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INTRODUCTION

The problem of calculating thé Pressure and saturation distribution
in a reservoir is of considerable importance in a simulation of a reser-
voir performance.

Water is injected at a well into a zone saturated primarily with oil.
A watered-out zone develops around the injection well where high water
saturation prevails. Farther away from the well, a transition zone is
created where both fluids have a significant mobility, this "front",
moves toward the producing well in responée to the injection rate. Ahead
of the front, the fluid moving is mainly oil being pushed by the water,

The Buckley-Leverett ﬁechnique is known to solve this immiscible
fluid displacement problem. Finite difference is also a common appreach
to solve the differential equations that describe the process. This thesis
presents and examines results obtained by the application of Galerkin's
method to one~dimensional, two-phase fluid flow in porous media. The
approximation obtained by using Galerkin's method has been proven to be
theoretically and numerically superior to the usual approximation by

(3)

finite differences. The application of the technique studied in this

thesis may also be used for multiphase, multidimensional flow.

Convergence of the discrete numerical solution is shown for press
and saturation as well as the gradients. Cubic piecewise~-polynomial
approximations are used in the model and oil and water relative permeamﬁﬁﬁﬁfﬁfﬂ‘
ZRI LRSS R TS TR

bilities are written as quadratic functions of water saturation. ESTOL




THE MATHEMATICAL MODEL

The flow of fluids through a porous media obeys Darcy's law, which
states that the velocity in barrels per day per square foot of a homo-

geneous fluid is proportional to the fluid viscosity(l’z)

_ Kk
v = =1,127 —;m-(VP + pVZ) {1.1)

In this equation¥*, kkf, the effective permeability, is the constant of
proportionality expressed in Darcy units;pthe driving force, (VP + pvZ}
in psi/ft, and u the fluid viscosity in centipoises.

In the quantity (VP + pVZ), the term pVZ, is the contribution of
gravity forces which is neglected in this study, such that, the driving
force is VP. With the above assumption, for the case of linear flow,

equation (1.1) can be writtem as follows

Kk, op

v = =1.127 —;—-ax (1.2)

If oil and water are moving in the system, the last equation can be written

for each phase to get:

klk
- __To 9P
v, = -1.127 Sorw g2 E3Esl
w Hy OX woareca e (19

ESPOL
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Definitions and symbols are given in APPENDIX A.




where the subscript "o refers to oil and "w" to water. In this study
the pressure in the oil and water zone is comsidered the same, that is,
the capillary forces are assumed negligible and are not included.

The continuity condition for each phase is given by

A S (1.5)
3x 5,615 3¢t '
v as

- _ b W
5% 5.615 Ot (1.6)

where the constant 5.615 appears as a result of the field units used.
After substitution of equation (1.3) into (1.5), the basic equation
that describes the linear flow of oil in a porous media is obtained:
kk SSO

2 ro 3P

3x u,  9x T 6.328 3t (1.7

and similarly for the water phase

o Frwpr | s

9% T 6.328 5t BIBLIOTECA FIC
v ESPOL

If only odil and water are saturating the pores of the rock, we can

(1.8)

say

8 +8 =1 (1.9

such that

o _ w= 35 (1.10)
It ot ot




Therefore the equations that describe the mathematical model are:

¢ 1
2 o 9By _ . _9% 38 ) (1.11)
ox [u, ox 6.328 ot | .
: : 7
o9x | . ox 6.328 3t i -
\ W J /

Initial and Boundary Conditions

There are several conditions that can be imposed to the model and
after some study the following were selected.

Boundary Conditions:

1. The water injection rate is constané. From Darcy's law,
this condition leads to a constant pressure gradient at
the inlet edge of the system.

2. The pressure at the producing face of the model is held
constant at the initial value Pi' |

3. The injection face is considered to be flooded instantan-—
eously; that is, the oil saturation on that face is the
residual oil saturation.

