Por favor, use este identificador para citar o enlazar este ítem:
http://www.dspace.espol.edu.ec/handle/123456789/6184
Título : | Contour energy features for recognition of biological specimens in population images |
Autor : | Ochoa, Daniel Gautama, Sidharta Vintimilla, Boris |
Palabras clave : | FEATURE EXTRACTION SEGMENTATION RECOGNITION STATISTICAL SHAPE ANALYSIS ESPOL FIEC CVR ROBOTICA |
Fecha de publicación : | 29-jul-2009 |
Citación : | Springer LNCS;4678 |
Resumen : | In this paper we present an approach to perform automated analysis of nematodes in population images. Occlusion, shape variability and structural noise make reliable recognition of individuals a task difficult. Our approach relies on shape and geometrical statistical data obtained from samples of segmented lines. We study how shape similarity in the objects of interest, is encoded in active contour energy component values and exploit them to define shape features. Without having to build a specific model or making explicit assumptions on the interaction of overlapping objects, our results show that a considerable number of individual can be extracted even in highly cluttered regions when shape information is consistent with the patterns found in a given sample set. |
URI : | http://www.dspace.espol.edu.ec/handle/123456789/6184 |
ISBN : | 978-3-540-74606-5 |
Aparece en las colecciones: | Publicaciones - FIEC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ICIAR2007_LNCS.pdf | Fichero en formato pdf | 525.54 kB | Adobe PDF | Visualizar/Abrir |
ICIAR2007_LNCS.ps | 1.42 MB | Postscript | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.