Please use this identifier to cite or link to this item: http://www.dspace.espol.edu.ec/handle/123456789/21486
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacías Cabrera, Sindy-
dc.contributor.authorPincay Chiquito, César-
dc.contributor.authorZurita Herrera, Gaudencio-
dc.date.accessioned2013-01-03-
dc.date.available2013-01-03-
dc.date.issued2013-01-03-
dc.identifier.urihttp://www.dspace.espol.edu.ec/handle/123456789/21486-
dc.description.abstractResulta importante dentro del Análisis de Regresión determinar qué variables predictoras o de explicación son óptimas para explicar a la variable de interés, es por esto que existen indicadores de Selección del Modelo que permiten la determinación de estas variables. Uno de ellos y el más utilizado es el 2 adj R , pero existen otras medidas de bondad de ajuste tales como el Criterio Akaike, estadístico Cp deMallows y PRESS; cada uno proporciona las posibles combinaciones de las (p-1) variables de explicación y están basados principalmente en la minimización de las medidas de variación del modelo de regresión, utilizando Suma y Media Cuadrática. Debido a que estas medidas de ajuste no son comunes en los softwares más usuales, se ha desarrollado ERLA (Estadística de Regresión Lineal Avanzada) el cual ayuda en la comparación conjunta de los valores y variables, quedando a decisión del investigador la elección de las mismas. Este software está constituido desde las técnicas más básicas hasta las más avanzadas como Regresión Rigde, Regresión Logística y por supuesto Selección del Modelo.en
dc.language.isospaen
dc.rightsopenAccess-
dc.subjectSELECCIÓN DEL MODELOen
dc.subjectANÁLISIS DE REGRESIÓNen
dc.subjectMEDIDAS DE BONDAD DE AJUSTEen
dc.subjectERLAen
dc.subjectINDICADORESen
dc.titleConstrucción de software para regresión el caso de selección del modelo y pruebas de homocedasticidaden
Appears in Collections:Artículos de Tesis de Grado - ICM

Files in This Item:
File Description SizeFormat 
Resumen MACIAS - PINCAY FINAL.pdf449.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.