Por favor, use este identificador para citar o enlazar este ítem:
http://www.dspace.espol.edu.ec/handle/123456789/29650
Título : | On some time marching schemes for the stabilized finite element approximation of the mixed wave equation |
Autor : | Espinoza, Héctor Codina, Ramón Badia, Santiago |
Palabras clave : | TIME MARCHING SCHEMES VARIATIONAL MULTISCALE METHODS DISPERSION STABILIZED FINITE ELEMENT METHODS MIXED WAVE EQUATION DISSIPATION VON NEUMANN ANALYSIS FOURIER ANALYSIS |
Fecha de publicación : | 15-jul-2015 |
Resumen : | In this paper we analyze time marching schemes for the wave equation in mixed form. The problem is discretized in space using stabilized finite elements. On the one hand, stability and convergence analyses of the fully discrete numerical schemes are presented using different time integration schemes and appropriate functional settings. On the other hand, we use Fourier techniques (also known as von Neumann analysis) in order to analyze stability, dispersion and dissipation. Numerical convergence tests are presented for various time integration schemes, polynomial interpolations (for the spatial discretization), stabilization methods, and variational forms. To analyze the behavior of the different schemes considered, a 1D wave propagation problem is solved. |
Descripción : | In this paper we analyze time marching schemes for the wave equation in mixed form. The problem is discretized in space using stabilized finite elements. On the one hand, stability and convergence analyses of the fully discrete numerical schemes are presented using different time integration schemes and appropriate functional settings. On the other hand, we use Fourier techniques (also known as von Neumann analysis) in order to analyze stability, dispersion and dissipation. Numerical convergence tests are presented for various time integration schemes, polynomial interpolations (for the spatial discretization), stabilization methods, and variational forms. To analyze the behavior of the different schemes considered, a 1D wave propagation problem is solved. |
URI : | http://www.dspace.espol.edu.ec/xmlui/handle/123456789/29650 |
Aparece en las colecciones: | Publicaciones FIMCP |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ARTICLE-MAIN.pdf | 682.74 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.