ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA ELECTRICA

"METODOLOGIA PARA EVALUAR EL ESTADO DE UN SISTEMA ELECTRICO".

TESIS DE GRADO
PREVIA A LA OBTENCION DEL TITULO DE:

INGENIERO EN ELECTRICIDAD

ESPECIALIZACION: POTENCIA

PRESENTADA POR :

ISAAC FERNANDO HANNA ALCIVAR

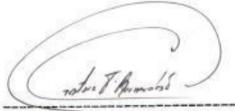
GUAYAQUIL - ECUADOR 1,986

AGRADECIMIENTO

- AL ING. JORGE FLORES MACIAS,

 POR SU AYUDA Y APOYO PARA

 LA ELABORACION DE LA PRESEN


 TE TESIS.
 - A TODOS MIS PROFESORES POR sus conocimientos impartidos.

Dpto de Ingenirria Electrica BIBLIOTECA

Lov. No.

DEDICATORIA

- A MI MADRE
- A LA MEMORIA DE MI PADRE (+)
- A MI ABUELITA
- A MIS HERMANOS
- A TODA MI FAMILIA
- A MIS AMIGOS

ING. GUSTAVO BERMUDEZ FLORES SUB-DECANO DE LA FACULTAD DE INGENIERIA ELECTRICA. Vouse Flore Houses ING. JORGE FLORES MACIAS

DIRECTOR DE TESIS

ING. ALBERTO HANZE BELLO

PLIEMBRO PRINCIPAL DEL TRIBUNAL

ING. CRISTOBAL MERA G.

MIEMBRO PRINCIPAL DEL TRIBUNAL

DECLARACION EXPRESA

"LA RESPONSABILIDAD POR LOS HECHOS, IDEAS Y DOCTRINAS EXPUESTOS EN ESTA TESIS, ME CORRESPONDEN EXCLUSIVAMENTE; Y, EL PATRIMONIO INTELECTUAL DE LA MISMA, A LA ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(REGLAMENTO DE EXAMENES Y TITULOS PROFESIONALES DE LA FSPOL).

Terrando Haura (+5)
ISAAC FERNANDO HANNA ALCIVAR

RESUMEN

En primer lugar se procede a determinar los alcances y limitaciones que se tienen en el presente estudio, también se presenta una explicación de los campos de aplicaciones que se podrían tener con la presente $t\underline{e}$ sis.

Luego se mencionan pruebas de tipos pre-operacionales recomendadas para algunos equipos eléctricos necesarios por ejemplo cuando se vaya a realizar una evaluación a una Empresa Eléctrica cualquiera que entre sus bienes tenga equipos nuevos por ejemplo transformadores de potencia de gran capacidad entonces estaría justificado economicamente el realizar a dicho equipo una serie de pruebas de tipo pre-operacional para de esta manera tener la posibilidad de detección de eventuales puntos de fallas y la corrección de las mismas antes del inicio de la operación de un equipo eléctrico cualquiera.

Después se procede a la determinación de la metodolo-

gía para evaluar el estado de un sistema eléctrico de potencia considerando por cada capítulo la evaluación de cada uno de los componentes del sistema estos son: El Sistema de Generación, Subtransmisión, Transformación, Distribución Primaria, Distribución Secundaria y Alumbrado Público.

Luego en la metodología de evaluación de cada uno de los sistemas de generación, subtransmisión, etc., se da mayor importancia en el presente estudio al análisis de aquellos equipos eléctricos que económicamente y tec nicamente son de mayor importancia dentro del conjunto a evaluarse.

La metodología de la evaluación de cada componente del sistema prevee en primer lugar la descripción y recopilación de toda la información disponible del sistema - que serán las bases para posteriormente junto con las - pruebas e inspección visual que se realice se pueda - evaluar finalmente el estado en que se encuentra un sistema eléctrico.

INDICE GENERAL

	PAGS
RESUMEN	VI
INDICE GENERAL	VIII
INDICE DE FIGURAS	XIV
INDICE DE TABLAS	XVI
INTRODUCCION	19
CAPITULO I	
POLITICA A SEGUIR EN EL ESTUDIO PARA EVALUAR EL	
ESTADO DE UN SISTEMA ELECTRICO	
1.1. DETERMINACION DEL ALCANCE DEL ESTUDIO A REA	
LIZARSE	21
1.2. CAMPO DE APLICACION DEL PRESENTE ESTUDIO	23
CAPITULO II	
PRUEBAS PREOPERACIONALES DE EQUIPOS ELECTRICOS-	
2.1. IMPORTANCIAS DE LAS PRUEBAS PREOPERACIONALES	
EN LA EVALUACION DE UN SISTEMA ELECTRICO	25
2.2. OBJETIVOS DE LAS PRUEBAS	26
2.3. TIPOS DE LAS PRUEBAS A REALIZARSE	26

	PAGS.
2.3.1. Pruebas - Transformador de corrien	ites 27
2.3.2. Pruebas - Transformador de potenci	al- 27
2.3.3. Pruebas - Transformador de potenci	a 27
2.3.4. Pruebas - Disyuntoras de potencia-	28
2.3.5. Pruebas - barrajes	29
2.3.6. Pruebas - Llaves seccionadoras mar	iua -
les y motorizadas	29
2.3.7. Pruebas - Resistores de aterrizam	iento 29
2.3.8. Pruebas - Pararrayos	29
2.3.9. Pruebas - Instrumentos de protecc	i ón- 30
2.3.10.Pruebas - Equipos de medición	30
2.3.11.Pruebas - Cargadores de Baterias -	31
2.3.12.Pruebas - Banco de baterias	31
CAPITULO III	
METODOLOGIA PARA EVALUAR EL ESTADO DEL SISTEMA	A DE
GENERACION	
3.1. DESCRIPCION DEL SISTEMA DE GENERACION EX	ISTE <u>N</u>
TE	32
3.1.1. Recopilación de la información di	spon <u>i</u>
ble del sistema de generación	32
3.1.2. Elaboración de cuadros de registr	os de
mantenimiento de unidades	34
3.2. EVALUACION DEL SISTEMA DE GENERACION	36

	PAGS.
3.2.1. Pruebas a realizarse a cada unidad	
de generación	39
3.2.1.1. Pruebas de aislamiento de	
las unidades	39
a. Metodología	40
3.2.2. Comparación entre los resultados =	41
obtenidos y las especificaciones -	
del diseño	41
3.2.3. Anālisis de las estadīsticas de ge	
neración	42
3.2.4. Condiciones físicas de las unidades	43
3.2.5. Determinación del tiempo de vida -	
restante de cada unidad	44
CAPITULO IV	
METODOS PARA EVALUAR EL ESTADO DEL SISTEMA DE	
SUBTRANSMISION	
4.1. DESCRIPCION DEL SISTEMA DE SUBTRANSMISION	
EXISTENTE	49
4.1.1. Recopilación de la información di <u>s</u>	
ponible del sistema de subtransmi-	
siδn	50
4.2. EVALUACION DEL ESTADO DEL SISTEMA DE SUB-	
TRANSMISION	53

			PAGS.
	4.2.1.	Recorrido e inspección visual	56
		4.2.1.1. Metodología	57
	4.2.2.	ANALISIS ESTADISTICO DE CARGA DE	
		LAS ALIMENTADORAS DEL SISTEMA DE	
		SUBTRANSMISION	58
		4.2.2.1. Metodología	59
	4.2.3.	Determinación del tiempo de vida -	
		restante del sistema de subtransmi	
		si6n	60
			61
CAPI	TULO V		
METO	OOLOGIA	PARA EVALUAR EL SISTEMA DE TRANSFOR	
MACIO	Ν		
5.1.	DESCRI	PCION DEL SISTEMA TRANSFORMACION -	
		NTE	63
		Recopilación de la información di <u>s</u>	
	*****	ponible del sistema de transformación	64
5 2	EVALUA	CION DEL SISTEMA DE TRANSFORMACION	68
		Inspección visual de las condiciones	
		físicas de cada una de las subesta-	
		11 12	69
		ciones	-
	5.2.2.	Pruebas a realizarse a cada una de	70
		las subestaciones	70
		5.2.2.1. Pruebas del dieléctrico del	
		aceite	74

70.					PA
		60 5		20	
		a. Metodología			77
¥8		b. Pruebas de	aislamiento d	de los	90
		, devanados d	le los transfo	rmado-	*
		res			79
5.3. DETERM	INACION DEL TI	ÉMPO DE VIDA	RESTANTE DEL	SIS.	
TEMA	DE TRANSFORM	ACION			83
5.3.1.	Metodología	para determi	nar el tien	npo de	10
		te de los			85
S 61		15 159			93
CARITHE		100		20	12
CAPITULO V	1			4	
			£0		
METODOLOGIA	PARA EYALUA	R EL ESTADO	DEL SISTEMA	DE -	
DISTRIBUCIO	N PRIMARIO				
6.1. DESCRI	PCION DEL SIST	EMA DE DISTR	IBUCION PRIMA	R10	100
. 6.1.1.	Recopilación	de informa	ción disponib	le del	
1	sistema de	distribución	primaria		101
6.2. EVALUA	CION DEL EST	ADO DEL SIST	EMA DE DISTR	IBUCION	
PRIMAR	10				1.12
6.2.1.	Recorrido e	inspección v	isual		112
	6.2.1.1. METO	2022			113
6.2.2	Análisis est		carga de la	e ali	113
4,2,2,	mentadoras	1013E1003 GE	carga de la	3 411	
552	extreme m management				117
1. S.	6.2.2.1. METO				119
6.3. DETERM	INACION DEL TI	EMPO DE VIDA RI	ESTANTE DE LAS	AL I MEN	ti m
TADORA	S				120
6.3.1.	Metodología -				121

CAPITULO VII

METODOLOGIA PARA EVALUAR EL ESTADO DEL SISTEMA DE	1
DISTRIBUCION SECUNDARIO Y DE ALUMBRADO PUBLICO	
7.1. DESCRIPCION DEL SISTEMA DE DISTRIBUCION SECUNDARIO	
Y DE ALUMBRADO PUBLICO	126
7.1.1. Recopilación de la información necesaria pa	5
ra el estudio	127
7.1.2. Metodología a seguir si no se dispone de la	
información necesaria	130
7.2. EVALUACION DEL ESTADO DE LA DISTRIBUCION SECUNDARIA	
Y DE ALUMBRADO PUBLICO	137
7.2.1. Determinación de la muestra representati-	
va de los transformadores de distribu-	
ción secundaria	138
7.2.1.1. METODOLOGIA	139
7.2.2. Métodos de Análisis de las Estadísticas de	
carga de los Transformadores de Distribución	143
7.2.2.1. METODOLOGIA	144
7.2.3. Tipos de pruebas a realizarse a los transfo <u>r</u>	
madores de distribución	146
7.2.4. Inspección Visual	152
7.3. DETERMINACION DE VIDA RESTANTE DEL SISTEMA DE DIS	
TRIBUCION SECUNDARIA Y DE ALUMBRADO PUBLICO	153
CONCLUSIONES Y RECOMENDACIONES	156
ANEXOS	158
	169

INTRODUCCION

Si efectuamos una mirada hacia los diferentes componentes de un sistema eléctrico de potencia, podemos establecer - que desde el punto de vista económico, cada uno de los rubros constituyen altos costos de adquisición y de construcción.

Con el constante crecimiento de la demanda de energía - eléctrica, productos del aumento de la población y de la creación de nuevas industrias se dá lugar a que mu chos equipos eléctricos como Generadores, transformadores de potencia y de distribución, etc., se encuentren tra bajando cerca y muchas veces sobre sus capacidades nomi nales.

Esto demuestra que muchos equipos eléctricos siempre $rec{e}$ querirán un continuo estudio y chequeo de su estado actual, con la finalidad de establecer si el diseño original es aplicable aún a las condiciones actuales.

Es por este motivo que en la presente tesis se mostra rán procedimientos prácticos y técnicos de evaluación de un sistema eléctrico de potencia, procedimientos que nun ca perderán actualidad y más bien constituirán un aporte positivo para iniciar y llevar a cabo en forma más - efectiva un estudio de evaluación de un sistema eléctrico de potencia.

CAPITULO I

POLITICA A SEGUIR EN EL ESTUDIO PARA DETERMINAR EL ESTADO
DE UN SISTEMA ELECTRICO

1.1. DETERMINACION DEL ALCANCE DEL ESTUDIO A REALIZARSE

En el presente estudio se presentará una cierta meto dología a seguirse para evaluar el estado eléctrico y físico de un sistema eléctrico de potencia que se en cuentra cerca del centro de carga.

En nuestro país hasta la fecha existen solamente dos tipos de centrales de generación que son: Las centrales térmicas y las centrales hidroeléctricas. Con esta premisa se ha utilizado el término "cerca del centro de carga" descrito en el inciso anterior, para enfatizar que en el estudio a realizarse nos estaremos refiriendo, en lo que respecta al sistema de generación, solamente a centrales térmicas, y por estar cerca del centro de carga se descarta la evaluación del sistema de transmisión. La secuencia en rubros a evaluarse será: El sistema de generación, subtransmisión,

transformación, distribución primaria, distribución secundaria y alumbrado público.

Haciendo los reajustes necesarios al sistema de generación y evaluando el sistema de transmisión, los criterios descritos en esta tesis siguen siendo igualmente válidos para evaluar el estado eléctrico y físico de cualquier sistema eléctrico de potencia.

En los capítulos siguientes donde se evaluen cada uno de los rubros del sistema de potencia se trata de dar en la metodología de evaluación una orientación práctica, justificada en cada parte por una base teó rica y por normas establecidas y garantizadas como son :ANSI, IEEE, o ASTM, etc.

El alcance del estudio en cada rubro ya sea este ge neración, subtransmisión, etc., está limitado en la eva luación principalmente al estudio de aquellos equipos que dentro de un rubro cualquiera representan el ele mento más importante económicamente y tecnicamente, den tro del subconjunto o rubro en estudio. Como por ejemplo en la evaluación del sistema de transformación se dará prioridad en el análisis al transformación y disyuntor de potencia.

En la presente tesis se prevee la posible adquisición -

transformación, distribución primaria, distribución secundaria y alumbrado público.

Haciendo los reajustes necesarios al sistema de gen<u>e</u> ración y evaluando el sistema de transmisión, los cr<u>i</u> terios descritos en esta tesis siguen siendo igual-mente válidos para evaluar el estado eléctrico y fís<u>i</u> co de cualquier sistema eléctrico de potencia.

En los capítulos siguientes donde se evaluen cada uno de los rubros del sistema de potencia se trata de dar en la metodología de evaluación una orientación práctica, justificada en cada parte por una base teórica y por normas establecidas y garantizadas comoson: ANSI, IEEE, o ASTM, etc.

El alcance del estudio en cada rubro ya sea este ge neración, subtransmisión, etc., está limitado en la eva luación principalmente al estudio de aquellos equipos que dentro de un rubro cualquiera representan el ele mento más importante económicamente y tecnicamente, den tro del subconjunto o rubro en estudio. Como por ejemplo en la evaluación del sistema de transformación se dará prioridad en el análisis al transformación y disyuntor de potencia.

En la presente tesis se prevee la posible adquisición -

de un equipo nuevo a instalarse por el sistema electrico a evaluarse, en cuyo caso se deberá proceder de una manera diferente para evaluar su estado pues to que se trata de un equipo nuevo que no ha estado en operación, y los tipos de pruebas que se deberán realizar serán más completos, las diferentes pruebas pre-operacionales para algunos equipos eléctricos se nombran en el Capítulo II, de esta tesis.

1.2. CAMPO DE APLICACION DEL PRESENTE ESTUDIO

La presente tesis está orientada principalmente a la evaluación de un sistema eléctrico de potencia, de ahí que su principal campo de aplicación y utilización se rá cuando se quiera evaluar el estado eléctrico y físico de una empresa eléctrica cualquiera, que en nuestro país podría ser por ejemplo la Empresa Eléctrica Guayas - Los Ríos, la Empresa Eléctrica de Santa Elena, etc.

También existen varios campos de aplicación secundaria, la palabra secundaria la expreso puesto que en estos campos de aplicación no es necesario utilizar el contenido total de la tesis sino que se utilizará algunos rubros. Como por ejemplo si se desea evaluar el estado de la

subestación particular de la Cemento Nacional de 69 KV. 4.16 KV., se deberá revisar lo que corresponde a la evaluación de un sistema de transformación que se describe en el Capítulo V.

Si se desea por ejemplo evaluar el estado del sistema de distribución primaria y secundaria de un conjunto residencial cualquiera se deberán revisar los capítulos VI y VII de esta tesis.

Como se podrá ver las aplicaciones que se tienen son muy variadas, y el campo de aplicación de manera general es bastante grande justificado por el contenido de la tesis que explicitamente evalúa el estado de equipos eléctricos que han estado operando por algún tiempo en un sistema determinado.

CAPITULO II

PRUEBAS PRE-OPERACIONALES DE EQUIPOS ELECTRICOS

2.1. IMPORTANCIA DE LAS PRUEBAS PRE-OPERACIONALES EN LA EVALUA
CION DE UN SISTEMA ELECTRICO

Cuando se contrata a una compañía para que evalúe el sistema eléctrico de una Empresa Eléctrica determinada , surgen inmediatamente como justificación al estudio dos posibilidades, una de ellas es que el gerente o propietario decida realizar una evaluación de sus propios equipos que se encuentran en operación, entonces en este caso no son de importancia las pruebas de tipo pre-operacionales descritas en este capítulo. Pero en caso de que una Empresa Eléctrica va a ser negociada y si esta Empresa posee además de los equipos que están en operación, equipos nuevos como por ejemplo un transformador de potencia de gran capacidad entonces estará justificado económicamente el realizar a dicho equipo una serie de pruebas de tipo pre-operacional.

Cabe mencionar que las pruebas de tipo pre-operacio nal descritas en este capítulo no forman parte del objetivo principal de la presente tesis, es por esta razón que a continuación unicamente nombraremos el tipo de pruebas pre-operacionales recomendadas para - equipos nuevos antes de su energización.

2.2. OBJETIVO DE LAS PRUEBAS

El objetivo de las pruebas pre-operacionales en la determinación del estado de un sistema eléctrico hace posible la detección de eventuales puntos de fallas y la corrección de las mismas antes del inicio de la operación de un equipo eléctrico cualquiera. Se mínimiza de esta forma la ocurrencia de problemas des pués de la puesta en marcha, los costos inherentes a los mismos y los riesgos para los equipos y personal de operación.

2.3. TIPOS DE PRUEBAS A REALIZARSE

Las pruebas a realizarse de tipo pre-operacional no forman parte del objetivo principal de la presente tesis, es por esta razón que sólo se nombrarán - las distintas pruebas recomendadas para algunos equi pos eléctricos.

2.3.1. Pruebas - Transformadores de corriente

- Relación de transformación
- Polaridad
- Resistencia ohmica del aislamiento
- Resistencia ohmica de los devanados
- Saturación
 - Rigidez dieléctrica del aceite
 - Aterrizamiento y clase de precisión

2.3.2. Pruebas de transformadores de potencial

- Relación de transformación
- Polaridad
- Resistencia ohmica de aislamiento
- Rigidez dieléctrica del aceite
- Aterrizamiento y clase de precisión

2.3.3. Pruebas - Transformador de potencia

- Relación de transformación
- Polaridad
- Desplazamiento angular
- Resistencia ohmica de aislamiento

- Rigidez dieléctrica del aceite
- Resistencia ohmica de los devanados
- Actuación de los termómetros
- Termo sonda
- Aerotermo
- Actuación del indicador de nivel del aceite del tan
- Relé de gas
- Actuación del dispositivo de presión súbita
- Conmutador automáticos de "Taps".
- Sensor electrónico para conmutación automática de taps.
- Indices de neutralización de acidez del aceite aislante.
- Aterrizamiento
- Circuitos de refrigeración
- Señalización y deslizamiento.

2.3.4. Pruebas - disyuntores de potencia

- Resistencia óhmica del aislamiento
- Tiempo de apertura y cierre
- Resistencia de contacto
- Rigidez dieléctrica del aceite aislante
- Perdida de aire por operación
- Nivel de aire o gas
- Circuitos auxiliares como compresores, etc.

2.3.5. Pruebas de barramiento

- Resistencia de aislamiento
- Faseamiento
- Tensión aplicada
- Encaje mecánico de disyuntores y transformadores de potencial.

2.3.6. Pruebas - Llaves seccionadoras manuales y motorizadas

- Inspección visual
- Verificación del ajuste
- Aislamiento
- Resistencia de contactos
- Señalización, comando local y remoto
- Corriente nominal del motor
- Lubricación.

2.3.7. Pruebas - resistores de aterrizamiento

- Aislación
- Resistencia ốhmica
- Conexiones
- Oxidación

2.3.8. Pruebas - pararrayos

- Aislamiento

- Conexiones
- Corriente de fuga
- Contador de operaciones.

2.3.9. Pruebas de instrumentos de protección

Estas pruebas se las realiza a todos los relés y ele mentos asociados.

- Limpieza
- Levantamientos de características tiempo corrien
 te, corriente tensión o tiempo impedancia.
- Minimo valor de partida (pick-up).
- Minimo valor de rearme (drop-out).
- Restricción por armónicos
- Compensación (slope)
- Indicador de operación
- Ajuste del cero
 - Aislamiento
 - Calibración
 - Otras pruebas recomendadas por el fabricante.

2.3.10. Pruebas de medición

Estas pruebas se las realiza a los amperimetros, voltimetros, wattimetros y varimetros.

- Ajuste del cero
- Ajuste de banda
- Ajuste de linealidad
- Cálculos de constantes
- Aislamientos
- Medición (comprobación)

2.3.11. Pruebas cargadores de baterías

- Inspección general
- Ensayo para operación automática de fluctuación
- Ensayo para ajuste normal estabilizado.
- Verificación de la oscilación de tensión de salida C.C.
- Ajuste de limitación de corriente del rectificador
- Verificación del nivel de tensión de fluctuación.
- Verificación del ajuste del nivel de tensión de la carga de actualización.

2.3.12. Pruebas - Banco de baterías

- Verificación de las conexiones (lubricación)
- Verificación de la densidad del electrolito
- Tensión de cada elemento.

CAPITULO III

METODOLOGIA PARA DETERMINAR EL ESTADO DEL SISTEMA DE GENE-RACION

3.1. DESCRIPCION DEL SISTEMA DE GENERACION EXISTENTE

Para lograr el objetivo principal que es el de determinar el estado del sistema de generación, es de mucha importancia conocer en detalles los diferentes tipos de unidades que se utilizan en el sistema. Conocer si el sistema eléctrico en estudio está o no constituído por una o varias fuentes de generación, será también necesario un estudio detallado de cada fuente en partícular, tomando en cuenta los siguientes pasos:

3.1.1. Recopilación de la información disponible del sistema de generación

Es muy valioso para realizar el presente estudio que se disponga de la mayor cantidad de información de las unidades de generación existente en el sistema, puesto que de no tener toda la información se incurre en una gran pérdida de tiempo que podría llevarnos junto con otros problemas a un retraso en la entrega del proyecto.

A continuación haré una descripción del tipo de info<u>r</u> mación que se deberá tener al inicio del estudio:

- a. Se deberá conocer cuántas plantas generadoras existen en la Empresa Eléctrica en estudio.
- b. El número de unidades de generación por planta y el tipo de unidades existentes por ejemplo de vapor, de gas, etc.
- c. Las capacidades de las unidades así como los voltajes de generación.
- d. Los registros del sistema de generación en los cuales deberá constar para cada unidad:
 la fecha de puesta en servicio, fabricante, ca
 pacidad, factor de potencia, voltaje, amperaje, ve
 locidad, temperatura del estator, voltaje de exci
 tación, amperaje de excitación e impedancia. Un
 ejemplo en el que constan los registros de
 generación para el sistema eléctrico de Guaya-

quil se lo presenta en la tabla Nº 1.

- e. Las estadísticas de generación de cada unidad desde la fecha de puesta en servicio hasta la fe cha de estudio.
- f. Los registros de operación y mantenimiento de las unidades

Si se logra tener la información anteriormente deta llada se tendrá con ello las base para poder - evaluar el estado del sistema de generación y como se ha venido operando desde la fecha de - puesta en servicio.

3.1.2. Elaboración de cuadros de registros de mantenimiento de la unidad

Las estadísticas de los registros de mantenimiento que han tenido las unidades desde su puesta en servicio hasta la fecha de estudio nos muestran como ha venido operando la máquina, mostrando así su claro deterioro o simplemente chequeos rutinarios, resultados que ayudan a determinar al final el estado del sistema de generación. Un ejemplo típico del mantenimiento que se realiza a las unidades -

United Bil	1000000	MINISTER OF STREET	A STREET		See Park		Thursday.	MININE.	dille	11111	=				
PLANTA															
Vapor #1	Agosto/54	General Electric	5	8.0	4.160	867	3,600	00° C	125	190	321.12	31.6956	j.1.184	31.184	77
Vapor #2	Enero/57	General	5	0.8	13.800	261	3.600	o 09	125	186	j21.76	j1.952	j.1.408	j1.408	-5
Vapor #3	Dcbre/58	Boveri	10	9.0	13.800	525	3.600	;	125	360	j10.48	j1.28	j0.88	j0.88	77
Vapor ≢4	Dobre/62	Brown	10	0.8	13.800	525	3.600	1	125	360	j10.48	j1.28	j0.88	j0.88	177
Sas	Marzo/68	General Electric	13.5	0.85	0.8513.800	788	3.600	1	250	203	j8.7229	jo.8279	j0.579	j0.579	7
PLANTA EL SALITRAL															
Vapor #1	Abri1/70	General Electric	33	0.85	0.8513.800	1.624	3.600	09° C	250	468	j3.825	jo.4845	10.3683	j0.3683	
Gas # 1	Nvbre/72	Electric Machinery	21	0.85	0.8513.800	1.045	3.600	100°.Ç	1	1	j6.9858	j0.8865	30.5319	j0.5319	
Gas # 2	Octbre/74	Electric Machinery	21	0.85	0.8513.800	1.045	3.600	100° C max	1	1	j6.9858	j0.8865	jo.5319	j0.5319	-
Gas # 3	Mayo/75	Electric Machinery	21	0.85	0.8513.800	1.045	3.600	100° C	1	-	j.69858	j0.8865	j0.5319	50.5319	1
Gas # 5	bctbe/77	General Electric	22.5	0.85	0.8513.800	1.194	3.600	-	270	250	j6.5012	j0.5418	j0.3973	30.3973	1
Gas # 6	Sep/78	General Electric	22.5		0.9013.800	1.238	3.600	-	250	229	j6.3074	j0.4392	j0.3209	j0.4155	-

REGISTRO DE LAS CARACTERISTICAS TECNICAS DE LAS UNIDADES DE GENERACION DEL SISTEMA GUAYAQUIL

de generación se presenta en la tabla Nº 2.

3.2. EVALUACION DEL ESTADO DEL SISTEMA DE GENERACION

Para evaluar el estado de un sistema de generación se tiene que analizar fundamentalmente cuatro paráme tros bien definidos que son: a. Los registros de man tenimiento de cada una de las unidades; b. Las pruebas realizadas a cada unidad; c. Las estadísticas de car ga de cada una de las unidades; d. Las condiciones físicas de trabajo de las unidades.

Los tres puntos planteados a, b y c, son los determinantes en la toma de decisión del estado de las unidades, son los que en conjunto más tarde determinarán el tiempo que le resta de vida útil a cada unidad.

SACTOR PROPERTY.	HINNI	MANTENNENTO	REALIZABRE	200	OBSERVACIONES
DCHWORDINAPRO	Principates	Auxiliares	Eaulpos	MANTENIMIENTO	
MAY0/82	Generador		Inspección del campo del generador	Sr. A. Moore téc- nico de GENERAL ELECTRIC.	Informó el Sr. Moore haber enc do una capa de suciedad y acei misma que deberá ser removida. te esta inspección no se encor ñales de daños en las cuñas de tor del generador. No se observan cambios signifi en las lecturas de vibracione: les comparadas con las tomada: pués del mantenimiento extrao: 1975. En el tiempo transcurrido ent tenimiento y antes o después: mismos, también se han efectu bajos de mantenimiento rutina correctivo a los equipos que
					han corregido.

RESUMEN DE LOS KEGISIKOS DE MANIENIMIENIO DE LA UNIDAD A VAPOR Nº 1 DE LA CIUDAD DE GUAYAQUIL

STREET, SE	CANADA BANKS BANKS	TANKS BEST BEST STORY OF THE SECOND S	REALIFARIOS EN LOS	MANTENMENTO	OBSERVACIONES
EXTRAORDINARIO	Principates	Auxillares	Kaulhos		
AG0ST0/75	- Caldera - Turbo Gener <u>a</u> dor.	-Desaereador -Tanque diario de combustible Válvulas, etc.	Inspección, limpieza y reparación de los equipos principales y auxiliares.	Caldera Personal de EMELEC Turbo Generador Sr.Roy Carvalho Técnico de la GE	
				Con personal de EMELEC.	
NOVIEMBRE DICTEMBRE 1980	- Caldera - Turbo Gener <u>a</u> dor. - Condensador.	-Evaporador -Desaereador -Válvulas de Seguridad,etc.	Inspección de las aletas del rotor de la turbina.		- No se ha encontrado inforn respecto de la inspección caletas del rotor de la turt detalles de otros trabajos tuados en la turbina.
	RESUMEN	DE LOS F	REGISTROS DE M 21 DE LA CIUDA	IANTENIMIEN AD DE GUA	RESUMEN DE LOS REGISTROS DE MANTENIMIENTO DE LA UNIDAD A VAPOR Nº 1 DE LA CIUDAD DE GUAYAQUIL

El punto d., básicamente determina el estado externo de las unidades es decir muestra después de una inspección visual por ejemplo el estado de pintura, ruido, suciedad, etc., de las unidades, pero este es un punto superable relativamente.

3.2.1. Pruebas a realizarse a cada unidad de generación

Se deberán realizar principalmente cuatro tipos de pruebas; de funcionamiento, de rendimiento, de eficien cia y de aislamiento a cada una de las unidades.

Las pruebas más importantes que son la de funcionamien to, rendimiento y eficiencia son pruebas de tipo - mecánico, que deberán ser ejecutadas por un ingenie ro mecánico calificado y por no constituír este el objetivo de la presente tesis no se enumeran - las metodologías de ejecución de las mismas.

A continuación solo enunciaremos la metodología a seguir para determinar el estado del nivel de aislamiento de los devanados de los generadores.

3.2.1.1. PRUEBAS DE AISLAMIENTO DE LAS UNIDADES:

Los resultados que se obtengan de las pruebas
se los deberá comparar luego por los recomen

dados por normas establecidas y determinar así el estado de aislamiento de los devana dos de los generadores. La norma de comparación utilizada se la obtuvo de la IEEE - Standard Guide for Testing Insulation - Risitence of Electrical Machinery 9.3. En el Anexo 1, se presenta en detalla las precauciones y métodos de medición de la resistencia de aislamiento.

3.2.1.1.1. Metodologia:

- a. En primer lugar se deberá de senergizar el generador que será sometido a la prueba.
- b. Se deberá esperar hasta que la temperatura del generador se estabilice.
- nados del estator a tierra y

 del rotor a tierra, utilizando

 un medidor con las escalas ade

 cuadas de acuerdo con los nive

 les de voltaje de operación
 del generador.
- d. Se deberá aumentar el voltaje aplicado progresivamente y to mando lectura a 30 y 60 segundos.

e. Para poder evaluar el estado
del aislamiento se deberá com

parar los resultados obtenidos

con los recomendados por la

IEEE Standard Guide for Testing

Insulation Resistance of Rota

ting Machinery 9.3., que dice

que se deberá tomar en cuenta

como índice de comparación los

obtenidos a partir de la ecua

ción:

Rm = Kv + 1

Donde:

Rm = es la mínima resistencia de aislamiento del devanado a 40 C en MΩ.

Kv = potencial de funcionamiento de la máquina.

3.2.2. Comparación entre los resultados obtenidos y las espécificaciones de diseño

Una vez realizadas todas las pruebas descritas ante

riormente se deberá hacer una comparación de los resultados obtenidos con los parámetros y características de diseño y a la conclusión que se llegue de este análisis será fundamental para la determinación del estado de la unidad.

3.2.3. Análisis de las estadísticas de generación de las unidades

Este punto de análisis es muy importante puesto que su resultado determinará el estado de sobrecarga de los devanados de las máquinas.

El análisis de carga que han tenido las unidades en todo su tiempo de servicio básicamente se la puede realizar de dos maneras:

a. Analizando todos los datos de carga disponibles para cada unidad y determinando si las
unidades han sido sobrecargadas o no, esta al
ternativa dependerá basicamente de sí se tiene el
tiempo disponible para realizar un seguimiento de
carga de la unidad en todo su tiempo de vida y de
los datos de carga disponible.

Es lógico pensar que si se analizan todos los datos de carga de una unidad cualquiera, se sabrá con ple na certeza si dicha unidad ha sido sobrecargada o no, por esta razón este método de análisis es mucho más seguro, pero más laborioso.

b. Otra alternativa será obtener una muestra anual se leccionando los meses de mayor carga por ejemplo el mes de octubre, noviembre y diciembre en los cuales se analizarán los datos de carga de ca da una de las unidades, y si los resultados para estos meses determinan la no existencia de sobrecarga entonces se asumirá que en los meses de menor carga tampoco ha existido so brecarga. Este método es muy funcional y se lo utiliza generalmente cuando el tiempo del análisis es muy corto.

3,2.4. Condiciones físicas de las unidades

Para evaluar las condiciones físicas de las unidades se deberá realizar una inspección visual del estado externo de las unidades y de su funcionamiento.

De la inspección visual se deberá obtener como $r\underline{e}$ sultado por ejemplo la cantidad de suciedad pr \underline{e} sente en las unidades, el deterioro de la pint \underline{u}

ra, la eficiencia de trabajo del personal a car go de la unidad, el ruido producido por la máquina, la cantidad de escape de humo de las unidades, la falta de equipos de protección, etc.

3.2.5. Determinación del tiempo de vida restante de cada unidad

El tiempo de vida restante de cada una de las unidades dependerá fundamentalmente del mantenimiento que se le halla dado a la unidad, de
la comparación de las pruebas realizadas con las características de diseño, del análisis es
tadístico de carga, y de la fecha de instalación de las unidades. En la práctica se pue
den presentar dos tipos de situaciones, la una
en la cual se tienen condiciones ideales de operación,
y la otra en la cual las unidades han funcionado ba
jo condiciones anormales.

a. En el caso más favorable se tendrá que las uni dades han funcionado bajo condiciones ideales de operación, entendiéndose por condiciones ideales las siguientes:

- Que las unidades hallan tenido un buen mant<u>e</u> nimiento en todo su período de operación.
- Que las pruebas realizadas presenten resultados muy próximos a las características de diseño.
- Que luego de realizado el análisis de sobrecarga se determine que las unidades no han sido so brecargadas.

En este caso no existe pérdida de vida por mala operación de la unidad por lo tanto el resto
de vida que le quedaría a las unidades esta
rá determinado por el tiempo esperado de vi
da útil asignado a este tipo de unidades ya
sea por el fabricante o por normas eléctricas
establecidas por índices contables, y por el tiempo de servicio de la unidad. En el si
guiente ejemplo se determinará el tiempo de
vida útil de una unidad a vapor en la cual
se asumen condiciones ideales de operación.

Asumiendo que la unidad ha estado en operación continua ocho años, este será el tiempo de servicio de la unidad (T1), el siguiente paso es determinar el tiempo esperado de
vida útil para unidades a vapor (T2), este

tiempo muchas veces viene determinado por los fabricantes variando un poco de un fa
bricante a otro. cuando se tienen varias uni
dades y que es muy probable que sean de
distintas marcas es preferible trabajar con
un valor promedio de tiempo de vida útil es
perado, es por esto que se recomienda uti
lizar lo dispuesto por INECEL en su información "Vidas útiles y porcentajes de depreciación para los bienes e instalaciones eléctricas "
que establece en 30 años el tiempo esperado de
vida útil para unidades a vapor. Luego el
tiempo de vida útil que le resta a esta unidad (T3), estará dado por:

$$T_3 = T_2 - T_1 = 30 - 8 = 22 \text{ años}$$

Un ejemplo del tiempo de vida restante del sistema de generación de la ciudad de Gua yaquil asumiendo condiciones ideales se presenta en la tabla N^2 3.

 El problema se complica cuando las unidades no han sido operadas convenientemente, en cuyo caso predecir el tiempo de vida restante del sistema de generación resulta imposible de determinar.

En este caso unicamente se evaluará el esta do actual del sistema y no se podrá con cluir acerca del tiempo de vida que le resta al sistema de generación.

PLANTA DE GENERACION	UNIDAD	FECHA DE PUESTA EN SERVICIO	TIEPO DE VIDA RESTANTE A PARTIR DE 1985
	Vapor # 1	1954	0
	Vapor # 4	4957	3
	Vapor // 3	1950	ų.
Flanta Guayaqui.	Vapor # 4	1902	8
	Gas	1968	1/3
Planta el	Vapor / 1	1970	U
	Gas // 1	1972	0
	Gas //2	1974	0
Salitral	Gas 🏄 3	1975	0
	Ces // 5	1977	0
	Gas # o	1978	3

ENDO CONDICIONES IDEALES

CAPITULO IV

METODOLOGIA PARA DETERMINAR EL ESTADO DEL SISTEMA DE SUB-TRANSMISION

4.1. DESCRIPCION DEL SISTEMA DE SUBTRANSMISION EXISTENTE

El procedimiento a seguir para describir, y evaluar el sistema de subtransmisión es muy similar al seguido - en la evaluación del sistema de distribución primaria.

Para describir el sistema de subtransmisión debemos revisar el diagrama unifilar del sistema, se deherá tratar de conseguir información, sobre el recorrido de las líneas dentro de la ciudad en estudio, con esta información preliminar se realizará un recorrido de verificación de planos determinando de esta manera entre otras cosas: Si es que existe alguna interconexión de líneas de subtransmisión entre varias fuentes de generación que podrían formar parte del sistema a evaluar se, de existir se deberá determinar de que tipo de interconexión se trata si es que es un sistema de anillos de circuitos simples o de anillos de circuit-

tos dobles, etc.

Se podrá emitir criterios acerca de la configuración del sistema determinándose nombres, números de líneas de subtransmisión que emergen desde la fuente de generación.

