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Abstract

With the microservices architectural model, complex systems are built as a set of small loosely-

coupled independent components. Deployment of microservice-based applications takes advantage

of cloud computing platforms to provide scalability, high availability, and to simplify the deployment

and operation of applications. Improving the performance of microservices running on containerized

and serverless cloud computing platforms is important for many applications with requirements like

real-time, low latency, responsive auto-scaling and to increase user engagement.

This thesis aims to improve the performance of these applications through smart task schedul-

ing and request routing decisions. We started our work enhancing function latency on serverless

platforms by increasing code locality, and assessing conflicting goals for the scheduling process. We

then studied the benefits of performance-aware scheduling decisions for containerized platforms, to

improve microservices performance. We demonstrated that our affinity scheduling approach has

important applicability beyond the microservices domain by increasing the use of the cache layer

to reduce the access time to the data stored in a data lake. Finally, we also addressed the use of

serverless-based microservices to support the dynamic implementation of self-adaptive cloud services.
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Chapter 1

Introduction

1.1 Motivation

With the microservices architectural model, complex systems are built as a set of small loosely-

coupled independent components. Using this model provides multiple advantages for developers,

such as improving the maintainability by allowing to isolate modules from a complex application,

therefore reducing the required effort for debugging, changing the behaviour of existing services, or

adding new functionalities [55].

Deployment of microservice-based applications takes advantage of cloud computing platforms to

provide higher levels of scalability, and to facilitate the deployment and operation of applications

without the need to acquire and manage physical infrastructure [17].

By definition, microservices are very small modules that provides a specific service, and their

minimalist design makes them suitable for lightweight virtualization (like containers) or serverless

platforms (like Function-as-a-Service), which are actively promoted by public cloud providers, such

as AWS Lambda1, IBM Cloud Functions2, Microsoft Azure3 and Google Cloud Functions4 [115,

150, 151].

However, the adoption of cloud platforms to operate complex applications presents particular

challenges, being response times a key aspect in the decision making process [106]. Both, containers

and serverless platforms, are provisioned on-demand under pay-per-use cost models, and services

need to be initialized in order to be used, increasing response times, and affecting the ability to meet

established service levels (SLOs) [11, 150, 24, 79, 39]. This is a limitation that prevents applications

that are sensitive to response times from being migrated to the cloud [11].

A common response to performance challenges in cloud-based environments consists on resource

1https://aws.amazon.com/lambda/
2https://www.ibm.com/cloud/functions
3https://azure.microsoft.com/en-us/services/functions/
4https://cloud.google.com/functions
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over-provisioning, meaning to reserve larger amounts of resources, or to keep idle services running,

waiting for incoming requests. But this approach leads to resource waste and increasing operational

costs [128], and represents an open research problem to be solved to increase the adoption of the

aforementioned platforms.

In this thesis, we work towards improving the performance of microservices applications running

on containerized and serverless cloud computing platforms through smart task scheduling decisions.

1.2 Research goals

The main goal in this research, is to identify causes of performance degradation of microservices

deployed on cloud platforms, and to study how to intelligently schedule tasks, in order to improve

performance metrics of microservices in FaaS and container-based architectures. The specific re-

search goals are:

• Identify causes of performance degradation of microservices deployed on cloud platforms.

• Identify dependencies, direct or indirect, among the desired goals of a microservices scheduling

algorithm.

• Propose and evaluate changes in current scheduling algorithms used by orchestration tools, to

improve the performance of microservices.

1.3 Research questions

This research work seeks to answer the following research questions:

RQ1 Can we reduce launch time via intelligent scheduling decisions that seek to minimize control

plane and data plane communications?

RQ2 Can we improve microservice performance by considering current node resource usage in the

scheduling and placement decisions?

RQ3 How can we reconcile possibly conflicting goals of the microservices scheduling process? (e.g.,

balance worker load, maximize data locality, maximize code locality, meet QoS guarantees)

RQ4 Is it possible to extend the use of smart scheduling decisions to improve the performance

of other components of cloud computing platforms (e.g., storage, and caching systems), to

support the deployment of microservices based applications?

In addition to the study of how to improve the scheduling of microservices, the work in this thesis

has led us to seek other ways in which microservices can themselves support the implementation of

2



self-adaptive cloud services that can lead to improved application performance. In this context, we

also consider the following research question.

RQ5 How can lightweight microservices support the dynamic optimal configuration of cloud plat-

forms components, and as a result help maintain application performance in response to

changes in the workload?

1.4 Main contributions

This doctoral dissertation contributes to different areas in the understanding of the challenges that

cloud platforms face in order to timely and efficiently deploy microservices-based applications, as

well as a set of proposed solutions to overcome them. This section details such contributions as

follow:

1.4.1 Fast deployment and execution of cloud functions in Function-as-

a-Service (FaaS) platforms

Cloud function latency can be reduced via increasing code locality, in this thesis we proposed a

scheduling algorithm for FaaS platforms, that seeks to improve microservices performance by max-

imizing cache affinity while actively avoiding worker overload. The proposed algorithm co-locates

functions that share dependencies in their runtime environments on the same job node. An impor-

tant feature of this algorithm is that it also keeps the load fairly balanced between all the available

nodes, avoiding the presence of hot spots. This algorithm was implemented for the open source

FaaS platform OpenLambda, the code is publicly available in a Github repository 5, and its design

was peer-reviewed and presented in the 2nd Workshop on Hardware/Software Techniques for Mini-

mizing Data Movement [145]. The multiple aspects of this contribution has been peer-reviewed and

published in the Companion Proceedings of the 9th ACM/SPEC International Conference on Per-

formance Engineering [2], and in the Proceedings of the 19th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID) [20].

1.4.2 A closed-loop system to maintain microservices performance in con-

tainerized cloud platforms

Under a microservices architecture, applications can also deploy their components in containers man-

aged through container orchestration systems. We found that workload spikes and poor container

isolation often result in performance degradation over the lifetime of the container. Therefore in this

work we proposed a design for a closed-loop system to monitor container’s performance and carry

5https://github.com/gtotoy/olscheduler
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out an scale-out on the right set of nodes, based on resource usage levels on worker nodes. This

contribution has been peer-reviewed and published in the 5th International Workshop on Container

Technologies and Container Clouds [32].

1.4.3 Smart scheduling beyond serverless-based microservices

To demonstrate that our affinity scheduling approach for serverless microservices has important ap-

plicability beyond the microservices domain, we explore the extension of the use of smart scheduling

decisions to improve the performance of other components of cloud computing platforms. We se-

lected the use case for data lakes, storage solutions that have emerged to optimize the performance

of analytical tools such as Hadoop or Spark. In this thesis, we showed that the use of algorithms that

prioritize maximizing the cache hit rates, without neglecting load balancing, as a feasible method to

obtain better access times to the data stored in the data lake.

1.4.4 FaaS-based architecture to optimize cloud component settings

We make a case for adopting serverless-based microservices to support the dynamic implementation

of self-adaptive cloud services. We designed a low cost autonomic controller to off-load the computa-

tional work required to calculate optimal configuration for cloud services, and showed the feasibility

of our approach through implemeting SPREDS, a real implementation of our design using Redis and

AWS Lambda. This contribution has been peer-reviewed and published in the MDPI Computers

journal [35].

1.5 Regional impact and technological transfer

In order to link the development of this research, with local social needs, we have carried out some

activities interacting with the local industry, seeking to evangelize the benefits of cloud platforms

and to help technology transfer.

• We carried out a survey-based study to find out the reality of Ecuador regarding the use of

cloud computing services [9, 34]

• We partnered with a local Software-as-a-Service (SaaS) company to develop a model and a

process that can be used to properly plan the yearly cloud computing budget for a service [33].

• We studied the workload of an Online Invoicing application with clients in the Andean region

in South America, in order to use it when evaluating microservices architectures [16].

• We studied a set of syllabi of distributed systems courses from top Computer Science programs

around the world, to both describe current trends in teaching distributed systems and as a

reference for educators that seek to improve the quality of their syllabi [6, 4].
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1.6 Dissertation outline

This dissertation is structured as follows: Chapter 2 describes the related background in microser-

vices, serverless computing, and containers. In Chapter 3, we propose an algorithm to better take

advantage of cache components in FaaS platforms in order to improve cloud function latency, and

we evaluate this algorithm with simulations. Chapter 4 presents the feasibility of a real world im-

plementation of our proposed algorithm in OpenLambda. In Chapter 5, we compare the proposed

algorithm with a state of the art load balancing algorithm, and measure the improvements on cloud

function latency. Chapter 6 explores the use of node resource usage in the scheduling decisions for

containerized platforms, and studies the benefits of performance-aware deployment of containers to

improve microservices performance. Chapter 7 describes the use of smart scheduling decisions to

improve the performance of a cloud based storage system, to support the deployment of microser-

vices based applications. In Chapter 8, we study other ways in which microservices can themselves

support the implementation of self-adaptive cloud services, and propose a FaaS-based architeture to

support the dynamic optimal configuration of cloud platforms components. Chapter 9 summarizes

the main findings in this thesis and points out directions for future research.
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Chapter 2

Background

In this dissertation, our main interest is to work around the deployment of microservices in cloud

computing platforms. In this chapter we provide the concepts and background required in the

core chapters. In Section 2.1, we present basic concepts about cloud computing, and its main on-

demand highly scalable platforms. Section 2.2, includes a definition of microservices, the preferred

deployment platforms, and the challenges that are tackled in this work.

2.1 Cloud computing

Cloud computing is a term to define a current wave of computational infrastructure provisioning, in

which an, usually massive, amount of computing and storage resources are shared among multiple

users [130]. Public cloud computing providers, like GCP1, AWS2, and Azure3, provide the users

with a ever-growing amount of services, and an easy-to-use interface to encourage the adoption of

these platforms.

An appealing characteristic of some tools available in cloud platforms is the on-demand nature.

This means that resources are only provisioned, and billed, when they are effectively required for

the users. The most prominent types of on-demand cloud computing platforms are serverless, and

containers.

2.1.1 Serverless computing (FaaS)

Serverless computing is an emerging cloud architecture model where developers can focus on pro-

gramming their applications instead of worrying about infrastructure concerns. In this model, ab-

straction reaches the server level, and developers can stop thinking about VM deployment, scalability,

1https://cloud.google.com/
2https://aws.amazon.com/
3https://azure.microsoft.com/
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fault tolerance and other infrastructure issues [151].

A Function-as-a-Service (FaaS)4 cloud platform supports the creation of distributed applications

composed by a number of small, single-task, cloud functions. These functions run in lightweight

sandbox environments, which run on top of virtual machines. The sandboxes, runtime environ-

ments, and virtual machines are managed by the cloud platform. Thus, a developer can create

elastic cloud applications without having to worry about server provisioning and elasticity man-

agers. Examples of FaaS platforms include OpenLambda5, Fission6, OpenWhisk7, AWS Lambda8

and Azure Functions9.

OpenLambda

OpenLambda is serverless computing platform that supports the FaaS execution model [79]. Fig-

ure 2.1 shows the OpenLambda architecture. In OpenLambda, a developer must upload the code

of her cloud functions to the code store or registry. When a user triggers the execution of cloud

functions, a request is sent to the load balancer, which selects a worker based on the configured load

balancing mechanism. When a worker receives a request, it runs the cloud function in a sandbox,

currently implemented with Docker containers. The first time a function runs on a worker, the

worker has to contact the code store to get the code of the function; the code is cached so that this

step is not needed in future invocations.

Function scheduling in OpenLambda

In OpenLambda, the function scheduling (or task of assigning cloud functions to workers) is per-

formed by nginx, with its role of software load balancer. The load balancing methods currently

supported by ngninx are [110]:

• Round-robin: requests are assigned to servers in a round-robin fashion.

• Least-connected: an incoming request is assigned to the server with the least number of active

connections.

• IP-hash: uses a hash-function map all requests coming from the same IP address to the same

server.

These load balancing methods distribute the load between the workers, but lack functionality

to make intelligent decisions that seek to, for example, minimize data transfers between workers

4Function-as-a-Service (FaaS) is the most common form of serverless; in this thesis, we use both terms inter-
changeably.

5open-lambda.org
6fission.io
7openwhisk.apache.org
8aws.amazon.com/lambda
9azure.microsoft.com/en-us/services/functions

7

open-lambda.org
fission.io
openwhisk.apache.org
aws.amazon.com/lambda
azure.microsoft.com/en-us/services/functions


Figure 2.1: The OpenLambda architecture [79].

or between a worker and an external repository (e.g., a distributed file system or a repository of

packages required by the cloud functions).

Package caching with Pipsqueak

Oakes et al. [111] proposed Pipsqueak, a shared package cache available at each OpenLambda [79]

worker. Pipsqueak seeks to reduce the start-up time of cloud functions via supporting lean functions

Figure 2.2: The Pipsqueak package cache in the OpenLambda stack. Figure reproduced from [111].
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whose required packages are cached at the worker nodes (see Figure 2.2). The cache maintains a

set of Python interpreters with packages pre-imported, in a sleeping state. When a cloud function

is assigned to a worker node, it checks if the required packages are cached. To use a cached entry,

Pipsqueak: (1) Wakes up and forks the corresponding sleeping Python interpreter from the cache,

(2) relocates its child process into the handler container, and (3) handles the request. If a cloud

function requires two packages that are cached in different sleeping interpreters, then only one can

be used and the missing package must be loaded into the child of that container (created by step

2 above). To deal with cloud functions with multiple package dependencies, Pipsqueak supports a

tree cache in which one entry can cache package A, another entry can cache package B, and a child

of either of these entries can cache both A and B.

Having pre-initialized packages in sleeping containers speeds up function start-up time because

this eliminates the following steps present in an unoptimized implementation: (1) downloading the

package, (2) installing the package, and (3) importing the package. The last step also includes the

time to initialize the module and its dependencies. Especially for cloud functions with large libraries,

this process can be extremely time consuming, as it can take 4.007s on average and as much as 12.8s

for a large library like Pandas [112].

2.1.2 Containers

Containers are a lightweight virtualization technology, where the process isolation is performed at the

operating system level, unlike traditional hypervisor-based solutions which virtualize at the hardware

level [103]. Containers facilitate packaging, distribution, and orchestration of applications [115].

However, to guarantee short response times, containers are required to be active and waiting for

connections, leading to over-provisioning of resources.

Container placement challenges

Datacenters that support cloud platforms with dynamically-requested resources need mechanisms

for on-demand co-location of workloads in the same physical machines while meeting tenant service

level objectives (SLOs). This is the workload placement problem of mapping virtual resources to

physical resources and corresponding realization in the datacenter infrastructure [18]. This problem

has been studied in the context of multi-tier web application placement [140], virtual machine (VM)

placement [153, 18, 25], application placement [53] and placement of jobs composed of tasks [152, 81].

Each case of the workload placement problem deals with its own requirements and restrictions,

given by the infrastructure and workload characteristics. For the case of services running on con-

tainers on a cluster of VMs, the amount of resources is fixed (and controlled by the VM placement

layer); smart placement can lead to improved launch and service times; and, the limited isolation

complicates the task of meeting tenant SLOs.
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Kubernetes

Kubernetes is the most used container management tool [19], and provides cluster creation tools

like Kubectl10 and Kubespray11; however, their solutions may not satisfy the requirements of all

users. KubeNow [41] is a tool oriented to the scientific community, which uses container clusters

for data analysis, can easily run clusters on different platforms. However, it is solely focused on the

ease and reduction of the cluster creation time, and does not address any functional or performance

improvements in the operation stage of the cluster.

Early work on (Linux) container scheduling—done for the context of distributed processing

platforms like Apache Spark—looked into the case of a very large system in which the scheduler

must be distributed [81] and also sought to provide support for very short-lived tasks that require

scheduling decisions to be extremely fast [114]. Furthermore, the main performance goal applicable

to these platforms is job turnaround time, and not request service time as in the problem studied

in this dissertation.

Kubernetes, supports placement restrictions based on affinity and anti-affinity, resource require-

ments, and user defined labels. This information is used to filter nodes during a first phase. In the

second phase, the scheduling algorithm ranks nodes according to priority policies with the following

goals12:

• Spreading service to improve reliability (SelectorSpreadPriority, ServiceSpreadingPriority).

• Preferring or avoiding nodes based on user-provided rules (InterPodAffinityPriority, Node-

PreferAvoidPodsPriority, NodeAffinityPriority, TaintTolerationPriority, CalculateAntiAffini-

tyPriority).

• Seeking to balance load or CPU/memory consumption (BalancedResourceAllocation, Leas-

tRequestedPriority).

• Bin packing (MostRequestedPriority, RequestedToCapacityRatioPriority).

• No special priority (default): Round robin (EqualPriorityMap).

• Reduce dependency load time (ImageLocalityPriority).

While these algorithms can be used to meet goals related to resource usage, load balancing and

reliability, only one of them considers performance (ImageLocalityPriority), and none is suitable for

applications that seek to meet tight performance SLOs.13

10https://kubernetes.io/docs/reference/kubectl/kubectl/
11https://github.com/kubernetes-incubator/kubespray
12https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
13Parallel to this work, IBM released SSX, a scheduler expansion for k8s that avoids overloading the workers,

considering actual resource usage instead of just the amount of allocated resources. We discuss SSX in section 6.5.
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2.2 Microservices

2.2.1 Definition of microservices

Microservices are an architectural model for software development, derived from service-oriented

architecture (SOA), which allows building an application as a set of independent processes, col-

laborating with each other through messages. This architecture of independent but interconnected

processes allows the isolation of modules from a complex application, making easier the debugging

of errors, and the addition of functionalities [64, 55].

Adoption of microservices architecture has increased driven by (1) the boost it gives to main-

tainability, which support modern agile development methodologies, and (2) the success of their

implementation by industry giants such as Netflix [143], Amazon [72], Soundcloud [40], e-Bay and

Google [133]. Their application scope is highly fragmented [54], with a broad range of implementa-

tions, such as Internet of Things (IoT) [93, 38, 90], scientific research [59, 49, 160], business process

modeling [12], and chatbots [166].

2.2.2 Platforms for the deployment of microservices

Being a set of independent, coordinated processes, microservices benefit from elasticity and auto-

mated deployment features available in cloud computing services [54, 148]. Containers, a lightweight

virtualization technology available in the cloud, and serverless computing platforms, where a small

stateless portion of code is executed in response to an event, are the most popular platforms for

deploying microservices because they ease the packaging, distribution, and orchestration of microser-

vices [115, 23, 150, 151].

2.2.3 Challenges for the deployment of microservices in the cloud

As mentioned before, the application scope for microservices is extensive, leading to increasing lev-

els of adoption. However, some applications have higher requirements in terms of response times,

low latency, and responsive scalability [52], which can be negatively affected when concatenated

microservices amplify any bottleneck effect along the end-to-end user experience [66]. These kind

of applications presents several challenges for the cloud platforms selected to deploy a cloud mi-

croservices architecture [24, 78, 13, 97, 149, 61]. Systems-related factors influence the application

performance, across two dimensions: (i) run-time performance, and (ii) initialization times of mi-

croservices.

Performance isolation is a main challenge facing the deployment of microservices on cloud

platforms, especially in those public clouds where multi-tenancy policies share the physical server

resources between different customers. A “noisy neighbor” can affect both the initialization time

and the run-time performance of other clients hosted on the same physical server. Even though the
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control of the resources assigned to each container is quite accurate, there are still problems to solve,

such as the unaccounted CPU usage resulting from network transmission level operations [89] or

the interference caused by high loads at the access level to storage media [161]. The community is

mostly addressing this challenge via ensuring isolation at the operating system level [89, 161, 96, 73],

through the work in this thesis, we’ve shown that this problem can also also be tackled through proper

monitoring and scheduling of containers [32].

Scheduling and placement of microservices, within the platform on which they are deployed,

present some of the greatest research challenges. The placement of the microservices in container-

based and serverless frameworks is generally based on simple concepts like bin packing (e.g., in

Kubernetes) and load balancing (e.g., in OpenLambda and OpenWhisk, and the spread policy

in Kubernetes). In some cases, migrating microservices between nodes is included to ensure bal-

ance [87]. Other planners use some kind of prioritization, such as labels and constraints [152], the

size of jobs to be executed [69], or a combination of load balancing, applications performance, and

network overhead [74]. In either case, initialization latency is not considered a priority, although it

is mentioned as a desirable feature [69].

Cold start is another important challenge for cloud based microservices. This problem is present

in both containers and serverless platforms, and affects directly on the time it takes for a microservice

to run and start serving orders (e.g., when a microservice is under a heavy workload and requires

additional instances to meet the expected service level). Operators of container-based plaforms

mitigate this issue by keeping virtual machines up and available for hosting containers, but this is a

cost burning aspect to be kept under control [33]; we show that using performance-aware placement

can minimize the initialization time for container-based microservices [32].

Due to their event-based execution nature, serverless platforms may require to initialize a runtime

environment where the cloud functions will be executed. This initialization phase induce possible

increases in latency or response times for the microservices in serverless platforms [11]. Previous

attempts to address this problem include using a cache system to reduce cold boot times by storing

recently used runtime environments [111], or by loading pre-packaged libraries [31].
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Chapter 3

Package-aware scheduling of FaaS

functions

We consider the problem of scheduling small cloud functions on serverless computing platforms. Fast

deployment and execution of these functions is critical, for example, for microservices architectures.

However, functions that require large packages or libraries are bloated and start slowly. A solution is

to cache packages at the worker nodes instead of bundling them with the functions. However, existing

FaaS schedulers are vanilla load balancers, agnostic of any packages that may have been cached in

response to prior function executions, and cannot reap the benefits of package caching (other than

by chance). To address this problem, we propose a package-aware scheduling algorithm that tries to

assign functions that require the same package to the same worker node. Our algorithm increases

the hit rate of the package cache and, as a result, reduces the latency of the cloud functions. At

the same time, we consider the load sustained by the workers and actively seek to avoid imbalance

beyond a configurable threshold. Our preliminary evaluation shows that, even with our limited

exploration of the configuration space so far, we can achieve 66% performance improvement at the

cost of a (manageable) higher node imbalance.

The work presented in this chapter was first published at the HotCloudPerf Workshop co-located

with the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE’18) [3].

3.1 Introduction

The serverless computing paradigm [79, 150] is increasingly being adopted by cloud tenants as

it facilitates the development and composition of applications while relieving the tenant of the

management of the software and hardware platform. Moreover, by making the server provisioning

transparent to the tenant, this model makes it straightforward to deploy scalable applications in the
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cloud.

