Por favor, use este identificador para citar o enlazar este ítem: http://www.dspace.espol.edu.ec/handle/123456789/8588
Título : Implementación y evaluación de un detector masivo de web spam
Autor : González, Jesús
Bastidas, Washington
Abad, Cristina
Palabras clave : MAPREDUCE
MÁQUINAS DE VECTORES DE APOYO
WEB SPAM
COMPUTACIÓN EN NUBE.
Fecha de publicación : 8-ene-2010
Resumen : This work presents a mechanism to detect Web Spam in a massive way, using a distributed architecture based on the paradigm MapReduce for the parallel processing and the Support Vectors Machines (SVM) as learning algorithm for the classification. The Web Spam that is, the unjustified assignment of relevance to pages in the Web, has become a topic very approached actually since the involved parts, the Searching Machines on one hand and for other the users that demand information of them, can be benefited or harmed by the treatment of this issue. Our solution presents an alternative to detect Web Spam pages that combine the programming pattern MapReduce, implemented with Hadoop, with a cascade model of SVM using the Amazon web services that, offer a very practical and not expensive form to carry out the computation of big quantities of information in the cloud.
URI : http://www.dspace.espol.edu.ec/handle/123456789/8588
Aparece en las colecciones: Artículos de Tesis de Grado - FIEC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Implementación y evaluación de un detector masivo de Web Spam.pdf557.79 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.