Please use this identifier to cite or link to this item: http://www.dspace.espol.edu.ec/handle/123456789/7756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacias, Mervyn-
dc.contributor.authorDe La Rosa, Freddy-
dc.contributor.authorAbad, Cristina-
dc.date.accessioned2009-10-19-
dc.date.available2009-10-19-
dc.date.issued2009-10-19-
dc.identifier.urihttp://www.dspace.espol.edu.ec/handle/123456789/7756-
dc.description.abstractA system of recommendations is a specific type of filter of information that helps the user to select such articles of his (her, your) interest as movies, musical, web pages, magazines, books, etc. Nowadays, the web sites that give these services need that the great quantity of information got for all the implicit or explicit actions of million users on million articles, is tried in a rapid way and with the minor possible infrastructure, this in order to obtain rapid and better indexes of useful preferences and to minor cost The Present work has as aim to present two alternatives of processing recommendation of musical articles based on the implicit preferences of the users and using a model of massive and scalable programming inside Hadoop's framework as a system of the execution of tasks in parallel and tolerantly to failures.en
dc.language.isospaen
dc.rightsopenAccess-
dc.subjectFILTRADO COLABORATIVOen
dc.subjectSISTEMA DE ARCHIVOS DISTRIBUIDOS HADOOP (HDFS)en
dc.subjectMAHOUTen
dc.subjectCOEFICIENTE CORRELACIÓN DE PEARSON.en
dc.titleRecomendaciones con filtrado colaborativo basado en usuarío y en ítem aplicando el paradigma map-reduceen
dc.typeArticleen
Appears in Collections:Artículos de Tesis de Grado - FIEC

Files in This Item:
File Description SizeFormat 
Recomendaciones con Filtrado Colaborativo basado en Usuario y en Item.pdf441.2 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.