Within the context of serverless computing, the Function-as-a-Service (FaaS) model enables

tenants to deploy and execute cloud functions on the cloud platform. Cloud functions are typically

small, stateless, with a single functional responsibility, and are triggered by events. The FaaS

cloud provider takes care of managing the infrastructure and other operational concerns, enabling

developers to easily deploy, monitor, and invoke cloud functions [150]. These functions can be

executed on any of a pool of servers managed by the cloud provider and potentially shared between

the tenants.

The FaaS model holds good promise for future cloud applications, but raises new performance

challenges that can hinder its adoption [149]. One of these performance challenges is the scheduling

or mapping of cloud functions to a specific worker node, as this task may entail conflicting goals [79,

111, 149]: (1) Minimize node imbalance, (2) maximize code locality, and (3) maximize data locality.

Current load balancers already achieve (1), while (3) is only a goal of data-intensive workflows (and

as such, the workflow scheduler should work in conjunction with the function scheduler to achieve

this goal). In this work, we focus in achieving (2), which is becoming progressively more important

as the number, complexity, and desired performance requirements of cloud functions increases.

Small cloud functions can be launched rapidly, as they run in preallocated virtual machines

(VMs) and containers. However, when these functions depend on large packages their launch time

slows down; this affects the elasticity of the application, as it reduces its ability to rapidly respond

to sharp load bursts [111]1. Moreover, long function launch times have a direct negative impact

on the performance of serverless applications using the FaaS model [149]. A solution is to cache

packages at the worker nodes, leading to speed-ups of up to 2000x when the packages are preloaded

prior to function execution instead of having to bundle them with the cloud function (for workloads

that require only one package) [112]. In sum, code locality improves performance as it reduces the

time that it takes to load packages, and thus, reduces request latency.

Existing FaaS schedulers—like those from OpenWhisk, Fission and OpenLambda—are simple

load balancers, unaware of any packages that may have been cached and preloaded in response

to prior function executions, and therefore cannot reap the benefits of package caching (except by

chance). To address this problem, we propose a novel approach to scheduling cloud functions on

FaaS platforms with support for caching packages required by the functions. Towards this end, our

contributions consist of the following:

1. We present the preliminary design of our package-aware scheduler for FaaS platforms in sec-

tion 3.2. The proposed algorithm aims to maintain a good balance between maximizing cache

affinity and minimizing the node imbalance.

1For simplicity, in this work we talk about large packages, but the start-up time is not only due to having to
download the package; the local installation and run-time import processes also add overhead. The whole process can
take on average more than four seconds, with close to half of that time attributable to the download time [111, 112].

14



Figure 3.1: Model assumed in the algorithm proposed in section 3.2.3. The scheduler assigns incom-
ing tasks to queues, based on package affinity while avoiding node imbalance (design goals). The
worker nodes have a shared package cache that can be leveraged by the cloud functions to speed
up the startup times. Variations of the algorithm suitable for a push-based scheduling, distributed
scheduling and multi-package affinity are discussed in sections 3.2.4, 3.2.5, and 3.2.6, respectively.

2. Besides the proposed algorithm for pull-based scheduling, we identify potential extensions for

alternative forms of scheduling: push-based scheduling in section 3.2.4, distributed scheduling

in section 3.2.5, and how to extend the algorithm to deal with multiple packages in section 3.2.6.

3. In section 3.3 we present a preliminary evaluation of our package-aware scheduling algorithm.

Using simulation with synthetic workloads we demonstrate that our approach can improve

function latency at the cost of node imbalance.

3.2 Proposed design

In this section, we describe the goals and preliminary design of our function scheduler. We use the

generic terms task and worker to describe the design. Tasks are cloud functions that need to be

executed on worker nodes. A worker node is capable of running many tasks simultaneously and can

be, for example, a virtual machine managed by a container orchestration system such as Kubernetes.

3.2.1 System model and assumptions

In section 3.2.2 we outline the goals for a package-aware scheduler for FaaS functions; our proposed

scheduling algorithm is described in section 3.2.3. This algorithm assumes a pull-based model where

a centralized scheduler assigns tasks to queues. When a worker has spare capacity, it contacts the

scheduler to get a function assignment from one of the functions at the head of the task queues.

In other words, as shown in Figure 3.1, we assume a centralized scheduler from which tasks are

pulled by the worker nodes. We discuss how to relax these assumptions for push-based scheduling

in section 3.2.4 and for distributed scheduling in section 3.2.5.
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Package caching We assume that there is a package or library caching mechanism implemented

at the worker level; as described in section 2.1.1. In this work, we consider the case where the

sleeping containers in the package cache have been preloaded with single packages. This means,

that if a cache has preloaded packages A and B, it would have done so in independent sleeping

containers, and a function requiring both A and B can only leverage one of the two. In case of a

function depending on more than one package, the additional packages would need to be loaded

on-demand. For more details on how the Pipsqueak package cache works, see section 2.1.1.

Our scheduler is agnostic of the contents of the worker caches. An alternative approach would be

to keep track of the information of which packages are cached by which workers. However, we did not

pursue this idea as we suspect that this approach would impose a significant overhead on the system

(network communications, resources to store, and managing the caching directory component).

We seek to achieve scheduling affinity for the largest package required by a task, as this is the

package that is most useful to accelerate its loading time. In section 3.2.6 we discuss how to extend

the algorithm to consider multiple package requirements.

3.2.2 Conflicting goals

To balance the load, a single first-come-first-served (FCFS) queue is sufficient for the pull-based

model. The analogous approach in the push-based model is to use a Round-Robin assignment,

though this is not optimal, as the resource consumption of tasks may vary significantly [98]. Better

alternatives are Join-the-Shortest-Queue (JSQ) [75] and Join-Idle-Queue (JIQ) [98].

To maximize cache affinity (of the package cache), we can use consistent hashing [88] to assign

all tasks that require a particular package to the same worker.2 However, as package popularity is

not uniformly distributed, this approach would create hot-spots, overloading workers that cache

popular packages.

In this chapter, our goal is to maintain a good balance between maximizing cache affinity and

minimizing the node imbalance.

3.2.3 Proposed scheduling algorithm

Algorithm 1 shows the details of the proposed procedure. The scheduler keeps track of one FIFO

scheduling queue per worker, and uses hashing to try to assign all tasks that require the same

package to the same worker, to encourage cache affinity. To avoid overloading a worker to which

one or more popular packages map, a configurable maximum load threshold is used. If the scheduler

cannot achieve affinity without assigning a task to an overloaded node (defined as one for which its

task queue has exceeded the threshold, t), then the scheduler chooses the shortest worker queue. To

improve cache affinity while improving load balance, we apply the power-of-2 choices technique [105],

2This is in case we are optimizing only for affinity with the largest package required by each task. To maximize
affinity of multiple packages simultaneously, we could model this as a mathematical optimization problem.
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Algorithm 1: Queue assignment algorithm (scheduler)

Global data: List of workers, W = w1, ..., wn, list of scheduling queues Q = q1, ..., qn, such
that qi corresponds to the functions assigned to wi, Hash functions H1 and
H2, maximum load threshold, t

Input: Function id, fid, largest package required by task, pl
1 if (pl is not NULL)then

/* Calculate two possible worker targets */

2 t1 = H1(pl)%|W |+ 1
3 t2 = H2(pl)%|W |+ 1

/* Select target with least load */

4 if (length(qt1) < length(qt2))then
5 A := t1

6 else
7 A := t2

/* If target is not overloaded, we are done */

8 if (length(qA) < t)then
9 Insert fid into qA

10 return

/* Try to balance load */

11 Insert fid into shortest queue, qi

Algorithm 2: Task-worker mapping algorithm (scheduler)

1 FnGetTaskAssignment(w) /* called by worker w */

2 if (qw is not empty)then
3 return Front task from qw

4 else
/* work stealing step */

5 return Front task from longest queue

by using two hashing functions to map a task to a queue; each hash function maps the task to a

different queue, and the task is assigned to the shortest of those queues.

When a worker has spare capacity, it contacts the scheduler to request a task assignment (Al-

gorithm 2). The scheduler assigns the task to the worker at the front of the queue corresponding

to that worker. If the queue is empty, the scheduler selects the front task from the longest queue,

which is known as the work stealing step.

3.2.4 Push-based model

Schedulers can use pull or push-based models, as described next. In the pull -based approach, the

scheduler assigns tasks to one or more queues. When a worker has spare capacity, it contacts

the scheduler and gets assigned the front task from one of the queues. The scheduling algorithm
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determines how the tasks are placed on the queues, and from which queue a worker pulls a task.

The tasks in these queues are serviced in FIFO order. With the push-based approach, upon task

arrival, the scheduler maps a task to a worker and sends the task to the worker, which will either

execute it immediately using a processor sharing approach, or will queue it locally until it has spare

capacity. Examples of frameworks that use the pull-based approach to scheduling are OpenWhisk

and Kubeless; Fission and OpenLambda instead use a push-based approach.

The algorithms proposed in section 3.2.3 cannot be directly ported to a push-based scheduler

for two reasons: (1) When selecting the least-loaded worker, the scheduler cannot exactly know the

length of the task queues at each worker, and (2) in the work stealing step, a worker cannot know

which of the other queues is the longest.

To deal with issue (1), the scheduler can keep track of the load being sustained by each worker

(requests per second); however, this fails if the size of the tasks is unbalanced, and some workers

could become overloaded. Alternatively, workers could periodically report their load (queue length)

to the scheduler, as in JSQ [75].

Regarding issue (2), to avoid having to communicate the load between the workers, there are

two possible solutions: (a) Have the worker ask the scheduler which worker to steal work from, or

(b) use the power-of-2 choices approach and have a worker poll two other random workers and steal

a task from the most loaded one.

3.2.5 Distributed scheduler

If the load of the FaaS platform is large enough that scheduling decisions cannot be made in a rea-

sonably short time, then the scheduling load can be distributed between a set of scheduler nodes [27].

We call this, a distributed scheduler.

In the case of a distributed scheduler, it is not a good idea to try to have all the scheduler nodes

share perfect knowledge of the length of the queues [98]. Furthermore, if each scheduler decides a

mapping from the task to worker independently, this could result in overloading the worker that

had the shortest queue. The alternative would be for the schedulers to use a consensus algorithm,

although this would add additional overhead on the critical path.

To avoid this problem in a distributed scheduling scenario, we propose changing the Join-the-

Shortest-Queue component of our scheduler with the Join-Idle-Queue algorithm [98], which decouples

discovery of lightly loaded servers from job assignment, thus leading to very fast task assignments.

3.2.6 Affinity with multiple required packages

The simplest way to extend our algorithm for the multiple package case is to use a greedy approach

in which we only try to achieve affinity for the largest package. If the nodes possibly caching the

package are overloaded, then we try to achieve affinity with the next largest package, and so on.
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Algorithm 3: Caching policy (called upon a cache miss)

Global data: Hash functions H1 and H2, Cache segments, S1 and S2, Number of workers,
n, Current worker id, w

Input: Package, p
/* Calculate affinity workers for package */

1 t1 = H1(p)%n+ 1
2 t2 = H2(p)%n+ 1
/* Does current worker have affinity for p? */

3 if (w == t1 or w == t2)then
4 Cache p in S1

5 else
6 Cache p in S2

Alternatively, we could map a task to a worker that has affinity to multiple packages the function

needs (modeling this as a mathematical optimization problem). However, our current solution

assumes we cannot leverage multiple cached packages, as they would be preloaded in different sleeping

interpreters (see sections 2.1.1 and 3.2.1); we leave relaxing this assumption for future work.

3.2.7 Caching policy

Our algorithm is agnostic to the caching policy being used at the workers. However, to maximize

the effectiveness of our approach we can co-design a caching policy that takes advantage of the

knowledge of which packages are affinity packages for the current worker. Towards this goal, we

propose to divide the memory into two caching segments: S1, which will hold the affinity packages,

and S2, which can cache any type of package. The reasoning is that it may be useful to cache

very popular packages, even if they are not considered affinity packages for the node. Algorithm 3

describes how we decide whether to cache a package or not.

For the evaluations in section 3.3, we only consider the extreme cases when the size of S1 is 0,

and when the size of S2 is 0. In other words, we only evaluated the use of only a regular (LRU)

cache, and the alternative of only caching affinity packages. In future work, we will assess how the

segmenting of the cache affects the overall hit rate, and we will consider alternative policies to LRU.

3.3 Preliminary evaluation

In this section, we present preliminary results of a simulation-based evaluation of our algorithm. We

implemented the simulator in Python, using the SimPy simulation framework3 and ran tests using

the following configuration parameters:

• Arrivals are exponentially distributed, with a mean inter-arrival time of 0.1ms.

3https://pythonhosted.org/SimPy/
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• The number of worker nodes is 1 000; each worker can run as many as 100 tasks simultaneously

(st = 100).

• The popularity of the packages is given by a Zipf distribution, with parameter s = 1.1.

• The time to start the packages—including time to download, install and import—is randomly

sampled from an exponential distribution with an average time to start of 4.007s.

• Each function requires a random number of packages, sampled according to an exponential

distribution, with an average number of 3 required packages.

• Each worker has a LRU package cache (capacity = 500MB).

• The sizes of the (cacheable) packages is modeled after the sizes of the packages in the PyPi

repository.

• Time to launch a function that requires no packages: 1s.

• The running time of a task (after loading required packages) is exponentially distributed with

mean = 100ms.

• Experiment duration: 30 minutes.

• Overload threshold: t = st = 100.

• In all cases, the eviction policy is LRU.

While the configuration described above represents an artificial scenario, the configuration values

were chosen to closely model real observed behavior, as reported by related work [79, 111, 97].

We implemented four scheduling policies and compare their performance regarding: (1) How

well they balance the load, (2) the package cache hit rate, and (3) the latency of each cloud function

(task time in system). The scheduling policies we implemented are:

1. Join-the-Shortest-Queue (JSQrc): Scheduler keeps one task queue for each worker. A new task

is added to the shortest queue. Queues are served in FIFO order. We evaluated this policy

with a per-worker package cache.

2. Hash-based cache affinity (Hashrc): A hash function applied to the largest package required by

the cloud function determines the mapping of a function to a worker. A per-worker package

cache was used.

3. Proposedrc: Our proposed algorithm, with the greedy approach to seeking affinity when mul-

tiple packages are required (section 3.2.6), and a per-worker package cache.
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Figure 3.2: Box plots of the hit rates of the package caches at the worker nodes. Our algorithm
improves the average hit rate by actively seeking to improve package-affinity.

Table 3.1: Task latency percentiles (in seconds). Our algorithm improves latency due to improved
cache hit rate.

Algorithm 50th 90th 95th 99th
JSQrc 3.95 18.53 25.29 40.86
Hashrc 4.43 277.81 606.12 1196.47
Proposedrc 1.36 11.03 16.21 28.88
Proposedac 1.36 11.00 16.11 29.42

4. Proposedac: Similar to Proposedrc, but with a different caching policy: per-worker package

cache that caches only those packages that have affinity to it (as determined by the functions

H1 and H2 in Algorithm 1; see section 3.2.7).

Our preliminary results show we can improve the median hit rate from 51.2% (JSQrc) to 64.1%

(Proposedrc), as shown in Figure 3.2. The proposal to cache only affinity packages (Proposedac)

produced results very similar to those of Proposedrc.

The improved hit rate has a positive effect on the latency of the tasks, as shown in Table 3.1.

Median latency improves by 65.6% (Proposedrc vs. JSQrc), and tail latency improves by 40.5%

(90th percentile). Note that we avoid the straw man fallacy of comparing our algorithm against

JSQ with no caching, as this is an unfair comparison. Both JSQrc and Proposedrc are much better

than JSQ with no caching; the former improves median latency by 65 times, while our algorithm

improves median latency by 189 times.

Finally, we can quantify how well each scheduling algorithm balances the load using the

coefficient of variation, which is a measure of dispersion defined as the ratio of the standard deviation

to the mean: cv = σ/µ. We count the total number of tasks assigned to each worker, and report the

coefficient of variation in Table 3.24. We can observe that our algorithm sacrifices some unbalance,

to seek a higher hit rate (and smaller latency). JSQ achieves near perfect balancing, while the

hash-based affinity algorithm produces the most unbalanced task assignments.

4This simple metric quantifies the dispersion in the total work assigned to each worker.
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Table 3.2: Node unbalance, measured using the coefficient of variation of the number of functions
assigned to each worker (smaller is better).

Scheduling Algorithm cv
JSQrc 1.02
Hashrc 357.65
Proposedrc 65.33
Proposedac 66.06

Discussion The main reason for load balancing is to improve performance, as tasks that are

assigned to overloaded workers are bound to be delayed in their completion. However, the moderate

unbalance of our proposed algorithm is not necessarily an issue, as our experiments show that we

actually improve performance: tasks that run on workers that have preloaded a required package,

take significantly less time to finish; thus, by improving the cache hit rate, we improve overall

system performance. This is not the case for the Hashrc algorithm, for which the worker overload

is too high, taking a significant toll on performance (tasks are 15 and 29 times slower for the

90th and 99th percentiles, when compared to JSQrc). Although the initial results are promising,

more experimentation should be done to better understand the limitations of our approach. This

submission seeks early feedback on our proposal, as well as encouraging discussion from the Cloud

Performance community about future directions in improving FaaS performance.

3.4 Related work

We build upon a large body of work in task scheduling. Early work in affinity scheduling sought to

improve performance in multi-processor systems by reducing cache misses via preferential scheduling

of a process on a CPU where it has recently run [144, 62]. However, the issue here is not how to

map threads to CPUs, but how to re-schedule them soon enough to reap caching benefits, while at

the same time avoiding unfairness and respecting thread priority.

Better related to the problem studied in this chapter, is the case of locality- or content-aware

request distribution in Web-server farms [42]. In this context, the simplest solution is static par-

titioning of server files using URL hashing, to improve cache hit rate; though this could lead to

extremely unbalanced servers. Others have proposed algorithms that partition Web content to im-

prove cache hit rate, while monitoring server load to reduce node unbalance [116, 42]. While these

solutions share some similarities with ours, they only try to improve the locality of the access to

one Web object, as each HTTP request targets one object only. We consider the case of tasks that

could require multiple objects (packages). We also differ in that we propose co-designing the worker

caches (eviction policy) with the scheduler. Furthermore, the work in the Web domain typically

assumed that the workloads are relatively stable, as was the case with traditional Web hosting sys-

tems. Modern cloud workloads are significantly more dynamic, making solutions that require offline
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workload analysis (e.g., see [43]), inadequate for this domain.

We also build upon prior work in load balancing for server clusters. In this domain, there is work

in centralized load balancing [75] and distributed load balancing [105]. For example, the Join-Idle-

Queue (JIQ) algorithm incurs no communication overhead between the dispatchers and processors

at job arrivals [98]; it does this by decoupling the discovery of lightly-loaded servers from job assign-

ment, thus removing the load balancing work from the critical path of the request processing. This

technique can be used to port our algorithm to a distributed scheduler (see section 3.2.5).

The near-data scheduling problem is a special case of affinity scheduling applicable to data-

intensive computing frameworks like Hadoop, where each type of task has different processing

rates on different subsets of servers [162]; tasks that process data that is stored locally execute

the fastest, followed by tasks whose input data is stored in the same rack, followed by tasks whose

input data is stored remotely (in a different rack). Several near-data schedulers have been proposed

for Hadoop [168, 158, 163]. However, these are not directly applicable to the problem studied in this

chapter, as they require a centralized directory to keep track of the location of the data blocks (i.e.,

the namenode in Hadoop). In contrast, our proposed algorithm uses hash-based affinity mapping,

a mechanism that has a minimal overhead and requires no centralized directory. Implementing a

directory of cached packages in a serverless computing platform would impose significant overhead

on the infrastructure, as extra communication and storage would be required. Moreover, unlike data

block storage in Hadoop, the contents of a package cache could change rapidly, as packages can enter

and leave the cache frequently, leading to problems where the scheduler would assign tasks based on

stale knowledge about the status of the caches.

Finally, our work joins recent efforts by other researchers in seeking to advance the state-of-the-

art in the management of resources in serverless computing clouds and the containerized platforms

that support them [111, 63, 131]. In particular, we were inspired by the recent work in caching

packages in OpenLambda by Oakes et al. [111], though they left the global scheduling work (to

improve cache hit rates) for future work.

3.5 Conclusions

Current scheduling approaches in Function-as-a-Service (FaaS) platforms are relatively simplistic,

lacking awareness of cached packages required by cloud functions which could improve performance.

Towards solving this problem, we propose a package-aware scheduling algorithm that attempts to

optimize the use of cached packages versus maintaining a balanced load over the worker nodes. Our

initial evaluation, based on simulation, shows that the latency of cloud functions can be reduced by

up to 66% by our proposed algorithm at the expense of a higher node imbalance. These preliminary

results encourage us to continue our research in this direction.
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Chapter 4

Package-aware task scheduling in

real serverless platforms

In a distributed computing platform, co-locating tasks at worker nodes that store or cache any

required files is a time-proven mechanism to reduce task latency. While this problem has been

extensively studied in the Web and Big Data processing domains, it is only recently gaining at-

tention in the serverless computing domain. One proposed optimization for Function-as-a-Service

(FaaS) clouds is to cache required packages at the worker nodes instead of bundling them with

the cloud functions, thus significantly reducing the function launch time. However, existing FaaS

schedulers are vanilla load balancers that do not attempt to minimize the movement of packages or

files across the network. As researchers start tackling the problem of package-aware scheduling and

other near-data scheduling optimizations for FaaS platforms, having a common framework on top

of which to implement and evaluate their ideas would be beneficial, as this would encourage fair

comparisons between different solutions and facilitate experiment reproducibility. To address this

problem, we present a simple and extensible function scheduler for the OpenLambda FaaS platform.

Our scheduler is implemented in Go, and is simpler to modify and extend than the ngninx load

balancer used by the original OpenLambda. To illustrate the usefulness of our scheduler, we added

a package-aware scheduling algorithm to it. We have released our code so that others can easily

implement new scheduling algorithms for OpenLambda.

The work presented in this chapter was first published at the 2nd Workshop on Hardware and

Software Techniques for Minimizing Data Movement (Min-Move) co-located with the 23rd ACM

International Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS 2018) [145].
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4.1 Introduction

Functions-as-a-Service (FaaS) cloud platforms enable tenants to deploy and execute functions on

the cloud, without having to worry about server provisioning. In a FaaS platform, cloud functions

are (typically) small, stateless tasks, with a single functional responsibility, and are triggered by

events. The FaaS cloud provider manages the infrastructure and other operational concerns, enabling

developers to easily deploy, monitor, and invoke cloud functions [150]. These functions can be

executed on any of a pool of servers managed by the provider and potentially shared between the

tenants.