4. The saturation gradient,%g‘, at x = 0 is kept at zero.

Initial Conditions:

1. The pressure along the model is initially Pi’ a constant.

2. The existent water is initially at its irreducible value
S

L
Wl

as follows:

Qin = constant or :
RIBUHTEEA HE
FEPOL




q. U
- in w
1.127 kA k
rw

3 [r(o,t)]=
ox
=0

S{o,t) = 1 - SOr -

3 [s,0)] =o
ax

P(x,0) = Pi

S{x,0) = Swi
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GALERKIN METHOD OF SOLUTION

For the sake of completeness, let us write the mathematical state-
ment of the problem in the following way:

Solve

Xk .
w 9 |__To 3P % 35 _
L, (,5) = 32 u ox| V63289 ° (2.1)
\ J
¢ 3
kk
=2 |xw3P| ¢ _3S _
L, (®,5) = o2 W, 0S| 6.328 ot 0 (2.2)

subject to the boundary and initial conditions stated in (1.13). The
solution of these nonlinear partial parabolic differential equations is
' ) (3,4)
to be found by Galerkin method.
Let T denote the class of all real valued piecewise continuously
differentiable functions in space on the region R{(x,t)/O<x<L}. Let T
be a p-dimensional subspace of T spanned by the p basis functions wk(x),

k=1 to p. In the region R we seek a solution to equations (2.1) and

{(2.2) of the form

, |
P¥ =3 A (t) w (x) (2.3
L
p -
s#o= k0 RO 5 WRITIECAAE (2.4)

SO

where the coefficients Ak and B, are determined by the conditions that

k
Ll(P*,S*) and LZCP*,S*) each be orthogonal to Tp for all wvalues of

t > 0, and that P* and 5% satisfy the boundary conditions,




L
J Ll(P*,S*) wj(x) dx = 0 (2.5)
o

L
j Lz(p*,s*) wi(x) dx = 0 (2.6)
[¢]

Using equations (2.1) and (2.2) we have

L, (kk " *|
3 To dP ¢ 38 _
J 'a‘x'[ n. Bx| T6.328 ac| Vi® dx=0 @.7
[») _ o J _
L[, [kk " o]
3 | rw 9P ¢ 98 _
Jo = [ i ox |~ 6.398 ot | i(x) dx =0 2.8)
. / -

for =1, 2, 3,..., p

After straightforward integration by parts

L
kk e L kk * .
[_rgﬂ_qw_(x)} _J roaiwj;(x) ix
|

Ko ax o uo ax
o

L
¢ 95* 3
+ €378 JO T Wj (x) d= =0 (2.9)

L
kkrw ap* L kkrw P*
"ES_X_Wj(X) -J -{r—_-a— w_ (x) dx
W w x |

o (Mes*w () dx =0
6.328 at J

0

for 3 =1, 2, 3, «.a, P

In these last two equations we have:

BIBLIBTECA FIO,
ap* *2’ A ERE

ox k

k=1
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§
B, w.
ox k=1 k'k

p
o Z Vi
TR "

i

P
= ) B'w (2.11)
9t L Kk

Substitution of equations (2.11) into (2.9) and (2.10) gives:
k'kro E ' - JL kkro E 1
_ro whlwel - w, (whldx
uo k=1 Ak kjd o ol Ho k=1 Ak k|™J

L
+—LJ [[§ B'w. }w. dx = 0 (2.12)
0

and

) AIBLIGTECA FIE
L P FePOL
- _6.%2? JO kzl Bl'cwk]wj_ dx = 0 (2.13)

for j = 1, 2, 3, .o, D
(5)

Smooth bi-cubic basis functions have been used to solve the problem
and their definitions and graphs are given in appendix B. ®Note that
the first term of equations (2.12) and (2.13) has a value other than
zero only for j = 1 and j = p; otherwise they vanish due to the defini-

tion of the basis functions.

