Descripción:
Las ventas de productos de consumo masivo es una actividad que en años recientes ha mostrado un importante crecimiento dentro del entorno económico ecuatoriano, por tal motivo, las empresas que se dedican a esta actividad dedican especial atención a una eficiente y eficaz gestión de sus cadenas de suministros. Dentro de los macroprocesos que se incluyen en la gestión de cadenas de suministros, el primer lugar lo tiene la PLANIFICACION DE LA DEMANDA, este macroproceso consiste en poder anticipar de forma oportuna las necesidades de productos y/o servicios que el mercado requerirá a corto, mediano o largo plazo, a fin de poder desarrollar la planificación de demanda se requiere de una línea base de datos sobre la cual un equipo humano especializado pueda desarrollar tareas de análisis correspondientes y así lograr estructurar un conjunto de cifras como objetivos de ventas. Los pronósticos son la base para construir la planificación de la demanda. En el presente proyecto de tesis se han utilizado técnicas estadísticas, específicamente los modelos de vectores autorregresivos (VAR) y técnicas de aprendizaje profundo, estas son las redes neuronales recurrentes con memoria a corto y largo plazo (LSTM) para generar proyecciones de ventas a corto plazo (14 días en el futuro), para llegar a la generación de dichos pronósticos, previamente se llevó a cabo el proceso de análisis exploratorio de datos y se utilizó el modelo K-MEANS para realizar una clasificación no supervisada de los artículos vendidos correspondientes a la muestra de datos utilizada en este proyecto, el resultado de la clasificación fue la identificación de 5 clusters de productos. Los resultados obtenidos demuestran que para los 5 clústers de productos los pronósticos obtenidos con la aplicación de redes neuronales recurrentes con memoria a corto y largo plazo (LSTM) tienen un mejor desempeño frente a los pronósticos obtenidos con los modelos de vectores autorregresivos (VAR), esta afirmación se soporta en las métricas de error RMSE y MAPE calculadas para cada clúster y que serán presentadas en el capítulo #4 de presente documento.