Repositorio Dspace

Métodos de aprendizaje estadístico para estimar pronósticos de ventas de productos que afectan a la cadena de suministro de una empresa de consumo masivo en la ciudad de Guayaquil

Mostrar el registro sencillo del ítem

dc.contributor.author Morales Luna, Francisco Paul
dc.contributor.author Baúz Olvera, Sergio Alex, Director
dc.date.accessioned 2023-01-10T14:50:02Z
dc.date.available 2023-01-10T14:50:02Z
dc.date.issued 2022
dc.identifier.citation Morales, F. (2022). Métodos de aprendizaje estadístico para estimar pronósticos de ventas de productos que afectan a la cadena de suministro de una empresa de consumo masivo en la ciudad de Guayaquil. [Tesis maestría]. Escuela Superior Politécnica del Litoral es_EC
dc.identifier.uri http://www.dspace.espol.edu.ec/handle/123456789/56534
dc.description.abstract En la actualidad las venta del sector alimentario en el Ecuador está en constante crecimiento, especialmente en la industria de comercio minorista, debido a esto, los pronósticos de ventas constituyen un factor de alto interés para mejorar la competitividad dentro de las industrias. Para modelizar el comportamiento de compras individuales de los clientes y sus características de grupos, se recurre a las técnicas multivariantes de clusterización usando el método K-means y la caracterización mediante el método CHAID, que ayudan a simular el comportamiento real de ventas, que es uno de los problemas principales en los modelos de pronósticos. A partir de estas técnicas se identificaron se determinaron 7 segmentos de clientes homogéneos con características de compras similares que ayudaron a la identificación de variables relevantes para la generación de pronósticos de ventas más confiables y precisos a nivel de categorías por número de ordenes procesadas. Mediante la utilización de aprendizaje estadístico, utilizamos los modelos de pronósticos: regresión lineal, K-vecinos más cercanos (KNN) y Árboles de regresión. Los resultados de los pronósticos mostraron que el mejor modelo para ajustar los datos para las categorías de los distintos segmentos de clientes es el modelo de Regresión lineal, presentando medidas de errores más bajas en cuanto a MAPE y RMSE con relación a las medidas presentadas por los modelos KNN y Árboles de regresión, obteniendo resultados sobresalientes especialmente en laa categorías Papel Higiénico del segmento de clientes C con un MAPE apenas del 2,77% y un MAPE de 3,14% en la categoría Toallas Húmedas. es_EC
dc.language.iso es es_EC
dc.publisher ESPOL. FCNM es_EC
dc.subject Segmentación es_EC
dc.subject Caracterización es_EC
dc.subject Pronósticos es_EC
dc.subject Consumo masivo es_EC
dc.title Métodos de aprendizaje estadístico para estimar pronósticos de ventas de productos que afectan a la cadena de suministro de una empresa de consumo masivo en la ciudad de Guayaquil es_EC
dc.type Thesis es_EC


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta