	sabe cómo	cómo interpretar
necesita el	cómo	interpretar el	interpretar el	el problema,
gradiente de f	interpretar	problema, pero	problema, pero	calcula el gradiente
en el punto	el problema	no calcula el	comete errores	y evalúa en el
(10, 10), y lo	y no realiza	gradiente.	aritméticos o	punto
calcula de forma	cálculos		algebraicos al	exitosamente.
exitosa.	coherentes.		calcular el	
			gradiente.	
	0	1-2	3-4	5

Rúbrica b):

Capacidades deseadas	Desempeño			
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	El estudiante	El estudiante	El estudiante sabe	El estudiante
interpretar que	no sabe cómo	sabe cómo	cómo interpretar	sabe cómo
requiere	interpretar el	interpretar el	el problema,	interpretar el
desplazar 10	problema y no	problema,	calcula	problema, calcula
metros el punto	realiza cálculos	calcula el punto	exitosamente el	exitosamente el
(10,10) en	coherentes.	desplazado en	punto nuevo	punto nuevo en el
dirección del		el dominio de f,	haciendo el	dominio de f,
gradiente		pero no	desplazamiento,	evalúa en la
usando su		concluye y	pero no calcula	función y
unitario.		comete	correctamente la	concluye
		errores.	altura.	correctamente.
	0	1-4	5-7	8-10

Rúbrica c):

Capacidades deseadas	Desempeño				
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente	
sabe interpretar el problema, plantea que necesita el vector normal unitario y lo calcula bien.	El estudiante no sabe cómo interpretar el problema y no realiza cálculos coherentes.	El estudiante sabe cómo interpretar el problema, pero realiza mal todos los cálculos.	El estudiante sabe cómo interpretar el problema, pero comete errores aritméticos pequeños	El estudiante sabe cómo interpretar el problema y calcula exitosamente el vector normal unitario.	
	0	1-2	3-4	5	

Tema 5a:

Dada una hélice representada por la función vectorial $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, t \rangle$

- a) Determine las ecuaciones de los planos osculador y rectificante (o rectificador) para $t=\frac{\pi}{2}$
- b) Determine el valor de la curvatura para t = 0

Solución:

a)
$$r\left(\frac{\pi}{2}\right) = \left(0,2,\frac{\pi}{2}\right)$$

$$r'(t) = \langle -2 \operatorname{sen} t, 2 \operatorname{cos} t, 1 \rangle$$

$$||r'(t)|| = \sqrt{4sen^2t + 4cos^2t + 1} = \sqrt{5}$$

$$T(t) = \frac{r'(t)}{\|r'(t)\|} = \frac{\langle -2 \operatorname{sen} t, 2 \cos t, 1 \rangle}{\sqrt{5}} = \frac{1}{\sqrt{5}} \langle -2 \operatorname{sen} t, 2 \cos t, 1 \rangle$$

$$T'(t) = \frac{1}{\sqrt{5}} \langle -2\cos t, -2\sin t, 0 \rangle$$

$$||T'|| = \frac{1}{\sqrt{5}} \sqrt{4\cos^2 t + 4\sin^2 t + 0^2} = \frac{2}{\sqrt{5}}$$

$$N(t) = \frac{T'(t)}{\|T'(t)\|} = \frac{\frac{1}{\sqrt{5}} \langle -2\cos t, -2\sin t, 0 \rangle}{2/\sqrt{5}} = \langle -\cos t, -\sin t, 0 \rangle$$

$$\boldsymbol{B}(t) = \boldsymbol{T}(t) \times \boldsymbol{N}(t) = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ -\frac{2}{\sqrt{5}} sen t & \frac{2}{\sqrt{5}} cos t & \frac{1}{\sqrt{5}} \\ -cos t & -sen t & 0 \end{vmatrix} = \frac{1}{\sqrt{5}} \langle sen t, -cos t, 2 \rangle$$

Plano osculador:

Con $B(\pi/2) = \frac{1}{\sqrt{5}} \langle 1,0,2 \rangle$ como vector directriz:

$$\frac{1}{\sqrt{5}}\langle 1,0,2\rangle \cdot [(x,y,z) - (0,2,\pi/2)] = 0 \Rightarrow x + 2z - \pi = 0$$

Plano rectificador:

Con $N\left(\frac{\pi}{2}\right) = \langle 0, -1, 0 \rangle$ como vector directriz:

$$(0,-1,0) \cdot [(x,y,z) - (0,2,\pi/2)] = 0 \Rightarrow y - 2 = 0$$

b) La curvatura en t=0

$$r'(t) = \langle -2 \operatorname{sen} t, 2 \operatorname{cos} t, 1 \rangle$$

$$r''(t) = \langle -2\cos t, -2\sin t, 0 \rangle$$

$$r'(0) \times r''(0) = \begin{vmatrix} i & j & k \\ 0 & 2 & 1 \\ -2 & 0 & 0 \end{vmatrix} = \langle 0, -2, 4 \rangle$$

$$\kappa(0) = \frac{\|r'(0) \times r''(0)\|}{\|r'(0)\|^3} = \frac{\|\langle 0, -2, 4 \rangle\|}{(5)^{3/2}} = \frac{\sqrt{20}}{5\sqrt{(5)}} = \frac{2}{5}$$