Let n be the number of intervals in which the length L of the




L

9

model is divided, such that 4x = l then equations (2.12) and (2.13),

each one constitutes a:set of 2n + 2 equations to be solved simultan-

eously. These equations can be written in matrix notation as follows

a5

CA+D ac - G
—_ dg_—
EA 4+ F i - H

Structure of the Matrices

(2.14)

(2.15)

The elements of every one of the matrices are known from the eval-

uation of the integrals which will be later discussed.

Before taking

into consideration any of the boundary conditions, the structure of

matrices C, D, E and F is as follows

] [r1]

2] [52] [r2]
[L3] [93] [r3]
[tn] [n] [Ra]
O [L@+1)] [T@tD)]

BIELIOTECA FLT
ESFOL

This is a square block tridiagonal matrix and every row is the

result of writing equations (2.12) and (2.13) at a grid point.

Each of

the L's, J's and R's is a two by two matrix. The L matrices are made up

,th . . .
by the coupling of the coefficients at the i grid point with those at

the (i—l)th point. The J matrices result from the coupling of the co-

th ..
efficients at the i point with themselves, and similarly, the R mat-

rices are made up by the coupling of the
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coefficients at the ith grid point with the ones at the (i+-l)th point.
Let us establish that 2i-1 is the subscript on the unknown pressure
at the fjlgrid point and 2i is the subscript on the pressure gradient at

the same point, such that i takes wvalues from one to n+l.

Matrices C and E

These are the two matrices associated with A and there are two

boundary conditions related to this vector:
9 -
3;-[P(o,t)] = constant

P(L,t) = Pi
Therefore, A2 and A2n+l are known and the corresponding equations in the

system (2.14) and (2.15) are pulled out, so that we are left with the

following structure for matrices C and E

XXX
XXX XX 0
XX XXX
XXXXIXX
XXX XXX
0 XXX XX

XX XXX

xxx SRITITAR

FRPOT

where 'x' means a non-zero element.

Matrices D and F

These matrices are associated with %%~and we also have two boundary

conditions related to saturation, namely:

= [8(o,t)] =
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S(o,t) = 1 ~ Sor

This means that B, and B2 are known and after taking out the correspond-

1

ing equations to these coefficients, the following structure results

XX XX
X XXX 0
XKEXXXXX
XXX XXX
XX XXXZX
XXXXIXX
XXXZXXX
0 XXXIXIXX
XX XX
XX XX

VectorsG and B

As a result of the boundary conditions applied, these vectors are
made up of some constant elements resulting from the product of known
elements of A and B with the corresponding matrix elements. The

structure of both vectors G and H is




EVALUATION OF INTEGRALS AND SCLUTION OF

THE SYSTEM OF EQUATIONS

Evaluation of Integrals

For the sake of simplicity let us make

M = O

uo v,
and \*3,:;’

g oy PR

e ESPOL -
Matrix C comes from the evaluation of
o3 aci]
= M W W, dx (3.2)

in equation (2.12) and similarly, matrix E comes from evaluating
[o|]
- N w'l w! dx (3.3)
o k=1 | s

-in equation (2.13). The next step is to show how the integral of equa-

tion (3.2) is evaluated. The evaluation of (3.3) is basically the same

th

with krw instead of kro‘ At the i7" grid point we have the situation

shown in figure 1. ©Note that:

= pressure at i-l A pressure gradient at i

Ayi-3

2i
AZimZ = pressure gradient at i-1 A2i+l = pressure at i+l
AZi—l = pressure at i AZi+2 = pressure gradient at i+l
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FIGURE |

----------------- FUNCTION AT i-|
FUNCTION AT |

e FUNCTION AT i+]
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X h :
441
= - p t 1 - * 1 J
M ) Akwk Wj dx M b3 Akw Wj dx (3.4)

JXi I
= - 1 1 t t ]
M LAzi—:af +A . JES+ A, f +A.f} f

! 1 7 Bpgapty T Ay gty F AT, Tpypdx
=% .
1-1
in+1
- ' 1 ' 1
M [AZi—lfl AR T ATt A :I £'dx
X,
1

for m=1,2

Now if we order the terms involving the pressure with those involving
the pressure gradients we get the L, J and R two by two matrices re-
ferred to in (2.16) as shown in appendix C. Each has elements of the

form:

JM Q{x) dx (3.6)
where Q(x) is a fourth degree polynomial in x resulting from the product
of two derivatives of the basis functions. The relative permeabilities

are expressed as second degree polynomials in saturation

2
kro = zl + ZZS + ZBS

2
rw z4 + zss + zss

i

k

The coefficients used in this study are:

[

FIBLIBTECA FU

=EPOL
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z, = 1.590355
z, = -3.742012
2, = 2.201183
z, = 5.680473 * 107
z = -0.560473

) z6 = 1.4201183

These coefficients here are determined by fitting a quadratic
through the two end points of the data of Table 1 and requiring a slope
near zero on the abscissa. The saturation is a third degree polynomial
in %, therefore the relative permeabilities are of sixth degree in the
same variable; this means that the integrand in equation (3.6) is a
tenth degree polynomial in x. In this study the relative permeabilities
are evaluated at the beginﬁing of every time step and considered cons-

tant during the time step.

Solution of the System of Equatiocns

A great deal of work was spent in solving the system of equations
given by (2.14) and (2.15). Many schemes were tried in searching for
a solution of those equations, and finally a Gauss-Jordan type of

(6)

solution was used. A Fortran subroutine was written so that only
the nonzero elements had to be stored in a p x 6 matrix., The reduction

of a matrix, say for instance c, to an upper triangular form was done

by an algorithm of the following form.

BIBLIGTECA FIT:
ESPOL




i6

X --C. 4 j =l’2,0006

Ci-2,3
"G, ¥ = Cio2, 542 3= 1,2,3,4

1-1,3 © %1-1,5

C,
= —=as <
1,17 %,5 * 5, Cs 1,3 i = 2,3,4,5,6

Ci-2,4 _

C j = 2,394
i-1,2

i-1,5 T %i-1,3 52,542

Ci2.4
C, o . =C, . x—2at 5= 5.6
i-1,] i-1,j Ci—l,z

€i-1,3
== B, 2
€, 7 %,5 *T, %i-1,3 3 =3,4,5,6
i3
All the equations above are for i = 2, 4, 6 ... p.
A similar algorithim was used to manipulate the right hand side of

each equation.

BIBLIOTECA FIT3
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RESULTS AND DISCUSSION

Before solving the equations that describe the mathematical model
for this study, the capillary forces were taken into consideration
giving a more complex problem to solve, in this case, the pressures in
the oil and water phase are different, being related to each other by
the capillary pressure., Chapeau basis functions were used for that case
with poor results. The linearity of the Chapeau functions made it dif-
ficult to fit the boundary conditions and they had to be approximated by
finite differences.

The relative permeabilities have been approximated by a quadratic
function of water saturation so that a quadrature scheme is not neces—
sary to evaluate the integrals. A six point Gaussian quadrature(7) was

used to check the results, and the polynomial approximation procedure

was found to work well.

The Time Derivative . Feent
~as

Successive overrelaxation(s’g) (SOR) was initially used to SHAIRECA FIE

5 EEPOL

the equation (2.14) and (2.15). The time derivative,-%% s was approxi-

mated by a backward difference such that the equations became

n+l -
CA+ D _@.“Em:__lé_l = E (4.18)
t
;n+l -
BE-pE —B)._§ (4.19)

where ﬁn is a known vector. F has been replaced by its equivalent -D.




138
By adding (4.18) and (4.19) we get one equation in one unknown, the
vector<z, and then SOR was used to solve it. En+l was calculated from
equation (4.19) by the same iterative scheme. This scheme required a
very small convergence criteria. As a result, many iterations were
necessary each time step. This led to excessive computing time and
accumulated round-off error. The best overrelaxation parameter(g) was
found to be 1.4.

As a second attempt, B“n+1 was calculated by subtracting (4.18)
from (4.19) leaving the calculation for A as before; this did not show
good results either. In searching for better results, a predictor-
corrector technique was set up. The prediction is given by the equa-
tions below

-k —_ -
@@+pH E =+

and
nB _ _n7* B =n
D it EA +'At H
- - —nk
with B the values of Cn+%, Dn+%, En+%, Gn+% and B° % were calculated,

and those values used for the corrector equation as follows

=t
(cn+% + En+%) Kp+% - an+% + H
and
D B PPyt B ks

At At
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=n+l . . .
and B . Again, the convergence criteria had to be very tight in order

to obtain good results.

In all the SOR techniques, the number of iterations necessary to
converge was a problem; round-off error was accumulated from one cal-
culation to the next and the solution attained did not satisfy the
equations being solved. This led to the alternative of using a Gauss-
Jordan solution already mentioned and in all the results presented, this
method has been used.

Graphs of saturation versus distance for different water injectioen
rates are shown in figures 4, 5, 6, and 7. The cumulative o0il produced,
as compared with the Buckley-Leverett method is given in tables 2, 3, 4
and 5. A difficulty was encountered in fitting the sharp front as the

(10) solution.

one obtained by the Buckley-Leverett
The influence of Ax in the simulation is shown in figure 8, and we
can See ;hat for small increases in Ax, the closer the front is to the

(11 has shown the order of

position found by Buckley-Leverett. Jennings
approximation is aboutAx . The time step is an important factor for this

simulator and the magnitude of At depends on the accuracy desired.

going from below the irreducible saturation to values above the one *Qg;”/

. . ; | G HG
corresponding to the residual oil saturation. This oscillation seems“%¥ﬂ§ggyh
ESPOL

o W

be the cause for the water front to be behind the position obtained in
the Buckley-Leverett solution. As the time step is decreased, the oscil-
lations also decrease, the front moves faster and the time to break

through approaches the Buckley-Leverett Calculation.
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Despite this fact the cummulative o0il produced obtained by both tech-
niques is essentially the same since in Galerkin's method the oil
produced is calculated by obtaining the amount of flow at a point near
the outlet of the system. The simulation is stopped when breakthrough
is attained.

To have an idea of the running times used we have the following
results, For a 50 feet long model with a cross sectional area of one
square foot and the rest of the parameter as specified before, a pore
volume of 1,185 barrels results, and for a water injection rate of 0.1
BPD the breakthrough is at about 11.58 days. If the model is divided
into 10 intervals of 5 feet, the running time to breakthrough is 1.18
minutes for At = 0.1 days. When At is decreased to 0.0l the runmning
time goes to 6.25 minutes; The amount of core is rather small, about

9K.

RIBLIOTERA HEY
ESFOL
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RESERVOIR PARAMETERS

The following reservoir parameters were chosen, though any consis-

tent set of data may be used.

Swi = (0,2

$ = 0.2

A=1.0 ft2
s = (.15
or

uw = 1.0 cp

k = 0.01 darcys

RBLIGTECA HE

ESPOL




S{fraction)
0.2
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

0.85

TABLE 1

Relative Permeability Data

k
W

(fraction) kro
.000
.003
.013
.028
. 049
.079
117
164
+220
.285
.357
.432
.513

.600

22

(fraction)

.930

.752

«5397

462

.355

.275

214

.162

~118

.080
. 047
.023
. 006

000

BIBLIOTECA FIC!
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TABLE 2
QIN = 1 BPD

Time Cummulative 0il Produced (BPD)
{days) Buckley-Leverett Galerkin

0 0 . 0
20.3 20.3 20,3
40.3 40.3 40.288
60.3 60.3 ’ 60.354
80.3 80.3 779.941
100.3 100.3 97.835

10 £t2

Area

-
]

500 ft

I
I

101.5 days (Buckley-Leverett)
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TABLE 3
QIN = 2 BPD

Time Cummulative 01l Produced (BPD)
(days) Buckley-Leverett Galerkin

0 0 0

9.9 . 19.8 19.801
20.3 40,6 40,588
29.9 59.8 ' | 59.832
40.3 : 80.6 80.302
49.9 99.8 98.513

Area = 10 ft2
L. = 500 £t
tB = 50.7 days (Buckley-Leverett)
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TABLE 4
Qp = 3 BED
Time Cummulative 0il Produced (BPD)
{days) Buckley-Leverett Galerkin
0 0 0
5.9 17.7 17.7
11.9 35.7 35.706
19.9 ' 58.7 59.705
25.9 77.7 77.84
33.9 | 101.7 100.098

Area = 10 ft2
L = 500 ft
tg = 33.8 days (Buckley Leverett)
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Julio 18 de 1975

Ingeniero '

Tahiardo Rivadeneira, VICE-RECIOR
BOCURELA SUPFRIOR POLLTECINICA
Guayaquil

Pondo a vuestra consideracifn la revalidacién del tftulo de "Master
of Sidence in Petrolewn Engineering” que me otorgara la Universidad
de Wyoming de los Estados Unidos de Norteam@rica. Solicito a Ud.
y por su intermedio al organismo correspondiente que &ste titulo
sea revalidado con el de "INGENIERO DE PETROLIOSY que otorga la ES-
POL, para lo cual, me acojo al Artfoulo 10 del FReglamento para la
vevalidacifn e/o inscripcidn de titulos acad@ricos vy profesionales
dbtenidos en el extranjero, ya que me encuentro prestando  sexvi-

cios en esta Institucifn, ininterrupidamente desde el 19 de  Sep-
tiarbre de 1974.

Accroaiio a ésta solicitud la traduccién legal del tftulo, realizada
por el juzgado noveno provincial del Guayas, un certificado de las.
materias aprobadas en la Universidad de Wyoming, copia del Compro-

bante Militar y Certificado de prastar servicios en esta Instito-

cién desde la fecha antes indicada.

Atentamente,

s
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Ca/crb

BRLIBTECA FIC




31

TABLE 5
Qpy = 4 BPD
Time Cummulative 0il Produced (BFD)
{days) Buckley Leverett Galerkin
0 0 0
5.1 20.4 20.401
9.9 39.6 . 39.596
15.1 60.4 . 60.396
19.9 80.6 79.705
25.1 100.4 99.297

Area = 10 ft2
L = 500 ft
tp = 25.4 days (Buckley—Leverett)

SIBLGTECA FIEY
ESPOL




32

Nz. Ol =V

adg v ="0
11343A3T-A37M0N4g
NIXY3IVO

SNOILISOd LNOY4

Z 34NOl4

(1334) X
002

10,0,

--i----

...I....F-l-—-

) NSNS S
T

-

i | SAva |
i\ 861 | isavargi

T et —— b T
llllllllllllllllllll

" 99 DAYS

BiBLIOTECA HIC
ESPOL

020

0e0

ov0

0g0




33

m%w JW M
L13Y3ATT -ATIHONG Sy
02/1=XV skop 100 = 1YV  ————
a4 | =V skop GO0 =1V ———-—
adg o =40 skop [0 = 1Y —
8 3HNSOId
/b ¢/1¢g
) / 4/ /, - ﬂ_/
\ ~.
R RN
.ﬂ ,_ \ ,_ / /
wn \ 0 , ]
5 |\ [ R
0 ER L m_
SR N
| || | \
P N i , \ |
L L ,_ / , t
fr ..r f.__ ( - .’.. FT ... \ r:l[ //
t/ f.r / N\ X A\ a/ /Mﬁ )
SAvaet2 ~ SAva 66l SAVQ ISl SAVA 66 SAva I's

