Description:
La limitada autonomía y vida útil de los vehículos híbridos han sido ineficientes en comparación con las alternativas del mercado actual. En este trabajo, se propone el diseño de un sistema de propulsión para un vehículo híbrido liviano tipo Go-kart, cuya fuente principal es la batería y las celdas de combustible de hidrógeno las secundarias. La evaluación de los componentes del vehículo se hace con el nuevo ciclo de manejo europeo (NEDC). En este proceso, se aplica una arquitectura en paralelo, con un banco de baterías de 12 kW, tres celdas de 2 kW y un motor de 16 kW. El modelo del vehículo se construyó en Matlab/Simulink con los parámetros de diseño. Además, se desarrolló el sistema de gestión y control energético fundamentado en aprendizaje reforzado respaldado por inteligencia artificial. Por lo tanto, al compararse el enfoque de aprendizaje reforzado con enfoques previos de ADVISOR y programación dinámica, se observó una mejora del 47% en la vida útil de la batería y un ahorro de $3751,46 dólares, además de un 34% en la vida útil y $1488,58 dólares respectivamente. Por otra parte, el agente de aprendizaje reforzado entrenado con aprendizaje reforzado se evaluó en un contexto ecuatoriano con resultados de eficiencia similares a los del NEDC. Esto respalda la eficiencia del sistema de gestión energética basado en aprendizaje reforzado diseñado para un vehículo que usa hidrógeno como combustible, siendo capaz de cumplir con la demanda de potencia y preservando la vida útil de sus componentes. Este trabajo se distribuye así: el primer capítulo introduce el contexto y objetivos del proyecto, el segundo se enfoca en la metodología para modelar la solución, el tercero aborda los análisis de los resultados y el cuarto las conclusiones del trabajo y recomendaciones a futuro