Descripción:
El proyecto aborda la problemática de la variabilidad en la demanda y la gestión de productos con fecha de vencimiento en una distribuidora farmacéutica. El objetivo es desarrollar un sistema predictivo utilizando inteligencia artificial para mejorar la precisión en las estimaciones de ventas y minimizar pérdidas económicas. Se justificó la necesidad de este sistema debido a las limitaciones de los métodos tradicionales y su impacto negativo en la eficiencia operativa. Para el desarrollo del proyecto, se utilizó una red neuronal LSTM, integrada en una arquitectura basada en servicios de AWS. Se recopilaron datos históricos de ventas, los cuales fueron procesados para entrenar el modelo predictivo. Los resultados demostraron que el modelo alcanzó una precisión adecuada en las predicciones, permitiendo optimizar la gestión de inventarios y reducir el desperdicio de productos. En conclusión, el sistema desarrollado ofrece una solución efectiva para la gestión de inventarios, garantizando una mejor toma de decisiones y sostenibilidad operativa. Palabras Clave: Predicción de ventas, dashboard, red neuronal, gestión de inventario