Please use this identifier to cite or link to this item: http://www.dspace.espol.edu.ec/handle/123456789/6143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOchoa, Daniel-
dc.contributor.authorGautama, Sidharta-
dc.contributor.authorVintimilla, Boris-
dc.date.accessioned2009-07-27-
dc.date.available2009-07-27-
dc.date.issued2009-07-27-
dc.identifier.isbn978-3-540-74606-5-
dc.identifier.urihttp://www.dspace.espol.edu.ec/handle/123456789/6143-
dc.description.abstractIn this paper we study how shape information encoded in contour energy components values can be used for detection of microscopic organisms in population images. We proposed features based on shape and geometrical statistical data obtained from samples of optimized contour lines integrated in the framework of Bayesian inference for recognition of individual specimens. Compared with common geometric features the results show that patterns present in the image allow better detection of a considerable amount of individuals even in cluttered regions when sufficient shape information is retained. Therefore providing an alternative to building a specific shape model or imposing specific constrains on the interaction of overlapping objects.en
dc.description.sponsorshipDepartment of telecommunication and information processing, Ghent University, St-Pieters Nieuwstraat 41, B-9000, Ghent, Belgium Centro de Vision y Robotica, Facultad de Ingenieria en Electricidad y Computación, ESPOL University, Km 30.5 via perimetral, 09015863, Guayaquil, Ecuadoren
dc.language.isoen_USen
dc.relation.ispartofseriesSpringer LNCS;4678-
dc.rightsopenAccess-
dc.subjectRECOGNITIONen
dc.subjectFEATURE EXTRACTIONen
dc.subjectSTATISTICAL SHAPE ANALYSISen
dc.titleDetection of individual specimens in populations using contour energiesen
dc.typeOtheren
Appears in Collections:Publicaciones - FIEC

Files in This Item:
File Description SizeFormat 
ACIVS2007_LNCS.pdfArticulo en formato pdf1.23 MBAdobe PDFView/Open
ACIVS2007_LNCS.docArticulo en formato doc (office 2003)17.35 MBMicrosoft WordView/Open
ACIVS2007_LNCS.docxArticulo en word (office 2007)1.33 MBMicrosoft Word XMLView/Open
ACIVS2007_LNCS.ps2.73 MBPostscriptView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.