Repositorio Dspace

Pronóstico de carga a largo plazo de alimentadores distribución basado en una metodología híbrida de predicción. Caso de estudio: Empresa Eléctrica Regional del Sur S.A.

Mostrar el registro sencillo del ítem

dc.contributor.author Moreno Live, Josué David
dc.contributor.author Torres, Miguel, Director
dc.date.accessioned 2023-05-30T15:25:48Z
dc.date.available 2023-05-30T15:25:48Z
dc.date.issued 2022
dc.identifier.citation Moreno J. (2022). Pronóstico de carga a largo plazo de alimentadores distribución basado en una metodología híbrida de predicción. Caso de estudio: Empresa Eléctrica Regional del Sur S.A. [Tesis de maestría]. Escuela Superior Politécnica del Litoral es_EC
dc.identifier.uri http://www.dspace.espol.edu.ec/handle/123456789/57292
dc.description.abstract La Estimación de la Demanda Eléctrica a largo plazo (LTLF) se considera una problemática actual para las Empresas Eléctricas Distribuidoras, ya que es la base para la toma de decisiones y directrices de planeamiento y expansión del Sistema Eléctrico de Distribución (SED). Por lo tanto, una inadecuada metodología de cálculo puede provocar limitaciones técnicas y operativas del SED a futuro. Es por esto, que esta problemática debe tener un enfoque que implemente tanto registros históricos, como la aplicación algoritmos matemáticos que determinen el escenario de mayor probabilidad de demanda máxima. Para el presente trabajo se desarrolló una metodología a partir de los registros históricos de potencia activa medida en cabecera de los A/P (Parque Industrial, Motupe, Chuquiribamba y Carigán) de la S/E Norte, esta información fue extraída del ADMS en el periodo 2012-2021. Posterior a esto se realizó un preprocesamiento en el cual se depuro valores correspondientes a fallas transitorias , fallas permanentes, transferencia de carga, mallado entre alimentadores, pérdidas de comunicación y datos inconsistentes. Con el lenguaje de programación Python se aplicó el algoritmo GMM para obtener las curvas de demanda máxima de mayor representación para cada año histórico por cada alimentador. Y mediante programación de los métodos ARIMA y SARIMA se obtuvo el modelo con menor AIC, para luego proceder a seleccionar el modelo con mejores métricas de estimación (MAPE), y proyectar la demanda eléctrica en un horizonte de 10 años. Finalmente, con los valores estimados se calculó las caídas de voltaje, pérdidas de potencia, cargabilidad del transformador, y límites térmicos mediante un software de simulación. es_EC
dc.language.iso es es_EC
dc.publisher ESPOL. FIEC. es_EC
dc.subject Alimentadores de distribución es_EC
dc.subject Modelos gaussianos mixtos es_EC
dc.subject Estimación carga es_EC
dc.subject Alimentadores de distribución es_EC
dc.title Pronóstico de carga a largo plazo de alimentadores distribución basado en una metodología híbrida de predicción. Caso de estudio: Empresa Eléctrica Regional del Sur S.A. es_EC
dc.type Thesis es_EC


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta