

EXAMEN DE INGRESO DE MATEMÁTICAS

AREAS DE INGENIERÍA

GUAYAQUIL, 10 DE ENERO DE 2023 HORARIO: 15H00 – 16H30

VERSIÓN CERO – FRANJA 2

1) Sea $Re \neq \emptyset$ y los predicados p(x) y q(x).

Entonces siempre es VERDAD que:

- a) $\neg \exists x p(x) \equiv \forall x p(x)$
- b) $\exists x (p(x) \land q(x)) \equiv \exists x (p(x)) \land \exists x (q(x))$
- c) $\forall x (p(x) \lor q(x)) \equiv \forall x (p(x)) \lor \forall x (q(x))$
- d) $\forall x (p(x) \land q(x)) \equiv \forall x (p(x)) \land \forall x (q(x))$
- e) $\exists x p(x) \equiv \neg \forall x p(x)$

2) Sean A y B subconjuntos de un conjunto referencial Re. Entonces siempre es VERDAD que:

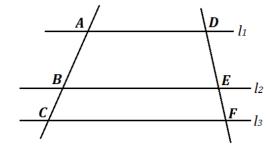
- a) $A \in P(A)$
- b) $P(A) \subseteq A$
- c) $N(A \times B) = N(A) + N(B)$
- d) $A \subseteq (A \cap B)$
- e) $\neg(\phi \in P(A))$

3) Si $a \in \mathbb{R}$, $b \in \mathbb{R}$ y $c \in \mathbb{R}$, entonces es **VERDAD** que:


- a) |a+b| = |a| + |b|
- b) $(a > b) \Rightarrow (|a| > |b|)$
- c) $(|a| > b \land b > 0) \Rightarrow (a > b \lor a < -b)$
- d) $(|a| < |b|) \Rightarrow (a < b)$
- e) $(|a| > |b|) \Rightarrow (a > b)$

4) Con respecto a las funciones de \mathbb{R} en \mathbb{R} , siempre es **VERDAD** que:

- a) Existen funciones acotadas y pares a la vez
- b) Existen funciones acotadas y sobreyectivas
- c) Todas las funciones acotadas no son inyectivas
- d) Todas las funciones decrecientes son inyectivas
- e) Todas las funciones estrictamente crecientes son sobreyectivas


VERSIÓN CERO – F2 15:00-16:30 Página 1 de 6

- 5) Si A y B son matrices cuadradas de orden n y k una constante real, entonces **siempre es VERDAD** que:
 - a) det(A + B) = det(A) + det(B)
 - b) det(kA) = kdet(A)
 - c) det(A B) = det(A) det(B)
 - d) det(AB) = det(A)det(B)
 - e) $det(A^n) = ndet(A)$
- 6) Si f es una función de \mathbb{R} en \mathbb{R} cuya gráfica es:

Entonces es VERDAD que:

- $\lim_{x \to -1} f(x) = -1$
- b) $\lim_{x \to -1^{-}} f(x) = -1$
- c) $\lim_{x\to 0} f(x)$ no existe
- d) $\lim_{x \to -1^+} f(x) = -3$
- e) $\lim_{x \to -2} f(x) = -5$
- 7) Sara al ir de compras navideñas se emociona con los precios de un adorno que está rebajado en un 30%, se acerca a la caja y paga por ese adorno \$21, entonces **el precio original del adorno** es de:
 - a) \$24
 - b) \$30
 - c) \$40
 - d) \$50
 - e) \$70
- 8) Si l_1 , l_2 y l_3 son rectas paralelas y $\overline{AB}=30\mathrm{u}$, $\overline{BC}=20\mathrm{u}$, $\overline{DE}=27\mathrm{u}$, entonces la longitud del segmento \overline{DF} es igual a:
 - a) 30 u
 - b) 45 u
 - c) 40 u
 - d) 35 u
 - e) 55 u

9)	sirv	De las 90 personas que asistieron a una conferencia 50 personas tomaron café, 60 personas sirvieron un bocadito y además 20 personas no tomaron café ni se sirvieron algún bocadit entonces el número de personas que solamente se sirvieron un bocadito es igual a:	
	a)	20	
	b)	30	
	c)	40	
	d)	50	
	e)	60	
10) El módulo del número complejo $z=e^{i\left(3-iln(4)\right)}$ es igual a:			
	a)	2	
	b)	3	
	c)	4	
	d)	5	
	e)	e^5	
11)	En	coordenadas polares la ecuación $r=4cos(3 heta)$, $ heta\in[0,2\pi]$ representa :	
	a)	Una circunferencia de radio igual a 2, centrada en el eje polar y contiene al polo	
	-	Una rosa de seis pétalos, simétrica con respecto al eje $\pi/2$ y la amplitud de cada pétalo es 4	
	c)	Una rosa de tres pétalos, simétrica con respecto al eje polar y la amplitud de cada pétalo es 4	
	d)	Una rosa de seis pétalos, simétrica con respecto al eje polar y la amplitud de cada pétalo es 4	
	e)	Una rosa de tres pétalos, simétrica con respecto al eje $\pi/2$ y la amplitud de cada pétalo es 4	
		$Re = \mathbb{R}$ y el predicado $p(x)$: $\sqrt{x^2 - 3x}$ es un número real, entonces $Ap(x)$ es igual a: $(0, 3)$	
	b)	$(0, 3)^c$	
	c)	[0, 3]	
	d)	$[0, 3]^c$	
	e)	$[0, +\infty)$	

13) Si f es una función de \mathbb{R} en \mathbb{R} definida por $f(x) = 4^{|x+2|-x}$, entonces **es VERDAD que**:

- a) f es una función inyectiva
- b) f es una función sobreyectiva
- c) f es una función acotada
- d) $rg f = [16, +\infty)$
- e) f es una función monótona decreciente

14) Un sólido de plata que tiene forma de un cono circular recto, cuya altura es de 96 cm y el radio de la base es de 3 cm, se lo fundirá para formar una esfera sólida, entonces **la longitud del radio de la esfera**, en cm, es igual a:

- a) 2
- b) 3
- c) 4
- d) 5
- e) 6

15) Considerando las restricciones del caso, al simplificar la siguiente expresión algebraica:

$$\frac{x+1}{\sqrt{x+2}+1}$$

se obtiene:

- a) $1 \sqrt{x+2}$
- b) $\frac{x}{\sqrt{x+2}}$
- c) $\frac{\sqrt{x+2}}{x}$
- d) $1 + \sqrt{x+2}$
- e) $\sqrt{x+2} 1$

- 16) Sean f y g funciones de \mathbb{R} en \mathbb{R} definidas por: $f(x) = x^2$ y g(x) = sen(2x) + cos(2x). Entonces, con respecto a la función $f \circ g$ es VERDAD que:
 - a) es una función que tiene periodo fundamental $T = \pi/2$ y su rango es [0, 2]
 - b) es una función que tiene periodo fundamental $T=\pi$ y su rango es [0,2]
 - c) es una función que tiene periodo fundamental $T=\pi$ y su rango es [-1,1]
 - d) es una función que tiene periodo fundamental $T=\pi/2$ y su rango es [-1,1]
 - e) es una función que tiene periodo fundamental $T=2\pi$ y su rango es [0,2]

17) Si $Re = [0, 2\pi]$ y el predicado p(x): $\mu(\sqrt{3} + 2\text{sen }(x)) = 0$, entonces Ap(x) es igual a:

a)
$$\left[0, \frac{4\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 2\pi\right]$$

- b) $\left[\frac{7\pi}{6}, \frac{11\pi}{6}\right]$
- c) $\left[\frac{4\pi}{3}, \frac{5\pi}{3}\right]$
- d) $\left(\frac{4\pi}{3}, \frac{5\pi}{3}\right)$
- e) $\left(\frac{7\pi}{6}, \frac{11\pi}{6}\right)$
- 18) Si f es una función de variable real invertible y definida por:

$$f(x) = log_2(x-1) - 2, x \ge 2$$

entonces la regla de correspondencia de la función inversa de f es:

a)
$$f^{-1}(x) = 2^{x+2} + 1$$
, $x \ge 2$

b)
$$f^{-1}(x) = 2^{x+2} + 1, x \ge -2$$

c)
$$f^{-1}(x) = 2^{x+2} - 1$$
, $x \ge 2$

d)
$$f^{-1}(x) = 2^{x+2} - 1, x \ge -2$$

e)
$$f^{-1}(x) = 2^{x-2} + 1$$
, $x \ge -2$

19) La matriz aumentada de un sistema de ecuaciones lineales es:

$$\begin{pmatrix} 1 & 2 & 3 & -4 \\ 0 & 1 & -2 & -2 \\ 0 & 0 & (a-5)(a+2) & (a-5) \end{pmatrix}$$

Entonces es VERDAD que:

- a) Si $a \neq -2$, el sistema de ecuaciones lineales es inconsistente
- b) Si $a \neq 5$, el sistema de ecuaciones lineales es consistente
- c) Si a=-2, el sistema de ecuaciones lineales tiene infinitas soluciones
- d) Si $a \in \mathbb{R} \{-2, 5\}$, el sistema de ecuaciones lineales tiene solución única
- e) Si a=5, el sistema de ecuaciones lineales es inconsistente

20) La ecuación general de la circunferencia cuyo centro corresponde al centro de la hipérbola:

$$\frac{(x+2)^2}{16} - \frac{(y-1)^2}{9} = 1$$

y que contiene a los focos, es:

a)
$$x^2 + y^2 - 4x - 2y - 20 = 0$$

b)
$$x^2 + y^2 + 4x + 2y - 20 = 0$$

c)
$$x^2 + y^2 + 4x - 2y - 20 = 0$$

d)
$$x^2 + y^2 + 4x - 2y + 20 = 0$$

e)
$$x^2 + y^2 - 4x - 2y + 20 = 0$$