Con ayuda de la información recopilada y que se en cuentra detallada en el numeral 4.1.1., se podría conocer entre otras cosas los niveles de voltajes de operación del sistema (69 Kv es el voltaje de operación del sistema de subtransmisión de la ciudad de Guayaquil), se podrá conocer los calibres y longitudes, en general todas las características pormenorizadas de los conductores del sistema, se conocerán también los tipos de materiales que forman parte del sistema como son por ejemplo el tipo de poste, sea este de hierro, madera u hormigón, el tipo de estructura, tipo de aisladores sean estos tipo poste, tipo disco, etc.

4.1.1. Recopilación de la información disponible del sistema de subtransmisión

La información necesaria del sistema con que se deberá contar al inicio del estudio, como se verá más adelante es similar a la necesaria - para evaluar el sistema de distribución primaria.

a. Se deberá disponer del plano físico donde se indique los recorridos de las líneas de subtrans misión.

Esta información será necesaria para determinar luego el tipo de servicio que presta dicha - alimentadora, áreas de influencia, etc. En la figura \mathbb{N}^2 1, se muestra el plano físico del sistema de subtransmisión de la ciudad de Guaya-quil.

b. El diagrama unifilar del sistema de subtransmi sión. Donde se indiquen las distintas subestaciones y el tejido de las líneas.

Esta información nos ayudará a determinar cuán tas y cuáles subestaciones son servidas por las líneas de subtransmisión, para luego poder realizar un estudio sobre la operación y con fiabilidad de servicio, etc. En la figura N^2 2, se presenta el diagrama unifilar de la ciudad de Guayaquil.

c. Se pedirá información acerca de los calibres y longitudes de las distintas alimentadoras. En la tabla Nº 4, se presentan los registros de las ca racterísticas técnicas del sistema de subtransmisión de la ciudad de Guayaquil.

 d. Se pedirá información de las estadísticas de fallas e interrupciones del servicio.

Esta información servirá para evaluar la operación y continuidad del servicio, así como el tiempo de vida restante del sistema.

- e. Se deberá pedir información del tipo de elem<u>e</u>n to de interconexión utilizadas en el sistema.
- f. Se pedirá un listado donde se indique el tipo de materiales utilizados.
- g. Se deberá disponer de los datos de carga de las al<u>i</u> mentadoras.

4.2. EVALUACION DEL ESTADO DEL SISTEMA DE SUBTRANSMISION

Para evaluar el estado de sistema de subtransmisión se deben considerar dos aspectos fundamentales que son, los resultados que se tengan del recorrido e inspección $v_{\underline{i}}$ sual en la que se determine el estado externo en que se en

				-			ORDER VALUE OF STREET
			1000	Calviore		F190 C	(Capacidades Péruties)
	Avd. Américas		1.01	336,4 M	Мом	18/1 Acsr	59 MVA
Transmisión norte	Flanta Estero S.	s/E os Ceibos	4.98	477 Mc	McM	18/1 Acsr	72 MVA
Transmisión norte	ibos		5.46	477 Mc	McM	26/7 Acsr	72 MVA
	S.	Paso	1.27	477 M	McM	18/1 Acsr	72 MVA
Transmisión Ceibos	Sontv	5/E 0S (3.64	477 M	McM	18/1 Acsr	72 MVA
Transmisión Ceibos	eibos	5/E Policentro	3.51	336.4 M	McM	18/1 Acsr	59 M/A
Transmisión Ceibos	entro	Calle Av.Américas	1.78	336.4 M	McM	18/1 Acsr	59 M/A
	Costa	.S/E Manasingue	6.17	477 M	McM	26/7 Acsr	72 W/A
	S/E Napasingue	A/E		477 M	McM	26/7 Acsr	72 MVA
Transmisión Pascuales	Planta Estero S.	Via a la	1.08	477 M	McM	26/7 Acsr	72 MVA
Transmisión Pascuales	Via a la	S/E Mapasingue	6.52	477 M	McM	26/7 Acsr	72 MVA
1	B/E Mapasingue	5/E Sauces	4.75	477 M	McM	26/7 Acsr	72 MVA
Transmisión Pascuales	5/E Sauces	S/E Sascuales	6.35	477 M	McM	26/7 Acsr	72 MVA
Unida entre Transmisión Cemento y Pascuales			0.98	477 M	McM	26/7 Acsr	72 MVA
Transmisión Cemento	Estero S.	Cemento	12.11	4/0 A	AWG	A1 5005	39 MVA
	ransmis. Pascuales	S/E Servecería	1.08	4/0 A	AWG	6/1 Acsr	39 MVA

REGISTROS DE LAS CARACTERISTICAS TECNICAS DEL SISTEMA DE SUBTRANSMISION DE LA CIUDAD DE GUAYAQUIL

13113	E			1000		or and Paralage Paralage 19 1
Francistation Partette	France S.	suntal day	7:55	468.4 N.H.	5008 AT	H.W.
Transmiston Portete	3	Tanta Vapor	11.62	465.4 McM	5005 A1	61 MVA
Transmisión Portete	Esmeraldas	S/E Esmeraldas	1.16	465.4 McM	5005 A1	61 MVA
Transmisión Torre	Planta Estero S.	S/E La Torre	4.44	465.4 McM	5005 A1	61 MVA
Transmisión Sur		-	3.92	477 McM	26/7 Acsr	72 MVA
Transmisión Sur	Torr	Calle Gallegos L.	3.30	336.4 McM	18/1 Acsr	59 MVA
Transmisión Sur		Planta Guavacuil	2.56	336.4 McM	18/1 Acsr	59 MVA
Transmisión Portete	Planta Guavaquil	S/E Molinera	0.92	4/0 AWG	6/1 Acsr	39 MVA
Transmisión Portete	S/E Folinera	S/E La Dniversal	2.53	4/0 AMG	6/1 Acsr	39 MVA
Transmisión Portete	5/E La Universal	5/E Grasmo	2.51	4/0 AWG	6/1 Acsr	39 MVA
Transmisión Portete	S/E La Universal	5/E Pto. Nuevo	6.00	477 McM	26/1 Acsr	72 MVA
Transmisión Portete	5/E F1 Guasmo	5/E FIINASA	1.66	4/0 AWG	6/1 Acsr	39 MVA
Iransmisión Sur	Calle	S/E Garav	1.60	465.4 McM	5005 A1	61 MVA
		Mascote	0.88	477 McM	26/7 Acsr	72 MVA
		Calle C. Ballén	3.13	336.4 McM	18/1 Acsr	59 MVA
	Calle C. Ballen	Calle Piedrahita	0.86	336.4 McM	18/1 Acsr	59 MVA
	Calle J. Mascote	S/E Bovacá	0.99	4/0 AWG	6/1 Acsr	39 MVA
	Calle	Calle Av. Americas	97.0	336.4 McM	18/1 Acsr	59 MVA

cuentre el sistema entre ellos, los postes conductores, aisla dores, etc.

El otro aspecto será necesario para determinar el tiempo de vida restante de los conductores en la que hay que aná lizar tres factores determinantes que son: El análisis - de carga de los conductores, el sobrevoltaje, las corrien tes de fallas y el tiempo en que el conductor estuvo sometido a la falla.

4.2.1. Recorrido e inspección visual

El recorrido e inspección visual que se deberá realizar al sistema tendrá como objetivo el eva
luar las condiciones físicas externas de los dis
tintos componentes del sistema.

El recorrido se lo deberá llevar a cabo dentro de la zona de influencia de las alimentadoras, y se deberá en lo posible tratar de realizar un recorrido e inspección visual a todos los alimentadores del sistema.

En los siguientes párrafos se tratará de bosquejar una cierta metodología, que se podrá seguir cuando se quiera evaluar el estado físico de un sistema de subtransmisión.

4.2.1.1. METODOLOGIA:

- a. Si el sistema de subtransmisión es bastante grande y el tiempo de evaluación es reducido para tratar de evaluatodo el conjunto. Se deberá se leccionar el 30 % del total de alimentadoras, como mínimo para que garantice una buena confiabilidad de los resultados y se pueda concluír a cerca de todo el universo.
 - b. Se deberá seleccionar la alimentadora a la que se le realizará el recorri do e inspección visual.
 - c. Seleccionada la alimentadora se deberá iniciar el recorrido en forma ordenada y partiendo desde la salida del sistema de generación hasta el último punto de servicio tal como se indica en el pla no físico respectivo.
 - d. Se deberá unificar una cierta simbología para evitar retrasos, confusiones y errores de interpretación.

- e. Se deberá realizar diagramas del reco rrido seguido, tomando puntos de re ferencia que podrían ser enumerando cada poste del recorrido. En la figu ra Nº 13, se muestra la numeración realizada en el recorrido y evaluación del sistema de distribución pri maria.
- f. Se deberán elaborar hojas de informa ción en la que describan el estado de cada componente. En la tabla № 16, se presentan las hojas información del sistema primario que podrían ser utilizados en el sistema de subtransmisión.

4.2.2. Análisis estadístico de carga de las alimentadoras del Sistema de subtransmisión

La metodología utilizada para determinar la posible existencia de sobrecarga en las alimentadoras del sistema de subtransmisión es la misma empleada en el sistema de distribución primaria.

El método que se describe a continuación es muy

rápido y nos permitirá revisar todos los datos de carga disponibles en cada una de las alimentado ras del sistema de subtransmisión.

4.2.2.1. METODOLOGIA:

- a. Se deberá recopilar los datos de car ga de una alimentadora cualquiera des de su instalación hasta la fecha de estudio.
- b. Se deberá fijar el valor de la capa cidad máxima de corriente permitida por el conductor por ejemplo podría ser utilizando tablas de características de conductores en la que se considera -50° C(75° C temperatura total del conduc tor), un factor de emisitividad de 0.5 y una velocidad del viento de 2 pies por segundo (referencia, T y D Westinghouse Electric Corporation, 1964, IV Edición, página 47).
- c. Se deberá realizar un análisis compara tivo de los datos de carga con el va lor de corriente máxima permitida obteni da en el literal b).

d. Finalmente se elaborarán cuadros en las que se indiquen cuales alimentadoras han sido sobrecargadas y cuál a sido el valor de la sobrecarga.

4.2.3. Determinación del tiempo de vida restante del sistema de subtransmisión

El sistema de subtransmisión no sólo está cons tituído por conductores, forman parte del siste ma también los postes, aisladores, tensores, etc.

Para la determinación del tiempo de vida restante del sistema de subtransmisión habrá que con siderar cada uno de los elementos por separado, con excepción de los conductores el tiem po de vida restante de los componentes del sistema dependerá de la fecha de instalación de los equipos y del tiempo normal de vida esperada de acuerdo al porcentaje de depreciación anual estimados por índices contables que en nuestro medio es de acuerdo a normas esta blecidas por INECEL en su información "Vidas - útiles y porcentajes de depreciación para los bienes e instalaciones eléctricas. A no ser - que de la inspección visual realizada se note

que un componente cualquiera del sistema se en cuentre en estado avanzado de deterioro, enton ces por inspección visual se deberá determinar su cambio o arreglo.

Para determinar el tiempo de vida restante de los conductores del sistema de subtransmisión - hay que analizar tres factores determinantes que son: el análisis de sobrecarga de los conductores, el sobrevoltaje y las estadísticas de las corrientes de fallas así como el tiempo de dura ción de la misma.

Dependiendo de los resultados que se obtengan de los análisis se podrá concluir si los conductores han sido sometidos o no a esfuerzos mecánicos - superiores que los permitidos, perdiendo por consiguiente parte de su vida útil estimada.

4.2.3.1. METODOLOGIA:

Por no existir normas específicas para poder comparar los resultados obtenidos de sobrecarga, sobrevoltaje y corriente de fallas, no se podrá penalizar los resultados con una pérdida de vida útil del conductor, por lo tanto a la única con

clusión a la que podría llegar es a establecer los porcentajes de sobrecar ga, sobrevoltaje y corriente de fallas que podría haber sido sometido el conductor.

Por no poder comparar y penalizar los resultados obtenidos no podremos bosque jar la metodología técnica a seguirse para la determinación del tiempo de vida restante de los conductores. Púdiéndose estimar este tiempo sólo desde el punto de vista contables de acuerdo a nor mas establecidas por INECEL en la información "vidas útiles y porcentaje de de preciación para los bienes e instalaciones eléctricas.

CAPITULO V

METODOLOGIA PARA EVALUAR EL SISTEMA DE TRANSFORMACION

5.1. DESCRIPCION DEL SISTEMA DE TRANSFORMACION EXISTENTE

En este capítulo nos enfrentamos ante un rubro muy importante en todo el conjunto del sistema eléctrico en estudio, decimos que es muy importante desde el punto de vista económico y continuidad del servicio.

Para este estudio se deberá tener conocimientos de cuantas subestaciones forman el sistema, cuantos - transformadores integran cada subestación. Se deberá también conocer cuáles son los voltajes primarios y secundarios de los transformadores de elevación, voltaje que dependerá del tipo de generación.

También se deberá tener en cuenta de cuantas subestaciones de reducción forman el sistema, y cuán
tos transformadores integran cada subestación así

como los voltajes primarios y secundarios de los trans formadores. En la figura N°- 1, se presenta un ejemplo en la cual consta las distintas subestaciones de elevación y reducción que forma parte del sistema eléctrico de Guayaquil.

5.1.1. Recopilación de la información disponible del sistema de transformación

Para comenzar a realizar el estudio de evaluación del estado de un sistema de transformación se deberá contar al inicio con la sigui<u>e</u>n
te información:

a. Se deberá conocer los nombres de las subestaciones el numero de transformadores por subes tación, capacidades, tipos de enfriamiento, rela ción de transformación, tipo de conexión e impedancia.

Esta información nos servirá para aclarar la descripción del sistema y posteriormente para determinar el tiempo de vida restante de los transformadores. En la tabla Nº 5, se pre sentan los registros de las características técnicas de los transformadores del sistema - Guayaquil.

NUMBRE	TRANS	CAPACI	DAD	RELACION DE		DE TRANSI	CONEX. DE TRANSIMPEDANCIAS	
SUBESTACION	No-	MVA	TIPO DE ENFRIA	KANSF.	PRIM.	SEC.	%PROPIA BASE	OBSERVACIONES
Ceibos	1	12/16	OA/FA	67/13.8	Delta	Estrel.	7.03	
Ceibos	11	12/16	OA/FA	67/13.8	Delta	Estrel.	6.9	
Boyacá	1	5/6.25	OA/FA	67/4.16	Estrel.	Estrel.	7.0	Dev.terc.conex.delta.
Boyacá	II	12/16	OA/FA	67/13.8	Delta	Estrel.	7.27	
Boyacá	111	12/16	OA/FA	67/13.8	Delta	Estrel.	7.0	
Guasmo	I	12/16	0A/FA	67/13.8	Delta	Estrel.	7.0	
Guasmo	II	8/10	0A/FA/F0A	67/13.8	Delta	Estrel.	7.3	Enf. FOA futuro
Torre	I	12/16	OA/FA	68.8/13.8	Estrel	Delta	7.0	Transf.de puesta a tierra en secundario.
Torre	II	12/16	DA/FA	67/13.8	Delta	Estrel	7.18	
Pascuales		8/10	DA/FA	67/13.8	belta	Estrel.	7.34	
Mapasingue		18/24	0A/FA	67/13.8	Delta	Estrel.	7.60	
Aterazana		12/16	0A/FA	67/13.8	Delta	Estrel.	7.10	
Sauces		12/16	0A/FA	67/13.8	Delta	Estrel.	7.24	
Alborada		10/12.5	0A/FA	67/13.2	Estrel.	Estrel.	7.0	Propiedad de INECEL. Dev. Ierciario conex.delta.
Garay	I	18/24	0A/FA/F0A	67/13.8	Del ta	Estrel.	8.0	Enfr. FOA futuro
Garay	II	18/24	OA/FA	67/13.8	Delta	Estrel.	7.4	
Esmeraldas	I	18/24	OA/FA/FOA	67/13.8	Delta	Estrel.	8.0	
Esmeraldas(1)	11	16.5/22/275	OA/FA/FA	68.8/13.8	Estrel.	Delta	6.9	Tranf, de puesta a tierra secundario.

TABLA # 5 REGISTROS DE LAS CARACTERISTICAS TECNICAS DEL SISTEMA DE TRANSFORMACION DE LA CIUDAD DE GUAYAQUIL b. Se deberá disponer de información en la que se indiquen todos los traslados o cambios de los transformadores con fecha y detalle del porque de los cambios.

Esta información nos ayudará para poder emitir un criterio acerca de la operación que se ha veni
do realizando en el sistema, también ayudará
en el análisis de la determinación de la vida útil
de los transformadores.

c. Se deberá contar con las estadísticas de fa llas registradas en el sistema de transformación.

Esta información nos servirá para evaluar la operación del sistema, y las consecuencias de bidas a las fallas.

d. Es necesario disponer de un listado en la que se indiquen los distintos equipos y materiales ut<u>i</u> lizados en cada subestación tales como: estructuras metálicas, interruptores de desconexión,tr<u>i</u> polares operando en grupos con cuchillas de puesta a tierra, disyuntores de aceite, etc.

Esta información servirá para evaluar el acondi-

cionamiento de las subestaciones.

e. Estadísticas de cargas en lo posible desde la fecha de instalación de cada transformador de potencia.

Esta información nos servirá para el análisis de la sobrecarga de los transformadores.

- f. Se deberá disponer de un diagrama del sistema donde se incluyan líneas de subtransmisión , (69 Kv) subestaciones de transformación, y las distintas alimentadoras que emergen de las sub estaciones, un ejemplo en el que constan el dia grama unifilar del sistema eléctrico de Guayaquil se presenta en la figura Nº 2.
- g. Se deberá disponer de cargas diarias, de las alimentadoras del sistema de subtransmisión.

Esta información servirá para determinar las características de carga típicas diarias, ne cesarias en la metodología de determinación - de la vida útil restante de los transformadores de potencia. Un ejemplo de las características equivalentes rectángular de carga típica diaria - de varias subestaciones del sistema Guayaquil se

presenta en la figura N^2 8, en la figura N^2 9 y en la figura N^2 10.

h. Se deberá solicitar también los registros de mantenimiento de cada una de las subestaciones.

Esta información será necesaria para la evaluación del estado del sistema.

5.2. EVALUACION DEL SISTEMA DE TRANSFORMACION

El sistema de transformación está compuesta por transformadores de potencia, disyuntores en aceite y una serie de elementos adicionales como son: aisladores, transformadores de corriente, de potencial, cuchillas de puesta de tieras, equipos de protección, etc.

Pero indudablemente desde el punto de vista técnico y económico es el transformador, secundado por los interruptores
en aceite los elementos de mayor importancia dentro del sistema
de transformación es por está razón que para evaluar el esta
do del sistema de transformación nos basaremos principalmente en estos dos rubros, dejando como condiciones complementarias el estado de los demás equipos del sistema. Con esto no queremos
decir que los demás equipos no son importantes en el sis
tema de hecho lo son, y de la inspección visual que

se realice será muy importante las recomendaciones y con clusiones que se obtengan acerca de estos equipos.

Para evaluar el estado de los transformadores y disyuntores en aceite tenemos que dividir el trabajo en dos partes una que análiza las condiciones externas que se la obtienen de la inspección visual que se realice y la otra que valorice el estado interno de los equipos criterios que lo obtenemos a partir de ciertas pruebas como son: la prueba de rigidez dieléctrica del aceite y la prueba de MEGGER.

