Please use this identifier to cite or link to this item: http://www.dspace.espol.edu.ec/handle/123456789/56534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMorales Luna, Francisco Paul-
dc.contributor.authorBaúz Olvera, Sergio Alex, Director-
dc.date.accessioned2023-01-10T14:50:02Z-
dc.date.available2023-01-10T14:50:02Z-
dc.date.issued2022-
dc.identifier.citationMorales, F. (2022). Métodos de aprendizaje estadístico para estimar pronósticos de ventas de productos que afectan a la cadena de suministro de una empresa de consumo masivo en la ciudad de Guayaquil. [Tesis maestría]. Escuela Superior Politécnica del Litorales_EC
dc.identifier.urihttp://www.dspace.espol.edu.ec/handle/123456789/56534-
dc.description.abstractEn la actualidad las venta del sector alimentario en el Ecuador está en constante crecimiento, especialmente en la industria de comercio minorista, debido a esto, los pronósticos de ventas constituyen un factor de alto interés para mejorar la competitividad dentro de las industrias. Para modelizar el comportamiento de compras individuales de los clientes y sus características de grupos, se recurre a las técnicas multivariantes de clusterización usando el método K-means y la caracterización mediante el método CHAID, que ayudan a simular el comportamiento real de ventas, que es uno de los problemas principales en los modelos de pronósticos. A partir de estas técnicas se identificaron se determinaron 7 segmentos de clientes homogéneos con características de compras similares que ayudaron a la identificación de variables relevantes para la generación de pronósticos de ventas más confiables y precisos a nivel de categorías por número de ordenes procesadas. Mediante la utilización de aprendizaje estadístico, utilizamos los modelos de pronósticos: regresión lineal, K-vecinos más cercanos (KNN) y Árboles de regresión. Los resultados de los pronósticos mostraron que el mejor modelo para ajustar los datos para las categorías de los distintos segmentos de clientes es el modelo de Regresión lineal, presentando medidas de errores más bajas en cuanto a MAPE y RMSE con relación a las medidas presentadas por los modelos KNN y Árboles de regresión, obteniendo resultados sobresalientes especialmente en laa categorías Papel Higiénico del segmento de clientes C con un MAPE apenas del 2,77% y un MAPE de 3,14% en la categoría Toallas Húmedas.es_EC
dc.language.isoeses_EC
dc.publisherESPOL. FCNMes_EC
dc.subjectSegmentaciónes_EC
dc.subjectCaracterizaciónes_EC
dc.subjectPronósticoses_EC
dc.subjectConsumo masivoes_EC
dc.titleMétodos de aprendizaje estadístico para estimar pronósticos de ventas de productos que afectan a la cadena de suministro de una empresa de consumo masivo en la ciudad de Guayaquiles_EC
dc.typeThesises_EC
Appears in Collections:Tesis de Maestría en Estadística Aplicada

Files in This Item:
File Description SizeFormat 
T-110389 FRANCISCO PAÚL MORALES LUNA MAGÍSTER EN ESTADÍSTICA APLICADA.pdf3.46 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.