One proposed optimization for FaaS platforms is to cache required packages or libraries at the

worker nodes instead of bundling them with the functions, thus making the functions more lean and

as a result, significantly reducing their launch time [111, 3]. However, existing FaaS schedulers are

vanilla load balancers that do not attempt to maximize package-locality when assigning functions

to workers. For this reason, the development of new scheduling algorithms for FaaS platforms is

considered an important challenge in the serverless computing domain [79, 150, 149, 3].

As researchers start tackling the problem of package-aware scheduling and other near-data

scheduling optimizations for FaaS platforms, having a common platform on top of which to im-

plement and evaluate their ideas would be beneficial, as this would encourage fair comparisons

between different solutions, facilitate experiment reproducibility and reduce development time.

Towards this goal, we have implemented olscheduler, a simple and extensible function scheduler

for the OpenLambda FaaS platform. Our scheduler has 331 lines of Go code, and is simpler to

modify and extend than the ngninx load balancer used by the original OpenLambda. olscheduler

comes with three scheduling policies (random, round-robin and least-loaded), and exposes useful

information about the platform to the system developer, so that additional scheduling policies can

be easily implemented.

To illustrate the usefulness of olscheduler, we added a simple package-aware scheduling al-

gorithm that seeks to improve package-affinity while avoiding unmanageable worker overload. We

were able to implement this algorithm with only 46 additional lines of code (LOCs). Preliminary

simulation results show that this simple approach can cut the function latency by more than 65%.

In the future, we will validate our results in real cloud experiments.

We have released our code so that others can easily implement new scheduling algorithms for

OpenLambda1.

4.2 Design and implementation

We decided to implement olscheduler using Go, as its primitives lets the developer easily build

high-performant distributed systems.

1https://github.com/gtotoy/olscheduler
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To facilitate the implementation of future schedulers, olscheduler exposes functions and data

structures that can be used to get the following information:

1. Workers: Number and references to the workers.

2. Per-worker load: Measured as the number of active requests that each worker is currently

handling.

3. Required packages: The list of required packages, sorted by size, is exposed for each function

call.

4. Function schemas: Obtained by querying the code repository and cached in memory.

To get the number of required packages (item 3 above), we extended the HTTP Post request

(cloud function request in Figure 2.1) so that it supports receiving the list as an annotation on the

function call. An alternative design would have been to query the cloud store to get this information;

we rejected this idea to avoid an extra step on the critical path of the function requests.

olscheduler currently supports the following scheduling algorithms:

• Round-robin: Distributes the requests uniformly between the workers, in round robin fashion.

• Least-loaded: An incoming request is assigned to the worker that currently has the least

number of active requests.

• Random: Distributes requests randomly between the workers, according to user defined worker

weights.

The functionality described above was implemented in 331 lines of code (LOCs). In addition, we

have implemented an additional, package-aware scheduling policy, as described next.

4.2.1 Package-aware scheduling in olscheduler

To illustrate that olscheduler can be easily extended to implement a package-aware algorithm, we

implemented a variant of an algorithm we proposed in prior work [3], adapting it so that it is suitable

for the OpenLambda scheduler model: a push-based, centralized, scheduler with a processor-sharing

service discipline (workers).

The algorithm we implemented seeks to maximize cache affinity (with respect to the packages

in the package cache), while avoiding overloading workers beyond a configurable threshold. The

scheduler uses hashing to try to assign all tasks that require the same package to the same worker,

to encourage cache affinity. To avoid overloading a worker to which one or more popular packages

map, a configurable maximum load threshold is used. If the scheduler cannot achieve affinity without

assigning a task to an overloaded node (defined as one for which its number of active requests has
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Algorithm 4: Package-aware scheduler algorithm for OpenLambda

Global data: List of workers, W = w1, ..., wn, Hash functions H1 and H2, maximum load
threshold, t

Input: Function, f , list of required packages sorted by descending package size,
P = p1, ...pn

1 if (P is not empty)then
/* Greedily seek affinity w/ large package */

2 for (l = 1, . . . , |P |)do
/* Calculate two possible worker targets */

3 t1 = H1(pl)%|W |+ 1
4 t2 = H2(pl)%|W |+ 1

/* Select target with least load */

5 if (load(wt1) < load(wt2))then
6 A := t1

7 else
8 A := t2

/* If target is not overloaded, we are done */

9 if (load(wA) < t)then
10 Assign f to wA
11 return

/* Balance load */

12 Assign f to least loaded worker, wi

exceeded a threshold, t), then the scheduler chooses the worker with the least load. To improve cache

affinity while improving load balance, we apply the power-of-2 choices technique [105], by using two

hashing functions to map a task to a worker; each hash function maps the task to a different worker,

and the task is assigned to the least loaded one. Algorithm 4 shows our package-aware scheduling

algorithm for OpenLambda.

With the information exposed by olscheduler, implementing this policy was straightforward,

and took only 46 LOCs.

4.2.2 Validation results

We have performed validation tests to make sure our scheduler works according to our design. We

implemented both the least-loaded and the proposed package-aware algorithm in a simulator, with

the following configuration parameters:

• Mean inter-arrival time = 0.1ms (exponentially distributed).

• 1 000 worker nodes; each can run up to 100 functions simultaneously (st = 100).

• Distribution of packages popularity: Zipfian (s = 1.1).
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• Time to start the packages is exponentially distributed (average time to start = 4.007s).

• Number of packages required by a function is exponentially distributed (mean required pack-

ages = 3).

• Each worker has a LRU package cache (capacity = 500MB).

• The sizes of the (cacheable) packages is modeled after the sizes of the packages in the PyPi

repository.

• Time to launch a function that requires no packages: 1s.

• The running time of a task (after loading required packages) is exponentially distributed with

mean = 100ms.

• Experiment duration: 30 minutes.

• Overload threshold: t = 200.

While the configuration described above represents an artificial scenario, the configuration values

were chosen to closely model real observed behavior, as reported by related work [79, 111, 97].

Our preliminary results show we can improve the median hit rate from 51.15% (least-loaded)

to 63.52% (Proposed). This has a direct impact on latency, as shown in Table 4.1: median latency

improves by 65.8% (Proposed vs. least-loaded), and tail latency improves by 41.9% (90th percentile).

If we compare against a least-loaded load balancer in an unoptimized platform that does not cache

function packages, our algorithm improves median latency by 189.9 times.

Table 4.1: Task latency percentiles (in seconds). Our algorithm improves latency due to improved
cache hit rate.

Algorithm 50th 90th 95th 99th
Least-loaded, no pkg cache 256.42 455.76 480.71 503.72
Least-loaded 3.95 18.53 25.29 40.86
Proposed 1.35 10.76 15.90 28.98

4.3 Related work

We build upon prior work in load balancing for server clusters [105, 75, 98]. Most of this work is

specific to the Web server farms, though these balancing algorithms are easy to extend and apply to

FaaS architectures. In the FaaS domain, industry schedulers—like the generic nginx and the custom

function schedulers for OpenWhish, Fission–are vanilla load balancers that do not seek to minimize

data movement in the system.
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Another line of research is work in task scheduling while trying to improve data-locality, for

example, for the Web [116, 43, 42] and Big Data processing [168, 162, 158, 163] domains.

The near-data scheduling problem arises in frameworks like Hadoop, where each type of task has

different processing rates on different subsets of servers [162]; tasks that process data that is stored

locally execute the fastest, followed by tasks whose input data is stored in the same rack, followed

by tasks whose input data is stored remotely (in a different rack). Several near-data schedulers have

been proposed for Hadoop [168, 158, 163]. One thing that has helped the community propose new

schedulers for Hadoop—some of which have later made it to the Hadoop codebase, like [168]—is the

fact that Hadoop’s design makes it easy to replace the scheduler with a new algorithm.

Finally, our work joins recent efforts by other researchers in seeking to advance the state-of-the-

art in the management of resources in serverless computing clouds [111, 131, 149].

4.4 Conclusions

Function-as-a-Service platforms—like OpenWhisk, OpenLambda and Fission—could benefit signif-

icantly from intelligent schedulers that seek to minimize data transfers, as this can be an expensive

step (e.g., reading input data from a distributed file system, or downloading and installing packages

from a package repository). In this work, we presented a simple yet extensible function scheduler

for OpenLambda, which can be used as a basis for future research in smart scheduling for FaaS

platforms. In the next chapter we use our scheduler to evaluate different package-aware scheduling

algorithms.
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Chapter 5

Package-aware task scheduling

versus traditional load balancing

algorithms

Fast deployment and execution of cloud functions in Function-as-a-Service (FaaS) platforms is crit-

ical, for example, for microservices architectures. However, functions that require large packages or

libraries are bloated and start slowly. An optimization is to cache packages at the worker nodes

instead of bundling them with the functions. However, existing FaaS schedulers are vanilla load

balancers, agnostic of packages cached in response to prior function executions, and cannot properly

reap the benefits of package caching. We study the case of package-aware scheduling and propose

PASch, a novel scheduling algorithm that seeks package affinity during scheduling so that worker

nodes can re-use execution environments with preloaded packages. PASch leverages consistent hash-

ing and the power of 2 choices, while actively avoiding worker overload. We implement PASch in

a new scheduler for the OpenLambda framework and evaluate it using simulations and real exper-

iments. When using PASch instead of a least loaded balancer, tasks perceive an average speedup

of 1.29x, and 80th percentile latency that is 23x faster. Furthermore, for the workload studied in

this chapter, PASch outperforms consistent hashing with bounded loads—a state-of-the-art load

balancing algorithm—yielding a 1.3x average speedup, and a speedup of 1.5x at the 80th percentile.

The work presented in this chapter was first published at the 19th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID 2019) [20].
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5.1 Introduction

Function-as-a-Service (FaaS) cloud platforms let tenants deploy and execute functions on the cloud,

without having to worry about server provisioning. In a FaaS platform, cloud functions are typically

small, stateless tasks, with a single functional responsibility, and are triggered by events. The FaaS

provider manages the infrastructure and other operational concerns, enabling developers to easily

deploy, monitor, and invoke the functions [150]. These functions or tasks run on any of a pool of

servers or workers managed by the provider and potentially shared between the tenants.

The FaaS model holds good promise for future cloud applications, but raises new performance

challenges that hinder its adoption [149]. One of these challenges is reducing the FaaS overhead.

In particular, the provisioning overhead that results from deploying the cloud function on demand

as part of unpredictable workloads, can make launching functions slow, and as a result, out-of-the-

box exceed service level objectives (SLOs) of applications from performance-critical domains like

interactive web applications and IoT environments.

Cloud functions can launch rapidly, as they run in preallocated virtual machines (VMs) and

containers. However, when these functions depend on large packages, they start slowly; this affects

the elasticity of the application, as it reduces its ability to rapidly respond to sharp load bursts [111]1.

Moreover, long function launch times have a direct negative impact on the performance of serverless

applications using the FaaS model [149]. A solution is to cache pre-imported packages at the worker

nodes, leading to speed-ups of up to 2000x when the packages are preloaded prior to function

execution instead of having to bundle them with the cloud function [112].

However, existing FaaS schedulers are agnostic of any package caching implemented at the worker

nodes and—when assigning functions to workers—fail to properly leverage the cached packages, as

illustrated in Figure 5.1.

In this chapter, we study the case of package-aware scheduling, which we define as a special case

of near-data scheduling optimizations for FaaS platforms.

Existing FaaS schedulers, like those in OpenWhisk, Kubeless, Fission, OpenFaaS, and Open-

Lambda, are simple load balancers that make no attempt to target any code or artifacts cached at

the worker nodes. With a regular load balancer, a function can be mapped to a worker node that

does not contain a required package, even though one or more worker nodes that do have the package

may be available (see Figure 5.1). A solution could be to use available techniques like consistent

hashing [88, 138] to route all function requests that require a specific package p to the same worker

node, thus maximizing the cache hit rate. However, this approach suffers from a problem of load

imbalance, particularly under skewed workloads [109]—as is the case of the distribution of packages

required by functions in FaaS platforms (see Table 5.1 and [111]).

Within the domain of stream processing engines and the general balls and bins model, recent work

1For simplicity, we talk about large packages, but the start-up time includes the time to download and install the
package, and the run-time import processes; on average, all this can take more than four seconds [111, 112].
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Figure 5.1: Example of function execution requests arriving at a FaaS scheduler. The color of each
request represents the largest package that the function requires. The stack on the upper right
corner of the worker nodes represents the local import (package) cache, available to all functions
that run on the worker. Current schedulers have a load balancing goal and make no attempt to try
to schedule a function where it could run faster; in this case, that would be at one of the nodes that
has already cached and pre-imported the package.

has tried to map requests to specific servers while keeping a balanced load [109, 108, 104], however

these solutions avoid imbalance between the worker nodes at all costs, regardless of whether a worker

could tolerate more work without sacrificing performance. We show that this is not necessary, and

relax the balancing goal so that the ultimate goal is not keeping the workers balanced, but rather

avoiding exceeding worker capacity.

To solve this problem, we propose a fast scheduling algorithm that seeks package affinity during

scheduling, while actively avoiding worker overload. Our algorithm leverages the power of 2 choices

technique [105] to map a task to the least loaded of two affinity nodes, based on the largest package

required by the function. If, however, both nodes exceed a configurable overload threshold, then the

scheduler reverts to simple load balancing, and maps the task to the least loaded worker node. To

seek package affinity during task assignment, we use consistent hashing [88, 138] so that we minimize

the expected number of movements in case worker nodes are added or removed by an auto-scaler

or elasticity manager. As a result, worker nodes can re-use execution environments with preloaded

packages, thus resulting in faster task launch time, and consequently, a faster task turnaround time.

Our contributions consist of the following:

1. We carefully describe the problem and related work, including state-of-the-art algorithms (sec-

tion 5.2).

2. We formalize the problem of scheduling functions in FaaS platforms with the goal of maximizing

code locality while actively avoiding worker overload (section 5.3).
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Figure 5.2: The OpenLambda architecture. The function scheduling (or task of assigning functions
to workers) is performed by the NGINX software load balancer.

3. We propose PASch, a novel scheduling package-aware algorithm for FaaS platforms (sec-

tion 5.4).

4. We provide a working implementation of PASch on olscheduler, a lightweight scheduler for

the OpenLambda framework that we have released (section 5.4.2).

5. We evaluate PASch under realistic workloads (section 5.5) and find that it considerably outper-

forms the least loaded scheduler: 1.29x average speedup and 80th percentile in latency is 23x

faster. In our experiments, PASch also outperforms a state-of-the-art algorithm [104] yielding

a 1.3x faster average latency and a 80th percentile in latency that is 1.5x faster.

5.2 Background and related work

5.2.1 FaaS and OpenLambda

A Function-as-a-Service (FaaS) platform supports the creation of distributed applications composed

by small, single-task, cloud functions. These functions run in lightweight sandbox environments,

which run on top of virtual machines. The sandboxes, runtime environments, and virtual machines

are managed by the cloud provider. Thus, a developer can create elastic cloud applications without

having to worry about server provisioning and elasticity managers. Examples of FaaS platforms

include OpenLambda,2 Fission,3 OpenWhisk,4 AWS Lambda,5 Google Cloud Functions,6 and Azure

2open-lambda.org
3fission.io
4openwhisk.apache.org
5aws.amazon.com/lambda
6cloud.google.com/functions
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Functions7.

OpenLambda OpenLambda is a serverless computing platform that supports the FaaS execution

model [79]. Figure 5.2 shows the OpenLambda architecture. In OpenLambda, a developer must

upload the code of their cloud functions to the code store or registry. When a cloud function is

triggered, a request is sent to the load balancer (scheduler), which selects a worker based on the

configured algorithm. When a worker receives a request, it runs the cloud function in a sandbox.

OpenLambda currently supports Docker containers and lightweight SOCK containers [113]. The

first time a function runs on a worker, the worker has to contact the code store to get the code of

the function; the code is cached so that this step is not needed in future invocations.

Function scheduling in OpenLambda The function scheduling, or mapping of functions to

workers, is performed by the NGINX software load balancer. The request routing methods currently

supported by NGINX are [110]:

• Round-robin: maps requests to servers in round robin fashion.

• Least-connected: assigns a request to the server with the least number of active connections.

• IP-hash: uses a hash-function to map all requests coming from the same IP address to the

same server.

These methods distribute the load between the workers, but lack functionality to make intelligent

decisions that seek to, for example, minimize data transfers between workers or with an external

repository (e.g., a distributed file system or a repository of packages required by the cloud functions).

Caching to improve task launch times Oakes et al. [111] proposed Pipsqueak, a shared import

(package) cache available at each OpenLambda worker. Pipsqueak seeks to reduce the start-up time

of cloud functions via supporting lean functions whose required packages are cached at the worker

nodes. The cache maintains a set of Python interpreters with packages pre-imported, in a sleeping

state. When a cloud function is assigned to a worker node, it checks if the required packages are

cached. To use a cached entry, Pipsqueak: (1) Wakes up and forks the corresponding sleeping

Python interpreter from the cache, (2) relocates its child process into the handler container, and (3)

handles the request. If a cloud function requires two packages that are cached in different sleeping

interpreters, then only one can be used and the missing package must be loaded into the child of

that container (created by step 2 above). To deal with multiple package dependencies, Pipsqueak

uses a tree cache in which one entry can cache package A, another entry can cache package B, and

a child of either of these entries can cache both A and B.

7azure.microsoft.com/en-us/services/functions
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Having pre-initialized packages in sleeping containers speeds up function start-up time because

this eliminates the following steps present in an unoptimized implementation: (1) downloading the

package, (2) installing the package, and (3) importing the package. The last step also includes the

time to initialize the module and its dependencies. Especially for cloud functions with large libraries,

this process can be time consuming, as it can take 4.007s on average and as much as 12.8s for a

large library like Pandas [112].

In addition to the Pipsqueak import (package) cache, OpenLambda workers have two other

caches: an on-disk (package) install cache and a handler (function) cache.

5.2.2 Load balancing and scheduling

We build upon a large body of work in task scheduling and load balancing for server clusters. In

this section, we discuss the most relevant prior work.

Affinity Scheduling Early work in affinity scheduling sought to improve performance in multi-

processor systems by reducing cache misses via preferential scheduling of a process on a CPU where

it has recently run [144, 62]. However, the issue here is not how to map threads to CPUs, but how

to re-schedule them soon enough to reap caching benefits, while avoiding unfairness and respecting

thread priority.

Near-data scheduling The near-data scheduling problem is a special case of affinity scheduling

applicable to data-intensive computing frameworks like Hadoop8, where each type of task has dif-

ferent processing rates on different subsets of servers [162]. Tasks that process local data execute

the fastest, followed by tasks that require data in the same rack, followed by tasks that read remote

data. Several near-data schedulers have been proposed for Hadoop [168, 158, 163]. However, these

are not directly applicable to the problem studied in this chapter, as they require a centralized di-

rectory to keep track of the location of the data blocks (i.e., the namenode in Hadoop). In contrast,

our proposed algorithm uses hash-based affinity mapping, a mechanism that requires no centralized

directory and has minimal overhead. Implementing a directory of cached packages in a serverless

computing platform would impose significant overhead on the infrastructure due to extra commu-

nication and storage requirements. Moreover, unlike data block storage in Hadoop, the contents of

an import cache could change rapidly, as packages can enter and leave the cache frequently, leading

to problems where the scheduler would assign tasks based on stale knowledge.

Task Scheduling in FaaS Platforms In the FaaS domain, industry schedulers—like the generic

NGINX and the custom function schedulers for OpenWhisk and Fission—are vanilla load balancers

that do not seek to minimize data movement in the system. Other than earlier work from our own

8hadoop.apache.org
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group [3], we are not aware of any publications in this emerging area. However, FaaS scheduling is

expected to attract work in the near future, as it is an important serverless challenge [149].

Content-aware Request Routing for Web Servers Better related to our problem is the case

of locality or content-aware request distribution in Web-server farms [42]. In this context, the

simplest solution is static partitioning of server files using URL hashing, to improve cache hit rate;

though this can lead to extreme server overload for skewed workloads [42]. Others have proposed

algorithms that partition Web content to improve cache hit rate using static tables or variants of

hash-based affinity [116, 42] that are inadequate for the skewed and highly dynamic workloads of

modern cloud systems. Moreover, some of these solutions assumed that the workloads are relatively

stable. However, modern cloud workloads are more dynamic, making solutions that require offline

workload analysis (e.g., see [43]), inadequate for this domain.

Nevertheless, some early ideas in Web request routing and traditional load balancing can be par-

tially applied to the problem studied in this chapter. Specifically, we leverage two classic techniques

in our work: consistent hashing [88] and power of two choices load balancing [105]. We provide a

brief description of these techniques next.

Consistent Hashing Consistent hashing [88, 138] is an alternative to hash-based affinity that

solves the problem of having a dynamic set of servers. This technique assigns a set of items (keys,

client IPs, etc.) to servers so that each one receives roughly the same number of items. However,

unlike standard hashing schemes, a small change in the server set does not induce a total remapping

of items to servers and instead yields only a slightly different assignment. However, this approach

suffers from a problem of load imbalance, particularly under skewed workloads [105, 109, 104].

Power of two choices The power of two choices [105] is a technique that achieves near perfect

load balance as follows: When a request arrives to the system, the balancer selects two random

servers and assigns the request to the least loaded of those two servers. Our approach combines

hash-based routing with power of two choices, so that the two servers are not chosen at random, but

are rather based on the affinity that a server has to a specific item (package). As this can lead to an

unbalanced load, we add the concept of a maximum tolerable threshold, and thus avoid saturating

the workers.

Recent related work Others have recently looked into how to map items to servers while simul-

taneously balancing the load of the servers, even in the presence of skewed workloads and a dynamic

server set [109, 108, 104].

Partial key grouping [109] and consistent grouping [108] are specific to streaming frameworks

like Apache Storm. For this reason, they make the strong assumption that it is detrimental to

the performance of the system to split keys between workers (strict affinity). Partial key grouping
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supports splitting keys only between two workers, while consistent grouping does not support key

splitting at all. In contrast, as we deal with caching we can implement soft affinity instead: if both

of the affinity workers for a key (package) are overloaded, then the request can be sent to any other

worker.

Consistent hashing with bounded loads [104] is framed as a generic hashing solution. Though

similar to ours, the problem solved by this algorithm has stronger requirements: a deterministic

algorithm for mapping keys to servers that achieves load balancing that is bounded within some ε.

We relax both requirements as described in section 5.3.

While these recent prior work could be used to solve the problem at hand, the slight differences

in the problems that they try to solve (discussed in section 5.3) yield solutions that are suboptimal

(as shown in section 5.5).

In a prior, work-in-progress publication [3], we proposed a set of package-aware scheduling al-

gorithms for FaaS platforms, spanning different scheduler models: pull-based or push-based, and

centralized or distributed scheduler. Our simulation-based evaluation suggested that it is a promis-

ing area of research, as our package-aware scheduling algorithm yielded improvements in latency of

66% (versus a least-loaded scheduler). In this chapter, we propose PASch, a variant of this family

of algorithms that it is suitable for the OpenLambda scheduler model: a push-based, centralized,

scheduler with a processor-sharing service discipline (workers). We evaluate PASch with simulations

and real experiments in AWS.

5.3 Problem definition

We consider a Function-as-a-Service platform in which tasks are cloud functions that are executed

on worker nodes, as a response to user-defined events.

5.3.1 Assumptions and limitations

A worker node is capable of running multiple tasks simultaneously and can be, for example, a virtual

machine managed by a container orchestration engine such as Kubernetes. In addition to worker

nodes, there is a scheduler which assigns or maps tasks to workers. The workers use a processor-

sharing service discipline in which tasks share the worker’s local resources. The number of workers

is dynamic; this is common in cloud platforms with auto-scalers or elasticity managers that add or

remove nodes to the cluster, as a response to changes in demand.

We assume there is a package or library caching mechanism implemented at the worker level; as

described in section 2.1.1. When a function depends on more than one package, we seek to achieve

scheduling (soft) affinity for the largest one, as this is the package that is most useful to accelerate

its loading time.
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Table 5.1: Top ten required packages by Python and Java files in GitHub. We analyzed only those
files that reference amazonaws (Python) or com.amazonaws.services.lambda (Java).

Python Package % Java Package %
boto 27.0% com.amazonaws 42.0%
ansible 6.3% java.util 11.1%
os 3.7% java.io 9.3%
tests 3.3% com.fasterxml 4.4%
time 2.4% org.apache 3.3%
json 2.4% org.junit 3.2%
xmodule 2.0% javax.annotation 2.9%
django 1.9% org.mockito 2.2%
sys 1.9% com.visionarts 1.5%
datetime 1.8% com.google 0.1%
All others 47.3% All others 20.0%

We assume package popularity in cloud functions is skewed, with a long tail of unpopular pack-

ages. To confirm our intuition, we performed an analysis of the GitHub repositories of projects that

could potentially contain AWS Lambda functions. Specifically, we found Python files that contain

the substring amazonaws and Java files that contain com.amazonaws.services.lambda. We analyzed

the import statements of those files and found that the popularity distribution of the required

packages is indeed skewed (see Table 5.1).

Finally, the scheduler is agnostic of the contents of the worker caches. We believe that having

the scheduler keep track of the contents of the import caches is not adequate in the FaaS setting, as

this would impose additional overhead on the system (network communications to keep information

updated, and resources to store and manage the caching directory).

5.3.2 System model

Given an instance of a FaaS platform, letW be the set of workers in which tasks can run, where |W | =
n. Each worker w ∈W runs on a machine with limited capacity and known execution threshold tw.

For simplicity, we assume that there is a single important resource on which machines are constrained

such as memory or processing. Each worker node w ∈ W can execute an unbounded number

of concurrent tasks; however, the tw threshold (expressed in normalized units of the constrained

resource) is the maximum number of resource units that can be in use at w without reducing the

performance of the tasks at w.

The input to the scheduler is a sequence of task execution requests r = 〈i, f, p, ti〉, where i

identifies the request, f is the function to execute, p ∈ P is the largest package required by the

task, and ti is the timestamp at which the request arrives to the scheduler. The requests arrive in

ascending order by ti. Upon receiving a request r, the scheduler makes a placement decision and

chooses one of the workers in W to execute r.
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As tasks arrive to the system, the scheduler maps and forwards the request to one of the workers.

After the task is processed, it leaves the system. We define the task turnaround time or latency to

be the difference between the time at which a task arrives to the system (ti) and when it leaves the

system.

Given the system model and assumptions described above, we define the problem we are trying

to solve as follows.

Problem Given a sequence of task execution requests, each of which requires a package drawn

from a skewed distribution P , and a set of workers w ∈ W , each with limited capacity and known

execution threshold tw, find a scheduling function S : P →W that maximizes affinity to the import

cache at each worker while avoiding exceeding the workers’ execution thresholds.

Additional goal, stability We also consider a stability goal that seeks to contain or minimize

any changes in package-to-worker affinity, when the set of workers is dynamic.

5.3.3 Naive solutions

A naive solution would be to try to either balance the load or to make placement decisions seeking

strict affinity from packages to workers. However, these solutions do not consider both goals together

and make suboptimal placement decisions, as briefly explained next. For more detail on these and

other related work, see section 5.2.

To balance the load, round robin or random assignment is not optimal, as the resource con-

sumption of tasks may vary [98]. Better alternatives are Join-the-Shortest-Queue (JSQ) [75] and

Join-Idle-Queue (JIQ) [98]; however, these are not applicable when the workers use a processor shar-

ing approach, as is the case in OpenLambda and Fission. When the workers use a processor sharing,

the least loaded policy balances the load, for example, as implemented by NGINX (least-connected

policy). However, this policy does not do anything to maximize cache affinity.

To maximize cache affinity with an added goal of stability in the presence of a dynamic set of

workers, we can use consistent hashing [88, 138] to assign all tasks that require a particular package

to the same worker. However, as package popularity is not uniformly distributed, this approach

would create hot spots, overloading workers that cache popular packages [109, 108].

5.3.4 Recent applicable solutions

As discussed in section 5.2, three recent algorithms deal with problems similar to ours [109, 108, 104].

While we could adapt these for the FaaS scheduling problem, slight differences in the problems they

solve make them suboptimal alternatives.

First, lets consider the algorithms proposed by Nasir et al. [109, 108]. These algorithms have

been designed to solve the problem of balancing the load of workers (processing element instances) in
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a distributed stream processing engine like Apache Storm. These works make the strong assumption

that splitting requests for a specific key between multiple workers is not desirable. In our case, it is

acceptable to send tasks that require a package p to different workers; doing may not be optimal in

terms of performance, but it does not affect the correctness of the system.

The problem tackled by Mirrokni et al. [104] is more similar to ours in that requests (balls) to a

key k can be sent to different workers (bins) in the cases that the first target worker is overloaded—

under a definition of overload that means: exceeding the average load by more than some ε. As they

frame the problem as a classic hashing problem, their algorithm ensures that the assignments of

balls to bins is deterministic (through the use of a linear probing technique). Our problem definition

relaxes both assumptions. First, we tolerate high imbalance as long as individual workers are not

overloaded. Second, if the affinity workers for an item are overloaded, we make no attempt to

deterministically decide a fallback target, and revert to plain load balancing instead (by choosing

the least loaded worker). Nevertheless, consistent hashing with bounded loads could potentially solve

the problem outlined in this section. For this reason, we include this algorithm in our evaluations

and empirically show that PASch yields better performance for our particular setting.

5.4 Proposed solution

We describe a solution to the problem formalized in section 5.3. Given a set of task execution

requests and a set of worker nodes on which these can run, the goal is to implement a lightweight

scheduler that maps requests to workers seeking to minimize the overall task turnaround time, while

actively avoiding worker overload.

We propose PASch, a novel scheduling algorithm that leverages the power of 2 choices tech-

nique [105], consistent hashing [88, 138], and least loaded scheduling, adding the notion of a max-

imum per-worker load threshold. In this way, the restrictions of the FaaS scheduling problem are

met.

PASch uses a greedy approach in which a mapping function M : P → W maps each request to

two affinity workers for the largest package required by the task9. The least loaded of these workers

will be the one to process the task, unless the load of the worker exceeds its execution threshold tw;

this provides affinity while avoiding worker overload. In addition, if the worker exceeds its threshold,

then the scheduler reverts to a least loaded scheduler, and forwards the request to the worker with

the (normalized) least load, for some specific resource unit. Algorithm 5 shows the details of the

proposed procedure.

To provide stability, the mapping function M : P → W uses consistent hashing so that we

minimize the expected number of movements in case worker nodes are added or removed by an

auto-scaler or elasticity manager (see Algorithm 6). The use of consistent hashing ensures stability

9For simplicity, we do not deal with collisions of the affinity workers; in case of collision, there is only one affinity
worker for a function.
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Algorithm 5: Package-aware scheduler algorithm (PASch)

Global data: List of workers, W = {w1, ..., wn}, and their load thresholds, T = {t1, ..., tn},
mapping function M

Input: Function, f , largest required package, p
1 if (p is not null)then

/* Get affinity workers */

2 〈a1, a2〉 = M(p)
/* Select target with least load */

3 if (load(wa1) < load(wa2))then
4 A := a1

5 else
6 A := a2

/* If target is not overloaded, we are done */

7 if (load(wA) < tA)then
8 Assign f to wA
9 return

/* Balance load */

10 Assign f to least loaded worker, wi

of the package-to-worker affinity mappings, even in the presence of a dynamic set of workers. We

add a salt to the package id, p, to map it to a second affinity worker using the hashing function.

Algorithm 6: Mapping function, M ; given a package, returns two affinity nodes.

Global data: A consistent hash implementation, consistent, and value to be added to the
package ID to map a second affinity worker to it, salt

Input: Package id, p
Output: Affinity workers for p, 〈a1, a2〉
/* Get two affinity workers */

1 a1 = consistentHash.get(p)
2 a2 = consistentHash.get(p+ salt)
3 return 〈a1, a2〉

5.4.1 Analysis

The performance of the scheduling decisions is dominated by how efficient it is to find the loaded

worker. This operation is O(n) if performed via a linear search—a frequently used approach in

real implementations. For example, this is how the NGINX software load balancer implements its

least-connected policy. Alternatively, we could use an efficient heap implementation. For example,

using a Fibonacci heap [65], finding the least loaded worker takes O(log n) amortized time.

Regarding the balancing of the loads, we consider two situations. When the system load (sl)

exceeds the overall capacity of the workers (i.e., sl ≥
∑
tw) the load is balanced according to a least
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loaded policy and all the workers are similarly overloaded. When the system load does not exceed

the overall capacity of the workers (i.e., sl <
∑
tw) the maximum load a worker w can have is tw;

however, some workers could have a load close to 0, in case the packages that have affinity to that

node are unpopular.

5.4.2 Implementation in OpenLambda

We implemented PASch on olscheduler10, a lean scheduler we developed for OpenLambda. We

chose Go as the programming language as its primitives lets the developer easily build high-

performant distributed systems. For the consistent hashing implementation, we used the Pack-

age consistent implementation [94], which uses the BLAKE2b collision-resistant cryptographic hash

function [21]. The current implementation uses the number of active requests to measure the per

worker load and the threshold is defined as a maximum number of active requests; this is a common

approach used by load balancers. However, the algorithm works for other types of resource limits.

To facilitate the implementation of future schedulers, olscheduler exposes the following infor-

mation:

1. Workers: Number and references to the workers.

2. Per-worker load: Measured as the number of active requests that each worker is currently

handling.

3. Required packages: Each cloud function request includes the list of required packages, sorted

by size.

4. Function schemas: Obtained by querying the code repository and cached in memory.

To get the number of required packages (item 3 above), we extended the HTTP Post request

(cloud function request in Figure 2.1) so that it supports receiving the list as an annotation on the

function call. An alternative design would have been to query the cloud store to get this information;

we rejected this idea to avoid an extra step on the critical path of the requests.

olscheduler currently supports the following scheduling algorithms:

• Round robin: Distributes the requests uniformly between the workers, in round robin fashion.

• Least loaded: Assigns a request to the worker that has the least number of active connections

(akin to NGINX’s least-connected).

• Random: Distributes requests randomly between the workers, according to user defined worker

weights.

10To seek early feedback, we presented olscheduler at the Min-Move workshop @ ASPLOS 2018, which has non-
archival proceedings.
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• PASch: The algorithm proposed in this chapter.

• Consistent hashing with bounded loads [104]: A recent variant of consistent hashing that

provides a constant bound on the load of the maximum loaded worker.

To find the least loaded worker we use a linear search. For the implementation of consistent

hashing with bounded loads, we use the Package consistent implementation [94], which has no

configurable parameters and uses a balancing parameter of c = 1.25; this algorithm guarantees that

the maximum load is at most dcm/ne, where m is the number of clients (current requests) and n is

the number of servers (workers).

The implementation of PASch on olscheduler took only 52 lines of code.

5.5 Experimental evaluation

We assess the performance of PASch using simulations and a real deployment in a public cloud.

The simulations run large-scale experiments with 1 000 workers. We also run real experiments on

a public cloud, using a small deployment with 5 workers. Together, these experiments enable us to

obtain a broad understanding of the benefits and costs of using PASch. Our experiments seek to

answer the following questions:

Q1: How effective is PASch in increasing the import cache hit rate?

Q2: What is the cost (in load imbalance) of using PASch?

Q3: How much does PASch speed up individual tasks?

Q4: Is PASch successful in reducing median and tail task turnaround times?

Q5: How sensitive is PASch to the threshold parameter?

5.5.1 Experimental setup

We implemented a simulator in Python, using the SimPy simulation framework11 and ran tests

with the following configuration parameters:

• Arrivals are exponentially distributed, with a mean inter-arrival time of 0.1ms.

• The number of worker nodes is 1 000; each worker can run 100 tasks simultaneously (st = 100).

• The popularity of the packages follows a Zipf distribution, with parameter s = 1.1.

• The time to start the packages—time to download, install and import—is randomly sampled

from an exponential distribution with an average time to start of 4.007s.

11https://pythonhosted.org/SimPy/
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• Each function requires a random number of packages, sampled according to an exponential

distribution, with an average number of 3 required packages.

• Each worker has a 500MB LRU import cache.

• The sizes of the (cacheable) packages is modeled after the sizes of the packages in the PyPi

repository.

• Time to launch a function that requires no packages: 1s.

• The running time of a task (after loading required packages) is exponentially distributed with

mean = 100ms.

• Experiment duration: 30 minutes.

• Overload threshold of all nodes: t = st = 100.

While the configuration described above represents an artificial scenario, the values model real

observed behavior, as reported by prior work [79, 111, 113, 97, 3]. To isolate the effect of PASch on

the import cache, the simulations do not use the install or handler caches. The simulator supports

three scheduling algorithms: (1) least loaded, which optimizes for load balancing, (2) hash affinity,

which optimizes for cache affinity, and (3) PASch, which combines both goals as described in this

chapter.

We also ran real experiments on AWS EC2. We use six virtual machines (VMs) with the

4.4.0-1072 Linux kernel. On one VM we run olscheduler and PipBench; on the other five ones,

we launch five OpenLambda workers. We used m4.xlarge instances, with 4 vCPUs, 16 GB of RAM,

and EBS storage. The experiments used OpenLambda’s lightweight SOCK [113] containers. In the

real experiments we used olscheduler which, as described in section 5.4.2, supports five scheduling

algorithms: three algorithms that are common in software load balancers like NGINX (round robin,

least loaded and random) and two algorithms that consider scheduling affinity in addition to load

management (PASch and consistent hashing with bounded loads). For the case of PASch, we

configure the threshold parameter to 80. The consistent hashing with bounded loads implementation

we are using (Package consistent) has no configurable parameters and uses a balancing parameter

of c = 1.25, as recommended by Mirrokni et al. and an industry blog [127, 104].

All three caches were active during the experiments: the on-disk install cache, a 6GB import

(package) cache and a 1GB handler cache. While PASch seeks to improve the import cache hit rate,

the hit rates of the other caches also increase as a result of better package affinity. The install cache

also deals with packages, so affinity to the import cache also yields affinity to the install cache. The

handler on-demand cache stores function handlers at each worker; affinity to the largest package

required by a function would mean subsequent calls to the same function would also end up going

to the same worker. For a study of what percentage of the performance improvement comes from
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Figure 5.3: Box plots of the hit rates of the import caches at the workers. PASch improves the
average hit rate by actively seeking to improve package-affinity.

using each of the caches, we refer the reader to the work of Oakes et al. [111, 113], who studied the

performance of the caches on OpenLambda, using vanilla NGINX (least-connected).

We use the PipBench benchmark [111] to issue requests to function handlers which import

packages from a repository populated with packages generated to emulate the directory structure,

file sizes, dependencies, and popularity from real packages hosted in the web. We used the default

configuration of PipBench.

5.5.2 Experimental results

Q1: Effect on import cache hit rate

The main premise of our solution is that increasing package affinity during scheduling decisions can

improve performance as a direct result of an increased import cache hit rate, even at the cost of a

manageable node imbalance. To confirm that we can improve the cache hit rate, we ran simulations

to assess the impact that PASch has on the import cache hit rate. The results show that the median

hit rate increases from 51.2% with the vanilla least loaded scheduler to 64.1% with PASch (see

Figure 5.3). Note that the median hit rate with PASch is slightly higher than with the hash affinity

scheduler; this is due to the finite size of the cache. Without a per-worker request limit, the resulting

working set may not fit in the cache.

Q2: Effect on load balance

We can quantify how well each scheduling algorithm balances the load using the coefficient of vari-

ation, which is a measure of dispersion defined as the ratio of the standard deviation to the mean:

cv = σ/µ. We ran simulations and count the total number of tasks assigned to each worker, and

show the coefficient of variation for every 1-second timeslot in the experiment in Figure 5.4. We
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Figure 5.4: Node imbalance: Coefficient of variation of the number of tasks assigned to each worker
during each 1-second timeslot (smaller is better).

can observe that PASch sacrifices some node balance, to seek a higher hit rate (and smaller task

turnaround time). Least loaded achieves near perfect balancing, while the hash-based affinity algo-

rithm produces the most unbalanced task assignments. We show next that the use of the threshold

parameter in PASch is able to effectively contain the imbalance to a level manageable by the worker

nodes, and as a result, the task turnaround times improve, even in the presence of (moderately)

unbalanced worker loads.

Q3: Effect on individual tasks

We ran real experiments to observe the effect of PASch on individual tasks. To do this, we first

calculate a performance baseline for each task by executing it on an empty cluster so that the task

can finish as fast as possible, with no restrictions on resources at the worker, but without the benefit

of caching. After having the performance baseline for each task, we used PipBench to asses if each

task runs slower or faster than its baseline. For each task, we calculate the speedup. A task’s speedup

may be greater than one if, for example, the task executes faster through the benefit of better cache

affinity. On the other hand, a task’s speedup may be less than one if it runs on a node where other

tasks are running and the concurrent tasks are competing for the use of the CPU. Figure 5.5 shows

that PASch is able to improve the performance of most tasks through cache affinity, at the penalty

of some tasks performing slower due to imperfect load balancing. Specifically, only 3.3% of the tasks

have a speedup of less than one, while the median speedup is 3841. These speedups represent the

maximum achievable speedups for the tasks when compared to an unoptimized baseline (no caching)

but without incurring in performance penalties due to worker overload.
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Figure 5.5: CDF of per-task speedups with PASch versus each task running on an empty cluster,
with all resources available but no pre-cached packages.

Q4: Effect on median and tail task turnaround time

Having confirmed that PASch is able to improve the hit rate of the import caches of the worker nodes

and that the worker imbalance is not so excessive as to decrease task performance, we assess the

effect of PASch on task turnaround time (latency), when compared to other scheduling algorithms.

Towards this end, we ran real experiments with PipBench. Figure 5.6 shows the cumulative distribu-

tion functions (CDFs) of the task turnaround times, when using different scheduling algorithms. On

average, PASch achieves a 1.29x speedup compared to the least loaded scheduler. However, if you

analyze the CDFs, you’ll notice that the improvement is most noticeable in the [61− 87] percentile

range. For example, the 80th percentile in task turnaround time has a 23x speedup. Consistent

hashing with bounded loads performs better than least loaded, but PASch is still outperforms it for

the workload studied in this chapter: PASch achieves a 1.3x average speedup, and speedups of 1.5x,

2.7x and 1.04x at the 80th, 90th and 99th percentiles, respectively.

Q5: Sensitivity to threshold parameter

PASch has one configurable parameter: the threshold value. Our model assumes that a worker has

limited capacity and a known execution threshold t. To assess the sensitivity to this parameter,

we run real experiments and evaluate the resulting task turnaround time, for varying values of t.

Figure 5.7 shows that PASch is not particularly sensitive to the threshold parameter.
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Figure 5.7: Effect of threshold on 50th, 75th, 80th and 99th percentile latency.
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5.6 Conclusions

The main reason for load balancing is to improve performance, as tasks assigned to overloaded

workers are bound to be delayed in their completion. However, the moderate imbalance of our

proposed algorithm is not an issue, as our experiments show that we actually improve performance:

tasks that run on workers that have preloaded a required package, take less time to finish; by

improving the cache hit rate, we improve overall system performance.

Two key insights from our work are: (1) near-data scheduling techniques for FaaS platforms

can yield significant performance improvements, yet all the open source FaaS platforms that we’ve

looked into use vanilla load balancers; and, (2) when redirecting requests to workers, balancing the

load of workers may not be a necessary goal: our experiments showed that relaxing this requirement

and changing it to “avoid worker overload” gives us more flexibility in mapping decisions that can

lead to considerable performance gains.

We have released the code of our scheduler on GitHub12.

12https://github.com/disel-espol/olscheduler
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Chapter 6

Performance-aware deployment of

containers

Cloud-native applications are increasingly adopting microservices architectures that support the

development agility required by modern software. These applications deploy their components in

containers that enable microservices to be deployed across different platforms, supporting the inde-

pendent scaling of the different components. However, the operational complexity of microservices

presents significant challenges in maintaining the performance of such applications, especially in

clouds with performance variability and unpredictability. While virtual machine based deploy-

ment of applications has been well studied—with sophisticated orchestrators in the literature and

practice—there has been little such studies on the opportunity in improving application performance

using performance-aware deployment strategies for containers. In this chapter, we consider both the

run-time and initialization time performance of containerized applications and show that default

placement strategies provided by orchestrators are often insufficient. Our experiments on multi-

ple services show that a performance-aware approach is able to outperform the default placement

strategy by up to factor of 2x and 2.21x for the 50th and 99th percentiles.

The work presented in this chapter was first published at the 5th International Workshop on

Container Technologies and Container Clouds (WOC ’19) [32].