Además en los transformadores será de fundamental importancia análizar las estadísticas de carga para de esta manera poder determinar si a existido o no sobrecarga en los transformadores desde su fecha de puesta en servicio hasta la fecha de estudio.

5.2.1. Inspección visual de las condiciones físicas de cada una de las subestaciones

La inspección visual que se deberá realizar a cada - una de las subestaciones que forman el sistema es muy - importante para la evaluación del estado de las mismas.

Esta inspección se realizará en el sitio y se determinará en primer lugar al tipo de subesta ción que se tiene, si es que la subestación tipo rural o subestación tipo cabina. La diferencia en tre dos tipos de subestaciones depende basicamente del tipo de protección que se tenga, en las fi guras Nº 3 v 4, se presentan dos tipos de subesta ciones mencionadas. La inspección visual determi na entre otras cosas las condiciones de operacio nes de las mismas, el tipo de equipos principales auxiliares y cual es el estado de estos equipos, por ejemplo se determina si los transformadores periodica mente han tenido o no un tratamiento de pintura exte rior, si es que se encuentren aisladores dañados, si el nivel de ruidos de los transformadores es normal o no, si es que se nota oxidación o no, presencia de suciedad, etc. Todas las conclusiones que se tiene luego de realizada la inspec ción visual reflejan claramente el tipo de man tenimiento que se le dá a las subestaciones en estudio, contribuyendo de esta manera a determinar nuestro objetivo principal que es la evalua ción del sistema de transformación.

5.2.2. <u>Pruebas a realizar a cada una de las subestaciones</u>

De las pruebas que se realicen a las subestaci<u>o</u>

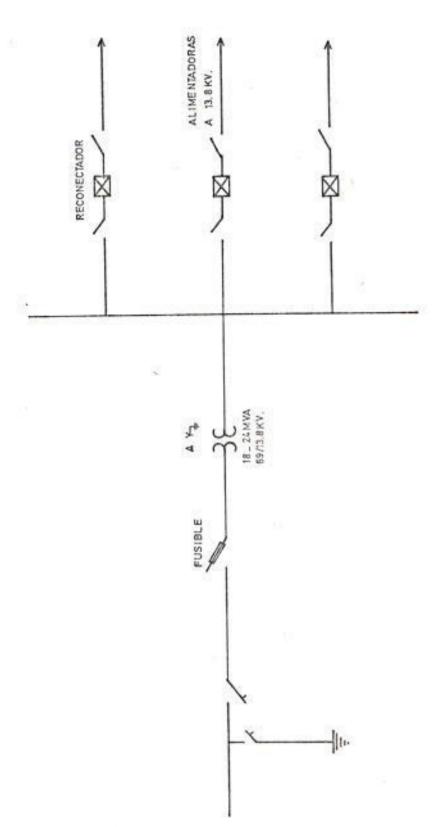
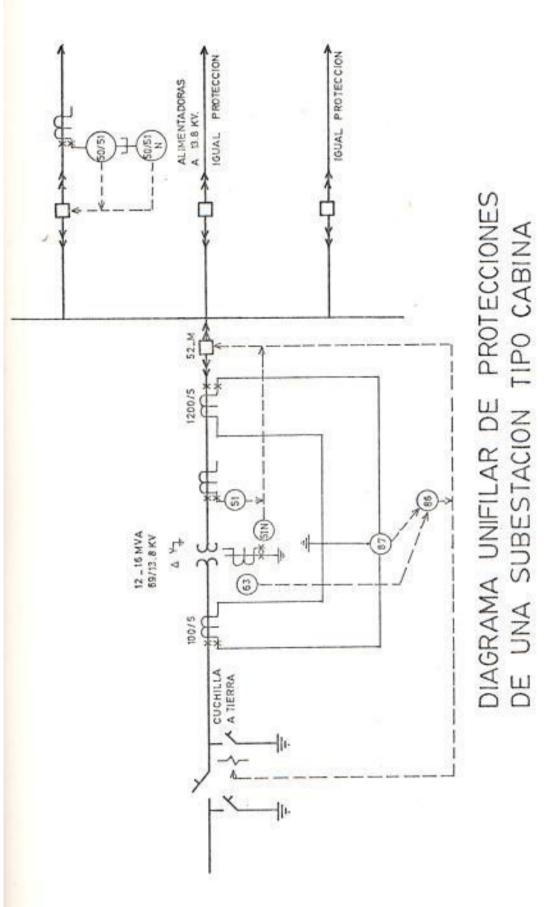



DIAGRAMA UNIFILAR DE PROTECCIONES DE UNA SUBESTACION TIPO RURAL

nes del sistema y de los resultados que se obtengan de las mismas serán de importancia posteriormente cuando se realice la evaluación $f\underline{i}$ nal de sistema de transformación.

De hecho en cada una de las subestaciones nos vamos a encontrar a más de los elementos prin cipales que son los transformadores y disyuntores en aceite con una serie de equipos auxiliares y si se tuviera la disponibilidad del tiempo y del dinero necesario se podría pensar en realizar pruebas que determinen el estado a todos los equipos tanto principales como auxiliares, si reflexionamos con respecto a nuestro objetivo que es el evaluar el estado del sistema de transforma ción podríamos entonces pensar que el motivo de la evaluación es porque se aproxima una cierta negociación en la que está involucrada la Empresa Eléctrica en es tudio, por lo tanto se deberá dar mayor prioridad en la evaluación a aquellos componentes que económica y técnicamente sean de mayor importancia dentro de la subestación, estos son justamente los transfor madores de potencia y los disyuntores de aceite.

Existen muchas pruebas estandarizadas que se po drían realizar a los transformadores de potencia y disyuntores en aceite, pero dado que la evalua ción se va a realizar a una Empresa Eléctrica - que ya ha estado operando por muchos años, enton ces para determinar el estado de estos equipos nos referimos únicamente a la prueba del dieléc trico del aceite para los transformadores y dis yuntores de potencia y a la prueba de aislamien to de los devanados de los transformadores.

5.2.2.1. PRUEBAS DE DIELECTRICO DEL ACEITE:

La metodología que se explicará a continuación se la podría utilizar tanto para conocer la rigidez dieléctrica del aceite de los transformadores como de los disyuntores de potencia.

Los resultados que se obtengan de la prue ba se los deberá comparar luego con los re comendados por normas establecidas como - son la ASTM D 877-64 y la ASTM D 1816 - 60 T y que se diferencian basicamente por la sepa ración de los electrodos. En las tablas Nº6 y 7 se presentan ejemplos de los resultados obtenidos al realizar pruebas del dieléctrico del aceite a los transformadores de

TRANSFORMADOR	PRUEBA DE A DE VOLTAJE	NIVEL NORMAL DE VOL TAJE		
5.40	MUESTRA 1	MUESTRA 2	(KV)	
Ceibos I	39	40	30	
Ceibos II	37	34	30	
Boyacá I	38	35	30	
Boyacá II	36	37	30	
Boyacá III	34	35	30	
Torre I	33	34	30	
Torre II	21	28	30	
Garay I	28	28	30	
Garay II	30	31	30	
Esmeraldas	28	31	30	
Guasmo I	40	40 34		
Guasmo II	26 28		30	
Atarazana	40	32	30	
Mapasingue	22	28	30	
Sauces	28 31		30	
Pascuales	26	25	30	
Alborada	PROPIEDAD	DE INECEL		

RESULTADO DE LAS PRUEBAS DE DIALECTRICO DEL ACEITE DE LOS TRANSFORMADORES DE REDUCCION DE LA CIUDAD DE GUAYAQUIL

TRANSFORMADOR	RANGO 1 DE AISLAM KV	L IEN TO	PRUFBA DE. ACELTE NIVEL DE VOLTAJE	1000
	DEV. ALTA	DEV. BAJA	APLICADO (KV)	(KV)
P.V.1-A	41	9	30	30
P.V.1-B	41	9	40	30
T.G.1	41	9	35	30
T.G.3	41	9	40	30
T.G.5	41	9	35	30
T.G.6	41	9	35	30
P.V.G.	41	9	40	30
T.A.E.B.	9	4		30

RESULTADO DE LAS PRUEBAS DE DIELEC.
TRICO DEL ACEITE DE LOS TRANSFORMA.
DORES DE ELEVACION DE LA CIUDAD DE
GUAYAQUIL

reducción y elevación del sistema Guayaquil.

1. METODOLOGIA

- a. En primer lugar se deberá limpiar total mente el equipo de ensayo para eli minar cualquier partícula o fibra de algodón y aclararse con una par te del aceite a ensayar.
- b. El equipo de ensayo deberá llenarse con aceite, estando tanto el aceite como el equipo a la temperatura ambiente.
- c. Se tendrá que esperar tres minutos pa ra dejar escapar las burbújas de aire de la muestra antes de aplicar la tensión.
- d. La velocidad de aumento de la tensión de berá ser de unos tres mil voltios por se gundo.
- e. Deberán aplicarse cinco descargas dis ruptivas en cada llenado y luego debe vaciarse el receptáculo y volverse a lle nar con aceite nuevo de la muestra origi nal.

- f. La tensión media de los 15 ensayos (5 ensayos sobre cada una de tres llenadas). Se toma normalmente como rigidez dieléctrica del aceite.
- g. Se recomienda que el ensayo se continue hasta que las medidas de los promedios dé como mínimo, tres llenados sin presentar variaciones importantes.

El método ASTM D877-64 indica el uso de electrodos de aristas vivas de 1 pulgadas de diámetro separados 0.1 pulgadas entre sí.

El método ASTM D 1816-60 T indica el uso de electrodos especiales separados 0.04 pulgadas entre sí y con circulación con tinua de aceite. Este último ensayo es más sensible a las contaminaciones de biles.

La rigidez del aceite nuevo debe ex ceder el valor mínimo para un buen aceite, como lo indica en el siguiente cuadro

Kv medidas de la rigidez dieléctrica según ASTM D877 - 64	Kv medidas de rigidez dielé <u>c</u> trica segûn - ASTM D1816-60T	Condición del aceite
30 o superior	29 o superior	Bueno
de 26 a 29	de 15 a 23	Util
inferior a 26	inferior a 15	Malo
47/		

5.2.2.2. PRUEBAS DE AISLAMIENTO DE LOS DEVANADOS DE LOS TRANSFORMADORES DE POTENCIA

La metodología empleada para la determinación de las pruebas de aislamiento podría
ser utilizada tanto para los transformado
res de distribución como para los transfor
madores de potencia, y de manera general
su principio básico puede ser utilizada pa
ra realizar pruebas de aislamiento a
cualquier tipo de devanado.

Los resultados que se obtengan en las prue bas se los deberá comparar luego por los recomendados por normas establecidas para poder luego evaluar el estado del ais lamiento de los transformadores de potencia del sistema. La norma de compara-

	PRUEBA DE (MΩ)	ITO OTI	RANGO NORMAL DEL AISLAMIENTO KV + 1		
TRANSFORM <u>A</u> DOR	BAJA-TIERRA	ALTA-TIERR/	ALTA-BAJA	DEV. ALTA	DEV. BAJA
Ceibos I	58/60	42/43	120/125	40	9
Ceibos II	60/63	95/95	160/160	40	9
Boyacá I	3500/4000	6000/7000	7000/8000	40	4
Boyacá II	2200/2800	4000/4100	5000/5500	40	9
Boyacá III	800/900	1300/1400	1400/1500	40	9
Torre I	850/900	480/500	1600/1800	41	9
Torre II	136/135	240/250	230/250	40	9
Garay I	95/100	500/510	650/700	40	9
Garay II	125/135	420/450	700/800	40	9
Smeraldas	230/250	420/420	580/580	40	9
Guasmo I	35/38	45/47	80/82	40	9
Guasmo II	450/460	660/680	780/800	40	9
Atarazana	3500/4500	7000/8000	8000/10000	40	9
Mapasingue	4500/5000	3000/9000	8000/9000	40	9
Sauces	2000/25000	2500/2800	4000/4200	40	9
Pascuales	1300/1600	1600/1700	1500/1500	40	9
(1borada	PRO	PLEDAD DE	INECEL		

RESULTADO DE LAS PRUEBAS DE AISLAMIENTO DE LOS TRANSFORMADORES DE REDUCCION DE LA CIUDAD DE GUAYAQUIL

TRANSFOR_ MADOR	PRUEBA (M.	RANGO NORMAL DEL AISLAMIENTO KV: 1			
MACOOK	BAJA_TIERRA	ALTA_TIERRA	ALTA_ BAJA	DEV ALIA	DEV BAJA
P.V.1-A				41	9
P.V.1-B				41	9
T.G.1	1800/2500	115/120	1700/2500	41	9
T.G.3	1000/1250	1000/1200	800/1050	41	9
T.G.5	120/140	850/950	800/1000	#1	9
T.G.6	420/500	320/350	400/500	41	9
P.V.G.	8000/1000	1200/1500	800/850	41	9
T.A.E.B.				9	4

RESULTADO DE LAS PRUEBAS DE AISLAMIENTO DE LOS TRANSFORMADORES DE ELEVACION DE LA CIU. DAD DE GUAYAQUIL

TABLA + 9

ción utilizada se la obtuvo de la IEEE Standard Guide for Testing Insulation Re
sentance of Electrical Machinery 9.3. En
las tablas Nº8 y 9 se presentan ejemplos
de los resultados obtenidos al realizar
pruebas de aislamiento a los transformadores de reducción y elevación del siste
ma Guayaquil. En el Anexo 1, se presenta
en detalles las precauciones y métodos de medición de la resistencia de aislamiento.

1. METODOLOGIA:

- a. En primer lugar se deberá desenergizar
 el transformador que será sometido a
 la prueba.
- b. Se deberá esperar hasta que la tempera tura del transformador se estabilice.
- c. Se procederá a megar los devanados de baja tensión a tierra, alta tensión a tierra, y entre los de alta tensión y baja tensión utilizando un medidor con las escalas adecuadas de acuerdo con los niveles de voltaje de operación del transformador.
- d. Se deberá aumentar el voltaje aplicado a

e. Para evaluar el estado del aislamien to se deberá comparar los resultados obtenidos con los recomendados por la IEEE Standard Guide for Testing -Insulation Resistanceof Electrical -Machinery 9.3., que dice que se debe rá tomar como índice de comparación los obtenidos a partir de la ecuación.

Rm = Kv + 1

donde:

Rm mínima resistencia de aislamiento - del devanado a 40° C en M Ω .

Kv potencial de funcionamiento de la máquina.

5.3. DETERMINACION DE VIDA UTIL RESTANTE DEL SISTEMA DE TRANSFOR MACION

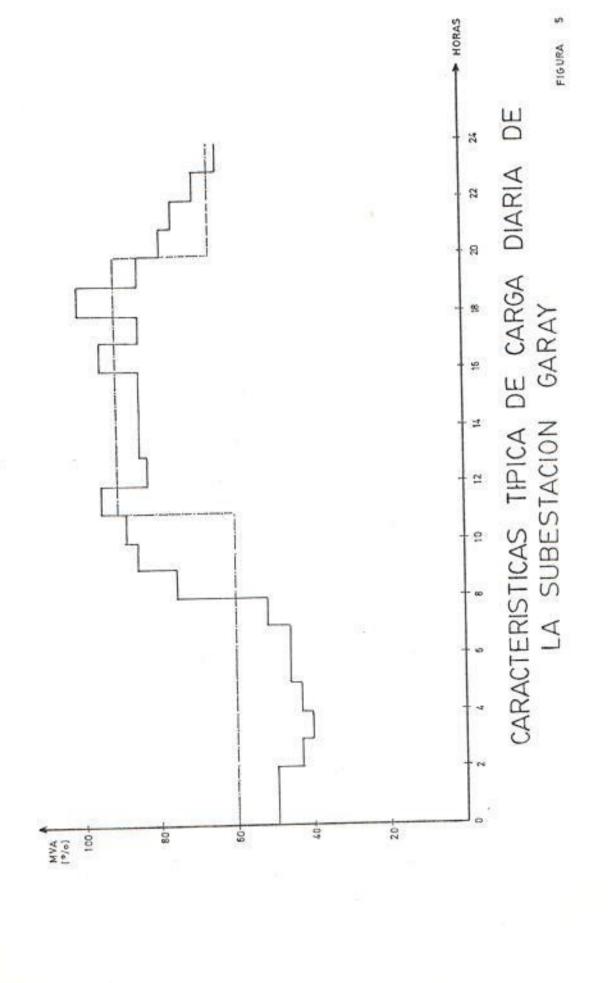
Para la determinación del tiempo de vida útil restante del sistema de transformación realizaremos un análisis técnico -

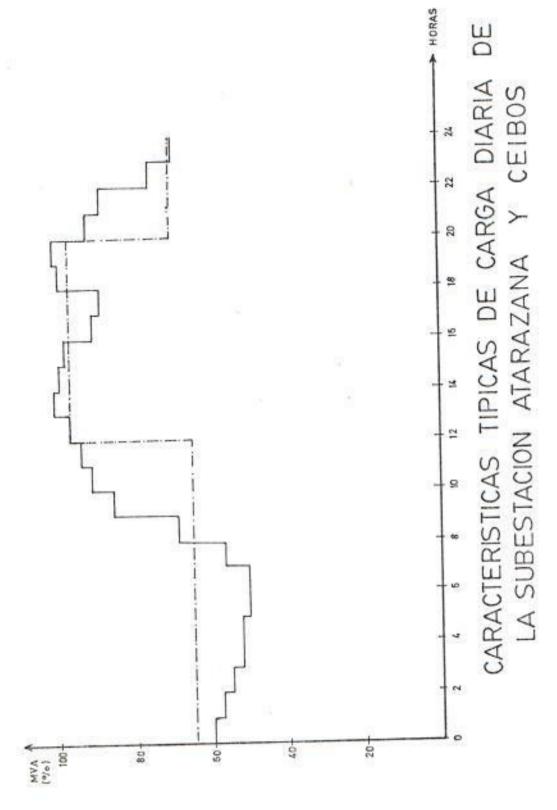
de perdida de vida útil unicamente al dispositivo más importante del sistema de transformación que son los transformadores de potencia, para los demás equipos que forman el sistema de transformación la vida útil restante dependerá exclusivamente de la fecha de instalación del equipo y de los porcentajes de depreciación anual de acuerdo a solo índices contables que en nuestro medio es de acuerdo a normas establecidas por INECEL en su información "vidas útiles y porcentajes de depreciación para los bienes e instalaciones eléctricas para equipos de subestaciones. A no ser que de la inspección visual se note que un equipo auxiliar se encuentre en un estado de avanzado deterioro, entonces por inspección - visual se deberá recomendar su cambio o arreglo.