el

Rd




34

K

Hasena-Aapjong w 3
sOp |0'0 = 1V 01/ =XV =%
gl =V 02/ =XV =
adsg 10 ="p Ot/ =XV ———-
6 JJN9Id
B G/ G/ G/1¢ G/
_ Lo _ e S T | =0
/ N\ AN VRN
\ I\ LA b [N =
\ R N Y U
\ | - | _. - .
\ | | ._ ﬂ \ _ — 0
0 Vo I o | _ |
O S | | o | _ | M
e, | |® | o | _ ﬂ | S
v L] \
& LB | N3 | | 1! .
w | (% | || | , ._ _ —90
_. | o | i\
\ | I | _ -
\ AU ,
N \ —— : — 80
LY . ) Y " X < ;
SAVQ66'ec SAVQ60E SAvQl0'e SAVQ 660

N




35

S/

skOp Q10 = 4 4
sApp |00 = ZQ

HG=X /

HOG =1
N.Z._ =V
adg 110 =Yp

Ol 34N9l1d

a/1e -

RIBGTECA FICT
ESPOL

¢/1e G/
! T

00l
002

00¢
00b
00S
009

004




CONCLUSIONS

Galerkin's method may have some utility in the solution of the pro-
blem of two-phase, one~dimensional flow in a porus media.

It was apparent in this work that the backward time differencing
technique used was inadequate. A higher order time differencing sche-
me would allow larger and more realistic time step size.

In this study, the Galerkin sclution resulted in a production his-
tory which was similar to that calculated by Buckley-Leverett. How-
ever, the saturation distribution in the model was different.

There appeared to be an interaction between the size of the time
step and the size of the space increment in this study.

It is possible to perform all the integrations required on the
Galerkin's solution in closed form by using a polynomial approx-—
imation for relative permeabilities. As a result, time consuming

quadrature schemes are not required.
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APPENDIX A

Notation
a vector
a vector
coefficient matrix
coeéfficient matrix
coefficient matrix
coefficient matrix
dimensionless function of basis functions
a vector
a vector
absolute permeability darcy units. Also used as a subseript.
relative permeability, fraction
relative permeability to oil, fraction

relative permeability to water, fractiom

length, feet

SBLIGTECA FIEL
linear operator Eﬁp@&

linear operator

preséure, psi

initial pressure, psi
approximation to pressure, psi
water injection rate, BFD
water saturatiom, fraction

0il saturation, fraction




residual o0il saturation, fraction

water saturation, fraction

irreducible water saturation, fraction
approximation to water saturation, fraction
time, days

time to breakthrough, days

velocity, barrels per day per square foot
basis function

distance, feet

dimension less distance

relative permeability coefficiént
porosity, fraction

denisty gradieng, psi per foot

viscosity, centipoises

oil.viscosity, centipoises

water viscosity, centipoises

finite difference operator
nabla operator

denotes a vector quality

38




APPENDIX B

CUBIC SMOOTH BASIC FUNCTIONS

The equations for this type of function are:

r 2
C2Zx 4 3%y - xg P Oexg )
> X. x < X.
@ -z 3 i-1 =¥ 2%
[1] i i-1
Wit () = 2
(2x -~ 3xi + xi+l) (x - xi-i-l)
s X, < x < x,
| i+l T ¥y