6.1 Introduction

Microservices architectures have become common in modern software development. In a 2018 survey,

91% of developers at enterprises with more than 500 employees reported that they are using or have

plans to use microservices in the near future [125]. However, adopters report problems meeting

performance goals and solving performance issues, and—as a solution—74% of adopters plan to
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increase investment in microservice performance management [125].

Under a microservices architecture, applications deploy their components in containers managed

through container orchestration systems. This enables scaling the different components indepen-

dently, provides benefits to the development process, and facilitates the attainment of important

non-functional requirements like resiliency and fault isolation. However, the operational complexity

of containerized applications presents significant challenges in maintaining the performance of such

applications, especially in cloud environments with performance variability and unpredictability.

While optimized initial placement of containers can help meet application service level objectives

(SLOs) to a certain extent, workload spikes and poor container isolation [100, 164, 89] often result

in performance degradation over the lifetime of the container. Further, such an approach would

require resource reservations for the peak workload resulting in poor infrastructure utilization.

Adapting to performance variability in traditional architectures—where applications are deployed

on virtual machines (VMs)—has been well studied, with sophisticated solutions that perform miti-

gating actions like creating new replicas or VM migration, which are typically slow and expensive

operations [115, 152]. In contrast, containerized applications are more lightweight and designed to

be more motile when compared to VMs, making it feasible for the containers to be scaled out or

migrated faster than VMs. Container orchestrators like Kubernetes (k8s) and Swarm provide scale-

out mechanisms as a principal feature to maintain the application SLOs during workload spikes and

infrastructure performance episodes.1 However, we find that the default scale-out deployment mech-

anisms offered by the platforms (as described in section 6.2) are not performance-aware, resulting

in poor application performance.

Container placement has recently gained some research interest. DRAPS [100] maps containers

to nodes in heterogeneous clusters based on required resources. Have et al. [76] learn consumption

profiles of containerized applications and use them in placement decisions. Chung et al. [44] make

placement decisions seeking to reduce the monetary cost of containerized batch tasks. We comple-

ment these works by studying how container placement decisions affect performance goals. We find

that even when a node has available resources, the lack of performance isolation has an impact on

the launch time and steady phase performance. This implies that bin packing algorithms are not

sufficient to meet latency requirements in performance-sensitive deployments. Our work considers

goals relevant to elastic services and not those pertinent to batch jobs or data processing short-lived

tasks (that are applicable to applications running on data processing platforms like Spark [81]).

We study the benefits of performance-aware deployment of containers in improving application

performance across two dimensions: (i) run-time container performance, which affects the perfor-

mance of the application running in the container, and is critical for meeting application SLOs, and

(ii) container initialization times, which affects how quickly a service can respond to the environment

dynamics. The latter is particularly important for ephemeral containers that are typically created

1K8s has support for vertical auto-scaling which can be combined with its scale-out mechanisms; we did not study
this feature to analyze horizontal scaling in isolation.
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to handle workload spikes.

The main contributions of our work are as follows. First, we study the impact of available CPU

on the host nodes, on the application latency at individual containers. Based on this, we show

the importance of deploying the containers on nodes with sufficient CPU resources to meet the

application SLOs, and make a case for more work on performance-aware deployment of containers.

Second, we present the design of a closed-loop system that monitors the container’s performance

and performs scale-out on the right set of nodes. This helps sustain the required application latency

by adapting to the infrastructure dynamics, and can lead to latency improvements of 2x or more.

Finally, we present some of the principal challenges in building the system based on our observations.

6.2 Background and motivation

Datacenters that support cloud platforms with dynamically-requested resources need mechanisms

for on-demand co-location of workloads in the same physical machines while meeting tenant service

level objectives (SLOs). This is the workload placement problem of mapping virtual resources to

physical resources and corresponding realization in the datacenter infrastructure [18]. This problem

has been studied in the context of multi-tier web application placement [140], virtual machine (VM)

placement [153, 18, 25], application placement [53] and placement of jobs composed of tasks [152, 81].

Each case of the workload placement problem deals with its own requirements and restrictions,

given by the infrastructure and workload characteristics. VM placement for clouds differs from the

problem studied in this chapter in three important ways: (1) Works in this domain typically seek to

minimize consumed resources (and energy) by tightly packing VMs in physical machines (PMs), e.g.,

as in [30]; (2) VMs take longer to launch, so improving their launch time through placement decisions

is not applicable; and, (3) VMs have stronger isolation properties and clear resource requirements (as

given by the type of VM being deployed), which facilitates good placement decisions. In contrast,

for the case of services running on containers on a cluster of VMs, the amount of resources is fixed

(and controlled by the VM placement layer); smart placement can lead to improved launch and

service times; and, the limited isolation complicates the task of meeting tenant SLOs.

Early work on (Linux) container scheduling—done for the context of distributed processing

platforms like Apache Spark—looked into the case of a very large system in which the scheduler

must be distributed [81] and also sought to provide support for very short-lived tasks that require

scheduling decisions to be extremely fast [114]. Furthermore, the main performance goal applicable

to these platforms is job turnaround time, and not request service time as in the problem studied in

this chapter. We study the most common use case for container orchestrators like Kubernetes and

Docker Swarm: deploying multi-tier or microservice-based applications, for which massive scheduling

and short-lived tasks are not an issue.

In sum, mapping containers to VMs in platforms supporting service-based applications differs
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from prior research in workload placement in the assumptions being made about the workloads

and the infrastructure. We look into goals relevant to elastic services instead of batch jobs or data

processing short-lived tasks; where the end goals are not minimizing power consumption, maximizing

resource usage, or reducing job completion times, but rather improving the performance of the

services running in these containers—in terms of initialization times, or steady state request response

times.

Next, we describe the placement algorithms implemented by the two container orchestration

frameworks commonly used in current service-based applications: Docker Swarm2 and Kuber-

netes [37].

Swarm supports three placement algorithms3: spread, binpack and random. Spread selects the

node with the least number of containers. Binpack selects the node which is most packed.

We focus on Kubernetes, which supports placement restrictions based on affinity and anti-affinity,

resource requirements, and user defined labels. This information is used to filter nodes during a first

phase. In the second phase, the scheduling algorithm ranks nodes according to priority policies with

the following goals4:

• Spreading service to improve reliability (SelectorSpreadPriority, ServiceSpreadingPriority).

• Preferring or avoiding nodes based on user-provided rules (InterPodAffinityPriority, Node-

PreferAvoidPodsPriority, NodeAffinityPriority, TaintTolerationPriority, CalculateAntiAffini-

tyPriority).

• Seeking to balance load or CPU/memory consumption (BalancedResourceAllocation, Leas-

tRequestedPriority).

• Bin packing (MostRequestedPriority, RequestedToCapacityRatioPriority).

• No special priority (default): Round robin (EqualPriorityMap).

• Reduce dependency load time (ImageLocalityPriority).

While these algorithms can be used to meet goals related to resource usage, load balancing and

reliability, only one of them considers performance (ImageLocalityPriority), and none is suitable for

applications that seek to meet tight performance SLOs.5

6.3 Design

Microservice applications are deployed within containers that are hosted on physical or virtual host

nodes. These host nodes are often grouped together into a cluster, which is managed by a container

2https://docs.docker.com/engine/swarm/
3https://docs.docker.com/swarm/reference/manage/
4https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
5Parallel to this work, IBM released SSX, a scheduler expansion for k8s that avoids overloading the workers,

considering actual resource usage instead of just the amount of allocated resources. We discuss SSX in section 6.5.
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Figure 6.1: Proposed design.

management platform. Application microservices are typically grouped into pods, which represents

a unit of deployment consisting of containers that are tightly coupled and share resources.

Figure 6.1 shows the design of a performance-aware system for container deployment. There

are three key components to our design: (i) Host monitoring Agents that monitor and collect the

resource availability at the hosts; in this chapter, we monitor CPU resources using vmstat6. (ii)

Microservices Agents that monitor the application performance and detect any SLO violations; these

could be profilers that are integrated with the application or health-check containers that periodically

ensure the liveness of the microservice. Furthermore, the agents can leverage metrics captured

for DevOps, e.g., as reported to Prometheus7. (iii) A cluster resource manager that receives the

resource availability from the Host Agents and performance metrics from the Microservices Agents,

and provides deployment recommendations to the k8s scheduler.

We consider the run time and the initialization time performance of the containers to determine

the deployment strategy. The run-time container performance determines the ability of a microser-

vice to sustain the required level of performance; the initialization times of a container is key to

meeting SLOs, especially when responding to sudden and unexpected spikes in workload. Based on

our initial study, we find it is important to measure the microservice performance as a function of

available host resources, when making scale-out deployment decisions for containers. The Resource

Manager (RM) acts as a closed loop system and evaluates the impact of available host resources

(measured through the host agents) on the microservice performance (observed through the mi-

croservices agent). Based on these measurements, the placement and scheduling algorithms in the

6https://linux.die.net/man/8/vmstat
7https://prometheus.io/docs/introduction/overview/
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Table 6.1: Summary of the experiments presented in this chapter.
No. Service Research Question Section Objective

E1 TeaStore Auth Q1 6.4.1 Study impact of performance-aware
scheduling in service response times.

E2 textRotate.jspx Q1 6.4.1 Study impact of performance-aware
scheduling in service response times.

E3 NGINX Q2 6.4.2 Study impact of performance-aware
scheduling in service launch time.

RM recommends an optimal deployment strategy to the Cluster Scheduler (e.g, kube-scheduler).

6.4 Evaluation

We present results that show how CPU consumption at the workers affects service performance,

hindering an application’s ability to meet its SLOs; and, how smart placement decisions can sig-

nificantly improve performance. We studied three CPU-intensive services: (1) An authentication

microservice from the TeaStore microservices reference application [154], (2) the textRotate.jspx

service that comes with Apache Tomcat8, and (3) the NGINX9 reverse proxy, commonly placed in

front of the microservices layer to forward REST requests to the proper microservice. Each service

ran in a Docker10 container and the system is orchestrated using Kubernetes11. The services were

deployed one per node, to avoid performance interference. CPU stress was added to the nodes using

stress-ng12. All experiments were performed multiple times to ensure the results were repeatable.

In this section, we provide aggregate results or results from a single representative run, as indicated

in each experiment. The experiments presented in this section were designed to answer the following

questions (see Table 6.1):

Q1: Can performance-aware scheduling lead to improved response times (for containerized services)?

Q2: Can performance-aware scheduling lead to reduced (containerized) service launch time?

Setup: We used CloudLab [56] machines with Ubuntu 18.04.1 LTS, K8s 1.13.3, and Docker

18.09.7. For the service response times experiments, we used d430 and r320 bare metal nodes (for the

TeaStore and textRotate experiments, respectively). These were selected as they are representative

of what is available for lease at cloud providers. For the container initialization experiments we used

pc3000 nodes, as the single core eased in partially stressing the CPU. For validation, we repeated the

experiments on d710 nodes and ensured that the results hold for different hardware configurations.

For detailed hardware specs, see the CloudLab documentation13.

8http://tomcat.apache.org/
9https://nginx.org/en/

10https://www.docker.com/
11https://kubernetes.io/
12https://kernel.ubuntu.com/~cking/stress-ng/
13See: http://docs.cloudlab.us/cloudlab-manual.html
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Figure 6.2: Average response times for the TeaStore auth microservice, for every 10-second window of

the experiment. The vertical dashed lines separate the three phases of the experiment: base (1 replica of

service), transition (a new replica is launched), and steady (2 replicas of service).

Schedulers used in the experiments: K8Sdefault, Random, WorstCase and Oracle. The Oracle

and WorstCase schedulers choose the node with the most or least CPU load, respectively. Oracle

uses perfect system knowledge to give an upper bound on the improvements that we could achieve

through smart placements decisions.

6.4.1 Response times: Experimental design and results

To study how scheduler placement decisions affect service response times, we performed experiments

in which initially there is only one instance of each service, running on an independent container; we

call this the base phase. We do not show results of the performance during the base phase, as they

are the same for all the schedulers since they all begin by placing the original service on an empty

worker node. At this point, we add 50% CPU stress to one node, and as a result the Kubernetes

cluster now has two empty worker nodes (with and without CPU stress) and one worker node for

each containerized service. We then launch a new replica of the service being studied. In all the

cases, we observe decreased performance (spike) during the time the new service is being brought

up; we call this the transition phase. After the performance spike subsides, the system reaches a

steady phase during which the response times are affected by the scheduler placement decision, with

decreased performance observed at the node with CPU stress. Figure 6.2 illustrates these three

phases, for one run of the TeaStore experiment.

Our main interest is in the performance during the steady phase, but we also include results

obtained during the transition phase. We identify this phase by studying the time series of the
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Figure 6.3: Median response times for the TeaStore authentication microservice, for every 10-second window

of the steady phase of the experiment.

requests and selecting the results after the performance degradation (spike) that occurs right after

deploying an additional service replica.

We issued requests as described next. (E1) We ran the TeaStore application with one microservice

per node, and issued requests with the LIMBO HTTP Load Generator14, with a profile that simulates

a user browsing the site and adding products to the shopping cart. (E2) For the textRotate.jspx

tests we used ApacheBench15. The requests issued had a random string in the service call, to avoid

the effect of result caching which is enabled by default in Tomcat.

E1 results: Figure 6.3 shows the median response time at the steady phase, for TeaStore’s

authentication service. The results show that the Oracle scheduler can lead to median performance

that is, on average, 1.75 times better than the one resulting from the Kubernetes scheduler. At the

90th and 99th percentiles, Oracle is 1.25x and 1.17x better than K8Sdefault. We observe that random

decisions can lead to better performance results than Kubernetes. Response times degrade more

during the transition phase—due to inadequate placement decisions—as shown in Figure 6.4: Oracle

leads to response times that are 2x, 1.77x and 2.21x better than those obtained with K8Sdefault,

for the 50th, 90th and 99th percentiles, respectively.

E2 results: Figure 6.5 shows the cumulative distribution functions (CDFs) of the response times.

As in the prior example, Oracle leads to better service response times than K8Sdefault, yielding

service response times that are 1.5x, 1.43x, and 1.13x better than those obtained with the Kubernetes

scheduler, for the 50th, 90th and 99th percentiles of the steady phase. During the transition phase

(not shown), the service response times obtained with Oracle are 1.11x, 1.48x, and 2.06x better than

14https://github.com/joakimkistowski/HTTP-Load-Generator; model detailed in [155].
15https://httpd.apache.org/docs/2.4/programs/ab.html
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Figure 6.4: Cumulative distribution functions (CDFs) of the service response times during the transition

phase (time during which a new replica is being launched), for the TeaStore authentication microservice.
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Figure 6.5: CDFs of the service response times of the Tomcat textRotate.jspx service, during the steady

phase of the experiment.

those obtained with the Kubernetes scheduler, for the 50th, 90th and 99th percentiles, respectively.

Insights: Smart placement can lead to significant improvements in median and tail service re-

sponse times, during the transition and steady phases of the service replica creation process. The

default placement decisions of the Kubernetes container orchestration platform lead to sub-optimal

performance. Our observations call for improved, performance-aware placement algorithms that

target the performance metrics relevant to modern containerized services.
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Figure 6.6: Box plots of the container initialization times of 50 iterations of an experiment in which an

NGINX instance on a Docker container is launched on an empty worker node or on a node with 50% CPU

stress.

6.4.2 Initialization times: Experimental design and results

Some services require fast service launch times in addition to fast service response times. This is

of importance to: (a) Elastic services that auto-scale in response to frequent variations in workload

demand [80], and (b) Function-as-a-Service, for which slow cold-start times is known to be an issue

hindering adoption [149].

E3 results: To assess the impact of CPU load on how fast a service launches, we devised a

microbenchmark in which we launch NGINX on an empty node and on a node with 50% CPU

stress. We ran this test 50 times and show the distribution of the initialization times in Figure 6.6.

Launching the service in the node with no stress versus launching it on a node with 50% CPU stress

is 1.23x, 1.34x and 2.19x faster at the 50th, 90th and 99th percentiles, respectively.

We also report that we were originally running the experiments on Ubuntu 16.04 and found that

the performance degraded significantly for every iteration in the experiment (see Figure 6.7). After

extensive testing, we were able to track down the issue to a kernel bug that lead to cgroups not being

properly released16. A fix is included in newer versions of Ubuntu, but many production systems

are still running the problematic version.

Insights: Launching a containerized service on a node with (even medium) CPU stress can lead

to reduced service initialization times. For services that require to launch fast, monitoring and smart

placement decisions become important. Furthermore, continuous feedback loops are important to

detect possibly unknown performance issues, as with the case of the cgroups bug that considerably

16See: https://github.com/lxc/lxc/issues/1443
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Figure 6.7: Performance degradation of the container initialization times, as the number of cgroups in the

system increases as a result of a kernel bug.

affects container performance in nodes with high container churn.

6.5 Related work

For related work studying the problem of workload placement in diverse scenarios, we refer the

reader to section 6.2.

There have been a few recent efforts seeking to improve performance isolation between con-

tainers; e.g., [164, 89]. Others are working on alternatives to VMs and containers that mix the best of

both worlds: lightweight application deployment with strong isolation; namely, research prototypes

like Alto [95], Cntr [141] and X-Containers [132], and commercial offerings like AWS Firecracker17.

These approaches are orthogonal to our work, as the performance impact perceived by microser-

vices can occur due other issues like normal performance degradation at nodes with medium-to-high

resource consumption levels, and bugs at lower layers.

Within the context of container placement, Mao et al. [100] analyzed the Docker Swarm or-

chestrator and found that it did not consider the node resources or container resource requirements

when mapping containers to nodes, but rather applied a simple spread container algorithm. They

proposed DRAPS, which assigns containers to nodes based on current available and dynamic de-

mands from the services running on the containers. Our work complements this work, by studying

a more complete container orchestration engine: Kubernetes, and exposing the fact that even when

a node has available resources, the lack of isolation in the performance on containers has an impact

17https://firecracker-microvm.github.io/
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on the container launch time and steady phase container performance, which calls for performance-

aware algorithms that consider not only resource consumption but also application-level performance

metrics. Have et al. [76] proposed making Docker Swarm more energy efficient. In contrast, we seek

to improve the performance of containerized applications with tight SLOs. Chung et al. proposed

Stratus [44], a scheduler for batch tasks running on containers (on a public IaaS) that seeks to

minimize the monetary cost of running the tasks. In contrast, we look at performance improvement

given a fixed set of resources.

Specific to Kubernetes, Medel et al. [102] derived a reference model for Pod and container

lifecycle management. Podolskiy et al. [118] looked into how to trigger container auto-scaling deci-

sions based on application performance models and user defined SLOs. Truyen et al. [146] studied

the performance overhead of container orchestration frameworks for management of multi-tenant

database deployments. Our work adds another dimension into the studies of the performance of

applications running on Kubernetes.

The wide adoption of microservices architectures and their performance challenges has lead

to work in benchmarking [67]18, performance debugging [68], predicting tail latency [123] and SLO

violations [86], self-healing and self-adjusting orchestrators [87], auto-scaling [26], and performance

on serverless platforms [97]. Our work complements these projects, by studying how the launch and

service times of microservices is affected by deployment decisions.

Recently this year, IBM released SSX19, a scheduler expansion for k8s that avoids overloading

the workers, considering actual resource usage instead of just the amount of allocated resources.

Our evaluation results provide experimental evidence that this direction of work is promising. SSX

could be used as a basis for future work on smart performance-aware deployment of containers.

6.6 Closing discussion

Lowering the latency of modern applications is critical for user engagement and profits [135]. In this

chapter, we highlight the opportunities to improve application performance through performance-

aware deployment of containers. We showed that the default scale-out deployment mechanisms

offered by popular container orchestration platforms are not performance-aware, resulting in poor

performance of the microservices. In particular, we find that placement decisions are critical for

both good initialization time and run-time performance of the containers—metrics that are essential

for containerized applications with strict latency SLOs. Further, our observations highlight the

need and benefits of a closed-loop system that helps sustain the application SLOs by scaling or

migrating containers based on the resource variability in cloud environments. We now present some

key considerations for building such a system.

18At the time of this submission, DeathStarBench has yet to be released.
19https://github.com/IBM/kube-safe-scheduler
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Smaller time scales: Modern cloud-native applications are designed to be fast and are often

required to maintain response times of a few milliseconds [87, 68, 123]. Containerized applications are

significantly lightweight when compared to their VM counterparts, which presents the opportunity

for these applications to scale-out/scale-in quickly in reaction to performance variability in the cloud

platforms. However, this requires the placement algorithms in the container orchestration platforms

to match these strict latency requirements. Further, our observations show that it is important to

ensure the stability of the closed-loop system, as oscillations could create significant deployment

churn in the cluster, which drastically impacts the application SLOs as we show in section 6.4.

Deployment complexity: Containerized applications differ from applications designed for deploy-

ment in traditional VMs, primarily due to the fine-grained functional decomposition of the appli-

cation into microservices that are deployed in containers. End-user transactions typically traverse

chains of microservices, increasing the length of the critical path impacting the applications’ end-

to-end latency. Hence, localized placement decisions which are better for individual containers, may

differently affect the end-to-end latency. It is important for the placement algorithms to retain a

holistic view of application performance when (re)deploying containers.

Accommodating application constraints: Applications often specify constraints that affect the

placement of its individual containers; e.g., require a set of containers to be co-located for perfor-

mance. Also, microservices may need containers to be placed on hosts with specific hardware fea-

tures. Placement algorithms need to be cognizant of these constraints while making (re)deployment

decisions.

Horizontal scaling vs. vertical scaling vs. migration: Prior studies [126, 77] have shown that

application scale-out may not always be the right action to mitigate poor performance. For the

case of containerized applications, this may be especially relevant for applications with complex

interactions across microservices where root-cause analysis is not straight forward. Thus, in many

cases, vertical scaling or migrating to a new host may be more appropriate.

Analysis period: Our experiments had constant CPU stress, but real applications consume re-

sources in variable quantities during their executions. The resource consumption at workers should

be monitored during some period in order to make good placement decisions. This period could

be longer when we want to improve request response times, but shorter when our goal is to reduce

initialization times. As applications may care about both metrics, properly choosing the period to

analyze prior to a placement decision is a challenge for smart resource-aware placement algorithms.