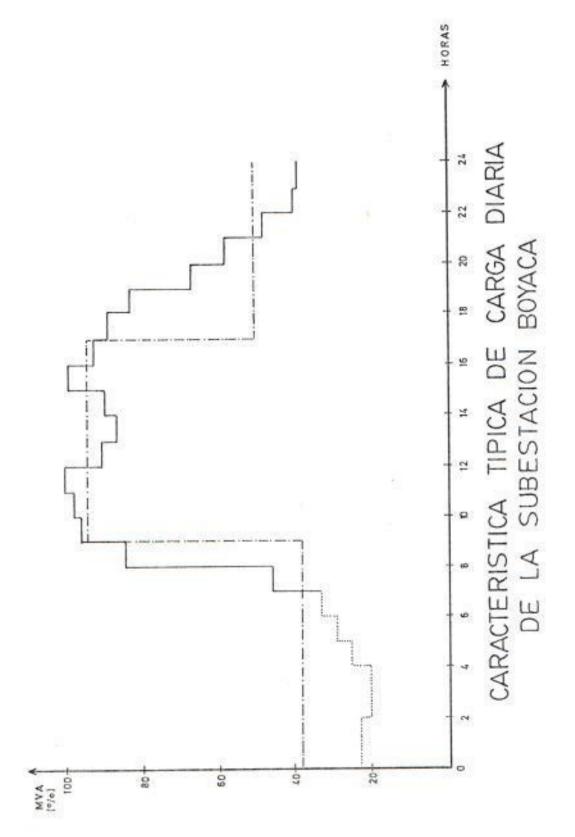
La metodología empleada para la determinación de la vida útil de los transformadores de potencia, está basada en criterios de evaluación de acuerdo a las normas ANSI, que fundamenta sus contenidos de acuerdo a los siguientes criterios:

El nivel de deterioramiento del aislamiento es una función de la temperatura y del tiempo.

La variación de la temperatura está en relación directa con las variaciones de carga del transformador, y está expresa do comunmente como un porcentaje de pérdida de vida.


El deterioramiento del aislamiento se caracteriza generalmente por una reducción de su resistencia mecánica y de su resistencia dieléctrica.


5.3.1. Metodología para determinar el tiempo de vida restante de los transformadores de potencia


a. Se deberá estimar las características típicas de cargas diarias en Mva.

La obtención de las características típicas resultan mucho más facil si se analizan los da tos de carga diaria pero a nivel del voltaje primario (alto voltaje), por ejemplo para el sistema Guayaquil este voltaje es de 69.000 - voltios y en la figura N^2 5 a la N^2 7, se presentan ejemplos de características típicas de varias subestaciones del sistema Guayaquil.

b. Se deberá transformar la característica de carga en otra equivalente en forma rectángular como es tá específicado en ANSI appendix (57 - 92),artículo 92 - U5 - 500. En las figuras N≅ 8 a la Nº 10, se presentan las características de car

ga diaria en forma rectángular de varias subestaciones del sistema Guayaquil.

Las tablas utilizadas para determinar el por centaje de pérdidas de vida son funciones de la carga promedio antes del pico, del pico de carga y su duración, por lo tanto, es necesario estimar estos valores en las características de carga ga rectángular resultante.

- c. Para el análisis se utiliza la información contenida en las tablas 92 - 01 - 250A a la D y 92 - U2 - 200A a la P obtenida de ANSI Appendix C57 - 92 (1962).
- d. Se estimară una temperatura ambiental promedio de trabajo de los transformadores. Que en nues tro medio podría ser 30°C.
- e. Se determinará el tipo de enfriamiento del transformador y su capacidad de placa.
- f. Se seleccionará el tipo de tabla necesaria para el análisis de la subestación en particular.
- g. Se calculará la corriente nominal y la corriente

NVA del transformador

C. Corga en porcentaje de la capacidad de placa en

((1/1)

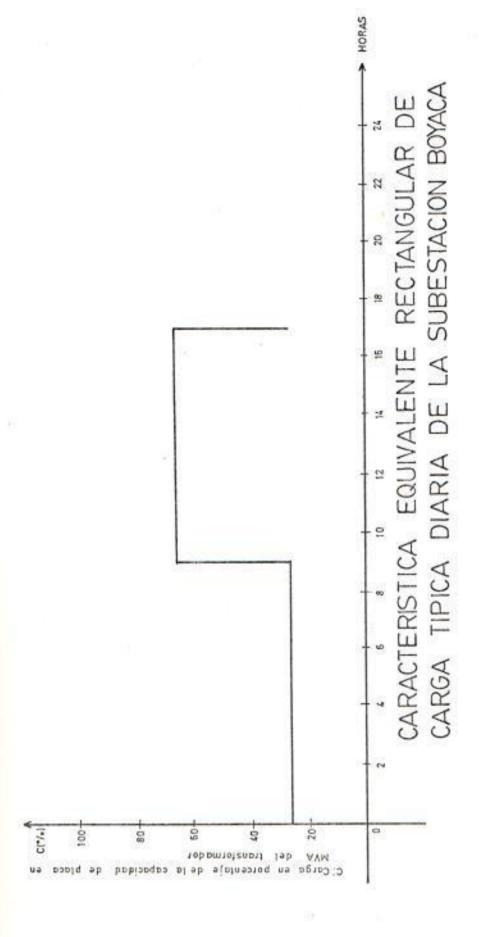


FIGURA 10

de carga de acuerdo al tipo de enfriamiento del transformador ANSI Appendix C - 57 - 92 (1962).

- h. Se fijará la máxima corriente permitida que garan tiza una normal vida esperada al transformador obtenidas de las tablas 92 - 01 - 150 A a la D de ANSI, Appendix C57 - 92 (1962).
- 1. Se seleccionară una de las tablas 92 02 200A a la P de acuerdo a las características de la sub estación y se determinan los límites de los picos de carga en función de la máxima capacidad de pla ca.
- j. Se determinará la corriente y el porcentaje de pérdida de vida máxima, correspondiente a los lí mites de los picos de carga.
- k. Se analizarán todos los datos disponibles de car

 ga de la subestación y se los compara con la co

 rriente máxima permitida que garantiza una normal vida esperada. Si la corriente de carga ana

 lizada es inferior no hay pérdida de vida, si la

 corriente de carga es superior, existirá pérdida

 de vida, y se penalizará dependiendo a que valor

 de corriente corresponde de los determinados en el literal j.

- 1. Se deberá sumar todos los porcentajes de pérdida de vida diaria esperada y dividirlo para el total de datos analizados obteniendo de esta forma un porcentaje de pérdida de vida diaria promedio para todo el tiempo que ha estado trabajando el transformador.
- m. Se multiplicará el porcentaje de pérdida de vida diaria por todos los años de servicio del transformador por el tiempo de vida esperado de 30 años y dividiendo para 100, se obtiene la pér dida de vida en años, debido a sobrecargas duran te el tiempo que ha estado operando.
- n. Por último se deberá estimar el tiempo de vi da que le queda al transformador.

Donde:

T: Tiempo de vida estimada restante a partir de la fecha de evaluación.

T₁: Tiempo de vida esperada en años.

T2: Pérdida de vida por sobrecarga.

A: Años de servicio del transformador

Entonces:

 $T = T_1 - T_2 = A$

En la metodología descrita se ha tomado el tiempo de vida esperada del transformador de potencia - en 30 años de acuerdo a lo determinado por INECEL en el N^2 de Cuentas 0352 - 2 del documento "Vidas $\vec{u}_{\underline{i}}$ les y porcentajes de depreciación para los bienes e instalaciones eléctricas.

En las tablas N^2 10 a 12, se presentan ejemplos de los resultados obtenidos luego de realizar el análisis de pérdida de vida varios transformadores del sistema Guayaquil y en la tabla N^2 13, se presenta — un resumen general de los resultados obtenidos en los que se indica el resto de vida de los transformadores del sistema Guayaquil a partir de — 1.984.

os)	AS (Años)	A (años)	(hor)	(hor)	Entria- miento	(años)	in (amp)	(amp)	amp)	nemp. Amb.°C	(%)	(%)	
85	16	30	8	8	OA/FA	13	694	923	988	30	26	50	

Año que se instaló el transformador

Año de servicio del transformador

Tiempo de vida esperada del transformador

Tiempo de duración del pico

Tiempo de duración del pico para el análisis (ANSI Appendix x C5792(1962)) Tiempo de la información suministrada por EMELEC

Corriente nominal en régimen OA.

Corriente de carga de acuerdo al tipo de enfriamiento del transformador(ANSI Appendix C57-92 (1962)).

Máxima corriente permitida que garantiza una normal vida esperada del trans-

formador.

Promedio de carga antes del pico

Promedio de carga antes del pico para el análisis

C Im x C	Días a Penalizar	Pérdida de vida en - porcentaje no más que
1.19 1098 1.26 1163 1.33 1228 1.40 1292 1.41 1301	1 4	0.25 0.50 1.00 2.00 4.00

Límite del pico de carga en número de veces de la máxima capacidad de carga

Pérdida de vida por sobr carga en años	e servicio	Restos de vi- da a partir de 1.984(años
1	16	13

00	Ass (Associ	I (años)	T (hor)	hor)	nfri <u>a</u> niento	92 (años)	In (amp)	Im amp)	Ir (amp)	CHO.C	(;)	(1)
8	16	30	8	8	OA/PA	13	694	923	988	30	25	50

Año que se istalo el transformador

Año de servicio del transformador

Tiempo de vida esperada del transformador Tiempo de duración del pico

Tiempo de duración del pico para el análisis (ANSI Appendix x

C 5792 (1962) Tiempo de la información suministrada por EMELEC

Corriente nominal en regimen OA

Corriente de carga de acuerdo al tipo de enfriamiento del trans formattor (AMSI Appendix C 57-92 (1962).

Maxima corriente permitida que garantiza una normal vida espera

da del transformador.

Promedio de carga antes del pico Promedio de carga antes del pico para el analists

C Im x C	Dias a Penaliza	Pérdida Pérdida Pérdigardan Pistinas qu
1.19 109 1.26 116 1.33 122 1.40 129 1.41 130	3 4 8 2	0.25 0.50 1.00 2.00 4100

Limite del pico de carga en número de veces de la maxima ca pacidad de carga

Pordida de vida por gobregarga	Ales de servici	Hestos de vida a part tir(1.904)
1	10	13

As (años)	X (años)	T (hor.)	T ₁ (hor)	Enfria- miento.	T ₂ (años)	In (amp)	Im (amp)	Ir (amp)	Temp. amb.°C	P (%)	P ₁
6	30	4	4	OA/FA	2	335	445	503	30	54	50

Año que se instaló el transformador

Año de servicio del transformador

Tiempo de vida esperada del transformador

Tiempo de duración del pico

Tiempo de duración del pico para el análisis(ANSI Appendix C57-92 (1962))

Tiempo de la información suministrada por EMELEC

Corriente nominal en régimen OA.

Corriente de carga de acuerdo al tipo de enfriamiento del transformador (ANSI Appendix C57-92 (1962)).

Máxima corriente permitida que garantiza una normal vida esperada del trans-

formador.

Promedio de carga antes del pico

Promedio de carga antes del pico para el análisis

	С	I _m x C	Dīas a penalizar	Pérdida de vida en - porcentaje no más que:
	1.15	510	19	0.02
	1.17	520	5	0.06
	1.19	530	6	0.08
	1,21	540	10	0.12
115	1.26	560	6	0.18
7.	1.31	583		0.25
	1.38	614	2	0.50
	1.45	645	1	1.00
	1.53	681		2.00
	1.60	712		4.00

ite del pico de carga en número de veces de la máxima capacidad de carga.

Pérdida de vi da por sobre- carga en años	, de	Restos de vida a partir de 1.984 (Años).
2	6	22

SUBESTACION	Año de instalado el transformador	Años de Servicio	Pérdida de vida por s <u>o</u> brecarga(en años)	Resto de vida a par tir de 1984 (años)	
Ceibos I	1966	18	8	4	
Boyacá I	1968	16	1	13	
Guasmo I	1968	16	5	9	
Ceibos II	1970	14	18	0	
Boyacá II	1972	12	17	1	
Boyacá III	1975	9	15	6	
Torre I	1973	11	0.2	18.8	
Pascuales	1976	8	2	20	
Mapasingue	1982	2	0	28	
Atarazana	1976	8	1	21	
Esmeraldas	1980	4	0	26	
Garay I	1980	4	0	26	
Sauces	1977	7	0	23	
Torre II	1979	5	0	25	
Alborada	(INECEL(
Garay II	1981	3	0	27	
Guasmo II	1978	6	2	22	

RESUMEN GENERAL DEL TIEMPO DE VIDA RESTANTE DE LOS TRANSFORMADORES DE REDUCCION DEL SISTEMA GUAYAQUIL A PARTIR DE 1984

00

CAPITULO VI

METODOLOGIA PARA DETERMINAR EL ESTADO DEL SISTEMA DE DISTRIBUCION PRIMARIO

6.1. DESCRIPCION DEL SISTEMA DE DISTRIBUCION PRIMARIO

Para iniciar el estudio del sistema de distribución primario y poder emitir criterios del tipo de sistema, necesitamos revisar la información existente, en especial el plano físico de la ciudad en el que se describa los recorridos de las líneas de distribución primaria, a partir de esta revisión se podrá determinar el número total de alimentadoras que forman el sistema y con ello tener idea del tamaño del sistema de distribución primaria en estudio. En la figura Nº 11, se presenta un esquema de distribución primaria correspondiente a una parte del plano físico del sistema de distribución primaria de la ciudad de Guayaquil.

Con la ayuda de toda la información suministrada en la descripción se deberá incluir entre otras cosas lo s \underline{i}

Si el sistema es aéreo o subterráneo, de ser mixto describir los tramos en que es subterráneo, se deberán determinar - los calibres y longitudes de conductores aéreos y subterráneos, los niveles de voltaje utilizados en el sistema, de existir dos o más niveles de voltajes de terminar el número de alimentadoras totales existentes para cada nivel de voltaje el tipo de poste utilizado, el tipo de conductores de los troncales de alimentadoras, tipos de crucetas, tipos de aisladores, se deberá describir los distintos tipos de equipos de interruptores existentes, etc.

Indudablemente si se realiza una buena descripción del sistema se habrá contribuído en gran forma al objetivo principal que es evaluar el sistema de distribución primaria. El realizar una buena descripción dependerá del tipo de información que se tenga disponible, en el numeral siguiente se enuncia la información que será necesaria para iniciar la evaluación.

6.1.1. Recopilación de la información disponible del sistema de distribución primaria

La información más importante que se deberá di<u>s</u> poner del sistema para evitar retrazos en el estudio serán los siguientes:

a. En primer lugar se deberá disponer del plano físico del sistema en estudio donde se encuen tran marcados los distintos recorridos de las ali mentadoras del sistema primario.

Esta información será de mucha ayuda para la descripción del sistema, para la zonificación en el estudio de sobrecarga de alimentadoras, para la determinación del área de influencia de las alimentadoras, para establecer el tipo de alimentadora que se trate dependiendo - del tipo de abonado servido sea este residencial, comercial, o industrial, etc. En la figura Nº 11, se presenta una parte del plano físico del sistema primario de la ciudad de Guayaquil.

b. El diagrama unifilar del sistema de subtransmisión. Donde se indiquen las distintas sub estaciones y alimentadoras primarios.

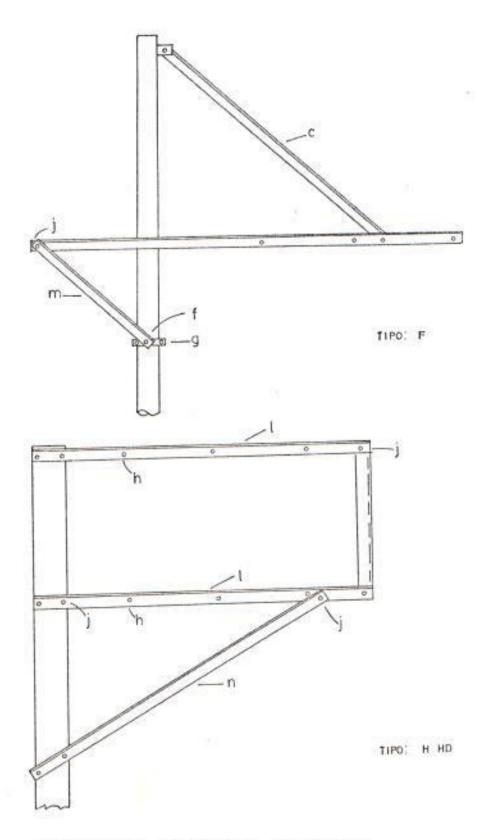
Esta información nos servirá para determinar los niveles de voltaje de las alimentadoras y el número total de alimentadores primarios que emergen por transformador, etc. En la figura № 2, se presenta el diagrama unifilar del sistema - eléctrico de Guayaquil.

c. Se deberá pedir información de las tablas o registros donde se describan por cada tramo de alimentadora las longitudes de los mismos, el número de fases del tramo, los calibres y tipos de los conductores de fase, los calibres y tipos de los conductores de neutro.

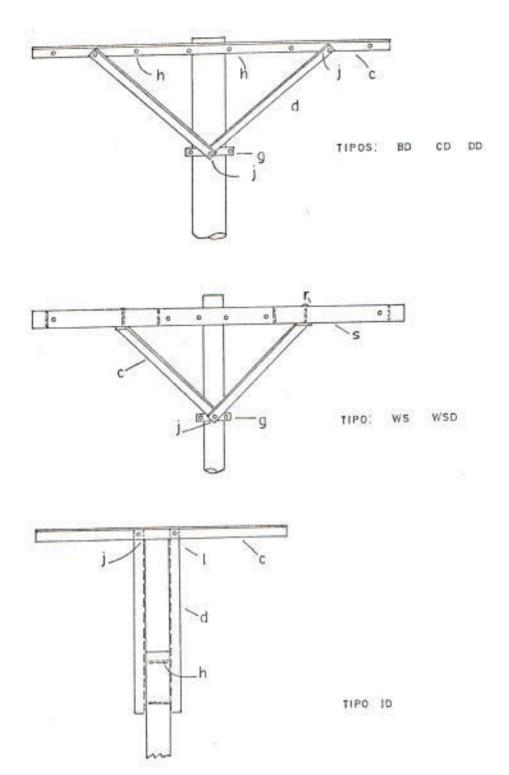
Esta información servirá para poder determinar en la descripción del sistema los calibres,tipos longitudes, etc., de conductores utilizados, también servirá más tarde para conocer los calibres de conductores de troncales que servirán kuego para la determinación de la sobrecarga existente en los conductores. En la tabla Nº14, se presenta un resumen de los calibres y conductores de troncales utilizados en el sistema primario de la ciudad de Guayaquil.

d. Se deberá pedir información de los tipos de interrupciones ocurridos en el sistema desde su instalación.