. 2
(e =z ) (x> x5 ) X, Sx<x
2 T
(2] (5 = x5.9)
w, “(x) = 4
* (x - x )2(x - X,)
i+l i
R %, < x < x,
(x. - )2 i—"— "i41
1 T 41 :

ot

i » X, and x,

i $4+1° the amplitude at ;QEUE}TE{;Q HE

! ESPOL
is ome. w, (x) has slope zero at % g and Xii1o while it is 1 at X, -

(x) has a slope of zero at X1

w:.El](x) is the amplitude basic function and is associated with

. . 2 , . , .
Pressure and Saturation while W:!_ ](x) is the gradient basie function

and associates with dp and §_§__
dx dx

The above mentioned functions are much easier to handle in dimen-

sionless form. Let

and
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y ='——T;—— s . £ x<x

i 41,

where y takes values between zero and one and dx = h dy. For the sake

of simplicity, let

|
H

wil ) =

]
rh

wizl(x) g s X Sx<x,

[
Fh

Wj[_l] (x) =

WJE.Z](X') =i,

X, < X < X,
i-1 —"7 =71

With this new nomenclature, the cubic basic functions become

f1=2y3—3y2+1
fz = h(Y3 - 2y2 + v)

_ 5.3 2 .
BT EEpe
£, = (3> - ¥9) RIRLIDTECA FIC
) EgROL

and their derivatives are:

1 2
fi =% (6y" - 6y)
. _ a2
£, =3y -4y +1
v Leo2 L
f3 + (6y 6y)
2
| B -
£, = 3y 2y
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APPENDIX C

This appendix shows the elements in the ith row in (2.16) for the
matrices C, E, D and F. The first subscript refers to the row and the

second one to the column.

Matrix C:
x4 X,
* i
= - T£! = — Tet
151 L Migfdx L, M £1£) dx
i-1 - Fia
X x.
1 i
== il = = Ter
Lzsl J; M féfl dx Lz,z J M f4f2 dx
Ti-l Xi-1
*1 i+l
= - g1 - 1e1
I J M E4E) dx I M£1E] dx
X, %
! Xt ABLIOTECA HC
- 3£, dx - 3 ESPOL
Jlsz J M f3f4 dx [c M flfz dx e
i-1 i
*i i1
= - L F=0 | - Yet
J2,1 [{ ¥ f4f3 dx [{ M f2f1 dx
i-1 i
1 Fi+1
[~ Tet —- N 1
92,2 J M £1f] dx J M E3E) dx
i=-1 Xi
i+l Fi+l
= - Tet = _ '
Rl,l L{ M flf3 dx R12 J M flf& dx

. .
1 1
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i=1

tet = _ tet
M f2f3 dx R2,2 J M f2f4 dx

. X,
i i
Matrix E:

For this matrix all the M's in the equation above are substituted
by N's.

Matrices D and F:

1 1
-0 -_9
Matesm | B Ly T gam | fsha &

X i+l p
1,1~ 6328 L f3'3 4% " §0578 L 1L ipreca pey

ESPOL

2,1 413 6.328 2ty
i-1 1
X Xx.
i i+1
__ ¢ )
T3,2 = €338 J £,8, dx * 3353 £aty dx
Xl—l i
X X,
¢ i+ i+l
— : o=
Ri1 = %328 £fy dx Rio = %328 f£,f, dx
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APPENDIX D

The Computer Program

The computer program was written in FORTRAN and consists of the
main program and five subroutines: FIRINT, SECINT, POLY, PERM and
SOLVER.

The main program dimensions all the arrays, reads the data in,
sets the relative permeability curve coefficients, executes the loop
for every time step and prints out the results. Subroutine PERM calcu—

lates the coefficients of the polynomial
_ ‘ 2 3 & 5 6
kr = k7 + kly + kzy + k3y + kay + k5y + k6y

to express the relative permeabilities as a function of distance.

&

may be kro or krw’ depending on how the subroutine is called.

Subroutine POLY calculates the integrals of the form

4t ' o ax BBLOTRCA FE

/. m ESPOL

.

JN W' w! dx

m o
pertaining to the elements of matrices C and E and subroutine FIRINT
sets those values to the corresponding elements. Subroutine SECINT cal-

culates the entries of matrices D arnd F and subroutine SOLVER solves the

system of equations to calculate the vectors A and B.
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