Capacidades deseadas	Desempeño				
El estudiante es	Inicial	En desarrollo	Desarrollado	Excelente	
capaz de calcular las ecuaciones de los planos osculador y Rectificante y calcular su curvatura.	No puede aplicar correctamente los conceptos asociados a la derivada requeridos.	Determina los vectores velocidad y su módulo, con estos obtiene el vector T, luego su derivada y el vector N, para finalmente obtener el vector Binormal, pero no determina las ecuaciones de los planos	Con todos los cálculos requeridos determina las ecuaciones de los planos osculador y rectificante pero no determina correctamente el valor de la curvatura solicitada para	Determina correctamente las ecuaciones de los planos osculador y rectificante y el valor de curvatura solicitado o comete errores no significativos en el proceso.	
	0-3	solicitados.	t=0.	17-20	

Tema 5b:

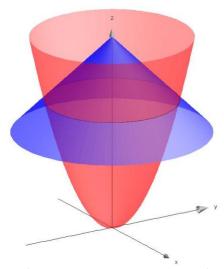
Considere las superficies:

$$S_1: z = 6 - \sqrt{x^2 + y^2}$$
; $S_2: z = x^2 + y^2$

- a) Realice un bosquejo de S_1 junto a S_2 en el espacio, denotando la curva de intersección.
- b) Determine una parametrización, en orientación positiva, para la curva de intersección entre las superficies en términos de t.
- c) Determine los vectores T, N y B para esta trayectoria.
- d) Determine la de longitud de arco total de la curva.

Solución:

a) La superficie S_1 es la parte superior de un cono, mientras que S_2 es un paraboloide. Un bosquejo podría ser:



b) Se interceptan las superficies reemplazando todo en términos de las variables x y para lidiar con la proyección de la curva de intersección sobre el plano XY.

$$\begin{cases} z = 6 - \sqrt{x^2 + y^2} \\ z = x^2 + y^2 \end{cases} \rightarrow z = 6 - \sqrt{z}$$
$$(\sqrt{z})^2 = (6 - z)^2$$
$$z^2 - 13z + 36 = 0 \Rightarrow z = 4 ; z = 9$$

Según la figura, el vértice del cono se da en z= 6, así que la solución válida es z=4.

Entonces tanto en S_1 o en S_2 se puede conseguir:

$$x^2 + y^2 = 4$$

Por lo que x y se pueden parametrizar como una circunferencia de radio 2 y centro en el origen:

$$C(t) = \begin{cases} x = 2\cos t \\ y = 2\sin t \\ z = 4 \end{cases} ; \quad t \in [0, 2\pi]$$

c) El vector tangente unitario:

$$T(t) = \frac{\vec{C}'(t)}{\left| |\vec{C}'(t)| \right|}$$

$$\vec{C}'(t) = [-2\sin t, 2\cos t, 0] \quad ; \quad \left| |\vec{C}'(t)| \right| = 2$$

$$T(t) = \frac{[-2\sin t, 2\cos t, 0]}{2} = [-\sin t, \cos t, 0]$$

El vector normal unitario:

$$N(t) = \frac{T'(t)}{||T'(t)||}$$

$$T'(t) = [-\cos t, -\sin t, 0] \quad ; \quad ||T'(t)|| = 1$$

$$N(t) = \frac{[-\cos t, -\sin t, 0]}{1} = [-\cos t, -\sin t, 0]$$

El vector Binormal es:

$$\boldsymbol{B} = \boldsymbol{T} \times \boldsymbol{N} = \begin{vmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\ -\sin t & \cos t & 0 \\ -\cos t & -\sin t & 0 \end{vmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

d) la longitud de arco a lo largo de toda la curva:

$$S(t) = \int_{0}^{2\pi} ||C'(t)|| dt = \int_{0}^{2\pi} 2 dt = 4\pi$$

Capacidades deseadas	Desempeño					
	No puede bosquejar las superficies dadas ni aplicar correctamente los conceptos asociados a la derivada requeridos	Bosqueja las superficies dadas y su curva intersección; realiza correctamente el proceso de parametrización de la trayectoria.	Bosqueja las superficies dadas y su curva intersección; realiza correctamente el proceso de parametrización de la trayectoria. Obtiene el vector T, el vector N, para finalmente obtener el vector Binormal.	Bosqueja las superficies dadas y su curva intersección; realiza correctamente el proceso de parametrización de la trayectoria. Obtiene el vector T, el vector N, para finalmente obtener el vector Binormal. Calcula correctamente la longitud de la trayectoria.		
	0-3	4-10	11-16	17-20		