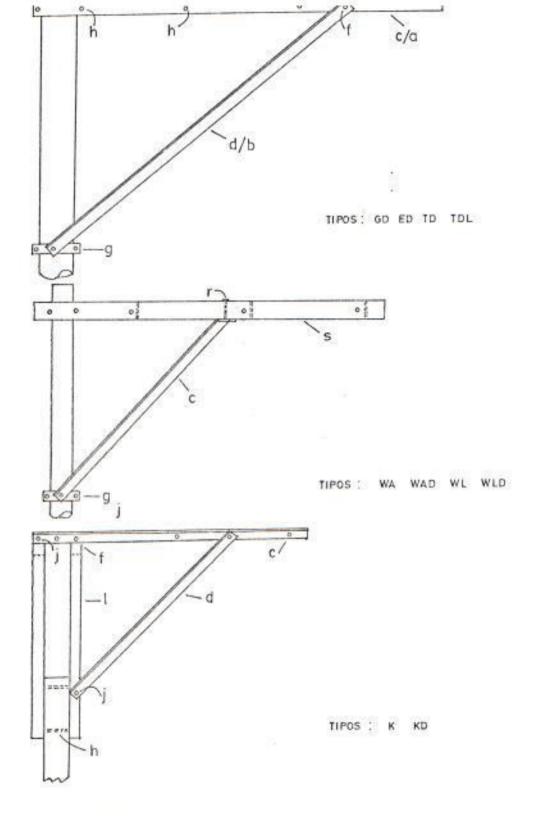
Esta información nos servirá para evaluar la


JODES INCION	Nºº	NOMBRE	(KV)	(m)
Esmeraldas	1 2 3 4 5 6	Av.del Ejército Fco. Segura 4 de noviembre Acacias Antepara Venezuela Tulcán	13.8 13.8 13.8 13.8 13.8 13.8	3800 3290 2930 3070 3155 2685 1970
El Guasmo	8 9 10 11 12	Acerías 25 de julio Guasmo Sur Cuba Floresta	13.8 13.8 13.8 13.8 13.8	3270 5060 3220 4800 5180
Planta de Vapor	13 14 15 16 17 18 19 20 21 22	Portete El Oro Esmeraldas Chile Pedro Carbo Coronel Sur Chimborazo Alfaro Pichincha	13.8 13.8 13.8 13.8 4.16 13.8 4.16 4.16 13.8 4.16	940 2765 4960 2491 2100 5480 2432 3134 1795 2224
Boyacá	23 24 25 26 27 28 29 30 31	Bolívar 9 de Octubre Juan Montalvo Córdova Nueva Boyacá Panamá Rocafuerte Padre Solano Malecón	4.16 4.16 4.16 13.8 13.8 13.8 13.8 13.8	1606 2234 830 1690 1285 1585 1825 2180 3100

RESUMEN DE LOS CALIBRES Y LONGITUDES DE TRONCALES DE LOS CONDUCTORES DEL SISTEMA GUAYAQUIL 144


SUBESTACION	ALIMENTADORA		NI VEL	LONGITUD DE LA
	Nº	NOMBRE	VOLTAJE (KV)	TRONCAL (m)
Mapasingue	60	Mapasingue 1	13.8	2160
	61	Mapasingue 2	13.8	3680
	62	Mapasingue 3	13.8	1300
Los Sauces	63	Sauces 1	13.8	3170
	64	Sauces 2	13.8	1910
	65	Sauces 3	13.8	4130
	66	Sauces 4	13.8	4070
Pascuales	67	Pascuales	13.8	1650
	68	La Toma	13.8	9370

NUMERO TOTAL Y TIPOS DE POSTES UTILIZADOS EN EL SISTEMA DE DISTRIBUCION DE GUAYAQUIL


TIPO DE POSTE LO	NGITUD EN PIES	CANTIDAD TOTAL	
De concreto refor	30	1149	
zado de acero oc-	35	882	
togonales	41	4	
De concreto, r <u>e</u>	30	9399	
forzado de acero-	33	95	
(tubulares redon-	35	8488	
dos).	41	907	
	38	2343	
De concreto, reforz <u>a</u>	25	19	
dos de acero(tipo I)	30'	2383	
De acero (tubulares)	33	2413	
	35		
	41		
	25 hasta 30	67	
De acero (bates antenna)	40	28	
	45	338	
De madera	27	160	
	30	5197	
	40	107	
	50	24	

ESTRUCTURAS ESPECIALES UTILIZADAS EN EL SISTEMA GUAYAQUIL

ESTRUCTURAS CENTRADAS UTILIZADAS EN EL SISTEMA GUAYAQUIL

ESTRUCTURAS VOLADAS UTILIZADAS EN EL SISTEMA GUAYAQUIL

operación y el mantenimiento que se ha tenido de<u>n</u> tro del sistema.

 e. Se solicitară también la fecha aproximada de instalación de las alimentadoras del sistema.

Esta información será muy importante para la determinación del tiempo de vida útil restante del sistema.

- f. Se pedirá información del tipo de interconexión utilizada en el sistema.
- g. Se solicitară un listado del número total de postes instalados a la fecha de estudio, del tipo de poste, así como el número total y tipos de crucetas utilizadas en el sistema. En la tabla Nº 15, se presenta un ejemplo en el que constan el número total y tipos de postes utilizados en el sistema de distribución de Guayaquil. En las figuras Nº 12, 13 y 14, se presentan varios tipos de crucetas utilizados en el sistema Guayaquil.
- h. Se deberá solicitar el Manual de Operaciones actualizado donde conste, los diferentes tipos de equipos de interrupción empleada en cada una de las alimentadoras.

Esta información es muy importante en el análisis del sistema operativo y de transferencia de carga en casos de fallas.

i. Se deberá disponer de los datos de carga por ali mentadora. Esta información se utilizará en el análisis de sobrecarga de las alimentadoras.

6.2. EVALUACION DEL SISTEMA DE DISTRIBUCION PRIMARIA

Para evaluar el estado del sistema de distribución primaria se deben considerar dos aspectos fundamentales que son los resultados que se tengan del recorrido e inspección visual en la que se determina el estado externo de los postes, conductores, aisladores, crucetas, etc., y de los resultados del análisis de sobrecarga de los conductores de las alimentadoras.

El análisis de los registros de mantenimiento nos ayudará a reafirmar y a justificar los resultados obtenidos en la inspección visual.

6.2.1. Recorridos e inspección visual

El recorrido e inspección visual que se deberá rea lizar al sistema tendrá como objetivo principal el detectar las condiciones físicas en que trabaja -

el sistema de distribución primaria, para posterio<u>r</u> mente resumir los resultados y evaluar todo el co<u>n</u> junto.

El recorrido se lo deberá llevar a cabo dentro de la zona de influencia de las alimentadoras del sistema.

Y el alcance que tendrá dependerá del tiempo que se disponga y del tamaño del sistema, entre mayor sea la porción del universo analizado mayor se rá la confiabilidad de los resultados. A continuación bosquearemos una cierta metodología a seguir para realizar un recorrido e inspección - visual de un sistema cualquiera de distribución primaria.

6.2.1.1. METODOLOGIA:

a. En primer lugar se deberá zonificar el sistema en estudio dependiendo del tipo de abonado, ya sean estos residenciales, comerciales, o industriales, En la figura Nº 15, siguiente se muestra un ejem plo de lo mencionado en parrafos an teriores.

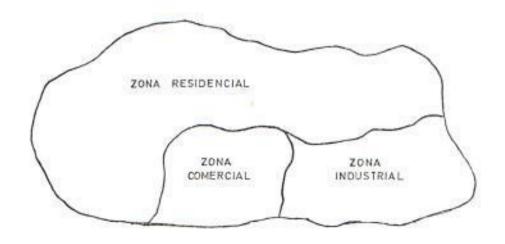


FIGURA Nº 15

ZONIFICACION DEL UNIVERSO DEL SISTEMA DE DISTRIBUCION
PRIMARIO

b. Se deberá determinar el número total de alimentadoras que forman cada una de las zonas. El 100 % corresponde al número total de alimentadoras y estadísticamente queda justificada que con solo analizar el 30 % o más del total de alimentadoras, se puedan emitir un criterio acerca del universo (tipo zona), asegurándose una buena confiabilidad de los resultados obtenidos.

Luego de determinado el número de alimentadora para la inspección, la selección de ellas dependerá de ciertas condiciones como son:
facilidad de movilización, peligros existen
tes para el personal movilizado, costo de
movilización, etc.

- c. Una vez determinadas las rutas para el recorrido, se deberá unificar una cier ta simbología a utilizarse durante la inspección que podría ser por ejemplo la siguiente:
 - Postes de hormigón de 9 metros
 - o Postes de hormigón de 11 metros
 - __ Conductor aéreo
 - ---- Conductor subterráneo
 - _3# Līnea aérea trifásica
 - _____Līnea aērea bifásica
 - _____ Līnea aérea monofásica, etc.
- d. Durante el recorrido se deberá en primer lugar diagramar el recorrido de la Ifnea incluyendo nombre de calles servidas tal como se observa en la siguiente figura №16.
- e. Los diagramas escritos anteriormente deberán ir acompañados de un cierto tipo de ho

110

FIGURA Nº 16. DIAGRAMA DEL RECORRIDO DE UNA ALIMENTADORA PRIMARIA

ja de información donde se indique el estado -

de cada una de los tramos de las alimentadoras más o menos de forma como se indica en la tabla N° 16.

ción visual se puede evaluar luego el esta do físico en que operan los distintos ele mentos de distribución primaria.

6.2.2. Análisis estadístico de carga de las alimentadoras

El análisis estadístico de carga de las alimentado ras se lo puede realizar en forma rápida y precisa de acuerdo al método que se bosqueja a continuación, es por esta razón que se podría determinar la existencia o no de sobrecarga en la mayoría de las alimentadoras en un tiempo relativamente prudente, en el caso de que el sistema sea bastante grande por decir algo, que estuviese constituído por 150 alimentadoras en estos casos se podría determinar una muestra representativa y analizar la sobrecarga existente en esta muestra.

El tipo de trabajo que se tenga que realizar para la <u>de</u> terminación de la sobrecarga dependerá también del tiempo que tenga instalado el sistema en estudio.

		а.	POSTE		Ö	CONDUCTOR	TOR	S.	CRUCETA	AISLA	AISLADORES	OTROS	SO	OBSERVACION
NUMERO	TRAMO	TIPO	ALTURA	TIPO ALTURA CONDIC.FASE N°-	FASE	No.	BANCOE	STA TIPO DO.		ESTADO TIPO	ESTADO	TIPO	ESTADO TIPO ESTADO	
1		HORMI- GON	11 m.	II m. Bueno					. 83	Pin	В	E.	1	,
2		HORMI	11 m.	Bueno					89	Pin	89		•	ı
	1 a 2				m	0	Vormal B	00						·
e		HORMI	11 m.	æ										Se nota un per deterioro en
4		HORMI	11 m.	×								- 1		ses del poste Se alcanza a
	3 a 4				m	0	Normal B			nimit-				hierro del po su base.

TABLA DE INFORMACION DEL ESTADO EXTERNO DE LOS ELEMENTOS DEL SISTEM

DISTRIBUCION PRIMARIA

TABLA #

6.2.2.1. METODOLUGIA:

a. Se deberá recopilar los datos de carga de una alimentadora cualquiera desde su instala ción hasta la fecha de estudio.

112

- b. Se deberá fijar el valor de la operación má xima de la corriente permitida por el conductor por ejemplo utilizando tablas de características de conductores en que se considera 50°C de aumento sobre una temperatura ambien te de 25°C (75°C temperatura del conductor), un factor de emisitividad de 0.5 y una velocidad del viento de 2 pies por segundo (referencia, T y D Westinghouse Electric Corporation, 1964, cuarta edición, página 47).
- c. Se deberá realizar un análisis comparativo de los datos de carga con el valor de corrien te máxima permitida obtenida en el literal b).
- d. Finalmente se elaboran cuadros en los que se indiquen cuales alimentadoras han sido sobrecargadas, y cual a sido el valor de sobrecarga.

6.3. DETERMINACION DEL TIEMPO DE VIDA UTIL RESTANTE DEL SISTE

MA DE DISTRIBUCION PRIMARIA

El sistema de distribución primaria no sólo está constituí do por conductores, sino también por postes, aisladores, tensores, crucetas, etc.

Para la determinación del tiempo de vida restante del sistema de distribución primaria habrá que considerar - cada uno de sus elementos por separados. Con excepción de los conductores el tiempo de vida restante de los componentes del sistema dependerá de la fecha de instalación de los equipos y del tiempo normal de vida esperada de acuerdo a los porcentajes de depreciación anual estimado por índices contables que en nuestro medio es de acuerdo a normas establecidas por INECEL en su información vidas útiles y porcentajes de depreciación para los bienes e instalaciones eléctricas.

A no ser que de la inspección visual realizada se note que un componente cualquiera del sistema se encuentra en un estado - avanzado de deterioro, entonces por inspección visual se deberá determinar su cambio o arreglo.

Para determinar el tiempo de vida restante de los con ductores del sistema de distribución primaria hay que ana lizar tres factores determinantes que son: el análisis de sobrecarga de los conductores, el sobrevoltaje y las estadís ticas de las corrientes de fallas así como el tiempo de dura ción de la misma.

Dependiendo de los resultados que se obtengan de los an<u>á</u>
lisis realizados se podría concluír si los conductores
han sido sometidos o no, a esfuerzos mecánicos superi<u>o</u>
res que los permitidos perdiendo por consiguiente pa<u>r</u>
te de su vida útil estimada.

6.3.1. Metodología

Por no existir normas específicas de comparación de los resultados obtenidos de sobrecarga, sobrevolta je y corrientes de fallas, no se podrá penalizar en los casos de mala operación con una pérdida de vida útil del conductor, por lo tanto a la única con clusión a la que podríamos llegar es a establecer los porcentajes de sobrecarga sobrevoltaje y corrientes de falla que podría haber sido sometido el conductor.

Por no poder comparar y penalizar los resultados obtenidos no podremos bosquejar la metodología técni
ca a seguirse para la determinación del tiempo -

estimar este tiempo sólo desde el punto de vista contable de acuerdo a normas establecidas - por INECEL en su información "Vidas útiles y porcentajes de depreciación para los bienes e instalaciónes eléctricas, y teniendo en cuenta del año aproximado de instalación de las alimentadoras.

En la tabla Nº 1/, se presenta un ejemplo, en él consta el año de instalación y el resto de vida que le restan a varias alimentadoras del sistema primario de Guayaquil a partir del año 1.984.

ALIMENTADORAS	Nivel de Voltaje (KV)	Año aprox <u>i</u> mado de - instalación	Resto de vida a partir de 1984 (Años)
Pichincha	4.16	1952	0
Pedro Carbo	4.16	1952	0
Sur	4.16	1952	0
Chimborazo	4.16	1952	0
Coronel	13.8	1955	0
Portete	13.8	1956	0
Alfaro	13.8	1956	0
El Oro	13.8	1959	0
Esmeraldas	13.8	1960	1
Miraflores	13.8	1966	7
Los Ceibos	13.8	1968	9
Cuba	13.8	1968	9
Acerias	13.8	1968	9
Bolivar	4.16	1968	9
9 de Octubre	4.16	1968	9
Juan Montalvo	4,16	1968	9
Guasmo Sur	13.8	1969	10
Cerro Azul	13.8	1969	10
San Eduardo	13.8	1969	10
25 de Julio	13.8	1970	11
C.J. Arosemena	13.8	1970	11
Urdesa	13.8	1970	11
Panamá	13.8	1972	13
Rocafuerte	13.8	1972	13
Nueva Boyacă Norte	13.8 13.8	1972 1973	13 14

FECHA DE INSTALACION Y TIEMPO DE VIDA RESTANTE

DE LAS ALIMENTADORAS DEL SISTEMA GUAYAQUIL

TABLA # 17

ALIMENTADORAS	Nivel de Voltaje - (KV)	Año aproxim <u>a</u> do de insta- lación.	Resto de vida a partir de 1984 (años).
Córdova	13.8	1973	14
Padre Solano	13.8	1973	14
La Toma	13.8	1975	16
Pascuales	13.8	1975	16
Torre Nº 1	13.8	1976	17
Torre Nº 2	13.8	1976	17
Torre № 3	13.8	1976	17
Mapasingue Nº 1	13.8	1977	18
Mapasingue Nº 2	13.8	1977	18
Mapasingue Nº 3	13.8	1977	18
Atarazana Nº 1	13.8	1978	19
Atarazana Nº 2	13.8	1978	19
Atarazana Nº 3	13.8	1978	19
Lomas	13.8	1979	20
Fco. Segura	13.8	1979	20
4 de Noviembre	13.8	1979	20
Avd. del Ejercito	13.8	1979	20
Torre № 4	13.8	1980	21
Torre № 5	13.8	1980	21
Torre № 6	13.8	1980	21
Acacias	13.8	1980	21
Sauces Nº 1	13.8	1980	21
Sauces Nº 2	13.8	1980	21
Floresta	13.8	1981	22
Hurtado	13.8	1981	22
Aguirre	13.8	1981	22

ALIMENTADORAS	Nivel de Voltaje	Año aproximado de instalación	Resto de vida a partir de 1.984 (Años)
Colón	13.8	1981	22
Sauces Nº 3	13.8	1981	22
Sauces № 4	13.8	1981	22
Alborada	13.8	. 1981	22
Samanes	13.8	1981	22
Tanca Marengo	13.8	1981	22
Chile	13.8	1982	23
El Salado	13.8	1982	23
10 de Agosto	13.8	1982	23
Orellana	13.8	1982	23
Huancavilca	13,8	1982	23

CAPITULO VII

METODOLOGIA PARA EVALUAR EL ESTADO DEL SISTEMA DE DISTRIBUCION SECUNDARIO Y DE ALUMBRADO PUBLICO

7.1. DESCRIPCION DEL SISTEMA DE DISTRIBUCION SECUNDARIO Y DE ALUMBRADO PUBLICO

En primer lugar se deberá definir el área de influencia de la Empresa Eléctrica en estudio, determinar si el sistema de distribución secundario es en forma aérea o subterránea, en el caso de ser mixta se investigará cuales son los tramos subterráneos y cuáles son aéreos . Se realizará un estudio del tipo de materiales que se han venido empleando en el sistema secundario des de su inicio y con que materiales se cuenta a la fecha del estudio, se deberá determinar también el número de circuitos empleados, así como el tipo de circuíto.

Los siguientes pasos a seguir son de mucha importan-

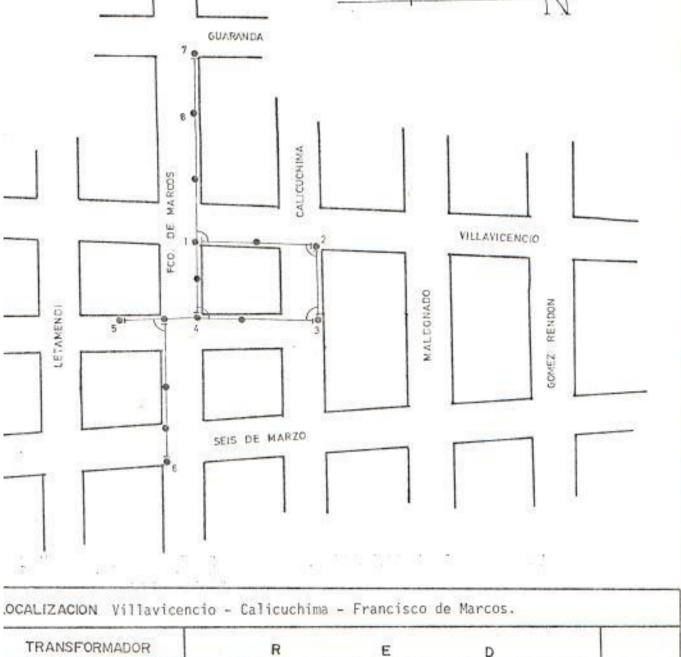
cia para poder tener conocimiento completo del sist<u>e</u>
ma de distribución secundario y alumbrado público.

7.1.1. Recopilación de la información necesaria para el estudio.

El tener una idea clara de que tipo de información es necesaria para realizar el estudio, es un punto positivo que nos ahorra tiempo, molestias y dinero.

A continuación se describirá la información ne cesaria que se deberá disponer al inicio del estudio:

a. Conocer el área de influencia del sistema de distribución secundaria, señalando límites bien definidos como por ejemplo al este del río Guayas, etc.


