Por favor, use este identificador para citar o enlazar este ítem: http://www.dspace.espol.edu.ec/handle/123456789/6184
Título : Contour energy features for recognition of biological specimens in population images
Autor : Ochoa, Daniel
Gautama, Sidharta
Vintimilla, Boris
Palabras clave : FEATURE EXTRACTION
SEGMENTATION
RECOGNITION
STATISTICAL SHAPE ANALYSIS
ESPOL
FIEC
CVR
ROBOTICA
Fecha de publicación : 29-jul-2009
Citación : Springer LNCS;4678
Resumen : In this paper we present an approach to perform automated analysis of nematodes in population images. Occlusion, shape variability and structural noise make reliable recognition of individuals a task difficult. Our approach relies on shape and geometrical statistical data obtained from samples of segmented lines. We study how shape similarity in the objects of interest, is encoded in active contour energy component values and exploit them to define shape features. Without having to build a specific model or making explicit assumptions on the interaction of overlapping objects, our results show that a considerable number of individual can be extracted even in highly cluttered regions when shape information is consistent with the patterns found in a given sample set.
URI : http://www.dspace.espol.edu.ec/handle/123456789/6184
ISBN : 978-3-540-74606-5
Aparece en las colecciones: Publicaciones - FIEC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ICIAR2007_LNCS.pdfFichero en formato pdf525.54 kBAdobe PDFVisualizar/Abrir
ICIAR2007_LNCS.ps1.42 MBPostscriptVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.