These observations call for more research into performance-aware placement algorithms designed

for containers managed by orchestrators, running on clusters of VMs managed by a VM placement

platform. Researchers could also develop auto-configuration mechanisms that periodically tune the

orchestrator’s configuration knobs, such as to maximize performance. Recent work in the domain

of self-driving databases [147] has showed that such approaches are useful and can help in reducing

operational costs while improving system performance.
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Chapter 7

Cache affinity request routing with

load control (CARLOs) for data

lakes

Big Data processing has become a popular applications that makes use of cloud platforms to optimize

resources and reduce costs, and requires large storage capacities. Data lakes are large, highly scalable

storage systems that have emerged to optimize the performance of analytical tools such as Hadoop

or Spark. Data lakes require fast access, and use common techniques like caching and prefetching

to reduce response times to data. In this chapter we propose the use of CARLOs, an algorithm that

seeks to maximize the use of the cache (hit rates), without neglecting load balancing, as a method to

obtain better access times to the data stored in the data lake. Our experiments shows that CARLOs

outperforms the standard request routing algorithm, reducing request latency by up to 20%, and

increasing the throughput up to 9%.

7.1 Introduction

To demonstrate that our affinity scheduling approach for serverless microservices has important ap-

plicability (impact) beyond the microservices domain, we now turn our focus into a current important

problem in cloud computing: Making Big Data processing more efficient. Big Data processing is one

of the fastest growing modern applications that makes use of cloud platforms in order to optimize

resources and reduce costs. Massive data processing has the characteristic that it requires large

storage capacities, at least temporarily, to make the data available to the processing tools.

Massive data processing is done through the use of frameworks, such as Hadoop or Spark, which

can work with data flowing directly from the original sources, transformed and processed by these
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frameworks, or with data that has been previously processed, that are stored in some repository.

The requirements for storage systems for these Big Data applications are scalability at low cost and

fast access. The faster the data is accessed, the shorter the processing time and therefore the lower

the cost of execution on cloud platforms, where the pay-as-you-use model is very popular.

Data lakes are a storage solution that have emerged to optimize the performance of analytical

tools such as Hadoop or Spark [60]. Data lakes are large, highly scalable storage systems that also

allow data to be stored in RAW format, in such a way that it does not limit the data sources, nor

does it require prior preprocessing. Data lakes are used in order to facilitate the storage of massive

amounts of data and provide quick access to them when required by analytical tools. An important

characteristic of data lakes is that they are built using common low-cost technologies, so that the

increase in capacity does not represent an unaffordable increase in cost.

While early generations of data lakes were built as flat architectures, with a single data storage

area, and Hadoop being the main tool used, they have evolved to storage systems sectioned in ponds,

where data can be partitioned based on their class or the step of the analytical process where they

are used. Also, more storage platforms have been included such as Amazon S3, Azure Data Lake,

or similar open-source tools, like CEPH, for internal developments [124].

Regardless of the internal architecture, or the tools used for its development, fast access to

stored data is one of the main requirements of data lakes. Caching and prefetching are widely used

techniques to bring data closer and can be used by analytics frameworks to reduce response times

to data [10]. However, access to the data stored in the data lake heavily relies on the tools used

for its construction, and the data access mechanisms in the different nodes. Some of the storage

tools used to build data lakes, implement caching mechanisms to improve access to data and use

load balancing algorithms in order to evenly distribute requirements, and therefore the cached data,

among the different nodes of the cache layer, so that response times from each of them are similar.

In this chapter we propose the use of algorithms that prioritize maximizing the use of the cache (hit

rates), without neglecting load balancing, as a method to obtain better access times to the data

stored in the data lake.

The rest of the chapter is organized as follows, in section 7.2 we describe the architecture for

a CEPH based data lake with a cache layer, in section 7.3 we show our proposed request routing

algorithm, then in Section in section 7.4 we present the test environment used to evaluate the

proposed algorithm. We analyse the evaluation results in section 7.5, and conclude in section 7.6.

7.2 Architecture

To evaluate the performance of our algorithm for request routing for a distributed cache, we propose

as a test platform a data lake based on a CEPH cluster. CEPH is a popular open source distributed
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Figure 7.1: Proposed architecture for a CEPH-based data lake, acting as object storage, with a
caching layer based on Nginx as cache nodes and Caddy as the cache manager or balancer; if the
object storage gateway is replicated for scalability purposes, the cache nodes can be integrated or
merged with the object storage gateway nodes.

storage platform [159]. One of CEPH’s configurations is as an object storage system 1, which

enables the storage of raw data, regardless of the information format. Additionally, CEPH provides

tools that allow providing access simulating the Amazon S3 service [70], which works on the HTTP

protocol and is widely used by developers.

To provide a cache layer in access to the object store, we use a farm of Nginx servers, which

communicate natively (HTTP) with the S3 gateway provided by CEPH.

Finally, as manager of the cache layer we will use a Caddy server, which acts as a reverse

proxy distributing the clients’ requirements among the different nodes of the cache. The Caddy

project implements several access algorithms, including one that seeks to optimize the load balancing

between nodes and another that assigns each new requirement to the node that has the lowest

load assigned (waiting requirements). Being an open-source project, the Caddy server allows us

to implement not only our proposed algorithm, but also other recent algorithms such as consistent

hashing with bounded loads [104].

7.3 Proposed algorithm

To improve access to data stored in a data lake containing a cache layer, we propose an algorithm

that is a variant of previous work that was applied to improve task allocation on function-as-service

platforms. In this chapter, we adapt our algorithm to fit the operation of a cache layer in front of

an object storage using the HTTP protocol. With our algorithm, we seek to maximize the use of

the cache layer, without neglecting the balanced distribution of load between the different nodes,

avoiding the appearance of hot spots.

1https://ceph.io/ceph-storage/object-storage/
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Algorithm 7: Cache-aware request routing algorithm for CEPH-based datalakes

Global data: Consistent hashing ring for cache nodes hosts, C = c1, ..., cn, Hash functions
H1 and H2, maximum load threshold, t

Input: Requested URI including the object ID, uri
Output: Cache node A, to which uri request should be assigned
/* Calculate two possible cache node targets */

1 t1 = H1(uri)%|C|+ 1
2 t2 = H2(uri)%|C|+ 1
/* Select target with least load */

3 if (load(ct1) < load(ct2))then
4 A := t1

5 else
6 A := t2

/* If target is not overloaded, we are done */

7 if (load(cA) < t)then
8 return cA

9 else
/* Balance load */

10 return min(length(ci)∀i)

Our algorithm uses hash functions applied to the identifier of the requested object, in order to

consistently redirect every request for the object to the same node of the cache layer. This way, it

raises the chance for accessing an object that is already in the cache, leading to lower access latency

times.

It is well known that using hash functions to dispatch object requests leads to hot spots when

the popularity of stored objects is highly skewed. To mitigate this problem, we implemented two

actions. First, we use the power-of-2-choices technique [105] to select, using hashing, 2 candidate

nodes to receive the request, and we select the node with the lowest load, meaning the size of queued

requests. Second, we use a threshold to prevent the selected node from becoming a hot spot. If

the selected node has a load that exceeds the defined threshold, the request is routed to the node

with the lowest load of all available nodes. This second control will direct the request to a node

where the object is probably not cached yet, however, since it is the node with the least load, the

response latency is expected to be low. Algorithm 7 shows our algorithm for the cache layer from

a CEPH-based data lake.

7.4 Experimental design

For the experimental evaluation we built a test environment following the design described in section

7.2. The test environment was built in CloudLab [56], using 2 types of nodes: d710 nodes were used

to build the object storage and the cache layer, and PC3000 nodes were used to mimic accesses from
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analytical frameworks.

For the object storage layer, we deployed a CEPH cluster, with 3 OSD nodes for replicated object

storage, a single node for cluster management and monitoring, and a single node acting as a gateway

to access the stored objects (using CEPH’s S3 API [70]). The cache layer was built using 10 Nginx

servers as distributed cache nodes, and a Caddy server, acting as a reverse proxy to distribute the

object requests to the cache nodes.

We implemented our algorithm as a packet routing policy in version 1.0.1 of Caddy 2, an extensi-

ble platform to run Go applications, which is commonly used as HTTP server. Our implementation

has 54 lines of code. To increase the validity of our evaluation, we also implemented a routing policy

based on the Consistent Hashing with Bounded Loads algorithm, using an open implementation in

Go 3.

To generate the requirements or accesses to the objects in the data lake, we use KV-replay [36],

which is based on YCSB [48], a popular benchmarking tool that, among its connectivity modules,

includes a plugin to support the REST protocol. This setup allows us to generate queries with URIs

simulating access to the Amazon S3 service.

For the experimental evaluation we use a dataset with 100K different objects, with a total size of

60GB. The objects have sizes ranging from 17 bytes to 9 MB. Nearly 20% of the objects are smaller

than 100KB and 84% are smaller than 1MB. Object names were created using seeded SHA512

hashes, to avoid named based locality. This simulates an environment in which many small files are

stored and accessed; a concrete example of such an environment is the case of images that need to

be stored, retrieved, and analyzed.

For each experiment we generated 300K object requests. We generated requests using two ap-

proaches. First, we used a Big Data storage (HDFS) workload from Yahoo [5] to select four sections,

each one with 75,000 requests records accessing 89,616 unique objects. Each section or trace was

replayed by a KV-replay node with 8 threads of execution. Additionally, a synthetic workload was

generated with KV-replay, using a Zipfian distribution with coefficient=0.5 to get a dataset similar

to the trace from Yahoo. With this scenario we produced access to 88698 unique objects. This

workload was also dispatched using four KV-replay nodes, with 8 threads each.

7.5 Results

To test the validity of the use of cache affinity policies in algorithms for load distribution in data

lake storage systems, we propose the following research questions:

• RQ1: How much does the latency of the accesses improve in the data lake, when we use our

proposal based on cache affinity, versus a load balancing algorithm?

2https://github.com/caddyserver/caddy
3https://github.com/lafikl/consistent
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Figure 7.2: Latency Boxplot CARLOs vs LeastConnections.

• RQ2: How much does the access throughput improve in the data lake, when we use our

proposal based on cache affinity, versus a load balancing algorithm?

• RQ3: Considering that there are other algorithms for request routing based on cache affinity,

how does our proposal behave in comparison with other algorithms?

To answer RQ1 and RQ2, we compare the results of the experiments described in section 7.4 for

the LeastConnections algorithm, which is the Caddy policy that seeks to keep the load balanced

between the nodes, and CARLOs, which is our proposal to exploit the affinity of cache without

causing too much imbalance in the load of the nodes.

As shown in Figure 7.2, the load balancing algorithm (LeastConnections) produces higher laten-

cies than those obtained using our CARLOs proposal. If we compare our algorithm with a threshold

of 8, CARLOs yields median latencies that are up to 20% lower, thus leading to faster access to

objects. This trend continues up to the 75th percentile of the latencies, however tail latencies are

better for the LeastConnections policy, where the 99th percentile on the latencies are up to 6%

faster.

Figure 7.3 shows the evolution of average latency over 10-seconds windows. All cases show

better performance (lower latency) for our algorithm compared with the default policy of Caddy

(load balancing). We can also see the difference performance caused by the type of workload,
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Table 7.1: Throughput CARLOs vs LeastConnections

Workload Cache Size LeastConns CARLOs SpeedUp
Replay Small 46.34 48.76 1.05
Replay Medium 46.99 50.33 1.07
Replay Large 47.14 50.03 1.06
Zipf Small 33.02 35.02 1.06
Zipf Medium 33.16 36.23 1.09
Zipf Large 34.02 35.96 1.06

despite both workloads have the same requests and a similar number of referenced unique objects.

The synthetic workload (Zipfian) doesn’t has temporal locality, leading to higher, but more stable,

latencies. On the other hand, the replayed real trace performs better with lower latencies, as it’s

taking more advantage of the cache layer. Lower latencies lead to the workload reproductions in a

shorter period.

For throughput evaluation, Table 7.1, and Figure 7.4 show that CARLOs algorithm obtains an

improvement between 5% and 9%, depending on the size of the cache. The smaller improvement in

this measure, compared to those observed in latencies, can be explained by the best performance of

the LeastConnections policy in the highest percentiles of latencies.

To answer RQ3, we performed the same set of evaluations, but this time we compared the results

Figure 7.3: Average latency for 10-seconds windows, comparing CARLOs vs LeastConnections.
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Table 7.2: Throughput CARLOs vs Other cache-affinity algorithms.

Workload Cache Size UriHash ConsistentHash CARLOs
Replay Small 47.98 47.99 48.76
Replay Medium 49.74 49.27 50.33
Replay Large 48.58 50.06 50.03
Zipf Small 34.98 34.30 35.02
Zipf Medium 36.29 35.67 36.23
Zipf Large 35.39 35.89 35.96

of our proposed algorithm, with two other cache affinity algorithms UriHash (which already comes

as a Caddy policy) and Consistent Hashing with bounded loads (which was added as a Caddy policy

as explained in section 7.4).

Regarding throughput, Table 7.2 shows that CARLOs always gets higher (better) throughput

than the ConsistentHashing algorithm, but is sometimes less efficient than the UriHash algorithm.

It should be noted that the results are very similar, with typical differences between 1% and 2%, so

these results should not be considered conclusive.

Figure 7.5 shows the distribution of latencies obtained by our CARLOs algorithm, compared

Figure 7.4: Throughtput for 10-seconds windows, comparing CARLOs vs LeastConnections. This
figure shows that the performance of CARLOs algorithm is consistently better alongside time and
different cache sizes.
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Figure 7.5: Latency Boxplot CARLOs vs Other Cache affinity algorithms.

with other cache affinity based policies. The UriHash policy, which is included in Caddy, produces

a better median latency, however, the bodies of boxplots show a higher dispersion of the results.

This is confirmed with the IQR (interquartile range) value, which is up to 17% shorter for CARLOs.

Comparing CARLOs with the policy based on the Consistent Hashing with Bounded Loads algo-

rithm, we find that the dispersion is similar, having practically similar interquartile ranges (IQR).

However, the latencies are lower for CARLOs for the percentiles analyzed.

Statistically meaningful evaluation

For ensure a statistically meaningful evaluation, we used an one-way ANOVA test, and complemented

this evaluation with the Tukey HSD (Tukey Honest Significant Differences) test for performing

multiple pairwise-comparison of CARLOs with other cache-affinity based policies. Before running

the ANOVA evaluation, a normality test was run on all the measurement sets using the Lilliefors

(Kolmogorov-Smirnov) normality test.

The ANOVA test was performed on the throughput and average latency values for all the exper-

imental scenarios, and results were consistent along all of them. We present results for the Large

Cache scenario, for both Replay, and Zipfian workloads. Table 7.3 summarizes the p-values for the

Anova test. We can see that, for every scenario, and both for Latency and Throughput, there is a
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Table 7.3: ANOVA Test Results for statistically meaningful evaluation between CARLOs and other
request routing policies.

Compared pair Workload Metric p-value Statistically
different?

CARLOs vs LeastConnections Replay Latency 7.86e− 14 True
CARLOs vs LeastConnections Replay Throughput 3.39e− 11 True
CARLOs vs LeastConnections Zipf Latency < 2e− 16 True
CARLOs vs LeastConnections Zipf Throughput < 2e− 16 True
CARLOs vs UriHash Replay Latency 0.0001 True
CARLOs vs UriHash Replay Throughput 0.00009 True
CARLOs vs UriHash Zipf Latency 0.0005 True
CARLOs vs UriHash Zipf Throughput 0.0002 True
CARLOs vs ConsistHashBound Replay Latency 0.9 False
CARLOs vs ConsistHashBound Replay Throughput 0.98 False
CARLOs vs ConsistHashBound Zipf Latency 0.91 False
CARLOs vs ConsistHashBound Zipf Throughput 0.75 False

statistically significant difference between CARLOs and LeastConnections, and the same between

CARLOs and UriHash, the two well-known policies evaluated. However, there is not a statistically

significant difference between CARLOs, and Consistent Hashing with Bounded Loads, another state

of the art policy based on cache affinity rules.

7.6 Conclusions

Exploiting cache affinity to improve requests latency in data lake storage systems is plausible. Our

work shows that using cache affinity policies in the caching layer for data lake systems is better than

using a more common load balancing policy, where new requests are sent to the host with lowest

active requests.

Our algorithm outperforms the standard LeastConnections algorithm, reducing request latency

by up to 20%, and increasing the throughput between 5% and 9%.

The request proxy used in our experiments, which is the node in charge for request routing

decisions, already includes a cache affinity based policy (UriHash), however, our proposed algorithm

also reduces the latency and increases the throughput.

We also compared our solution with another state-of-the-art algorithm for load balancing, Consis-

tent Hashing with Bounded Loads, but our experimental results doesn’t show statistically significant

differences for average latency, nor for average throughput. However, experimental results show that

CARLOs, our proposed algorithm, got shorter IQR for request latencies, which can be interpreted

as a greater degree of stability in the response times obtained.
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Chapter 8

Serverless-based microservices to

support self-adaptive cloud services

The research community has made significant advances towards realizing self-tuning cloud caches;

notwithstanding, existing products still require manual expert tuning to maximize performance.

Cloud (software) caches are built to swiftly serve requests; thus, avoiding costly functionality ad-

ditions not directly related to the request-serving control path is critical. We show that serverless

computing cloud services can be leveraged to solve the complex optimization problems that arise

during self-tuning loops and can be used to optimize cloud caches, for free. To illustrate that our ap-

proach is feasible and useful, we implement SPREDS (Self-Partitioning REDiS), a modified version

of Redis that optimizes memory management in the multi-instance Redis scenario. A cost analysis

shows that the serverless computing approach can lead to significant cost savings: The costs of

running the controller as a serverless microservice is 0.85% of the cost of the always-on alternative.

Through this case study, we make a strong case for implementing the controller of autonomic systems

using a serverless computing approach.

The work presented in this chapter was first published at MDPI Computers journal [35].

8.1 Introduction

Application-controlled cloud caches implemented with fast in-memory key-value stores, like Redis

and Memcached, have become ubiquitous in modern web architectures [1]. Content providers use

caches to reduce latency and increase throughput, increase user engagement and profits, and reduce

infrastructure costs [1, 134]. Proper configuration and tuning of these caches is critical, as sub-

optimal configurations lead to increased miss rates and a resulting penalty in end-to-end performance,

negatively affecting the business goals: It has been reported by Amazon that a 100 ms latency penalty
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can lead to a 1% sales loss, and by Google that an additional 400 ms delay in search responses can

reduce search volume by 0.74% [134].

A time-tested way to improve cache performance is to optimally partition the cache [15, 142, 99,

139, 122, 58, 137, 45, 82, 46, 29, 47, 1, 83]; for example, by dynamically partitioning the total memory

between users or applications. However, current cloud caches support only static partitioning while

others provide no control over the partitioning. Redis1 is an example of the former, while Memcached

is of the latter. While several solutions targeting cloud caches have been proposed [137, 45, 82, 46,

29, 47], these have not been added to industry-grade software caches due to performance concerns.

In this chapter, we present a serverless computing architecture using the Function-as-a-Service

model, to optimize cloud caches for free. We implement this solution in SPREDS, a Self-Partitioning

REDiS. SPREDS leverages modern data structures and statistical sampling methods to efficiently

obtain online estimates of the real miss rate curves (MRCs) [107]. The backend performance profiles

and MRCs are combined into a utility function to maximize. The resulting optimization problem is

solved outside the cache using a serverless computing approach. Our experimental results show that

the performance overhead due to monitoring the cache is low and that implementing the autonomic

controller as a serverless microservice is feasible and useful. We present cloud cost calculations that

show that the invocations to the controller are either free or very cheap, with the costs of running

the controller as a serverless microservice being just 0.85% of the cost of the always-on alternative.

Additionally, the optimization problem is solved outside of the machine running the cache and does

not consume resources of the caching nodes.

Using SPREDS as a case study, we argue that the proposed approach should be considered in

future autonomic and self-* systems, as it is a low-cost and low-overhead way to calculate complex

adaptation decisions applicable to systems running on public cloud providers. We end by outlining

some challenges in implementing this vision, and discuss how to address them.

8.1.1 Contributions and chapter roadmap

This work makes the following contributions:

1. We survey the most current research in the domain of self-tuning cloud caches, and study the

designs used by prior approaches as a way to motivate the need for a more modern, cheaper,

cloud-native solution (Section 8.2).

2. We re-visit the memory partitioning problem and model it as a mathematical optimization

problem with restrictions that are specific to the multi-instance cache on a shared node, studied

in this chapter (Section 8.3).

3. We present a novel design for implementing autonomic cloud caches that leverages serverless

1Redis stands for Remote Dictionary Server.

74



computing cloud offerings to implement the autonomic controller (optimization module) at a

low cost (Section 8.4).

4. We show the feasibility of our approach through implemeting SPREDS, a real implementation

of our design using Redis and AWS Lambda (Section 8.4).

5. We present real experimental results and corresponding cost analysis, that validate the useful-

ness of our proposal (Section 8.5).

6. We make a case for adopting our serverless approach to other autonomic, self-tuning systems,

and study the challenges in realizing this vision (Section 8.6).

8.1.2 Threats to validity

We assume that the mathematical optimization problem to find the optimal memory partitioning

can be solved in a reasonable amount of time (e.g., takes no more than 25% of the time between

adaptation cycles). If solving the optimization problem takes too long, the solution proposed in this

chapter is not applicable.

Our solution relies on estimated miss rate curves, as getting real MRCs with a low performance

overhead is—to the best of the state-of-the-art knowledge in caching [156]—not possible. However,

the results we present from real cloud experiments show that the accuracy of the MRCs is good

enough for our purposes: SPREDS can improve performance over a static partitioning approach.

Nevertheless, it is possible that there may exist workloads for which the estimated curves are not

good proxies of the real ones.

Automatic parameter tuning depends on being able to monitor dynamic behavior at a granularity

that is useful for making informed predictions of the impact of changing specific parameters. Our

solution leverages recent advances in efficient MRC estimation [107] that apply only to the caching

domain. An alternative approach to be considered for future work is constructing a utility function

that relies only on the metrics and information that can be obtained from system logs; this would

be a zero-overhead approach, as many useful information from each system component is typically

already being logged, stored, and monitored—following a modern DevOps mindset [57, 23].

Finally, we argue for using a serverless computing approach in our design and present cost

estimates that are considerably cheaper than the alternative of an always-on service. Whether

this is actually true or not in practice, depends on: (1) how frequently is the optimization service

invoked, and (2) the costs of each of the cloud services used in its implementation. We believe the

serverless approach may be the cheapest option for small and medium-sized organizations in the

near future but cheaper alternatives may arise in the long run or may already be available for larger

organizations for which an always-on service is likely a better alternative.
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Figure 8.1: Illustration of the motivating architecture used in this chapter. The figure shows a web
or mobile application with a microservices architecture. There is a caching layer that speeds up
accesses to data stored in several heterogeneous backends.

8.2 Background, motivation and related work

Key-value stores are primitive databases that support efficient insertion and lookup of data indexed

by user-defined keys. In-memory key-value stores work like remote hash tables or dictionaries,

and can answer requests with very high throughput and low latency. At the time of this writing,

the most common in-memory key-value store software products are Redis2 and Memcached3 [51].

These products are frequently used as caches at the backend of modern web and mobile applications.

Caches implemented with in-memory key-value stores are not transparent caches; the cache is invoked

explicitly in the applications, serving complex business logic workflows. In this chapter we study

Redis because it is the most popular key-value store as-of December 2019 [51].

We show a common use case of cloud caches in Figure 8.1: A system that stores information—

like product inventory, user profiles, and session information—in different storage backends. There

is a frontend that aggregates information from these backends and presents it to the user. To

improve latency and reduce pressure on the storage backends when serving user requests, the frontend

typically first contacts a caching layer seeking the required information. If the data being sought is

not stored in the cache—a cache miss—the application needs to contact the specific storage backend,

get the data and return it to the user. The application then contacts the cache to store a copy of the

2https://redis.io
3https://memcached.org
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data, so that future requests can be served directly from the cache. Each of these storage backends

have their own unique performance profiles. For example, the databases supporting complex queries

are much slower than object storage devices that store image files. The following is a small list that

exemplifies the type of things being cached in the backends of web or mobile applications:

• User profiles, where profiles contain data pulled from several other backend systems.

• Tracking information, like user engagement counters.

• User avatars or other images shown in the frontend to the end users.

• Business reports resulting from querying multiple tables in an OLTP database.

• Session information, like the per-user application system state.

• User status updates in social networks; users read the updates of their “friends”.

One important factor in the performance of a cache is how much memory it has available to store

objects: The larger the cache, the higher the percentage of objects from the storage backend that it

can hold, and thus, the higher the likelihood of a request being a hit and not a miss.

The cache’s eviction policy determines which objects are removed from the cache to make space

for new objects being added. Cloud caches support several eviction algorithms, with least recently

used (LRU) or some variant of this algorithm being the most commonly used one, as it is known

to perform well for a wide variety of workloads. LRU assumes that recent past behavior is a good

predictor of future behavior. When an object is to be evicted, it selects the object that has been

used least recently because this is the one that it predicts is the least likely one to be re-used in the

near future. By default, Redis uses a randomized version of LRU [120] which samples x objects and

evicts the one that was accessed least recently; x is configurable and set to five by default.4

The other important factor influencing the performance of a cache is the workload characteris-

tics [8, 36] like the skewness of the distribution of the popularity of the objects, and the degree of

temporal locality present in the accesses to the objects in the cache. These workload characteristics

are application-dependent and may be dynamic; thus, the caches must be able to self-adapt to these

changes.

8.2.1 How important is (optimal) memory partitioning in cloud caches?

To make best use of CPU resources, modern microservices architectures favor shared-nothing and

stateless approaches to distributed systems. A common scenario is for multiple Redis instances to be

co-located in the same machine (see Figure 8.1). Each of these instances serves a different workload

or application, and can be configured independently. In this scenario, the machine’s memory becomes

an important resource that must be adequately partitioned between the cache instances.
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Table 8.1: Summary of the recent work in the domain of self-partitioning cloud caches. For each
of the papers, we highlight one result demonstrating the achievable performance gains. Prior so-
lutions differ due to differences in methods, service-level objectives, workloads and experimental
configurations.

System Open Source? Goal Result
Moirai [137] Prototype Supports diverse SLOs Overall throughput increases by

more than 2.5x, in a multi-tenant
datacenter.

Dynacache [45] No Minimize miss ratio Reduces number of misses by
more than 65%.

LAMA [82] No Minimize miss ratio Reduces average miss ratio by
41.9%, saving 40.8% memory
space.

Cliffhanger [46] No Minimize miss ratio Reduces number of cache misses
by 36.7%.

RobinHood [29] Testbed Minimize request P99 Meets 150ms P99 goal 99.7% of
time (vs 70% of time for next
best policy).

Memshare [47] Simulator Minimize miss ratio Increases combined hit rate from
84.7 to 90.8%.

We surveyed recent papers tackling the problem of self-partitioning cloud caches [137, 45, 82, 46,

29, 47] and found that intelligent cloud cache partitioning can lead to significant performance gains:

Depending on the service-level objectives and resulting utility function, these improvements can be

in terms of higher throughput, higher cache hit rate, and reduced end-to-end latency. Tables 8.1

and 8.2 summarize our observations. Based on the results presented by the prior studies and on

our own observations, we posit that smart and adaptive memory partitioning in caches supporting

different workloads leads to significant performance gains. Sadly, memory partitioning in Redis is

currently only static and manual. The case of Memcached is even worse, as it gives more memory to

the application issuing more requests, regardless of whether this is good for the overall system [121].

8.2.2 Architectures for self-partitioning cloud caches

Self-adjusting capabilities that involve solving complex optimization problems can impose unna-

ceptable performance overheads on the system being tuned. We argue that a serverless architecture

approach can be used to overcome this limitation. To better explain why this is the case, we first

study the architectures used in prior self-partitioning caches. We summarize their architectural de-

cisions regarding where to locate the monitoring engine and the autonomic controller in Table 8.2

and analyze the limitations of these architectures next.

Prior projects have used one of the following approaches to limit the performance overhead

4Since version 3, the LRU implementation of Redis also takes a pool of good candidates for eviction.
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Table 8.2: Architecture of the self-partitioning caches proposed in recent literature. MR: Miss rate.

System Location of metrics engine (monitoring agent, MA), and
Location of optimizer (autonomic controller, AC)

Moirai MA: Local hypervisor module analyzes workloads on system.
AC: Centralized controller, external to cache; shared at datacenter level.

Dynacache MA: Offline external; heavyweight stack distance algorithm.
AC: In-cache LP solver that assumes convexity of MRCs.

LAMA MA: In cache metrics (independent thread).
AC: In-cache algorithm (dynamic programming algorithm).

Cliffhanger MA: In cache; approximates MR gradients w/ shadow queues.
AC: In-cache; incremental cliffhanger algorithm.

Memshare MA: In cache arbiter approximates MR gradients.
AC: In-cache arbiter uses MR gradients to incrementally adjust partition sizes.

RobinHood MA: External RBC server; shared between applications.
AC: Distributed controller; one per caching server.

SPREDS MA: Local to cache; external process.
AC: Pay-per-use service on a serverless computing platform.

introduced by solving the optimization problem:

A1: Make small, gradual, changes to the memory allocations exploring the configuration space to

find the optimal partitioning. This approach removes the CPU cost of solving the optimization

problem but introduces frequent resizing costs as the internal state and data structures of the

cache need to be modified for each small step in the exploration of the configuration space.

Cliffhanger [46] is an example of a system that makes small, continuous, costly changes.

A2: Simplify the problem by limiting the number of partitions and making other (unrealistic)

assumptions about the workload, thus ensuring that solving the optimization problem becomes

tractable without incurring in high computation costs. This approach has been suggested as a

way to solve the optimization problem within the cloud cache but without consuming excessive

CPU resources which would slow down the cache requests. Dynacache [45] is an example that

simplifies the problem to make it more tractable.

A3: Take the solving of the optimization problem outside of the caching software and move it to

an external controller. This is the most common approach in the literature of self-adaptive

systems (e.g., see [147, 1, 91]).

Approach A3 is the better option because it does not incur frequent resizing costs (limitation

of A1) nor does it make unrealistic assumptions about the workload (limitation of A2). For this

reason, we opt for approach A3 in SPREDS.

It should be noted that, while A3 overcomes the performance and accuracy limitations of A1

and A2, it may incur additional costs related to running the external controller. We are not aware
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of prior work comparing the monetary costs of running an external controller. These costs can differ

depending on the architectural approach used to implement A3 in a real system:

(a) Always-on shared service: An always-on shared cloud adaptation service can be offered for

free or at a reasonable cost by the cloud or a third-party provider. The costs are shared by tenants

or absorbed by the provider seeking a competitive advantage. An example of a recent product in this

domain is the self-indexing service for the Microsoft Azure SQL DB [50]. However, this approach

lacks flexibility and does not encourage innovation in the tuning algorithms (the service provider

controls the algorithm and tenants cannot test improved adaptation algorithms). Furthermore, some

utility functions—like those that seek to minimize operational costs—may go against the provider’s

business interests and the providers would not offer them to their tenants.

(b) Always-on client-managed service: The cloud tenant runs the controller as one more

always-on service in their system. For example, in the database domain, OtterTune [147] has been

proposed as an external database tuning system that can tune the performance of databases as well

as external human experts. The costs of the always-on client-managed service approach can be too

high for small or medium organizations, if the service is infrequently used. In addition, it has the

added overhead of having to manage an additional online service, and thus, constitutes an option

only suitable for large enterprises.

(c) Serverless microservice: The approach argued for in this chapter is deploying the controller

as a serverless microservice, using a Function-as-a-Service (FaaS) offering like AWS Lambda5 or

Azure Functions6. FaaS offerings are gaining increasing attention in the community as they let

tenants run code without provisioning or managing servers, and paying only for the compute time

they consume [148]. The solver is an external process owned by the client and implemented using a

serverless architecture. This on-demand approach avoids service over-provisioning and reduces the

costs of operating the controller. Furthermore, it lets the tenants tailor the utility function and

optimization-solving algorithm according to their specific needs.

The details of our proposal are presented in Section 8.4. In Section 8.5 we experimentally

validate the approach and present a cost analysis that shows that the always-on client-managed

service approach is much more expensive than the serverless approach advocated for in this chapter.

8.2.3 Why aren’t current cloud caches already self-partitioning?

Some of the projects described in Table 8.1 involved collaborations with industry—namely, Facebook,

Akamai, and Microsoft. It is possible that these (and other) companies have self-partitioning cloud

caches being used in production. However, these adaptation mechanisms have not been added to

the open source versions of Redis or Memcached.

5https://aws.amazon.com/lambda/
6https://azure.microsoft.com/en-us/services/functions/
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Approaches that gradually explore the configuration space hoping to find an optimal solution

(e.g., [46]) incur in a high penalty when the cost of reconfiguration is not negligible, as has been

observed in the current implementation of the resizing mechanism of Redis [1]. Furthermore, these

solutions are tailored for a specific solution and do not scale to self-tuning other knobs of the caching

software. A better approach is utility-driven approaches which are flexible and can support diverse

service-level objectives. However, these are deemed unscalable due to the high CPU consumption of

the algorithms used to solve the optimization problem [71]. We believe the serverless architecture

proposed in this chapter can overcome both challenges and can facilitate adding self-adaptation

functionality to cloud caches and other software in the near future.

8.2.4 Other related work

Earlier in this Section we analyzed the most relevant prior work in self-partitioning cloud caches;

the results of our analysis was presented in Tables 8.1 and 8.2. In this subsection we discuss other

prior research that is related to SPREDS.

Other uses of workload-driven partitioning schemes for caches include partitioning flash-based

caches into hot/cold areas to support efficient data compression [85] or to determine the right number

of replicas of each partition [167]. In addition to improving performance, others have included the

notions of fairness, isolation and strategy proofness in their partitioning schemes [121, 165]; SPREDS

was designed for the case in which the applications belong to the same tenant and do not try to game

the system. Another consideration that can be incorporated into the optimization problem is the

penalty associated with memory re-allocation during partitioning cycles; solutions like the one used

in pRedis [117], that factor this into the optimization problem, are orthogonal to the architectural

approach proposed in this chapter.

A few self-tuning database products and services have been proposed by academia and industry.

OtterTune [147] is a tuning service for MySQL and PostgreSQL that automates the process of finding

good settings for a database’s configuration, reusing training data gathered from previous tuning

sessions. Das et al. [50] describe an auto-indexing service for Microsoft Azure SQL Database. Oracle

recently released their Autonomous (cloud) Database7 and ScyllaDB offers a database with limited

self-managing properties8; however, the latter is a rule-based tuning solution [14].

Idreos et al. [84] recently introduced the concept of design continuums for the data layout of

key-value stores and present a vision of self-designing key-value stores that automatically choose the

right data layout for a specific workload and memory budget. This is a related but different problem

than the one used as a case study in this chapter; both self-* approaches can co-exist in the same

key-value store.

In general, the idea of offering adaptations “as a service”, as a path to making autonomic systems

7https://www.oracle.com/database/autonomous-database.html
8https://www.scylladb.com/
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a reality, has been argued before [1, 91]. However, a traditional always-on service makes sense when

the service is provided by the cloud or third party provider, or for large organizations. In this

chapter, we propose a variant of this idea, with a serverless microservice architecture and provide a

proof-of-concept implementation highlighting its usefulness.

8.3 The memory partitioning problem

We consider a system where a virtual or physical machine hosts n instances of the caching software,

each serving a different application as depicted in Figure 8.1; these applications compete for the

allocation of the total memory, M . The amount of memory assigned to each application i is denoted

by mi. Our model also works for a multi-tenant architecture, as long as the different applications

sharing the cache belong to the same organization. Table 8.3 contains a reference of the parameters

used in the model definition.

Table 8.3: Parameters used in the model definition.

Parameter Description
n Number of instances of the cache running on the system.
i Identifies an specific application or workload.
M Total system memory.
mi Memory assigned to application i.
mi Minimum memory assignment for application i.
bdi Access latency of backend system, including the time to process a cache miss.
cdi Access latency of the caching system.
Ui Individual utility function of application i.
wi User-defined weight for application i.
fi Access frequency of application i.
EATi Effective access time of application i.

When application i needs some data, it first looks for it in the cache. If the sought data is

not there—i.e., a cache miss occurs—the application obtains the desired information from its cor-

responding storage backend. Each backend has its own performance profile; i.e., its own average

latency to access the backend bdi. For example, a database server used to build user profiles may

likely be slower answering requests than a service that generates unique user identity avatars based

on the client’s username or IP address (e.g., like Github’s identicon).

After a cache miss, the data is typically inserted in the cache (after making space for it by

evicting less valuable data, if necessary) so that it will be available at the cache for future requests.

However, as these are explicit—not transparent—caches, the application is free to implement more

complex admission logic.
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We consider memory as the only shared resource, ignoring the sharing of CPU. In-memory key-

value stores are memory- and not CPU-bound. This has been reported by Redis9, and observed in

real Memcached deployments [46].

In this work, the goal is Pareto efficiency : Fully utilize the memory, compute the ideal memory

allocation m = [m1, . . . ,mn] and achieve the highest overall utility, given individual utility functions

Ui’s and total memory constraint M . This can be expressed as the following optimization problem:

maximize
m

F(m) =

n∑
i=1

wiUi(mi)

subject to

n∑
i=1

mi ≤M,

mi ≥ mi, i = 1, ..., n,

(8.1)

where Ui(mi) is the utility function of application i as a function of its assigned memory mi, and

configured wi (which lets us indicate that one application is more or less important). mi is the

minimum memory assignment for application i; it can be set to zero if it is OK for the system to

decide not to cache the objects of some application.

We assume a non-adversarial model in which the applications are not trying to game the system.

This is a reasonable assumption when all the applications belong to the same cloud client. Given

that we consider a non-adversarial model, we do not seek strategy proofness [121]. Some application

could be able to issue workloads that lead to a higher memory assignment to said application, but

this would be at the cost of reduced overall system performance.

For the utility function, we consider improving average access latency to objects in the cache

to be our most important optimization metric. For eviction algorithms that fulfill the inclusion

principle [101]—e.g., LRU—giving more memory to the cache means that the hit rate will either

stay the same or will improve. Thus the way to optimize the performance for a single application is

to give it as much memory as possible. As the memory is a shared resource that the applications are

competing for, we devise a utility function that combines each of the utilities as a function of how

much memory we have assigned to the application Ui(mi), weighed by a user-defined weight (wi) so

that the tenant can declare that improving the performance of one application is more important

than the others.

We posit that improving the hit rate of one application may not be as useful as improving the

hit rate of another application, due to differences in the performance profiles of the corresponding

backends. For example, all other things being equal, if one application has a slow backend (e.g.,

one that processes slow, multi-table, SQL queries), increasing the hit rate of the cache serving that

application is more useful than increasing the hit rate of a cache serving a fast backend (e.g., a

NoSQL database that stores session information). For this reason, for each application we calculate

9http://redis.io/topics/faq
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its effective access time (EAT) and weigh it by the inverse of the application’s access frequency

(fi). The formula for the EAT is calculated using the classic approach devised for two-level memory

systems [136], where we consider the access latency to the two levels—the cache and the backend

storage—and the probability that an object or data item will be found in the fast memory tier,

which in our case, is given by the cache hit rate. The access latency to these two levels is denoted by

cdi (object latency in the caching system) and bdi (object latency in the backend system, including

the time to process a cache miss). For a given application, the cache hit rate is a function of how

much memory the application has been assigned hi(mi), and can be directly obtained from the

application’s miss rate curve (MRC). In other words, the EATi is the time that it takes, on average,

to access an object in application i. We define the following per-application utility function:

Ui(mi) = −fi × EATi(mi), where

EATi(mi) = hi(mi)× cdi + [1− hi(mi)]× bdi.
(8.2)

where hi(mi) is the hit rate of application i as a function of assignment mi, and fi is the frequency

of requests of i.

8.3.1 Solving the optimization problem

Consider problem (8.1): If the Ui’s are quasi-linear the resulting optimization can be solved by

solving a sequence of feasibility problems, with a guaranteed precision of ε in dlog2R/εe iterations,

where R is the length of the search interval. If the Ui’s are concave, we have a convex optimization

problem easily solved with off-the-shelf solvers; for example, using gradient-based methods. When

the Ui’s are: discontinuous, non-differentiable, or non-convex, alternative approaches are required.

One alternative is to use a probabilistic search, in which a model generates candidate points

in the search of an optimum. An adaptive mechanism may be added to the generative model to

improve the performance of the sequentially generated candidates. We proposed one such approach

to memory partitioning in earlier work [1] and implemented it in SPREDS (see Algorithm 8). This

genetic algorithm works for any partitioning problem, as it makes no assumption on the shape of

the utility curves. We next describe this approach, which is one of the two solvers implemented in

SPREDS.

Let x = [x1, . . . , xn] with xi = (mi−mi)/(M −
∑
imi), satisfying

∑
i xi = 1 and 0 < xi < 1. We

assume that the variability of x can be well modeled by a Dirichlet10 distribution Dir(x|α), with

10The Dirichlet distribution Dir(x|α) has a density function:

f(x|α) =
Γ(

∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

x
αi−1
i , (8.3)

expected value E[xi] = αi/A and variance V [xi] = αi(A− αi)/(A2(A+ 1)), where A =
∑
i αi.
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parameter vector α = [α1, . . . , αn]. Then, we define:

F̃(x) = F

(
(M −

∑
i

mi)x + mi

)
, (8.4)

where mi = [m1, . . . ,mn].

We propose the following general approach, inspired in evolutionary strategies, for solving prob-

lem (8.1) in the case of non-convex and non-quasi-linear functions Ui’s. We begin by setting αi to

1/n, for all i. We then generate K points x?k|α ∼ Dir(x|α) for k = 1, . . . ,K. Note that points

generated in this way satisfy all restrictions of problem (8.1).

Using points in set {x?k}Kk=1 we construct the following prior mixture density for α:

g(α; {x?k}) =
1

Z

∑
x∈{x?

k}

φx(α), (8.5)

where Z is a normalization constant and φx is a non-negative function with finite mass concentrated

around x (e.g., a radial basis function centered at x). We proceed by sampling α from g and

generating points x|αγ ∼ Dir(x|αγ), where αγ is the vector with elements γαi for γ > 1. Note that,

while random variables x|α and x|αγ have the same expected value, γ has the effect of reducing the

variance of x|αγ by a factor of γ−1.

The above generative procedure corresponds to the following Bayesian hierarchical structure:

α ∼ G(α; {x?k}) and

x|αγ ∼ Dir(x|αγ),
(8.6)

where G is the distribution function corresponding to mixture density g.

Our method proceeds by alternatively generating parameters α—the exploration stage—and

generating J points x’s conditioned on αγ—the exploitation stage. The prior distribution for α is

then updated using the K best cumulatively-observed points x?k’s and the procedure is repeated

until a satisfactory solution is found. Algorithm 8 provides the details of the proposed procedure.

We also implemented a hill climbing algorithm combined with a LookAhead approach [122]11.

SPREDS considers the number of partitions and chooses the solving method depending on the

complexity of the problem. Based on experimental results presented in Section 8.4.3, we heuristically

choose between both algorithms as follows. For deployments with a few partitions (i ≤ 7), we use

the proposed genetic algorithm. For deployments with a larger number of partitions, we use the hill

climbing solver. Intelligently choosing the solver is out of the scope of this chapter [119, 1].

11We added the LookAhead approach so that this algorithm can deal with non-convex utility curves; the genetic
algorithm is applicable to any shape of the utility function
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Algorithm 8: Probabilistic adaptive search
Input: Functions Ui’s; number K of points to use; number J of rounds; function φx
Output: Best point x∗, such that F̃(x∗) ≥ x for every point x generated

1 αi := 1/n for i = 1 . . . , n
2 Generate x?k|α ∼ Dir(x|α) for k = 1, . . . ,K
3 repeat
4 Generate α ∼ G(α; {x?k})
5 for (j = 1, . . . , J)do
6 Generate x|αγ(j) ∼ Dir(x|αγ(j) )

7 if (F̃(x) > mink {F̃(x?k)})then
8 {x?k} := x ∪ {x?k} \ arg minx∈{x?

k
} F̃(x)

9 until (Satisfactory solution x? = arg maxx∈{x?
k
} F̃(x) is found);

10 return x?

8.4 Design and implementation of SPREDS

We map our design of a self-partitioning cloud cache to a MAPE-K loop [22], with its corresponding

monitor, analyze, plan and execute functions.

The monitoring component runs in the same machine as the cache, and can be part of the cache

or an external sidecar [129] microservice. This component uses statistical sampling techniques to

minimize the monitoring impact. The monitor stores every N observations on a configurable cloud

location. When a new set of observations is stored, a calculate new adaptation event is triggered.

The size of the set of observations, N , is configurable and lets the user decide how frequently

the system adaptations should be triggered—i.e., how frequently to calculate the optimal memory

configuration and to re-partition the cache memory if necessary. Criteria for choosing N include the

cache throughput and how dynamic the application workloads are.

The controller is implemented as a serverless microservice. It performs the analyze phase when

launched in response to a calculate new adaptation event. In the SPREDS implementation, this

microservice solves the mathematical optimization to determine how to best partition the cache

memory according to the specific set of observations captured by the monitor.

The controller generates an adaptation plan to implement the solution, and stores it on a specific

cloud storage location. The action of storing the adaptation plan on the cloud storage triggers an

execute adaptation event which is then received by the cache. When executed, this plan re-partitions

the cache according to the most current (optimal) solution.

In our design, the knowledge source are one or more locations (e.g., buckets or directories)

in a cloud storage system managed by the provider. This is where the system stores the captured

metrics, monitoring data and adaptation plan. Alternatively, one or more specialized databases

could be used for this purpose. For example, the Prometheus12 time series database is commonly

used in cloud-native systems to store metrics analyzed by DevOps teams.

12https://prometheus.io/
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Figure 8.2: Components of SPREDS and their interactions. Table 8.4 describes the AWS services
used. The circled numbers in the diagram identify the elements for which AWS charges fees.
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To validate our design, we implemented SPREDS as a modified version of the Redis key-value

store that leverages several AWS services to periodically self-partition the memory seeking to max-

imize overall system utility, as depicted in Figure 8.2. The current implementation of SPREDS

extends Redis version 4. The Amazon Web Services products used in SPREDS are described in

Table 8.4.

Table 8.4: Amazon Web Services Products used in the SPREDS implementation.

Service name and description Use in SPREDS
Elastic Compute Cloud (EC2): Server provisioning Node hosting cache and monitoring
Simple Storage Service (S3): Serverless object storage Store the monitoring data and

adaptation plan
Lambda: Serverless computing (FaaS) Serverless adaptation microservice

(solver)
Simple Notification Service (SNS): Pub-sub messaging Delivers notifications when calculate

new adaptation and execute
adaptation events are triggered

8.4.1 Summary of how SPREDS works and outline for the remainder of

the Section

SPREDS captures a very small percentage of the requests it receives. The sampled requests are sent

in real time to the workload monitor (Section 8.4.2). The monitor is an external process running

on the cache node; it temporarily stores the samples until a configurable number of N samples is

received. The monitor then stores theN samples remotely on a S3 bucket. This triggers an SNS event

that launches an AWS Lambda function to run the solver, which in turn finds the optimal partitioning

of the cache using one of the two solvers (Section 8.4.3). Based on the solution to the optimization

problem, the Lambda function generates an adaptation plan to implement the partitioning. This

plan is the output of the Lambda function, which it stores on an S3 bucket. Adding a new file to

the S3 bucket triggers an execute adaptation event which is delivered asynchronously to the cache

node using an SNS notification. When the cache receives the adaptation plan, it re-configures itself

according to the optimally calculated cache partitions (Section 8.4.4). This loop runs continuously

so that the cache can adapt to changes in workload or application demand.

8.4.2 Workload monitor

In earlier work, we instrumented Memcached to construct online miss rate curves (MRCs) [107].

We adopted this same approach in SPREDS, with minor changes due to the difference in internal

implementation of Redis versus Memcached. To the best of our knowledge, this is the first imple-

mentation of the SHARDS [156] MRC estimation algorithm on Redis. Next, we discuss some of the

main challenges in the implementation of the lightweight monitoring approach used in SPREDS.
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In computing, caches are used to accelerate access to objects stored in slower memory tiers. For

this reason, caches are designed to be extremely fast when answering requests. It is important that

any new functionality added to the caching software has minimal or no latency overhead. In our

implementation, we move the monitoring of each request out of the critical path by implementing

the monitoring agent as an external process and communicate using a high-performant asynchronous

inter-process communication library (ZeroMQ13).

Another challenge is the trade-off between the sampling frequency and the accuracy of the metrics

obtained. We use uniform random spatial sampling [156, 46, 157] to keep track of caching metrics

with a low overhead. A function of the hash value of the object determines whether the object should

be monitored or not, ensuring that all accesses to the same object are always monitored but only

accesses to a small subset of the objects are tracked. The resulting reference stream is a scaled down

representative and statistically self-similar version of the original reference stream [156, 28, 157].

Cache metrics can then be scaled up to approximate the metrics of the full reference stream [156, 157].

The overhead introduced by the sampling method is very low for key-value stores, as these already

hash the object keys before inserting them. This hashing operation can be used to implement a

sampling filter [156] with sampling rate R = T/P using the following operation:

hash(key) mod P < T (8.7)

where T and P are configurable parameters, hash is the hashing function used by the key-value store

to locate an object based on its user-define key. A reference to an object in the cache is sent to

the monitoring function if and only if it satisfies the condition in (8.7). Each object that passes the

sampling filter condition is monitored and it represents P/T objects in the original object request

stream. To generate accurate estimation of the miss rate curves (MRCs) based on this small sample,

we use the SHARDS algorithm [156]. As reported by Waldspurger et al. [156], SHARDS can process

up to 17M requests per second and build MRCs that are accurate within 2.6% of the original MRC,

with a constant memory footprint. SPREDS generates one MRC curve for every cache partition

(each of which corresponding to a workload or application).

8.4.3 Optimization (solver)

We use two AWS Lambda functions, one for each of the solvers in SPREDS. AWS Lambda is

a Function-as-a-Service offering from Amazon Web Services that lets user run on-demand cloud

functions that can be directly invoked or triggered by events such as adding a new file to S3. AWS

Lambda charges per function invocation and as a result is typically cheaper than paying for an

always-on service running on a dedicated virtual machine or container.

The first Lambda function finds a solution to the optimization problem using Algorithm 8. The

13https://zeromq.org
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Figure 8.3: Average running time of the two solvers, for a varying number of applications sharing
the cache (partitions). Error bars show one standard deviation from the average.

second function finds a solution to the problem using a local search (hill climbing) algorithm. We

use the following heuristic to chose between the two solvers: The genetic algorithm is used when the

problem is small (≤ 7 applications sharing the cache); otherwise, we use the hill climbing solver. We

base this heuristic on observations made on exploratory experimental results (see Figure 8.3): The

performance of the genetic solver degrades more rapidly than that of the hill climbing algorithm,

as the complexity of the optimization increases. The workloads for each partition were chosen

by randomly selecting sub-traces from the Yahoo workload; experiments with other traces yielded

similar results.

8.4.4 Adaptation plan and execution

The adaptation plan instructs how to re-partition the cache according to the new solution to the

optimization problem. Redis supports online manual re-partitioning through CONFIG SET com-

mands which can be communicated to the cache instances through an HTTP API. We leverage these

commands and express the adaptation plan as a set of CONFIG SET commands that change the

partition sizes to match the solution found by the solver.

8.5 Experimental validation and cost analysis

As the performance improvements due to re-partitioning the cache based on workload and appli-

cation demand has already been demonstrated in prior studies [137, 45, 82, 46, 47, 29, 147, 50],

we concentrate on the specifics of the design proposed in this chapter. Concretely, we conducted

experiments to: (1) confirm that the overhead introduced by the monitoring function is small, (2)
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demonstrate the usefulness in a realistic scenario, and (3) quantify the cost savings that can be

achieved due to the serverless architecture proposed in this chapter.

Table 8.5: Description of the testbeds used in our experiments. All services used Ubuntu 16.04 LTS
as operating system.

Type Machine characteristics Software
Local 1 server (8 cores, hyperthreading, 8 GB RAM) VirtualBox (2 VMs)

VM1 (4 vCPUs, 4 GB RAM) YCSB
VM2 (4 vCPUs, 4 GB RAM) SPREDS/Redis v4

AWS t2.medium instance (2 vCPUs, 4 GB RAM) YCSB
t2.medium instance (2 vCPUs, 4 GB RAM) KV-replay [36]
t2.xlarge instance (4 vCPUs, 16 GB RAM) SPREDS/Redis v4
t2.micro instance (1 vCPU, 1 GB RAM) In-house orchestration scripts

To study the performance overhead of our monitoring approach, we used a local testbed with one

server and two virtual machines, one for the cache and one for the workload generator. We also ran a

set of cloud (AWS) experiments in which we observe how SPREDS can self-tune and re-partition the

cache memory seeking to maximize the overall system utility. For these set of experiments we had

two workload generation instances—one for each workload sharing the cache—and a third instance

with the cache. In addition, the experiment orchestration scripts were run on a separate micro

instance. The details of the machine characteristics and software used are presented in Table 8.5.

The storage backends were simulated by introducing an exponentially distributed latency overhead

on a cache miss.

8.5.1 Workloads

We used one application workload for the performance overhead experiments (Section 8.5.2) and two

different application workloads sharing the same cache node for the usefulness tests (Section 8.5.3).

The first workload—used in both sets of experiments—is a classical skewed-popularity workload in

which the popularity of keys follow a Zipf distribution. Accesses are generated using the Independent

Reference Model (IRM) [8], by sampling from the popularity distribution. The requests are issued

using the YCSB’s [48] benchmark for cloud and key-value storage systems, configured with the

workload C of this benchnmark. For the second workload, we used KV-replay [36] to replay an

access trace from a large HDFS14 deployment at Yahoo [7]. For more details on these workloads,

we refer the reader to [48], [7] and [36].

14The Hadoop Distributed File System (HDFS) is a distributed file system commonly used when implementing a
data lake for analytics of massive datasets.[7]
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monitoring in SPREDS introduces a 15% overhead (median latency); however this overhead becomes
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8.5.2 Performance overhead

To quantify the overhead introduced by the monitoring mechanism we ran experiments measuring

the client-side latency for vanilla Redis and for SPREDS with monitoring but without the self-tuning

feedback loop. This latency is the time it takes since a client issues a request until it gets a response

back from the cache. The results are shown in Figure 8.4. The performance impact introduced by

the monitoring mechanism is small, with a median latency that is 15% slower when the workload is

being monitored. However, once this information is used to self-partition the cache, the performance

overhead disappears—SPREDS is faster than Redis with static partitioning—as it is offset by the

benefits in performance due to the optimized partitioning mechanism (see Figure 8.5).

Additional to the overhead introduced by the monitoring mechanism, there is an overhead that

results from storing and reading data from the knowledge source (S3) and from the asynchronous

event notifications used in SPREDS (SNS); these steps can be observed in Figure 8.2. We measured

this overhead in a fully functional SPREDS implementation (same experiments used in Section 8.5.3),

and found that they average ∼1,800ms per adaptation cycle versus ∼100ms for the case of an

implementation using an external always-on controller. This slowdown is big (9x) but does not

affect overall system performance as the adaptation loop is executed infrequently, with reasonable

values being in the order of 1 through 48 cycles per day, so this has a low impact on the performance

of the full system.
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cache partitions).

8.5.3 Usefulness

To demonstrate the usefulness of SPREDS, we present the results of a sample run in which SPREDS

shows improved performance over naive static partitioning with Redis. For numerous other positive

results of optimal cache partitioning in prior related work see Section 8.2.

We ran an experiment on virtual machines using AWS EC2, with a setup in which a cache

node is shared between two applications. The cache is partitioned into two Redis instances, one

for each workload described earlier in this Section. We ran the experiments five times and present

the results of one representative run. The cache was re-partitioned hourly during each ten-hour

run, as given by the results of solving the optimization problem. The first application issued 675 K

requests during the test, with a skewed popularity distribution (Zipf, YCSB). This application is

served by cache instance P1 and a storage backend that has an exponentially distributed request

latency (1/λ = 200ms). The second application issued 61.2 K requests during the test, as replayed

from the Yahoo trace. This application is served by cache instance P2 and a storage backend with

exponentially distributed latency (1/λ = 800ms). At the beginning of the experiment, P1 and P2 are

statically assigned 200 MB. Figure 8.5 shows how the size of the partitions are adjusted every hour.

Table 8.6 quantifies the results with several performance metrics. We can observe that the hit rate

of the cache that is accessed more frequently (P1) increases from 54.1% to 61.7%: a 1.42x speedup.

This comes at a cost of a lesser decrease in hit rate for P2 (38.6% to 35.2%) and a corresponding

slowdown (0.9). As the relative improvement perceived by P1 is greater than the penalty suffered

by P2, and as P1 is more frequently accessed than P2, the overall utility improves by 7%.

93



Table 8.6: Performance improvement of SPREDS versus Redis, after a 10-hour run with 9 self-
partitioning cycles, as shown in Figure 8.5.

Metric Redis SPREDS
Hit Rate, P1 54.1% 61.7%
Hit Rate, P2 38.6% 35.2%
Effective Access Time, P1 21.6 ms 15.2 ms
Effective Access Time, P2 302.1 ms 335.9 ms
Overall Utility (weighted average of EATs) 44.9 ms 41.9 ms

8.5.4 Costs

We calculate the cost of implementing the autonomic controller as an on-demand serverless com-

puting service. The circled numbers in Figure 8.2 show the interactions and components for which

AWS charges. The costs of running the cache itself are not included in the calculations; this cost is

the same for all implementations. The monitor runs on the same machine as the cache and does not

lead to additional charges. Table 8.7 details what these items represent, as well as the associated

costs. The estimate given for the knowledge storage in S3 is for a 6-month data retention policy.

Note that some of the services listed in the table contain free service provisions: Lambda (1 million

requests per month and 400,000 GB-seconds of compute time per month), SNS (1 million publishes

per month, 100 thousand notifications per month, and all notifications to Lambda), and S3 (all

deletes and data transfers between S3 and VMs or Lambdas in the same region). The free tier

provisions that we are considering are those that are available to all AWS clients; these are unlike

the EC2 free micro instances, which are only free for 12 months for new clients.15

The costs detailed in Table 8.7 are for one adaptation cycle. For the problem studied in this

chapter, the reasonable number of adaptations per day ranges from one cycle per day to 96 per

day—in other words, one adaptation a day to one adaptation every 15 minutes.

Table 8.7: AWS costs, for items enumerated in Figure 8.2 (as of December 2019, AWS us-east-2
region).

Item Description Cost Quantity
1,5 S3 PUT $0.005 per 1,000 requests Two PUTs
4,7 S3 GET $0.0004 per 1,000 requests Two GETs
2 S3 $0.023 per GB/month 280 MB/month
3 Lambda $0.000001667 per 100ms; 1GB RAM A 1 min run
6 http SNS $0.60 per million 1

Figure 8.6 shows that, when the adaptation loop is executed hourly, the yearly costs of running

the controller as a serverless microservice is $1.92 or 0.85% of the cost of the always-on service—

if the tenant does not exceed the AWS free service provisions. If these are exceeded by other

15For more details, see: https://aws.amazon.com/free
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Figure 8.6: Costs of running the autonomic controller on AWS as an always-on service, and as an
on-demand serverless microservice (using FaaS and CaaS services). The y-axis is in log scale.

tenant activities, then the yearly cost is $10.13 or less than 5% of the cost of the always-on service.

These numbers are for a 1-minute optimization solver, which we calculated is enough to solve the

optimizations that arise in a normal Redis deployment (for example, Redis documentation suggests

6 partitions in its tutorials). For more complex problems, the adaptation loop is likely to be run less

frequently and for many configurations expected in production, the serverless approach is expected

to be better (in terms of cost) than the always-on approach.

The Figure also shows the costs using a serverless Container-as-a-Service (CaaS) product called

AWS Fargate.16 For the case of a 1-minute run, using Lambda is cheaper than using Fargate.

However, Fargate becomes an option when the solver running time exceeds the duration limit of the

FaaS service (e.g., 15 minutes).

Finally, in larger organizations the solver service may be shared by multiple applications and

the always-on service may be a better alternative. For example—for the specific scenario described

in this Section—the always-on approach becomes a better option when the service is called 606 or

more times per day (see Figure 8.6). At one call per hour, an organization should have at least 26

systems using the shared service for the always-on service to be the best approach. Properly choosing

the deployment option—always-on serverless functions or serverless containers—is a challenge to be

addressed in real installations.

8.6 Open challenges

We argued for a serverless computing approach for the adaptation component of a self-optimizing

system. Our proof-of-concept implementation and cost analysis show that this is feasible and useful.

16We show only one cost curve for Fargate as the lines with and without free tier provisioning overlap for this
service. There are no free Fargate invocations; only SNS notifications and some calls to S3 are free in this scenario.
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In this section we identify four challenges that must be addressed for this vision to become a reality.

First, cloud functions have a maximum running time (AWS: 15min, Azure: 10min, Google:

9min). If the calculations exceed the limit, the function expires and the work is lost. While it

is possible for the limit to be extended in the near future,17 it is nevertheless possible that some

problems take too long to solve as cloud functions. In the AWS ecosystem, the Fargate serverless

container service can be used for such problems. The challenge is to design a system that can

automatically use the cheapest service for its specific size (in terms of partitions) and frequency

of its adaptation loop.

Second, some systems for which a serverless approach makes sense, may outgrow it and require

an always-on service. Again, a cloud-native solution should automatically choose the architecture

that is best for the specific system configuration and complexity. This adaptation should be dynamic

and transparent.

Third, we identify a challenge not specific to serverless architectures: interacting self-aware

applications that use information from other systems during the adaptation decisions [92]. As the

serverless approach decouples the adaptation components from the main systems, such a system

could be orchestrated if we provide proper APIs and connectors.

Fourth, even though we focused on adaptation decisions (specially those related to performance

tuning), the community should think about realizing the vision of fully self-aware systems [92].

Could a cloud-native architecture that leverages serverless computing offerings help in realizing such

systems?

8.7 Concluding remarks

The idea that complex software systems should be autonomic and self-adaptive has been around for

more than a decade. Yet, while some adaptive functionality has made it to commercial systems,

most real databases still depend on manual (expert) tuning. One reason self-adaptation mechanisms

have not made it into production is that their tuning tends to require exploring a large configuration

space or running expensive algorithms—prohibitive operations that compete for the valuable and

limited resources (CPU and memory) of the system being tuned. A way to overcome the limitations

described above is to adopt a serverless microservice design for the controller. Through SPREDS, a

proof-of-concept self-partitioning cloud cache, we demonstrate that this approach is feasible, useful,

and overcomes the cost and performance limitations of prior designs. We encourage the commu-

nity to adopt this architectural design, so that cloud-based autonomic systems can be affordably

implemented in production.

17For example, in 2018 AWS increased its Lambda limit from 5 to 15 min. Source: https://aws.amazon.com/

about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
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Chapter 9

Conclusions and future directions

9.1 Conclusions

In this dissertation, we studied the problem of using modern cloud platforms to deploy applications

based on a microservices architecture. Our focus is on the on-demand cloud computing platforms,

like containers and serverless, where an environment initialization phase is required to allow the

execution of the microservices. This initialization phase often increase the latency of the deployed

applications. Consequently, a higher latency makes it difficult to meet expected service levels (SLOs)

required by applications that are sensitive to response times, preventing their migration towards

microservices architectures executed on cloud platforms.

We began our work with the serverless platform, specifically the Function-as-a-Services platforms.

We found that current task scheduling algorithms are plain load-balancers, and we proposed a

package-aware scheduling algorithm that attempts to optimize the use of cached packages versus

maintaining a balanced load over the worker nodes. Our initial evaluation, based on simulation,

showed that the latency of cloud functions can be effectively reduced.

We then implemented our proposed scheduling algorithm in the OpenLambda FaaS platform, to

validate the feasibility of the algorithm wich leads to better cloud function latency, while keeping a

low level of node unbalance. To deepen the analysis of the impact of using code locality as part of

the scheduling process, we carried out an evaluation with real workloads and compared the proposed

algorithm with other state-of-the-art scheduling algorithms. These experiments showed that relaxing

the load-balancing requirement and changing it to a less restrictive goal gives us more flexibility in

mapping decisions that can lead to considerable performance gains by exploiting code locality.

We also studied how microservices are deployed using containers. In this platforms, an orches-

tration system is required to manage the complexity of the deployment, including scaling of the

deployed services. Our analysis showed that the default scale-out deployment mechanisms are not

performance-aware, leading to poor performance of the microservices. We also found that placement
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decisions are critical for both initialization time and run-time performance of the containers, and

proposed a closed-loop system that helps to maintain the SLOs by scaling or migrating containers

based on the resource variability in cloud environments.

To extend the analysis of the impact of smart scheduling decisions to other cloud components

required for the deployment of microservices-based application, we studied the case of data lakes. We

proposed the use of algorithms that prioritize maximizing the use of the cache, without neglecting

load balancing, as a method to obtain better access times to the data stored in these systems. Our

work shows that using cache affinity policies in the caching layer for data lake systems is better than

using a more common load balancing policy.

Finally, we made a case for the use of serverless computing cloud services to solve the complex

optimization problems that arise during self-tuning of cloud components, like cloud caches. We

implemented SPREDS (Self-Partitioning REDiS), a modified version of Redis that leverages modern

data structures and statistical sampling methods to efficiently obtain online estimates of the real

miss rate curves and optimizes memory management in the multi-instance Redis scenario. A cost

analysis shows that the serverless computing approach can lead to significant cost savings.

9.2 Future directions

The results obtained in this research leads to the surge of new research questions that can be

addressed in the future:

• Could delaying microservice launch time, when they are part of complex workflows, help

improve performance?

Prioritization is a well known way to improve the performance of tasks scheduling algorithms.

In the case of microservices, if they are part of a long or complex workflow, it could be beneficial

to use the expected execution order as a priority weight for the scheduling algorithm. Delaying

microservices with lower priority will allow to reduce the pressure in the system, leading to a

faster initialization of those tasks with higher priority (i.e. execution order).

• Could the provider offer differentiated services so that we only need to optimize the scheduling

of those microservices that need quick launch time?

A differentiated service applied to the workloads for on-demand cloud computing platforms,

can be used as a form of prioritization, allowing the cloud platform to provide more or better

resources to a reduced amount of microservices, which could lead to a reduced latency.

• Is it possible to build a model for the impact of worker’s available CPU, on the performance

of container-based microservices?

Our work on containers platform showed the existence of a relation between the CPU load

and the performance of the microservices. However, a model that allows to predict the impact

98



of the current CPU load, before the container is placed could lead to a mayor improvement

in the scheduling algorithm. For example, if the model shows that a specific new container

will perform similarly on both a node with less CPU capacity and a node with a higher CPU

capacity, it would be more convenient to place the container in the node with less CPU capacity,

to allow more sensitive containers to run in the less loaded node.
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and Samuel Kounev. Teastore: A micro-service reference application for benchmarking, model-

ing and resource management research. In 2018 IEEE 26th International Symposium on Mod-

eling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),

pages 223–236. IEEE, 2018.
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