Esta información podrá ser utilizada cuando se realice la descripción del sistema ,cuando se seleccione el tipo de muestra y
metodología específica de determinación del
estado del sistema de distribución secundario.

b. Se deberá pedir toda la información disponible de los circuitos que forman el sistema de dis tribución secundario.

Esta información nos servirá para determinar el número total de circuitos que forman el sistema, nos ayudará a determinar el tipo de circuitos predominantes ya sea este radial o mallado, aéreo o subterráneo, con la ayuda de estas hojas de circuito se determinará también el número de transformadores por circuito, capa cidades utilizadas, calibres de conductores, tipos de estructuras, tipos de luminarias. En la figura Nº 1/., se presenta un circuíto típico en la que consta el diagrama de su circuíto y sus características técnicas.

c. Se contară también con los datos estadísticos de carga de las alimentadoras primarias, puesto que es practicamente imposible tener datos estadísticos de carga a nivel del secundario.

Esta información nos servirá para determinar si es que los conductores y transformadores del sistema secundario han sido o no sobrecargados, y por ende se podrá determinar si es que el

TRA	NSFORM	ADOR		R		E		D	50.NC 500.50 FEB.00.50 Seven	
KVA	TIPO	NUMERO	TRAF	10	LONG	FASES	CONDUC	TOR	ESTRUCTU	LUMINA-
KYA	1110	NOPERO	de	à	LUNGI	IMSES	Calib.	Tipo	RA.	RIA.
75	CV	987	1	2	75		2#2/0	Al-ais	II	
25	CV	925	I To				N#4	Al-ais		ALLIER CONTRACTOR
25	cv	937					F#2	Al-ais		

BSERVACION:

ARACTERISTICAS TECNICAS DE UN CIRCUITO TIPICO DEL SISTEMA DE DISTRIBUCION SECUNDARIA + 17

sistema pierde vida debido a sobrecargas.

d. Se deberă pedir información acerca del tipo de luminarias utilizadas en las calles, avenidas, ciudadelas, muelles y edificios, monumentos,par ques y particulares así como el número de lumina rias utilizadas, capacidad en vatios, lúmenes, etc.

Esta información nos servirá para determinar si el sistema de alumbrado público es conveniente o no. En la tabla Nº 18, se presenta un resumen general del tipo de luminaria empleadas en el sistema de alumbrado público de la ciudad de Guayaquil.

e. Se deberá contar con los registros de mantenimientos realizados en el sistema.

7.1.2. Metodología a seguir si no se dispone de la información necesaria

Puesto que el objetivo específico de esta tesis es establecer una cierta metodología para determinar el estado de un sistema eléctrico, es muy importante no

		LI.	7 4	DEL SISTEMA DE	is a		ARTE	N	ORM,	NE F	D A	LUMINARIA GUE FORMAN PARTE	LU.	DE	TIPO	AL DEL	GENERAL		RESUMEN	E C		
4	59	113	31	147	9	577	310	70	00	48	98	241	93	29	96	59	68	363	17235	347	2929	TOTAL
-																						
											on .								1583		211	PARTICULARES
2	417	15		92		220	227	133	co	37	0	37	27	23	41			277	317	36	99	PARQUES
4	16	58	25		9	Þ	28					70	28	9	35	2		82	9		2	MONUMENTOS
		40	9	17		303	35	52			20	14	38		20				24	8	. 14	MUELLES Y EDIF.
	12										48	24					54	4	6228	109	362	CIUDADELAS
												54				57			834	123	1902	AVENIDAS
	26					20	20			11		42					14	Section 1	8243	71	382	CALLES
0.0	3 2.0	1.73		0.19	0.36	1.2	2.0	2.92	8.484.75	8.48	27.5	10.5 40.0 27.5	10.5		33.021.6	40.0	3.25	4.75	11.0 6.35	11.0	1.8	LUMENES (x 1000)
20-	952	3-15	R-300R-15040-	251	90	100	150	200	300	500	250- 300	400-	500	0001	15001000	1000	100-	125-	175-	250-	400-	VATIOS
FLUORES- CENTE	FL			ш	×	SCENT	E E	NCAN	I N C		01008	SOI		CUARZO	cni	MULTI		0 1	MERCURI	ERC	2.	GENERAL

ALUMBRADO PUBLICO DE LA CIUDAD DE GUAYAQUIL

perder tiempo en tratar de recopilar cierto tipo de información que a la larga unicamente servirán
para tener un conocimiento exacto de la configuración del sistema, información que no contribuiría mayormente a determinar el estado del sistema.
Lo dicho en las anteriores líneas tendrá su justificación en los siguientes párrafos.

- a. Si la Empresa Eléctrica en estudio no tiene información del literal (a) del numeral 7.1.1.,se deberá realizar un recorrido e inspección visual delineando de esta forma los límites del sis tema secundario.
- b. Si no se tiene la información del literal (b) del numeral 7.1.1., el problema se complica y consecuentemente se incurriría en una pérdida de tiempo y de dinero.

A continuación hablaremos de manera general de cua les son los pasos a seguir para elaborar las hojas de circuíto del sistema de distribución secundario: Una vez marcada la zona de in fluencia del sistema se procederá a zonificar de acuerdo al tipo de abonados sea este residencial, comercial o industrial, tal como se muestra en

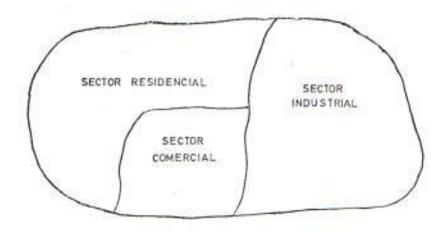


FIGURA № 18. ZONA DE INFLUENCIA DEL SISTEMA DE DISTRIBUCION SECUNDARIA

Se deberá contar con el personal necesario para que subzonifique cada sector, dicho per
sonal deberá realizar una inspección visual de cada una de los circuítos que estén den
tro de la zona o subzona en los que se de
terminará el número de circuítos analizado, se
describirá los nombres de las calles de in
fluencia del circuito en estudio tal como se
muestra en el ejemplo que se presenta a con
tinuación. Ver figura Nº 19.

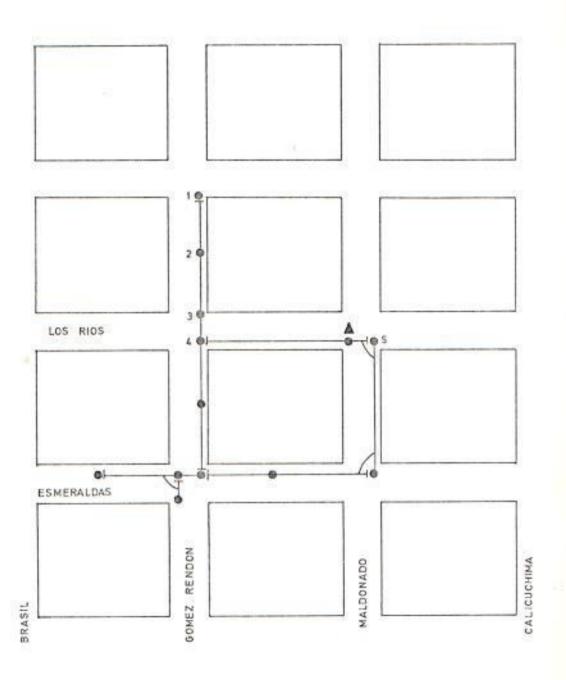


FIGURA Nº 19, DIAGRAMA DE CIRCUITO TIPICO DE UN SISTEMA DE DISTRIBUCION

Se deberá determinar la capacidad del transformador de distribución, el tipo y número de transformador, la longitud y tipo de conductor, tipo de estructura y luminaria utilizadas en cada tramo, además se podría aprovechar para evaluar estado físico de los componentes del sistema tal como se muestra en el ejemplo mostrado en la tabla Nº 19.

La información correspondiente a las tres ultimas - columnas de la tabla Nº 19, son muy importantes para determinar el estado del sistema.

Con este trabajo realizado se pueden dibujar las hojas de circuítos como se muestra en la figura Nº 19.

- c. Si se desconocen los datos estadísticos de cargas de las alimentadoras será imposible determinar si los conductores y transformadores del sistema de distribución secundario ha sido sobrecargado o no. Por lo tanto no se podría determinar si es que hu bo o no pérdida de vida por mala operación.
- d. Si no se tuviese la información del literal b) del

TRAN	TRANSFORMADOR TRAMO	ADOR	TRAN	9	CONDUCTOR		ESTRUCTURA	LUMINARIA	ESTADO DE: LOS - TRANSFORMADORES	ESTADO DE LOS CONDUCTORES	ESTADO DE LOS - POSTES Y ACCESO RIOS.
KVA	TIPO	TIPO Nº-	De	rd	LONG (mt)	LONG.CA- (mt) LIB.			Se encuentra des-	Se encuentra des- Se detectan 3 em-	-
									pintado y mancha-	pintado y mancha- pates en este tra	condiciones. Se
20	CV	987	4	co.	75	-17	I	9	do de aceite.	шо.	alzanzan a ver e
										Ulas	hierro en las t
									10		ses.
н	н	1	н	н	н	н	м	8	4	4	4

HOJAS DE CIRCUITOS Y DE EVALUACION DE LOS COMPONENTES DEL SISTEMA DE DISTRIBUCIO **SECUNDARIO** numeral 7.1.1. se deberá organizar la información obtenida de la inspección visual del sistema tal como se explica en el literal b de este numeral.

7.2. EVALUACION DEL ESTADO DE LA DISTRIBUCION SECUNDARIA Y DE ALUM BRADO PUBLICO

Para evaluar el estado del sistema de distribución secundaria se deberá evaluar previamente el estado de los tres rubros - del sistema que son: los postes o estructuras, los conductores y los transformadores de distribución. La evaluación de los postes o estructuras se los determina por simple inspección visual utilizando la información obtenida en el numeral 7.1.2., literal b. La evaluación del estado de los conductores se lo determinará a partir de dos informaciones que son: la inspección visual y el análisis de sobrecarga de los conductores.

La evaluación de los transformadores de distribución - dependerá de la inspección visual, de la prueba de aceite y aislamiento obtenidas y del análisis estadístico de sobrecarga. La determinación del estado del sistema de alum brado público dependerá de la inspección visual realizada y de las pruebas de niveles de iluminación de las distintas luminarias.

Como se podrá notar el determinar el estado del siste

ma de distribución secundario no es cosa fácil, peor aún sería imposible determinar el estado si se quisiera ha cer el análisis a todo el Universo (todo el sistema de distribución secundario). Es por esta razón que nos vemos obligados a determinar muestras pequeñas pero representativas del universo.

Es a esta muestra, entendiéndose por muestras un conjunto de circuítos que constituyen una porción del sistema secundario total, al que se deberán realizar todas las pruebas descritas anteriormente. Para de esta manera evaluar el estado de los transformadores de distribución, contribuyéndose a la evaluación del sistema secundario.

Cabe indicar que estas muestras son representativas del universo de los transformadores de distribución y de los conductores que conforman dichos circuítos, más no representan el universo de las luminarias de alumbrado público, pero debido a que un circuito cualquiera está formado por un sólo transformador y un gran número de luminarias de alguna manera se podría justificar el utilizar las muestras como representativas de todo el universo del sistema de distribución secundario incluyéndose el sistema de alumbrado público.

7.2.1. Determinación de la muestra representativa de los transformadores del sistema de distribucion secundaria En realidad, en este numeral lo que se desea es encontrar estadísticamente la manera de como simplificar el trabajo que se tiene al realizar las pruebas a los distintos transformadores de distribución de todo el sistema. Imagínese usted que para determinar el esta do del aceite y del aistamiento partes básicas de los transformadores de distribución del sistema Guayaquil por ejemplo se tuviera que hacer pruebas a todos los 12000 transformadores aproximadamente que forman el sistema Guayaquil, sería un trabajo que solamente an costos abarcaría aproximadamente el 30 % de costo to tal del proyecto, a más de la buena cantidad de tiempo que se perdería.

Es por esta razón que se deberá recurrir a las estadísticas para seleccionar muestras que sean representativas del estado de todo el Universo de los transformadores de distribución. A continuación mos traremos una metodología para obtener la muestra de los transformadores de distribución.

7.2.1.1. METODOLOGIA:

a. Para determinar el número de transforma dores que forman la muestra se podría utilizar el teorema del límite central que establece que bajo las condiciones

muy generales la distribución de la suma de un gran número de variables alea torias independientes es idéntica, es decir todos tienen la misma función de probabilidad en el caso discreto o fun ción de densidad en el caso continuo tiene media u v varianza o desviación tí pica α. En el caso de discusión se pue de utilizar variables aleatorias independientes que tengan una misma función den sidad y V grados de libertad o sea la dis tribución t de stundent o simplemente distribución t, lo que establece que si v es grande (V > 30) la gráfica de función t se aproxima a la curva de distribución normal.

De acuerdo a dicho teorema se tiene:

$$\frac{x - \mu}{\sigma / \sqrt{n}} = N(0,1)$$

N(0,1) es la distribución normal del univer so, con medio cero y varianza 1.

n es el número de la muestra.

μ es la media de la población.

x es la media de la muestra.

- α es la desviación típica de la población.
- Z nivel de confianza que podría ser del 1.615 para una confiabilidad del 90%.

Si:
$$\frac{X - u}{\alpha / \sqrt{n}} \approx N(0.1)$$
 con probabilidad (1- α)

$$-Z_{\alpha/2} \le \frac{x-u}{\alpha/\sqrt{n}} \le Z_{\alpha/2}$$

de donde el error = E =
$$|X-u| \le \frac{Z_{\alpha/2} \cdot \alpha}{\sqrt{n}}$$
(1)

Utilizando la desigualdad (1) encontrar<u>e</u>
mos que el tamaño mínimo de la muestra a
tomarse es:

$$n = \frac{(Z_{\alpha/2})^2 \alpha^2}{E^2}$$

(1+ α) en porcentaje es la confiabilidad de la afirmación que garantiza úna con confiabilidad del 90 %.

b. Una vez determinado el número de transformadores que deben formar la muestra, el siguiente paso es determinar cuales deben ser estos transformadores a continuación -

mostraremos dos formas posibles de realizar el trabajo:

- b.1. Para determinar los transformadores componentes de la muestra se podría
 correr un programa de computadora
 que generen una cierta cantidad de
 números aleatorios por ejemplo: S1
 el número total de transformadores
 fuesen 2000 unidades y el tamaño
 de la muestra hubiera resultado 60
 transformadores se podría generar
 por ejemplo 200 transformadores de las cuales se seleccionará los 60
 dependiendo a que tipo de sector co
 rrespondan sean estos de cualquie
 ra de las distintas áreas residen
 ciales, comerciales o industriales.
- b.2. Otra forma de realizar la selección sería no corriendo ningún programa sino seleccionar los transformadores de las zonas bien definidas que son las zonas residenciales, comerciales e industriales, lográndose de esta manera conocer el estado de los transformadores en las distintas zonas de carga.

7.2.2. Métodos de análisis de las estadísticas de carga de los transformadores de distribución

Para establecer si los transformadores de distribución han sido sobrecargados o no, no existe un método directo de análisis puesto que no se tie ne los datos estadísticos de carga a nivel del secundario, el método que bosquejaré a continuación es un método aproximado para determinar la sobrecarga de los transformadores de distribución que se encuentran alimentados por una alimentadora de 13.8 KV en particular. Por ejemplo:

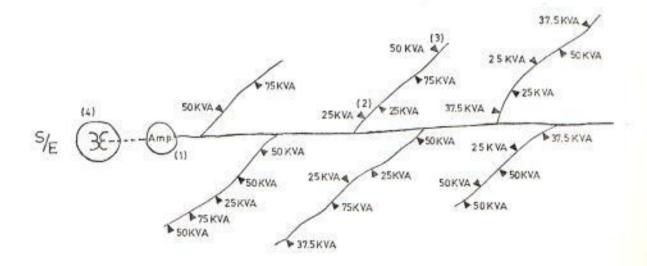


FIGURA Nº 17.

Con el ejemplo trataremos de resumir el método empleado supongamos que tenemos la subestación Nº 4 y de ella sale la alimentadora Nº 1, de esta alimentadora se encuentran energizados todas los ramales Nº 2 y los transformadores Nº 3, lo que se quiere es determinar si los transformadores de distribución han sido sobrecargados o no y puesto que en la mayoría de los casos conocemos sólo los datos de carga a la sa
lida de la alimentadora entonces el método lo que hace es tomar como un sólo transformador
trifásico el conjunto de transformadores de distribución conectados a la alimentadora, es decir
tendremos simulado un transformador trifásico de
1125 KVA y luego se procede de acuerdo a la metodología
siguiente:

7.2.2.1. METODOLOGIA:

- a. De acuerdo al tiempo que se disponga y a
 los datos de carga disponibles, seleccio
 nase el mayor número de alimentadoras pri
 marias seleccionándolas de acuerdo al ti
 po de servicio que prestan es decir re
 sidenciales, comerciales e industriales.
- b. Determinar la capacidad y cantidad to tal de los transformadores de distribución conectados a cada una de las alimenta doras seleccionadas.
- c. Considérese los KVA total instalados en

cada alimentadora como un solo transfor mador trifásico con enfriamiento tipo OA.

- d. Con los datos estadísticos de carga de cada alimentadora determínese las ca racterísticas de carga diaria típica en MVA.
- e. Transfórmese la característica de car ga diaria en otro equivalente de geometría rectángular, tal como está expresado en Ansi Appendix C 57, 91 (1974),ar tículo 5.6 a fin de determinar la carga promedio del pico, el pico de carga y la duración del pico.
 - f. Estímese una temperatura ambiente prome dio de trabajo que podría ser 30°C.
 - g. Determinese la capacidad máxima de carga de los transformadores de dis tribución para la cual se garantiza una normal vida esperada de acuerdo a las tablas 2a, 2b, 2c, de Ansi, Appendix C 57.91 (1974) artículo 31.23.
 - h. Analice los datos de carga de los alimen

tadoras y compárelos con el valor máximo permitido de sobrecarga y dependiendo de
esta comparación penalícelo de acuerdo al
numeral 5.2.2.1.1. de esta tesis.

La tabla de penalización utilizadas están dadas a partir de la tabla Nº 4 a la 4c, de Ansi Appendix C 57.91 1974, artículo 31.

23. En la tabla Nº 20 a la Nº 22, se pre sentan ejemplos de los resultados obtenidos del análisis de sobrecarga de los transformadores de distribución conectadas a varias alimentadoras del sistema Guayaquil.

7.2.3. <u>Tipos de pruebas a realizarse a los transformadores de</u> distribución

Una vez seleccionado los transformadores que forman parte de la muestra, se deberá realizar a estos
transformadores tres tipos de pruebas básicas que
son: las pruebas del dieléctrico del aceite, la
prueba de Megger y la prueba de carga.

a. Prueba del dieléctrico del aceite:

Para las pruebas dieléctricas del aceite se deberán -

C KVA)	X (AñOS)	T (hr)	(hr)	T2 (AñOS)	In (AMP)	Ir (AMP)	T _A (°C)	p (%)	(%)
111.5	25	6	8	4	130	166	30	50	30

c: Capacidad instalada de transformadores de distribución

X: Tiempo de vida esperada de los transformadores de distribucion

T: Tiempo de dureción del pico.

T1: Tiempo de duración del pico para el análisis. (ANSI Apendice C57.9)1974.

T2: Tiempo de la información suministrada por EMELEC.

