Descripción:
Trabajo de tesis en el que se evalúa el rendimiento de las técnicas de minería de datos: regresión logística, máquina de soporte vectorial, red neuronal profunda y regresión logística para la predicción de rendimiento estudiantil utilizando solo la información académica de los estudiantes. los modelos de predicción propuestos buscan predecir la aprobación de la materia y su nota promedio final. dos conjuntos de variables se utilizan en los modelos, el primero consiste en las notas promedio finales de las materias de semestres anteriores y el otro conjunto de variables combina aspectos relacionados al semestre, a la materia y al rendimiento académico del estudiante obtenido a través de sus calificaciones.