In: Corriente nominal en régimen

Ir: Máxima corriente permitida que garantiza una normal vida esperada del transformador.

P: Promedio de carga antes del pico en porcentaje del rango de placa.

P1: Promedio de carga antes del pico para el análisis.

TA: Temperatura ambiente promedio.

(1)	In x (1)	Días a penalizar	Pérdida de vida en porcent.	(2)
1.49	194	10	0.05	
1.57	204	7	0.05 0.10 0.50	
1.77	230	20	0.50	
1.87	243	1175-	1.00	

- (1): Límite del pico de carga en número de veces de la máxima capac<u>i</u>
 dad de carga.
- (2): Pérdida de vida por sobrecarga en años de los transformadores de distribución instalados en la alimentadora.

SULTADO DEL ANALISIS DE SOBRECARGA A LOS TRANSFORMA_ RES CONECTADOS A LA ALIMENTADORA SAUCE II

C (KVA)	X (AñOS)	T (hr)	(hr)	T2 (AÑOS)	In (AMP.)	Ir (AMP.)	T _A (° C)	P (%)	P1 (%)
10713,5	25	8	8	4	448	560	30	60	75

C: Capacidad instalada de transformadores de distribución

X: Tiempo de vida esperada de los transformadores de distribución

T: Tiempo de duración del pico.

T1: Tiempo de duración del pico para el análisis.(ANSI Apendix C 57.9)1984)

T2: Tiempo de la información suministrada por EMELEC

In: Corriente nominal en régimen.

Ir: Máxima corriente permitida que garantiza una normal vida esperada del transformador.

P: Promedio de carga antes del pico en porcentaje del rango de placa.

P1: Promedio de carga antes del pico para el análisis.

 T_{Λ} : Temperatura ambiente promedio

(2)	Pérdida de vida en porcent.	Días a Penalizar	In x (1)	(1)
	0.05		641	1.43
	0.10		672	1.50
0	0.50		748	1.67
	1.00	1	788	1.76

- Limite del pico de carga en número de veces de la máxima capacidad de carga.
- (2): Pérdida de vida por sobrecarga en años de los transformadores de distribución instalados en la alimentadora.

ORES CONECTADOS A LA ALIMENTADORA ATARAZANA III

С	Х	Т	T1	T2	In	Ir	TA	Р	P1
(VA)	(ANOS)	(hr)	(hr)	(AñOS)	(AMP.)	(AMP)	(°C)	(%)	(%)
1355	25	3	4	5	182	273	30	50	50

Capacidad instalada de transformadores de distribución

(: Tiempo de vida esperada de los transformadores de distribución

Tiempo de duración del pico.

Tiempo de duración del pico para el análisis. (ANSI Appendix C57.9,1974).

Tiempo de la información suministrada por EMELEC.

In: Corriente nominal en régimen

Ir: Máxima corriente permitida que garantiza una normal vida esperada del transformador.

Promedio de carga antes del pico en porcentaje del rango de placa

Promedio de carga antes del pico para el análisis

 Γ_{Δ} : Temperatura ambiente promedio.

(1)	In x (1)	Días a Penalizar	Pérdida de vida en porcent.	(2)
1.70	306	7	0.05	
1.77	322	7	0.10	
1.97	358	4	0.50	1
2.06	375	1	1.00	

 Límite del pico de carga en número de veces de la máxima capacidad de carga.

(2): Pérdida de vida por sobrecarga en años de los transformadores de dis tribución instalados en la alimentadora.

DRES CONECTADOS A LA ALIMENTADORA TORRE # 4

tomar muestras del aceite de cada uno de los transformadores y luego comparar resultados con el valor mínimo permitido recomendados por nome mas establecidas en ASTM - D - 877 que es de 30 Kv, si algunos de los transformadores en la prueba dieléctrica realizada arroja un valor menor a 16.5 Kv se recomienda a más del cambio de - aceite un secado del tanque del transformador. En la tabla Nº 23, se presenta un ejemplo de los resultados obtenidos de las pruebas de aceite y aislamiento a varios transformadores de distribución.

b. Prueba Megger:

Se deberán también realizar pruebas de la resistencia de aislamiento y luego comparar los resultados de acuerdo a normas establecidas por el IEEE Standard Guide, artículo 9.3, que recomiendan como valor mínimo de resistencia de aislamiento para máquinas eléctricas el obtenido a partir de la siguiente fórmula Rm = Kv + 1.

Donde: Rm = minimo valor de resistencia de aislamiento en megaohmios a 40 C.

Kv = voltaje nominal en kilovoltios.

Nº	Aislamiento (M Ω)	del aislamiento (KV + I)	ca del aceite	del voltaje KV	
T-3306	400	1,250	40	30	
T- 922	400	1,250	40	30	
T-4793	400	1,250	40	30	
T-5274	400	1,234	15	30	
T-3329	400	1,240	30	30	
T-1355	400	1,250	35	30	
1-3283	400	1,250	40	30	
U-70	400	1,244	25	30	
T-3544	400	1,230	26	30	
T-5383	400	1,220	40	30	
T-1704	400	1,256	40	30	
T-1960	10	1,243	20	30	
T-1441	400	1,230	25	30	
T-4053	400	1,240	35	30	
T-2190 400		1,240	32	30	
T-4378	400	1,240	40	30	
T-685	400	1,250	40	30	
T-3269	400	1,240	32	30	
T-1707	400	1,240	40	30	
T-3096	200	1,250	25	30	
T-4828	400	1,240	40	30	
T-1349	400	1,240	40	30	

RESULTADO DE PRUEBAS DE ACEITE Y AISLAMIENTO A VARIOS
TRANSFORMADORES DE DISTRIBUCION
TABLA # 23

Este método de comparación resulta riesgoso con los transformadores de distribución, a continuación presentaré un criterio más conservador obtenido por la experiencia de muchos años de trabajo del personal de la Empresa Eléctrica de Guayaquil y que consiste en utilizar 50 MΩ como valor comparativo para determinar el estado de la resistencia de aislamiento de los devanados de los transformadores. En la tabla Nº 23, se presentan resultados de pruebas de aceite y aislamiento a varios transformadores de distribución.

c. Pruebas de carga:

Este tipo de pruebas se la realiza con el objeto de establecer el estado de carga de los transformadores a la fecha de estudio, datos que servirán de complemento para determinar si los transformadores están sobrecargados o no.

1.2.4. Inspección visual

La inspección visual consiste en realizar un recorrido por el sistema de tal forma de poder establecer un criterio acerca del estado externo en que se encuen tran los postes o estructuras, conductores, aisladores, etc.

Sirve también para determinar si existe o no gran cantidad de empates en los conductores secundarios si es que los transformadores presentan man chas de aceite o no, si necesitan un tratamiento de pintura por presencia de óxido, si las luminarias están destruídas o no, etc. En definitiva, la inspección visual será la parte fundamental para evaluar el estado de los postes, parte principal para evaluar el estado de los conductores y luminarias y será parte secundaria para evaluar el estado de los transformadores de distribución.

7.3. DETERMINACION DEL TIEMPO DE VIDA RESTANTE DEL SISTEMA DE DIS TRIBUCION SECUNDARIA Y DE ALUMBRADO PUBLICO

Una vez evaluado el estado de las partes constituívas del sistema se deberá determinar el tiempo de vida útil que le resta al sistema de distribución secundario y de alumbrado $p\underline{u}$ blico.

Determinar el tiempo de vida que le resta al sistema de alumbrado público realmente es impredecible puesto que por ejemplo al quemarse el foco de la luminaria, al ser cambiado por uno nuevo, es como si recién la luminaria haya sido instalada por lo tanto no habría forma de determi-

nar el tiempo de vida restante del sistema de alumbrado público y lo único que restaría decir de acuerdo a la inspección visual realizada es que por ejemplo el sistema de alumbrado público se encuentra en buenas condiciones, que le falta o no un buen mantenimiento, etc.

El determinar el tiempo de vida que le resta al sistema de dis tribución secundaria también resulta imposible de determinar puesto que con respecto a los postes y conductores de - acuerdo a la inspección visual lo único que podríamos con cluir es el estado físico externo en que se encuentran.

Del único elemento al que podríamos atrevernos a predecir el tiempo de vida restante es el transformador de distribución y esto en un porcentaje sólo aproximado.

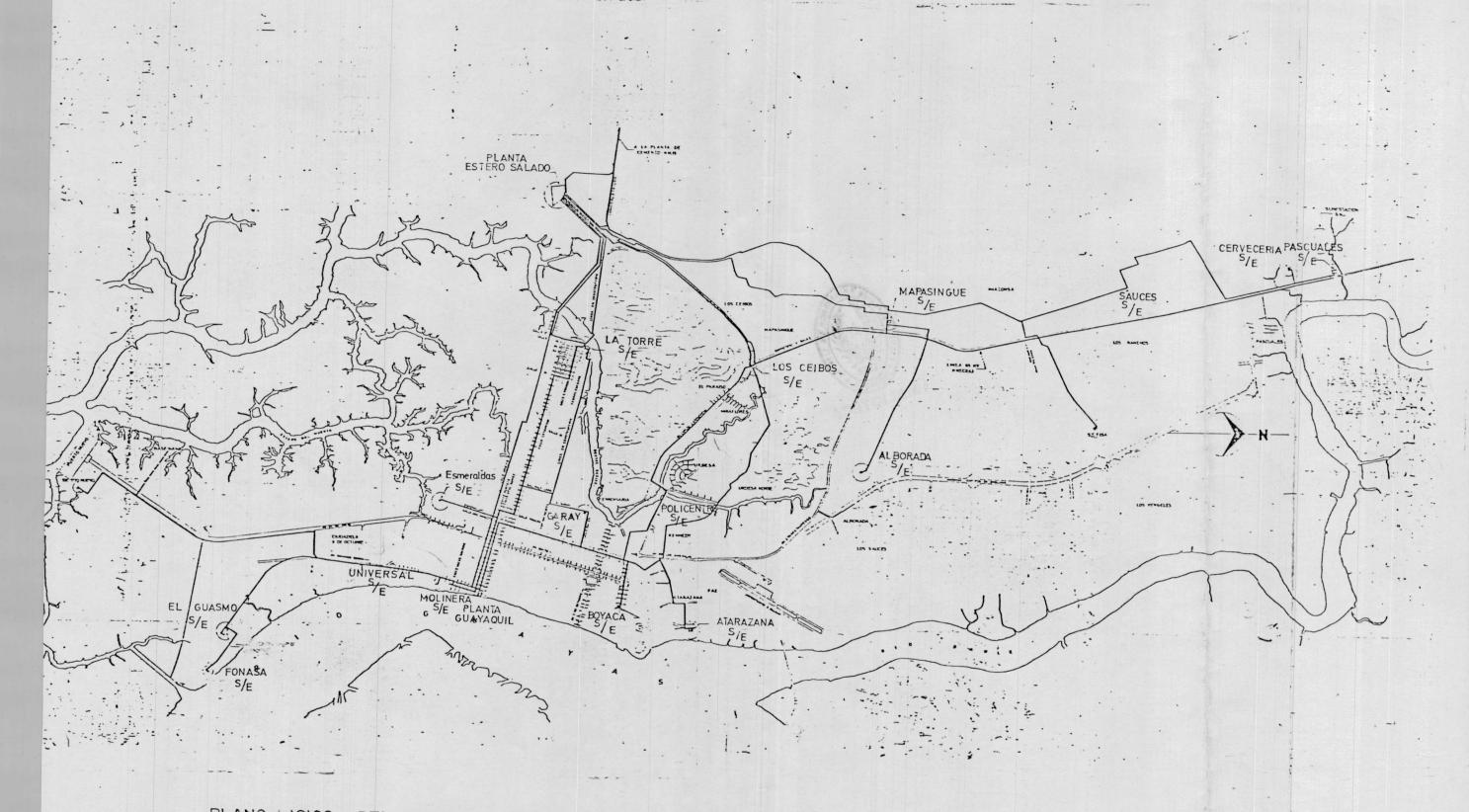
En el numeral 7.2.2.1., se estableció una cierta metodología para determinar la pérdida de vida de los transformadores de distribución debido a sobrecargas, en el siguiente ejemplo aclaramos lo dicho; asumamos que en un sistema de distribución secundario cualquiera existen - 10000 transformadores de distribución y de acuerdo a la metodología explicada en el numeral /.2.2.1., se encuentran que 800 transformadores han pérdido 4 años de vida útil debido a la sobrecarga, y como es prácticamente imposible el poder determinar la fecha de instalación exacta de los

transformadores que han pérdido vida, lo único que podíamos concluír es que en el sistema el 8 % del total de distribución pierden 4 años de vida debido a sobrecarga.

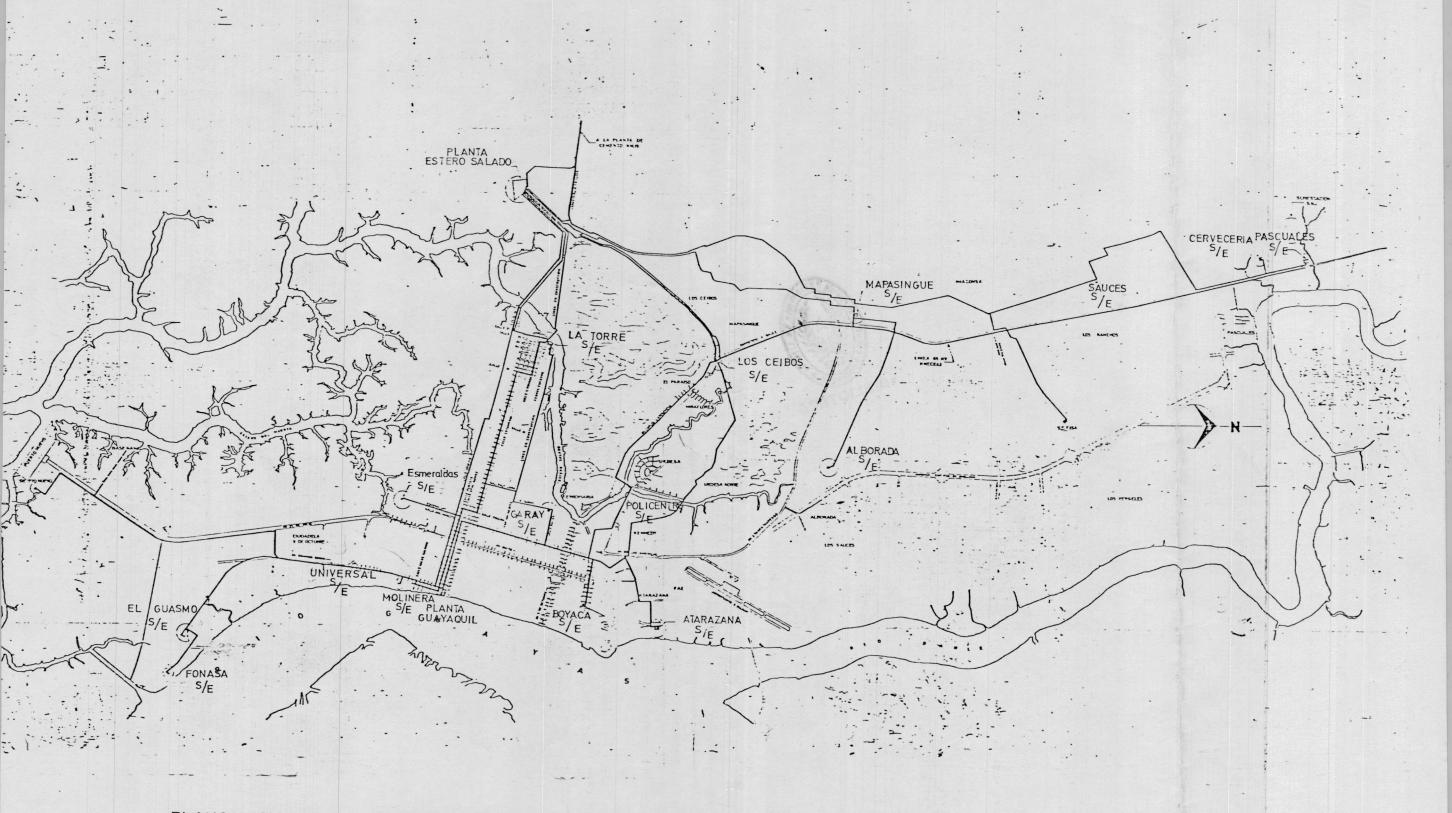
CONCLUSIONES Y RECOMENDACIONES

Este estudio no pretende ofrecer un esquema completo de los procedimientos y detalles que podrían sucederse en un estudio de evaluación de un sistema eléctrico, ni se espera preveer to das las situaciones que puedan presentarse en un estudio de gran magnitud y responsabilidad. Su objetivo es proporcionarnos una mayor comprensión de la forma que con procedimientos prácticos, técnicos y económicos nos puedan ayudar a iniciar y realizar más eficazmente un estudio de evaluación de un sistema eléctrico de potencia.

En cada una de los capítulos de Evaluación, se ha enfatizado más en aquellos componentes que económicamente y tecnicamente son de mayor importancia dentro del sistema, pero se recomienda concluír de manera general sobre el estado externo en que se encuentran todos los demás equipos auxiliares que forman parte de un sistema eléctrico de potencia.


Evaluar un sistema eléctrico de potencia no es un estudio

sencillo, se necesita de mucha experiencia, capacidad y dedicación. Es por esta razón que se recomienda al personal técnico que se vaya a hacer cargo de un estudio de esta naturaleza que se capacite con anticipación y conozca los procedimientos y pormenores que se van a presentar a lo largo del estudio.


Teniendo en cuenta estas premisas se puede realizar entonces con la debida anticipación una programación de tiempo y cos
to para cada uno de las etapas de estudio. De esta ma
nera se cumplirá con los plazos fijados evitándose así
molestias, retrazos, y pérdida de dinero.

BIBLIOGRAFIA

- T y D WESTINGHOUSE ELECTRIC CORPORATION, 1964 CUARTA EDICION , PAGINA 47.
- DISTRIBUTION SYSTEMS BY ELECTRIC UTILITY ENGINEERS OD THE --WESTINGHOUSE ELECTRIC CORPORATION, EAST PITTSBURGH PA, FIRST EDITION.
- THE ALUMINUN ASSOCIATION, ELECTRICAL CONDUCTOR HANBOOK, THE ALUMINUN ASSOCIATION, NEW YORK, 1971, 7 p a 38 p.
- 4. INFORMACION DE INECEL "VIDAS UTILES Y PORCENTAJES DE DEPRECIA CION PARA LOS BIENES E INSTALACIONES ELECTRICAS.
- 5. IEEE STANDARD GUIDE FOR TESTING INSULATION RESISTENCE OF FLECTRICAL MACHINARY 9.3.
- 6. ANSI APPENDIX 57 92 ARTICULO 92 05 500
- ANSI APPENDIX C 57 92 (1974).
- ANSI APPENDIX C 57 92 (1962)
- 9. NORMAS ASTM D 877 64 Y ASTM D 1816 60 T
- 10. THE ECONOMICS OF POWER PLANT LIFE EXTENSION BY HARRY H. HEIGES AND HARRY G. STOLL.

PLANO I ISICO DEL SISTEMA DE SUBTRANSMISION DE LA CIUDAD DE GUAYAQUIL

PLANO I ISICO DEL SISTEMA DE SUBTRANSMISION DE LA CIUDAD DE GUAYAQUIL